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AdapTTA: Adaptive Test-Time Augmentation for
Reliable Embedded ConvNets

Luca Mocerino, Roberto G. Rizzo, Valentino Peluso, Andrea Calimera, Enrico Macii
Department of Control and Computer Engineering,

Politecnico di Torino, 10129 Turin, Italy

Abstract—Convolutional Neural Networks (ConvNets) are
trained offline using the few available data and may therefore
suffer from substantial accuracy loss when ported on the field,
where unseen input patterns received under unpredictable exter-
nal conditions can mislead the model. Test-Time Augmentation
(TTA) techniques aim to alleviate such common side effect
at inference-time, first running multiple feed-forward passes
on a set of altered versions of the same input sample, and
then computing the main outcome through a consensus of the
aggregated predictions. Unfortunately, the implementation of
TTA on embedded CPUs introduces latency penalties that limit
its adoption on edge applications. To tackle this issue, we propose
AdapTTA, an adaptive implementation of TTA that controls the
number of feed-forward passes dynamically, depending on the
complexity of the input. Experimental results on state-of-the-
art ConvNets for image classification deployed on a commercial
ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable
latency savings, from 1.40× to 2.21×, and hence a higher frame
rate compared to static TTA, still preserving the same accuracy
gain.

I. INTRODUCTION & MOTIVATIONS

Learning pattern recognition models with good general-
ization capability is an extremely challenging task, as the
training data often represents a tiny fraction of all the possible
patterns. This is a main source of concern in high-dimensional
problems, like those in computer vision, e.g., image classifi-
cation, where covering the large variability across different
samples gets unfeasible. In this regard, the advancements in
deep learning, Convolutional Neural Networks (ConvNets)
in particular, enabled unprecedented results [1]. Nonetheless,
state-of-the-art ConvNets still suffer from accuracy drop when
ported in real-life scenarios and operated on input patterns
that differ substantially from those used at training time. For
instance, the most common sources of misprediction are the
discrepancy in size and orientation of the objects caught in the
image [2], as well as different light conditions or contrast.

Several techniques proposed in the recent literature aim
to improve model generalization operating both at training
time [3], [4] and inference time [5], [6]. Among them, Test-
Time Augmentation (TTA) is a valuable option for ConvNets
hosted in the cloud and operated for visual tasks like image
classification [7], [8], [9]. It is a simple yet efficient strategy
that involves the aggregation of partial predictions over a set
of transformed versions of the same input image. When imple-
mented on high-performance architecture, the cost of multiple
feed-forward passes is compensated through input batching,
that is, the augmented images get processed in parallel with

Table I: Inference latency (ms) of state-of-the-art ConvNets
measured at different batch sizes (1, 5, and 10) on a cloud GPU
(NVIDIA Titan Xp with 3840 CUDA cores) and an embedded
CPU (ARM Cortex-A53 with 4 cores).

ConvNet
NVIDIA Titan Xp ARM Cortex-A53

1 5 10 1 5 10

MobileNetV1 18.2 18.6 18.7 53.1 290.6 569.9
MobileNetV2 12.1 12.4 12.9 44.2 261.8 513.5

EfficientNet-B0 21.3 22.4 22.6 68.5 358.9 682.3
EfficientNet-B1 31.9 33.4 33.9 103.4 536.4 1290.2

negligible overhead (see Table I). The same does not hold on
the edge, where ConvNets are made run on mobile devices
powered by low-power CPUs with limited resources [10][11].
Table I collects a quantitative comparison, showing that batch
inference raises a prohibitive latency overhead on embedded
CPUs, which in turn prevents the portability of TTA. Indeed,
batch inference gets 5.5× (batch size=5) and 11.2× (batch
size=10) slower than a single inference (batch size=1), which
is even less efficient than sequential processing.

