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A note on the natural density of product sets

Sandro Bettin, Dimitris Koukoulopoulos and Carlo Sanna

Abstract

Given two sets of natural numbers A and B of natural density 1, we prove that their product
set A · B := {ab : a ∈ A, b ∈ B} also has natural density 1. On the other hand, for any ε > 0, we
show there are sets A of density > 1 − ε for which the product set A · A has density < ε. This
answers two questions of Hegyvári, Hennecart and Pach.

1. Introduction

Given two sets of natural numbers A and B, let A · B := {ab : a ∈ A, b ∈ B} be their product
set. Also, for any positive integer k, let Ak denote the k-fold product A · · ·A.

The problem of studying the cardinality of product sets has long been of interest in
mathematics. The classic multiplication table problem due to Erdős [2, 3] asks for bounds
on the cardinality Mn of the n× n multiplication table, that is, of the set {1, . . . , n}2. Erdős
showed that Mn = o(n2) and Ford [5], following earlier results of Tenenbaum [11], determined
the exact order of magnitude of Mn. More recently [7], the second author of the present
paper provided uniform bounds for #({1, . . . , n1} · · · {1, . . . , ns}) holding for a wide range of
n1, . . . , ns ∈ N.

For more general sets A, the problem of estimating #(A ∩ [1, x])2 was studied by Cilleruelo,
Ramana, and Ramaré [1]. For example, they studied this problem when A is the set of shifted
primes, the set of sums of two squares, and the set of shifted sums of two squares. Moreover,
they computed the (almost sure) asymptotic behavior for #A2 when A is a random subset of
{1, . . . , n} that contains each element of {1, . . . , n} independently with probability δ ∈ (0, 1).
The third author of the present paper [10] extended this last result to the product of arbitrarily
many sets, and Mastrostefano [9] gave a necessary and sufficient condition for having #A2 ∼
(#A)2/2 almost surely.

Hegyvári, Hennecart and Pach [6] considered the analogous problem for infinite sets of
natural numbers. In this context, the role of the cardinality is played by the natural density
d(A) of a set A, defined as usual by

d(A) = lim
x→∞

#A ∩ [1, x]
x

.

They asked the following questions ([6, Questions 3 and 2], respectively):
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Question 1. If A is a set of natural numbers of density 1, is it true that A2 also has
density 1?

Question 2. Is it true that infA⊂N: d(A)=α d(A2) = 0 for any α ∈ [0, 1), or at least for
α ∈ [0, α0) for some α0 ∈ (0, 1)?

Clearly, Question 1 has an affirmative answer if 1 ∈ A, and Hegyvári, Hennecart and Pach
showed that it also suffices that A contains an infinite subset of mutually coprime integers a1 <
a2 < · · · such that

∑∞
i=1 a

−1
i = +∞. Here, we show that the answer is ‘yes’ in full generality.

Theorem 1. Let A,B ⊆ N. If d(A) = d(B) = 1, then d(A · B) = 1.

Corollary. If A ⊂ N is such that d(A) = 1, then d(Ak) = 1 for each k = 2, 3, . . .

Remark. In fact, the case A = B of Theorem 1 implies easily the general case. Indeed,
if d(A) = d(B) = 1, then d(A ∩ B) = 1. In addition, if (A ∩ B)2 has density 1, then so does
A · B.

As it will be clear from the proof, the difference in the density of d(A2) with respect
to Erdős’s multiplication table problem lies in the fact that many elements of A2 come
from very ‘unbalanced’ products, meaning products ab such that the sizes of a and b are
completely different.

Let us now turn to Question 2. We will answer it in a strong form that shows, among other
things, that the condition that d(A) = 1 in Theorem 1 cannot be relaxed.

Theorem 2. For α ∈ [0, 1], we have

inf
A⊆N : d(A) =α

d(A2) =

{
0 if α < 1,

1 if α = 1.

2. Preliminaries

Notation. We employ Landau’s notation f = O(g) and Vinogradov’s notation f � g both
to mean that |f | � C|g| for a some constant C > 0. Moreover, we write f 	 g to mean that
f � g and g � f . The notation f = o(g) as x → a (respectively, f ∼ g as x → a) means that
limx→a f(x)/g(x) = 0 (respectively, = 1). Given an integer n, we write P−(n) and P+(n) for
its smallest and largest prime factors, respectively, with the convention that P−(1) = ∞ and
P+(1) = 1. If P+(n) � y, we say that n is y-smooth, and if P−(n) > y, we say that it is y-
rough. As usual, we let Φ(x, y) denote the number of y-rough numbers in [1, x]. Given any
integer n, we may write it uniquely as n = ab with P+(a) � y < P−(b). We then call a and b
the y-smooth and y-rough part of n, respectively. Finally, we let Ω(n) denote the number of
prime factors of n counted with multiplicity.

We need some standard lemmas. We give their proofs for the sake of completeness.

