
09 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the number of residues of linear recurrences / Sanna, Carlo. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-
9555. - STAMPA. - 8:1(2022). [10.1007/s40993-021-00305-6]

Original

On the number of residues of linear recurrences

Publisher:

Published
DOI:10.1007/s40993-021-00305-6

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2947072 since: 2022-01-05T12:29:33Z

Springer Science and Business Media



ON THE NUMBER OF RESIDUES OF LINEAR RECURRENCES

CARLO SANNA†

Abstract. For every nonconstant monic polynomial g ∈ Z[X], let M(g) be the set of positive
integers m for which there exist an integer linear recurrence (sn)n≥0 having characteristic
polynomial g and a positive integer M such that (sn)n≥0 has exactly m distinct residues
modulo M . Dubickas and Novikas proved that M(X2 − X − 1) = N. We study M(g) in
the case in which g is divisible by a monic quadratic polynomial f ∈ Z[X] with roots α, β
such that αβ = ±1 and α/β is not a root of unity. We show that this problem is related to
the existence of special primitive divisors of certain Lehmer sequences, and we deduce some
consequences on M(g). In particular, for αβ = −1, we prove that m ∈M(g) for every integer
m ≥ 7 with m 6= 10 and 4 - m.

1. Introduction

An integer sequence s = (sn)n≥0 is a linear recurrence if there exist c1, . . . , cr ∈ Z such that

(1) sn = c1sn−1 + c2sn−2 + · · ·+ crsn−r,

for every integer n ≥ r. The values s0, . . . , sr−1 are the initial conditions of s, and

g(X) = Xr − c1Xr−1 − c2Xr−2 − · · · − cr
is the characteristic polynomial of s. Together they completely determine s via (1). A classic
example of linear recurrence is the sequence of Fibonacci numbers, having initial conditions 0, 1
and characteristic polynomial X2−X−1. It is easily seen that s is ultimately periodic modulo
M , for every positive integer M , and purely periodic if (cr,M) = 1. Indeed, properties of
linear recurrences modulo M have been studied intensively, including: which residues modulo
M appear in the s and how frequently [4,6,9,12,15,17], and for which positive integers M the
linear recurrence s contains a complete system of residues modulo M [2, 5, 16,18].

Let M(g) denote the set of positive integers m such that there exist initial conditions
s0, . . . , sr−1 ∈ Z and a positive integer M for which the linear recurrence s has exactly m
distinct residues modulo M . Dubickas and Novikas [7] proved that M(X2 −X − 1) = N and
stated that the problem of determining M(g) “may be very difficult in general”. The first
step of their proof is a lemma regarding roots of X2 −X − 1 modulo p that have a prescribed
multiplicative order [7, Lemma 3]. We provide below a straighforward generalization of it.
(The proof is postponed to Section 3). For every integer a and for each prime number p, we let
ordp(a) denote the multiplicative order of a modulo p, with the implicit condition that p - a.

Lemma 1.1. Let f, g ∈ Z[x] be nonconstant monic polynomials with f | g, let m be a positive
integer, and let p be a prime number. Suppose that:

(i) There exists a ∈ Z such that p | f(a) and ordp(a) = m.

Then m ∈M(g).

For f = g = X2 − X − 1 and for positive integers m belonging to certain residue classes
modulo 40, Dubickas and Novikas showed how to construct a and p satisfying (i) by using
primitive divisors of Lucas numbers [7, Lemma 5, Lemma 7].
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2 C. SANNA

Our first contribution is the next theorem, which shows that for more general quadratic
polynomials f the statement (i) is equivalent to p being a particular primitive divisor of a
certain term of a Lehmer sequence.

Let γ, δ be complex numbers such that γδ and (γ + δ)2 are nonzero coprime integers and
γ/δ is not a root of unity. The Lehmer sequence (un(γ, δ))n≥0 associated to γ, δ is defined by

un(γ, δ) :=

{
(γn − δn)/(γ − δ) if 2 - n,
(γn − δn)/(γ2 − δ2) if 2 | n,

for all integers n ≥ 0. The conditions on γ, δ ensure that each un(γ, δ) is an integer. A prime
number p is a primitive divisor of un(γ, δ) if p | un(γ, δ) but p - (γ2−δ2)2u1(γ, δ) · · ·un−1(γ, δ).