Starting from these observations, this paper introduces
AdapTTA, an adaptive implementation of TTA suited for em-
bedded systems. Unlike static TTA strategies, where the num-
ber of modified samples fed to the ConvNet is fixed, AdapTTA
self-regulates the number of transformations and feed-forward
passes dynamically. The transformed images are generated and
processed sequentially till the model achieves good confidence
on the main outcome. Specifically, AdapTTA relies on the fact
that different inputs come with different intrinsic complexity
and the minimum number of transformations needed to reach
an accurate classification changes on a sample basis. This
suggests the number of feed-forward passes can be adjusted
at run-time depending on the confidence level accumulated.
In such a way, the processing gets faster for ”easy” images,
slower for the most ”complex” ones. Leveraging the statistics
of the input patterns, AdapTTA provides a substantial average
speed-up compared to the original static approach.

AdapTTA was tested on four state-of-the-art ConvNets for
image classification, taking into account two common TTA
policies, namely, 5-Crops and 10-Crops [7], [8], [9], which
refer to five and ten consecutive crops on the same image,
respectively. To notice that the main objective here is not
to find the transformations that reach the highest results, a
research problem already addressed in previous works [12],
[13], but rather to demonstrate the feasibility of the proposed



dynamic scheme for low-power applications. AdapTTA is
orthogonal to the kind of input augmentation applied indeed.
The experiments were thereby conducted on a commercial
off-the-shelf embedded platform powered by an ARM Cortex-
A53 CPU. Collected results show that AdapTTA reaches faster
processing than static TTA, from 1.40× to 2.21× on average,
still preserving the same accuracy gain. This demonstrates the
improved portability and scalability of the method, which can
be easily adapted to many edge applications without incurring
any modification on the training pipeline.

II. RELATED WORKS

Data augmentation is key for training ConvNets. It consists
of applying random transformations on the input data to
increase the diversity of the training samples, with the final
goal of improving the generalization capability of the model.
The most simple implementations used in computer vision
problems rely on a set of geometric transformations (e.g.,
translation, rotation, flipping) and graphical transformations
(e.g., brightness, contrast, saturation), often hand-tuned by do-
main experts to match the conditions of real-life scenarios [7],
[14]. More advanced strategies aim to automate the design of
the augmentation policy, for instance, through a grid search
exploration [4], or using faster-searching processes driven by
reinforcement learning [3] and gradient-based methods [15].
Some of these strategies have been successfully integrated with
the training of state-of-the-art ConvNets [1].

Data augmentation at training time is often not enough
to handle the unpredictable changes in the data distribution
[12], [16]. Therefore, TTA has been employed to increase the
predictive performance of the model. TTA works at inference
time, employing the transformations typically used in data
augmentation. It aims to generate altered versions of the same
input with a similar distribution of the training data, providing
the model with more information. In practice, a set of modified
samples is fed to the ConvNet, and the partial predictions are
aggregated through majority voting or averaging. Similarly to
data augmentation, the TTA policy can be hand-crafted [7],
[8], [9] or discovered by automatic algorithms [12], [13].
Overall, TTA enables to improve the prediction accuracy [17]
and the robustness against adversarial attacks [18].

Regardless of the transformations adopted, the existing TTA
policies have been conceived and validated on ConvNets
running in the cloud, where even a very large set of input
transformations can be efficiently distributed over the exten-
sive parallelism of GPUs. The implementation of TTA on
embedded platforms cannot leverage such parallelism, and the
efficiency on low-power devices is a less explored problem,
which is the target of this work.

III. ADAPTIVE TEST-TIME AUGMENTATION

All the existing TTA policies share the following limitation:
they apply a fixed and predefined number of transformations
to each input data, namely, they are static. This represents
a major bottleneck for the adoption of TTA on embedded
systems. A more detailed view of the execution flow of a
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Figure 1: Flow diagram of static TTA policy for an image
classification task.

generic TTA policy is depicted in Figure 1. It refers to an
image classification problem involving C classes. First, a set
of N altered versions x′ of the input image x is generated
through the application of a set of transformation T : x→ x′.
Second, the generated images are processed by the ConvNet
in parallel or sequence (more details in Section V). Third,
the N partial predictions are aggregated to compute the final
outcome. The parameter N is defined at design time by the
TTA policy, hence each prediction encompasses the same
number of inferences for each input image.