Lemma 2.1. For x � y > 1, we have Φ(x, y) � x/ log y.

Proof. This follows for example from [8, Theorem 14.2] with f(n) = 1P−(n)>y. �

Lemma 2.2. Uniformly for x � y2 � 1 and u � 1, we have

#{n � x : ∃d|n such that P+(d) � y1/u and d > y} � x · (e−u + y−1/3).
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Proof. Without loss of generality, u � 4. Let B denote the set of n ∈ Z ∩ [1, x] that have
a y1/u-smooth divisor d > y. Given n ∈ B, let p1 � p2 � · · · � pk be the sequence of prime
factors of n of size � y1/u listed in increasing order and according to their multiplicity. By
our assumption on n, we must have p1 · · · pk > y. Let j be the smallest integer such that
p1 · · · pj > y. We must have j � 5 because all factors pi are � y1/u � y1/4. We then set a =
p1 · · · pj−2, p = pj−1, and b = n/(ap), so that a > y/(pj−1pj) �

√
y, ap � y, and P+(a) � p �

P−(b). Consequently,

#B �
∑

p�y1/u

∑
P+(a)�p√
y<a�y/p

∑
b�x/(ap)

P−(b)�p

1 �
∑

p�y1/u

∑
P+(a)�p
a>

√
y

x

ap log p
(1)

by Lemma 2.1. If we let εp = min{2/3, 2/ log p}, then Rankin’s trick implies

#B
x

�
∑

p�y1/u

∑
P+(a)�p

(a/
√
y)εp

ap log p
=

∑
p�y1/u

y−εp/2

p log p

∑
P+(a)�p

1
a1−εp

.

The sum over a equals
∏

q�p(1 − q−1+εp)−1 with q denoting a prime number. Since qεp =
1 + O(log q/ log p) for q � p, Mertens’ estimates [8, Theorem 3.4] imply that the sum over a is
� log p. We conclude that

#B
x

� y−1/3 +
∑

100<p�y1/u

e− log y/ log p

p
� y−1/3 +

∑
j�1

∑
y1/(u(j+1))<p�y1/(uj)

e−ju

p

� y−1/3 +
∑
j�1

e−ju � y−1/3 + e−u

using Mertens’ estimates once again. This completes the proof. �

Lemma 2.3. Let y � 2 and λ ∈ [0, 1.99], and set Q(λ) = λ log λ− λ + 1 for λ > 0 and
Q(0) = 0. If 0 � λ � 1, then

∏
p�y

(
1 − 1

p

) ∑
P+(m)�y

Ω(m)�λ log log y

1
m

� (log y)−Q(λ),

whereas if 1 � λ � 1.99, then

∏
p�y

(
1 − 1

p

) ∑
P+(m)�y

Ω(m)�λ log log y

1
m

� (log y)−Q(λ).

Proof. The result is trivial if λ = 0 by Mertens’ estimates [8, Theorem 3.4], so assume λ > 0.
If 0 < λ � 1, then

∑
P+(m)�y

Ω(m)�λ log log y

1
m

�
∑

P+(m)�y

λΩ(m)−λ log log y

m
= (log y)−λ log λ

∏
p�y

(
1 − λ

p

)−1

	 (log y)−Q(λ)
∏
p�y

(
1 − 1

p

)−1
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where we used Mertens’ estimates once again. Similarly, if 1 � λ � 1.99, then

∑
P+(m)�y

Ω(m)�λ log log y

1
m

�
∑

P+(m)�y

λΩ(m)−λ log log y

m
	 (log y)−Q(λ)

∏
p�y

(
1 − 1

p

)−1

.

This completes the proof. �

Lemma 2.4. Let P be a set of primes such that
∑

p∈P 1/p < ∞. Then

d({n ∈ N : p|n ⇒ p /∈ P}) =
∏
p∈P

(
1 − 1

p

)
.

Proof. The number of integers n � x with a prime divisor p > log x from P is

�
∑

p>log x, p∈P

x

p
= o(x) as x → ∞,

because
∑

p∈P 1/p converges. Hence, if we write P ′ = P ∩ [1, log x], then

#{n � x : p|n ⇒ p /∈ P} = #{n � x : p|n ⇒ p /∈ P ′} + o(x) = x
∏
p∈P′

(
1 − 1

p

)
+ o(x)

from the inclusion–exclusion principle that has � 2#P′ � 2log x = o(x) steps (for example, see
[8, Theorem 2.1]). Since

∏
p∈P\P′(1 − 1/p) ∼ 1 by our assumption that

∑
p∈P 1/p < ∞, the

proof is complete. �

3. Proof of Theorem 1

Assume x is sufficiently large and let y = y(x) and u = u(x) to be chosen later, with y, u → +∞
slowly as x → +∞. In particular, y � √

x. In the following, for the sake of notation, we will
often omit the dependence on x, y, u.

