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Abstract—This paper presents a novel theoretical formulation
and an associated algorithm for the computation of passive
parameterized macromodels from tabulated scattering data. The
main contribution is the construction of passivity constraints for
parameterized models as a finite set of linear matrix inequalities,
thanks to a suitable expansion into Bernstein polynomials. These
constraints are embedded in the model identification process,
leading to a convex formulation of passivity enforcement, with
guaranteed convergence and without requiring any expensive
multivariate passivity check. Two numerical examples demon-
strate the effectiveness of the proposed approach.

I. INTRODUCTION

In the recent years, parameterized macromodels emerged as
a promising tool to reduce the intensive computational burden
required by time domain simulations of complex electronic
systems. Such macromodels embed in closed form the de-
pendence of a device behavior on external design or physical
parameters, allowing for design optimization, sensitivity and
what-if analyses.

The generation of parameterized macromodels using data-
driven approaches is typically performed by fitting multivariate
rational functions to tabulated scattering responses, suitably
swept over the parameter space of interest. Model passiv-
ity, which is a fundamental requirement for ensuring stable
time-domain simulations, can be either ensured a priori by
adopting a particular model structure [1], or by a subsequent
passivity enforcement stage [2], which iteratively perturbs the
model coefficients until uniform passivity is achieved. The
former methods may overconstrain model extraction leading
to reduced accuracy, whereas the latter methods are extremely
expensive in terms of computing resources, due to the need of
iterated multivariate passivity checks. Moreover, convergence
in passivity enforcement loop is not always guaranteed.

This work proposes a novel technique for the generation
of guaranteed passive macromodels depending on a single
external parameter. By inducing the parameterization of the
poles and the zeros of the model through polynomials rep-
resented in Bernstein basis [3], we are able to formulate the
parameterized passivity constraints as a finite number of Linear
Matrix Inequalities (LMIs). Combining these constraints with
a standard multivariate rational fitting process leads to a guar-
anteed passive macromodel in only one iteration, thanks to a
convex formulation. Hence, no expensive passivity checks are
required, and no convergence issues arise. The effectiveness
of the proposed approach is demonstrated on two relevant test
cases.

II. BACKGROUND AND PROBLEM SETTING

We consider a passive p-port electromagnetic structure,
whose behavior depends on one real-valued (normalized)
design parameter θ ∈ Θ = [0, 1]. The structure is characterized
over a finite bandwidth by its parameterized scattering matrix
H̃(s, θ), in terms of the following tabulated samples

H̃k,m = H̃(jωk, θm), k = 1, ...K, m = 1, ...,M. (1)

Our goal is to derive a reduced-order rational model H(s, θ),
to be extracted by enforcing the fitting condition

H(jωk, θm) ≈ H̃k,m, k = 1, ...K, m = 1, ...,M (2)

subject to appropriate passivity constraints.
We assume the following bivariate model structure [4]

H(s, θ) =
N(s, θ)

d(s, θ)
=

∑n̄
i=0

∑¯̀

`=1Ri,` b`,¯̀(θ)ϕi(s)∑n̄
i=0

∑¯̀

`=1 ri,` b`,¯̀(θ)ϕi(s)
, (3)

where the rational form of (3) is induced by the partial fraction
basis ϕ0(s) = 1, ϕi(s) = (s − qi)

−1 where qi are fixed
stable poles. Further, we denote with b`,¯̀(θ) the `-th Bernstein
polynomial [5] of degree ¯̀. These polynomials provide a
parameterization of both poles and zeros of H(s, θ) and retain
the following properties

¯̀∑
`=0

b`,¯̀(θ) = 1, and b`,¯̀(θ) ≥ 0, ∀`. (4)

We will also exploit the so-called degree elevation property,
which enables to write any Bernstein polynomial of degree ¯̀

in terms of a polynomial of degree ¯̀+ 1 as
¯̀∑

`=0

a` · b`,¯̀(θ) =

¯̀+1∑
m=0

a′mbm,¯̀+1(θ) (5)

with a′m = m
¯̀+1

am−1 +
¯̀+1−m

¯̀+1
am.