Theorem 1.2. Let f ∈ Z[X] be a monic quadratic polynomial with roots α, β such that
αβ = ±1 and α/β is not a root of unity. Also, let m be a positive integer and let p be a
prime number. If αβ = −1 then put γ := α, δ := −β, and n := m/(m, 2), while if αβ = +1

then put γ := α1/2, δ := α−1/2, and n := m. Then (i) is equivalent to:

(ii) p is a primitive divisor of un(γ, δ) and p ≡ 1 (mod m).

Moreover, each of the following implies (i) and (ii):

(iii) αβ = −1, 4 - m, m /∈ {3, 6}, and p is a primitive divisor of um/(m,2)(γ, δ).

(iv) αβ = −1, 8 | m, p is a primitive divisor of um/2(γ, δ), and p ≡ 1 (mod 4).

(v) αβ = +1, 4 | m, p is a primitive divisor of um(γ, δ), and p ≡ 1 (mod 4).

As consequences of Theorem 1.2, Lemma 1.1, and results on the existence of primitive
divisors of terms of Lehmer sequences (Lemma 3.4 and 3.7 below), we obtain the following
results on M(g).

Theorem 1.3. Let f, α, β be as in Theorem 1.2 with αβ = −1, and let g ∈ Z[X] be a monic
polynomial with f | g. Then m ∈M(g) for every integer m ≥ 7, with m 6= 10 and 4 - m.

Theorem 1.4. Let f, α, β be as in Theorem 1.2 and let g ∈ Z[X] be a monic polynomial with
f | g. Write (α − β)2 = D0D

2
1, where D0, D1 ∈ Z and D0 is squarefree. Suppose that D0 ≥ 5

and D0 ≡ 1 (mod 4). Then m ∈M(g) for every positive integer m with 8D0 | m if αβ = −1,
and 4D0 | m if αβ = +1.

Given two specific polynomials f, g ∈ Z[X] satisfying the hypothesis of Theorem 1.3 and
Theorem 1.4, one can try to determine M(g) by using the aforementioned theorems and by
employing [7, Lemma 6]. However, this requires a meticulous inspection of the numerical
values of certain linear recurrences of characteristic polynomial g, and a detailed case-by-case
analysis, as the one done by Dubickas and Novikas for M(X2 −X − 1) [7, Sections 6–8].

Remark 1.1. It should be possible to provide an equivalent version of Theorem 1.2 in terms of
primitive divisors of the Lehmer–Pierce sequence (∆n(α, β))n≥0 [8,11,13], which is defined by
∆n(α, β) := (αn − 1)(βn − 1) for every integer n ≥ 0.

2. Notation

For every integer a and for each prime number p, we let ordp(a) denote the multiplicative
order of a modulo p, with the implicit condition that p - a. Also, when p is odd, we write

(
a
p

)
for the Legendre symbol. For algebraic integers ζ and η, the notation ζ ≡ η (mod p) means
that p divides ζ − η, that is, (ζ − η)/p is an algebraic integer. For every positive integer n,
we let ϕ(n) be the Euler totient function of n. Furthermore, we write Φn(X) for the nth

cyclotomic polynomial, and Φn(X,Y ) := Φn(X/Y )Y ϕ(n) for its homogenization. Given two
monic polynomials f, g ∈ Z[X], we let Res(f, g) denote their resultant.
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3. Preliminaries

We begin by proving Lemma 1.1.