With a small abuse of notation, given an integer n, let nsmooth denote its y1/u-smooth part
and let nrough denote its y1/u-rough part. We then set

N = {n � x : nsmooth � y}.

By Lemma 2.2, we have #N ∼ x as x → ∞. Therefore, in order to prove Theorem 1, it is
enough to show that

#C = o(x), where C := N \ (A · B).

Let n ∈ C. Since n = nsmooth · nrough, we must have that either nsmooth /∈ A or nrough /∈ B.
Consequently,

#C � S1 + S2

with

S1 := #{n ∈ N : nsmooth /∈ A} and S2 := #{n ∈ N : nrough /∈ B}.
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Let us first bound S1. Letting m = nsmooth, we have

S1 �
∑

m�y,m/∈A
Φ(x/m, y1/u) � ux

log y

∑
m�y,m/∈A

1
m

by Lemma 2.1. Since we have assumed that d(A) = 1, we must have that d(N \ A) = 0 and
thus

α(t) :=
1

log t

∑
m�t,m/∈A

1
m

→ 0 as t → ∞.

Hence, setting u = u(y) := α(y)−1/2, we have u → +∞ and S1 = o(x) as x → +∞.
Let us now bound S2. Writing m′ = nrough, we have

S2 �
∑
m�y

#{m′ � x/m : m′ /∈ B}.

By hypothesis, we have d(B) = 1, so that d(N \ B) = 0. Thus

β(t) := sup
s� t

#((N \ B) ∩ [1, s])
s

→ 0 as t → ∞.

Hence, setting y := min(x1/2, exp(β(x1/2)−1/2)), we have y → +∞ as x → +∞ and

S2 �
∑
d� y

β(x/d) · x
d
� xβ(x/y)

∑
d� y

1
d
� xβ(x1/2) log y � xβ(x1/2)1/2 = o(x).

In conclusion, #C = o(x), as desired.

Remark. The proof of Theorem 1 can be made quantitative. For example, if one has
#{n � x : n /∈ A},#{n � x : n /∈ B} � x(log x)−a for some fixed 0 < a < 1, then taking y =
exp((log x)

a
1+a ) and u = log log x in the above argument yields

#{n � x : n /∈ A · B} � xe−u +
xu

(log y)a
+

x log y
(log x)a

� x(log x)−
a2
1+a+o(1).

An interesting question is to determine the optimal exponent of log x in this upper bound.

4. Proof of Theorem 2

The case α = 1 follows from Theorem 1, whereas for the case α = 0 one can just observe that
d(∅) = d(∅2) = 0. We may thus assume α ∈ (0, 1). Given any ε > 0, we need to construct a set
A of density α such that the density of A2 exists and is smaller than ε.

Let k ∈ N, y � 1 and a set of primes P ⊂ (y,+∞) with
∑

p∈P 1/p < ∞ to be chosen later.
Using the notation Ωy(n) =

∑
pa|n, p�y 1, let us consider the sets

By,k,P :=
{
n ∈ N : Ωy(n) � k, (n, p) = 1 ∀p ∈ P}

.

The key property these sets have is that B2
y,k,P = By,2k,P .
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Now, using Lemma 2.4 twice (once, with PLemma 2.4 = P ∪ {p � y} and once with
PLemma 2.4 = {p � y}), we find that

d(By,k,P) =
∏
p∈P

(
1 − 1

p

) ∏
p�y

(
1 − 1

p

) ∑
P+(m)�y
Ω(m)�k

1
m

= d(By,k,∅)
∏
p∈P

(
1 − 1

p

)
.

Similarly,

d(B2
y,k,P) = d(By,2k,P) =

∏
p∈P

(
1 − 1

p

)
d(By,2k,∅).

Now, take y := exp(exp(4k/3)), so that k = 3
4 log log y. For any fixed ε > 0, Lemma 2.3

implies that if k is sufficiently large in terms of α and ε, then d(By,k,∅) > α and d(By,2k,∅) < ε.
Let us fix for the remainder of the proof such a choice of k. We then construct P in the following
way: we take p1 > y to be the smallest prime such that (1 − 1/p1)d(By,k,∅) > α, p2 > p1 the
smallest prime such that (1 − 1/p1)(1 − 1/p2)d(By,k,∅) > α and so on. Taking P := {p1, p2, . . . }
we clearly have d(By,k,∅)

∏
p∈P(1 − 1/p) = α. Thus, d(By,k,P) = α and d(B2

y,k,P) < ε, as
desired.

Remark. If d(A2) in Theorem 2 is replaced by the upper density d(A2), then one could
just take A to be any density α subset of {n ∈ N : Ωy(n) � 3

4 log log y} for y large enough.
However, in general there is no guarantee that A2 has asymptotic density. For this reason, in
order to prove Theorem 2, it is more convenient to construct explicit suitable sets A.
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Università di Genova
Via Dodecaneso 35
Genova 16146
Italy

bettin@dima.unige.it

Dimitris Koukoulopoulos
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