Such a static strategy might be too conservative for most of
the samples, especially for certain inputs with key features well
exposed and easy to be detected. AdapTTA has been conceived
to fulfill a simple objective: implement a more flexible TTA
mechanism monitoring intermediate results to apply the lowest
number of transformations in T that allows to infer the correct
output.

The schematic flow of AdapTTA is illustrated in Figure 2.
Given an input image, modified versions are generated and
fed to ConvNet iteratively. After each inference, the partial
prediction probabilities pi are aggregated through a class-wise
average P avg to compute a confidence score defined as follows:

CS = P avg-1 − P avg-2 (1)

where the P avg-1 and P avg-2 denote the probability of the
first and second highest scored classes respectively. If the
confidence score satisfies a pre-defined confidence threshold
τ (CS > τ ), the prediction is deemed reliable and the
TTA loop stops. The final inference outcome is then returned
by taking the highest probability in P avg. The full set of
augmented samples in T are evaluated only in the worst-case,
i.e., if CS gets smaller than τ . In this case, AdapTTA returns
the same prediction of the static TTA consuming the same
computational effort. In other words, AdapTTA implements
an adaptive mechanism to adjust the augmentation passes at
run-time depending on the confidence level accumulated.
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Figure 2: Example of the execution flow of AdapTTA. Augmented images are generated and fed sequentially to the ConvNet.
After each iteration, the predictions are aggregated, and the confidence score is computed. Depending on its value, the following
transformation is applied and evaluated, or the loop is interrupted. In the example, only x′0 and x′1 get processed by the ConvNet
to compute the final prediction. The label with the highest probability score in P avg (average between p0 and p1) is assigned
to the input.

Even though AdapTTA relies on a heuristic method with no
guarantee of optimality in identifying the smallest subset of
transformations, our experiments validate its efficiency (see
Section V). The main source of non-ideality is the metric
adopted to evaluate the prediction confidence, i.e., the con-
fidence score, which we borrowed from other optimization
techniques operating at run-time [19], [20], [21]. Obviously,
different aggregation functions do exists, such as majority
voting, stacking [22], or Bayesian methods [23]. However, an
average policy is more suited for resource-constrained devices
as it requires negligible computational overhead. Further ex-
tensions of the proposed AdapTTA technique may integrate
any transformation and aggregation function.

IV. EXPERIMENTAL SETUP

This section describes the hardware platform used in the
experiments along with the software environment adopted
for the deployment. Moreover, we introduce the ConvNets
taken as benchmarks and the TTA policies adopted in our
comparative analysis.

A. Hardware Platform and Software Configurations

The hardware testbench is the Odroid-C2 platform powered
with the Amlogic S905 SoC. The CPU is a quad-core ARM
Cortex-A53 running @1.5GHz nominal frequency. The board
runs Ubuntu Mate 18.04, kernel version 3.16.72-46, released
by Hardkernel. The inference engine is TensorFlow Lite 1.14;
it offers a collection of neural-network routines optimized
to run on the ARM Cortex-A architecture. In our setup,
TensorFlow Lite is cross-compiled using the GNU ARM
Embedded Toolchain (version 6.5) [24].

B. ConvNet Benchmarks

We adopted pre-trained ConvNets available on TensorFlow
Hosted Models [25] and TensorFlow Hub [26] repository.
Specifically, we considered two representative families of

models for the mobile segment: MobileNet [27], [28] and
EfficientNet [1]. The networks are trained on the ImageNet
dataset [29] and quantized to 8-bit, a common choice for
edge inference as it ensures lower memory footprint and faster
processing speed with negligible accuracy loss with respect to
floating-point.

For each model family, we investigated two different ver-
sions for a total of four ConvNets listed in Table II. The col-
umn Storage collects the size of the tflite, which contains
the data structures needed to deploy the model on-chip, i.e.,
the network weights and the topology description. The column
Top-1 refers to the top-1 classification accuracy measured on
the ImageNet validation set without TTA, i.e., with a standard
pre-processing consisting of resizing the images to 256×256
pixels and extracting the central crop of size 224×224. The
column Lnom reports the nominal latency of a single inference
at maximum performance (4-threads @1.5GHz).