Proof of Lemma 1.1. Put r := deg(g) and let s = (sn)n≥0 be the linear recurrence with initial
conditions 1, a, . . . , ar−1 and characteristic polynomial g. We shall prove that sn ≡ an (mod p)
for every integer n ≥ 0. In turn, since ordp(a) = m, this implies that s has exactly m distinct
residues modulo p, namely 1, a, . . . , am−1 (mod p), and consequently m ∈M(g). Let us proceed
by induction on n. For n = 0, . . . , r − 1 the claim is obvious because of the initial conditions
of s. Assuming that the claim is true for every nonnegative integer less than n, let us prove it
for n. From (1) and the induction hypothesis, we have that

sn ≡ c1sn−1 + c2sn−2 + · · ·+ crsn−r ≡ c1an−1 + c2a
n−2 + · · ·+ cra

n−r

≡ an−r(ar − g(a)) ≡ an (mod p),

because p | f(a) | g(a). �

The next result is a simple equivalence for (i).

Lemma 3.1. Let f ∈ Z[X] be a nonconstant monic polynomial, let m be a positive integer,
and let p be a prime number. Then (i) is equivalent to p | Res(f,Φm) and p ≡ 1 (mod m).

Proof. On the one hand, if (i) holds then a is a primitive mth root of unity modulo p. Hence,
p ≡ 1 (mod m) and a is a root of Φm modulo p. Since p | f(a), we have that a is a common root
of f and Φm modulo p, and consequently p | Res(f,Φm). On the other hand, if p | Res(f,Φm)
and p ≡ 1 (mod m) then Φm splits completely modulo p and it has a common root with f ,
thus (i) follows. �

We need some results on Lehmer sequences and related values of cyclotomic polynomials.
It is known that a prime number p divides some term of a Lehmer sequence (un(γ, δ))n≥0 if and
only if p - γδ. In such a case, let rp(γ, δ) be the rank of appearance of p, that is, the smallest
positive integer k such that p | uk(γ, δ). Furthermore, it can be proved that Φn(γ, δ) ∈ Z for
every integer n ≥ 3 (for these facts see, e.g., [20]).

Lemma 3.2. Let (uk(γ, δ))k≥0 be a Lehmer sequence, let p be a prime number, and let n ≥ 3
be an integer. Then we have the following:

(p1) p | un(γ, δ) if and only if p - γδ and rp(γ, δ) | n.

(p2) If p - γδ and p | (γ2 − δ2)2 then rp(γ, δ) ∈ {p, 2p}.

(p3) If 2 - γδ(γ2 − δ2)2 then r2(γ, δ) = 3.

(p4) If p - 2γδ(γ + δ)2 then p ≡
(
(γ2−δ2)2

p

)
(mod rp(γ, δ)).

(p5) If p | Φn(γ, δ) then p - γδ and n = rp(γ, δ)p
v for some integer v ≥ 0.

(p6) p is a primitive divisor of un(γ, δ) if and only if p | Φn(γ, δ) and p ≡ ±1 (mod n).

(p7) If n ≥ 5, 2 - n, and p is a primitive divisor of un(γ, δ) then p ≡
(
γδ(γ−δ)2

p

)
(mod 2n).

(p8) If 4 | n, γδ = 1, γ − δ ∈ Z, p is a primitive divisor of un(γ, δ), and p ≡ 1 (mod 4) then
p ≡ 1 (mod 2n).

Proof. Properties (p1), (p2), and (p3) follow from [3, Corollary 2.2], (p4) is [10, Theorem 1.9],
and (p5) is [3, Proposition 2.3].

Let us prove (p6). On the one hand, if p is a primitive divisor of un(γ, δ) then p | un(γ, δ)
but p - (γ2 − δ2)2u1(γ, δ) · · ·un−1(γ, δ). Since for every positive integer k we have that

uk(γ, δ) =

{∏
d | k, d> 1 Φd(γ, δ) if 2 - k,∏
d | k, d> 2 Φd(γ, δ) if 2 | k,
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it follows that p | Φn(γ, δ). Moreover, n = rp(γ, δ) and, also by (p1), p - γδ(γ2 − δ2)2. Hence,
from (p3) and (p4) we get that p ≡ ±1 (mod n). On the other hand, if p | Φn(γ, δ) and
p ≡ ±1 (mod n) then from (p5) we get that p - γδ and n = rp(γ, δ). Hence, p | un(γ, δ) but
p - u1(γ, δ) · · ·un−1(γ, δ). Also, (p2) yields that p - (γ2 − δ2)2. Hence, p is a primitive divisor
of un(γ, δ).