By using the Parameterized Sanathanan-Koerner (PSK)
iteration [4], the model (3) is constructed by iteratively solving
the least squares problem[

Ψµ
x Ψµ

y

] [xµ
yµ

]
≈ h (6)

arising from the linearization of (2), where vectors x, y collect
the coefficients Ri,` ∈ Rp×p and ri,` ∈ R, respectively, Ψx

and Ψy are regressor matrix blocks, h collects all data (1),
and µ = 1, 2, . . . is the iteration index. See [6] for details.

It is known [7] that model (3) is passive if and only if the
following three conditions hold concurrently



1) H(s, θ) regular for <{s} > 0 ∀θ ∈ Θ;
2) H∗(s, θ) = H(s∗, θ) ∀s ∈ C, ∀θ ∈ Θ;
3) HH(jω, θ)H(jω, θ) � Ip ∀ω ∈ R, ∀θ ∈ Θ;

where Ip is the size-p identity matrix, with ∗ and H denoting
complex conjugate and hermitian transpose, respectively. In
what follows, we assume condition 1, which is enforced
as in [8], with condition 2 implied by the adopted model
structure. In this work, we propose a numerically viable
strategy to enforce also condition 3 during model generation.

III. BOUNDED REALNESS OF BIVARIATE PSK MODELS

Based on the model structure (3), the passivity condition 3
can be equivalently rewritten ∀ω and ∀θ ∈ Θ as

NH(jω, θ)N(jω, θ)− DH(jω, θ)D(jω, θ) � 0, (7)

where D(jω, θ) = d(jω, θ) · Ip. Following [4], we express
both N(s, θ) and D(s, θ) through their (parameterized) state-
space realizations Q(s, θ) → {A,B,CQ(θ), DQ(θ)}, where
Q is a placeholder for {N,D}, matrices A, B are constant
and common to both {N,D}, and where the matrix pair
CQ(θ), DQ(θ) collects numerator and denominator coefficients
x, y for Q = N and Q = D, respectively.

Applying the Yakubovich lemma [9, Sec. 3, Theorem 1]
leads to the following parameter-dependent non-expansivity
condition

∀θ ∈ Θ, ∃P (θ) = PT (θ) s.t. (8)ATP + PA− CTDCD PB − CTDDD CTN
BTP −DT

DCD −DT
DDD DT

N

CN DN −Ip

 � 0.

which is equivalent to (7) and provides a purely algebraic (yet
parameterized) passivity characterization.

Model parameterization is here induced by expansion of
all relevant model quantities (3) into Bernstein polynomials.
Due to the presence of quadratic terms into (8), we exploit
the degree elevation property (5) to cast all expansions into
Bernstein polynomials of degree 2¯̀. We have

ZN(θ) =

¯̀∑
`=0

b`,¯̀(θ) · ZN,` =

2¯̀∑
`=0

b`,2¯̀(θ) · Z ′N,` (9)

for numerator state-space matrices Z = {C,D},[
CTD (θ)
DT

D (θ)

] [
CD(θ) DD(θ)

]
=

2¯̀∑
`=0

b`,2¯̀(θ) ·X` (10)

for quadratic terms, and

P (θ) =

2¯̀∑
`=0

b`,2¯̀(θ) · P`, P` = PT` ∀` (11)

for the symmetric matrix. Inserting into (8) leads to condition

∀θ ∈ Θ, ∃P` = PT` , ` = 0, 1, ..., 2¯̀ s.t.