The adopted benchmarks are state-of-the-art for image
classification on embedded systems. MobileNets are compact
hand-crafted networks optimized for high performance and
low memory. EfficientNets have been automatically designed
via neural architectural search to improve the classification
accuracy yet requiring more computational resources. For
example, EfficientNet-B1 guarantees 5.1% higher accuracy
than MobileNetV2 at the cost of 1.89× larger memory and
2.33× higher latency.

C. Augmentation Policies

We adopted two popular TTA policies [7], [8], [9], which
are described as follows:
5-Crops (5C) - starting from a 256×256 image (the leftmost in
Figure 3), five crops of size 224×224 are extracted (the center
crop and the four corner crops (top-left, top-right, bottom-left
and bottom-right).
10-Crops (10C) - is an extension of the 5C policy; it applies
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Figure 3: Example of 5-Crops and 10-Crops TTA policies. HF denotes the application of horizontal flipping.

Table II: Memory, nominal top-1 accuracy without TTA (Top-
1), and nominal latency (Lnom) of the selected benchmarks.

ConvNet Storage Top-1 Lnom
[MB] [%] [ms]

MobileNetV1 4.3 70.0 53.1
MobileNetV2 3.4 70.8 44.2
EfficientNet-B0 5.4 74.4 68.5
EfficientNet-B1 6.4 75.9 103.4

the left-to-right horizontal flipping to the five crops of 5C for
a total of 10 images (Figure 3).

These policies enable substantial improvements in the clas-
sification accuracy as reported Table III. Obviously, doubling
the number of transformations (from 5C to 10C) increases
the accuracy gain. Moreover, the transformations get pro-
cessed efficiently even on resource-constrained devices: on
the Cortex-A53 CPU, cropping requires only 0.8ms and
horizontal flipping 0.9ms.

Table III: Accuracy gain (in %) of 5-Crops (5C) and 10-Crops
(10C) TTA policies compared to the nominal values for static
TTA and AdapTTA (τ = 0.8).

ConvNet
Static TTA AdapTTA

ConvNet 5C 10C 5C 10C

MobileNetV1 2.7 3.1 2.7 3.1
MobileNetV2 2.2 2.9 2.2 2.9
EfficientNet-B0 1.1 1.3 1.1 1.3
EfficientNet-B1 2.2 2.5 2.2 2.5

V. RESULTS

A. Efficiency of AdapTTA

To evaluate the benefits of AdapTTA, we fixed the con-
fidence threshold τ = 0.8 (maximum value is 1.0) for
all the adopted ConvNets. Table III reports the accuracy
gains achieved with this configuration. In all the benchmarks,
AdapTTA ensures the same accuracy levels as static TTA.
We point out that the selected value of τ could limit the
potential savings of AdapTTA, as even lower values could be
enough to achieve the same accuracy. However, we opted for
this conservative choice to assess the feasibility of AdapTTA
decoupling our analysis from the optimization of τ . For a more
in-depth analysis on the confidence threshold, see Section V-B.

Table IV: Average number of inferences in AdapTTA for the
5-Crops (5C) and 10-Crops (10C) policies.

ConvNet 5C 10C

MobileNetV1 2.81 4.57
MobileNetV2 3.37 6.26
EfficientNet-B0 3.57 6.75
EfficientNet-B1 3.24 6.02

We compared the computational efficiency of a standard
static TTA and AdapTTA measuring the average prediction
rate (in FPS) across the ImageNet validation set (50k images).
For the static TTA, we benchmarked two different implemen-
tations:
Batch-TTA - the augmented images get processed in parallel
through batching (batch size is equal to the number of crops);
Seq-TTA - the augmented images get processed sequentially.