Now let us prove (p7). Since p is a primitive divisor of un(γ, δ), we have that n = rp(γ, δ)
and, also by (p1), p - γδ(γ2 − δ2)2. By n ≥ 5 and (p3), we get that p > 2. Since 2 - n, we have
that vn(γ, δ) := (γn + δn)/(γ + δ) is an integer. Moreover, from p | un(γ, δ) and the identity

(γ + δ)2vn(γ, δ)2 − (γ − δ)2un(γ, δ)2 = 4(γδ)n,

it follows that (γ+δ)2vn(γ, δ)2 ≡ 22(γδ)n (mod p). Hence,
(
(γ+δ)2

p

)
=
(
γδ
p

)
and consequently(

(γ2−δ2)2
p

)
=
(
γδ(γ−δ)2

p

)
. Then by (p4) we obtain that p ≡

(
γδ(γ−δ)2

p

)
(mod n). Recalling

that p and n are both odd, it follows that p ≡
(
γδ(γ−δ)2

p

)
(mod 2n).

It remains to prove (p8). Since p is a primitive divisor of un(γ, δ), we have that n = rp(γ, δ)
and, also by (p1), p - γδ(γ2 − δ2)2. From 4 | n, p ≡ 1 (mod 4), and (p4), it follows that(
(γ2−δ2)2

p

)
= 1. Also, (γ2−δ2)2 = (γ−δ)2(γ+δ)2 and γ−δ is an integer. Hence,

(
(γ+δ)2

p

)
= 1.

Noting that (γ + δ)2 is the discriminant of (X − γ)(X + δ) = X2 − (γ − δ)X − γδ ∈ Z[X], one

gets that γp−1 ≡ 1 (mod p). Multiplying both sides by δ(p−1)/2, and recalling that γδ = 1, it

follows that γ(p−1)/2 ≡ δ(p−1)/2 (mod p), and so p | u(p−1)/2(γ, δ). Consequently, by (p1), we
have that n | (p− 1)/2, that is, p ≡ 1 (mod 2n). �

We also need the following identity for a product of cyclotomic polynomials.

Lemma 3.3. For every positive integer m, we have

Φm(X)Φm(−X) = (−1)ϕ(m)Φm/(m,2)

(
X2
)e
,

where e := 1 if 4 - m, and e := 2 if 4 | m.

Proof. For every positive integer n, let ζn := e2πi/n be a primitive nth root of unity. We have

(2) Φm(X)Φm(−X) =
∏

1≤ k≤m
(k,m)= 1

(X − ζkm)(−X − ζkm) = (−1)ϕ(m)
∏

1≤ k≤m
(k,m)= 1

(X2 − ζ2km ).

If 2 - m then ζ2m is a primitive mth root of unity and the last product of (2) is equal to Φm

(
X2
)
.

If 2 | m then ζ2m = ζm/2 is a primitive (m/2)th root of unity. Also, if 2 || m then ζ2m/2 is a

primitive (m/2)th root of unity, and the last product of (2) is equal to∏
1≤ k≤m
(k,m)= 1

(X2 − ζkm/2) =
∏

1≤ k≤m
(k,m/2)=1

(X2 − ζkm/2)
∏

1≤h≤m/2
(h,m/2)=1

(X2 − ζ2hm/2)
−1

= Φm/2

(
X2
)2
/Φm/2

(
X2
)

= Φm/2

(
X2
)
.

If 4 | m then the last product of (2) is equal to∏
1≤ k≤m
(k,m)= 1

(X2 − ζkm/2) =
∏

1≤ k≤m
(k,m/2)=1

(X2 − ζkm/2) = Φm/2

(
X2
)2
,

and the proof is complete. �

The problem of determining which terms of a Lehmer sequence have a primitive divisor has
a very long history. The first complete classification was given by Bilu, Hanrot, and Voutier [3]
(see also [1]). We make use of the following particular case.