Υ(θ) =

2¯̀∑
`=0

b`,2¯̀(θ)

[
Ω` −X` KT

`

K` −Ip

]
︸ ︷︷ ︸

Υ`

� 0, (12)

which implies (8) under the adopted parameterization, with

Ω` =

[
ATP` + P`A P`B

BTP` 0

]
, K` =

[
C ′N,` D′N,`

]
. (13)

We will refer to the matrix coefficients Υ` as to control points
for Υ(θ). Due to property (4), condition (12) is implied by
the following finite set of 2¯̀+ 1 Linear Matrix Inequalities
(LMIs)

∃P` = PT` s.t. Υ` � 0 for ` = 0, 1, ..., 2¯̀. (14)

We are now ready to state our main algorithm for passive
model extraction. We note that the control points Υ` are linear
in the unknowns CN,`, DN,`, corresponding to the numerator
coefficients Ri,` and collected in vector x. Therefore,

1) the unconstrained PSK iteration (6) is run until the
estimates of both numerator and denominator coefficients
stabilize;

2) denoting the last iteration as µ̄, we freeze the denominator
coefficients yµ̄ and we solve only once the constrained
least squares problem

min
P` ,xµ̄+1

||Ψµ̄+1
x xµ̄+1 −

[
h−Ψµ̄+1

y yµ̄
]
||2 (15)

s.t. Υ` � 0, P` = PT` , ` = 0, 1, ..., 2¯̀

to evaluate the numerator coefficients. No iterations are re-
quired since the unique solution of (15) provides a model that
is uniformly passive throughout the parameter space Θ.

IV. EXAMPLES

A. Microstrip Filter

The proposed method was applied to generate a pas-
sive parameterized macromodel of a 2-port double-folded
microstrip filter (see [10]) parameterized by a stub length
θ ∈ [2.08, 2.28] mm. The scattering parameters of the structure
were sampled by means of an EM solver for 21 linearly spaced
values of the design parameter.

A model with n̄ = 9 poles and polynomial degree ¯̀= 3 was
generated starting from the available samples. We performed
µ̄ = 10 initial iterations of the PSK algorithm to generate
the model; then, the proposed passivity conditions (14) were
enforced in a last iteration, by solving (15). The solution
of this constrained problem required approximately 2 s on a
common laptop. We show in Fig. 1 (top panel) the accuracy
of the model with respect to the raw data for one of the
reflection coefficients. The parameterized singular values of
the model are shown in the bottom panel of Fig. 1 for 100
different parameter instances, and confirm that passivity holds
uniformly throughout the parameter space.

B. High-speed link

The second example we consider is a high-speed link
connecting two multilayer PCBs, which include vertical vias
for inner routing, see [11] for full details. The free parameter
is the via pad radius, varying in the range [100, 300] µm. The
scattering parameters were sampled in correspondence of 9
parameter configurations.



Fig. 1. Microstrip filter. Top panel: comparison of parameterized model
responses to raw data for one selected scattering response, evaluated over
selected parameter values. Bottom panel: singular values computed over a
fine parameter sweep.

We derived a passive model with n̄ = 25 poles and
polynomial degree ¯̀= 3, by applying the PSK algorithm as in
the previous example. The passivity-constrained problem (15)
required 42 s. The results are shown in Fig. 2 (top panel),
which highlights the very large variability induced by the
parameter in the responses, as well as the remarkable accuracy
of the model when compared to the raw data. Also in this case
a fine sweep of the singular values of the model (bottom panel)
confirms the uniform passivity throughout the parameter space.

V. CONCLUSIONS

This paper introduced a novel strategy for the generation of
passive bivariate macromodels from tabulated scattering data.
Differently from conventional approaches, based on a two-
step process that first computes a macromodel and only in a
second stage enforces its passivity by iterative perturbation,
the new approach enforces passivity by solving a unique least
squares problem constrained by a finite set of linear matrix
inequalities. Thanks to this convex formulation, no expensive
multivariate passivity checks are required, and convergence is
guaranteed in one step. Future investigations will attempt an
extension of the proposed strategy in presence of more than
one parameter in addition to frequency.
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