Collected results are summarized in Figure 4. As mentioned
in Section I, batching turns out to be inefficient on embedded
CPUs due to the low number of parallel cores (4 in the Cortex-
A53), hence, Seq-TTA is slightly faster than Batch-TTA. Most
importantly, AdapTTA enables substantial acceleration, with
much faster prediction rates ranging from 1.40× to 1.78× in
5C and from 1.49× to 2.21× in 10C.

In MobileNetV1, AdapTTA on 10C outperforms Seq-TTA
on 5C in both accuracy (+3.1% vs. +2.7%) and speed
(4.05 FPS vs. 3.73 FPS). The reason can be inferred from Ta-
ble IV, which reports the average number of inferences needed
to run a prediction with AdapTTA. AdapTTA needs less
than than 5 (4.57) inferences on average (row MobileNetV1,
column 10C). Despite that, it achieves superior performance
than a static 5C implementation, demonstrating that static
TTA is too conservative in most cases and unreliable for less
frequent complex inputs.

B. On the Optimality of Confidence Threshold

This section aims to assess the sensitivity of AdapTTA
efficiency on the hyper-parameter τ . Even though we selected
the same value (τ = 0.8) for all the networks in the pre-
liminary analysis of Section V-A, more precise control of τ
could enable additional margins of optimization. The search
of the optimal value should be conducted on a set of data
disjoint from those used in the training and the evaluation of
the ConvNets by developing a dedicated algorithm, a problem
that we will investigate in future studies. Indeed, a too low
value of τ can limit the accuracy gains of TTA, while a
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Figure 4: Average prediction rate (Avg. FPS, higher is better) for 5C and 10C policies of the static implementations (Batch-TTA
and Seq-TTA) and AdapTTA. The reported data takes into account the execution time needed for both the transformations and
the inference. The arrows indicate the relative speed-up of AdapTTA compared to Seq-TTA.

too high value can lower the prediction rate as unneeded
transformations get processed. Here, we aim to quantify the
maximum speed-ups that can be achieved while keeping the
highest level of accuracy. For this purpose, we evaluated a
discrete set of values of τ , ranging from 0.1 to 0.9, with a
step of 0.1. The experiments were conducted on the ImageNet
validation set.

Figure 5 summarizes the results collected on MobileNetV1
(top row) and EfficientNet-B1 (bottom row) with the 5C
policy. Similar trends were observed for the other networks
and policies, which we omitted for brevity. The main outcome
of the analysis is that the minimum value of τ ensuring
the highest accuracy gain differs across the selected bench-
marks: 0.7 for MobileNetV1 and 0.5 for EfficientNet-B1.
This translates to additional acceleration: in MobileNetV1, the
prediction rate increases from 6.64 FPS (τ = 0.8) to 7.28
FPS (τ = 0.7) on average; in EfficientNet-B1, from 2.97
FPS (τ = 0.8) to 4.16 FPS (τ = 0.5). Besides a different
topology, these networks followed a different training protocol,
e.g., integrating different data augmentation pipelines [27],
[1]. Future studies should therefore investigate the impact
of the training hyper-parameters to understand if corrective
actions applied at training time could reduce the number
of transformations needed at test time, hence, improve the
efficiency of AdapTTA.

Finally, τ could be easily tuned at run-time to enable a fine-
grain trade-off between accuracy and speed. For example, with
τ = 0.5 MobileNetV1 reaches 8.7 FPS, yet with a marginal
accuracy loss with respect to Seq-TTA (< 0.5%). This can be
helpful when the application has to rescale its energy footprint
(e.g., if the mobile system is running out of battery) or when

the classification task is not that critical to being solved (in
which case some accuracy loss is tolerable).

VI. CONCLUSIONS

This work presented AdapTTA, an adaptive implementation
of TTA suited for embedded systems powered by off-the-shelf
CPUs. Differently from static strategies, AdapTTA aims to
minimize number of feed-forward passes to output a correct
prediction depending on the input complexity. Experimental
results proved its efficiency across different families of Con-
vNets for the mobile segment and different TTA policies.
Overall, AdapTTA reaches substantial acceleration, from to
1.40× to 2.21× compared to static TTA policies, with no loss
of prediction accuracy.
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