Lemma 3.4. Let (uk(γ, δ))k≥0 be a Lehmer sequence with γδ = 1. Then un(γ, δ) has a
primitive divisor for every positive integer n /∈ {1, 2, 3, 4, 5, 6, 10, 12}.
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Proof. Following [3], we can write γ = ζ
(√
a −
√
b
)
/2 and δ = ζ

(√
a +
√
b
)
/2, where a, b are

integers and ζ is a fourth root of unity. In particular, γδ = 1 implies that a − b = ±4. Let
n ≥ 3 be an integer and suppose that un(γ, δ) has no primitive divisor. By [3, Theorem 1.4],
we have that n ≤ 30. If 7 ≤ n ≤ 30 and n /∈ {8, 10, 12}, then by [3, Theorem C] we have
that (a, b) belongs to [3, Table 2], but none of the pairs in such table satisfies a − b = ±4. If
n ∈ {3, 4, 5, 6, 8, 10, 12} then by [3, Theorem 1.3] we have that (a, b) belongs to [3, Table 4] and,
checking again the condition a−b = ±4, we get that n ∈ {3, 4, 5, 6, 10, 12} (see Remark 3.1). �

Remark 3.1. In line n = 5 of [3, Table 4], one has to include also the pair (−1,−5), which is
(ψk−2ε, ψk−2ε − 4ψk) for k = 1 and ε = 1 (note that ψ−1 = −1). This is lost when in [3, p. 89]
it is claimed that “By (28), we have [...] k 6= 1 in the case (35)” but k = 1 (and ε = 1) does
not contradict [3, Eq. (28)]. Similarly, in line n = 10 of [3, Table 4], one has to include also
the pair (−5,−1), which is (ψk−2ε − 4ψk, ψk−2ε) for k = 1 and ε = 1.

Remark 3.2. Lemma 3.4 cannot be improved without further information on γ, δ. Indeed,

it can be checked that un

(√
5−1
2 ,

√
5+1
2

)
for n ∈ {1, 2, 6, 10, 12}, un

(√
−2−

√
−6

2 ,
√
−2+

√
−6

2

)
for

n ∈ {3, 4}, and u5

(√
−1−

√
−5

2 ,
√
−1+

√
−5

2

)
have no primitive divisor.

We need the identities for the Aurifeuillian factorizations of the cyclotomic polynomials [19].
However, instead of using them how it is commonly done, that is, to write values of the
cyclotomic polynomials as differences of two squares and thus factorize them; we use them to
write values of the cyclotomic polynomials as sums of two squares (proof of Lemma 3.7 below).

A polynomial F ∈ Z[X,Y ] is symmetric, respectively antisymmetric, if F (Y,X) = F (X,Y ),
respectively F (Y,X) = −F (X,Y ). The symmetry type of F is s(F ) = +1 if F is symmetric,
and s(F ) = −1 if F is antisymmetric.

Lemma 3.5. Let k be a squarefree integer and let n ≥ 3 be an integer. Suppose that one of
the following conditions holds:

(c1) k ≡ 1 (mod 4), k | n, and 2k - n.

(c2) k 6≡ 1 (mod 4), 2k | n, and 4k - n.

Then there exist homogeneous polynomials Fn,k, Gn,k ∈ Z[X,Y ] such that

Φn(X,Y ) = Fn,k(X,Y )2 − k(XY )qnGn,k(X,Y )2,

where qn :=
∏
p> 2, pv ||n p

v−1. Furthermore, we have

deg(Fn,k) =
ϕ(n)

2
, deg(Gn,k) =

ϕ(n)

2
− qn,

while

s(Fn,k) =

{
1 if k = 1, or k > 1 and 2 | n,
(−1)ϕ(n)/2 otherwise,

and s(Gn,k) = sign(k) s(Fn,k).

Proof. The claim is the homogeneous version of [19, Theorem 2.1]. �

Lemma 3.6. Let n and k be as in Lemma 3.5, and let ζ, η be algebraic integers. If a prime
number p divides both Fn,k(ζ, η) and Gn,k(ζ, η) then p divides 2n(ζη)j for some integer j ≥ 0.
(Recall that we say that p divides an algebraic integer ξ if ξ/p is an algebraic integer.)

Proof. With the notation of Lemma 3.5, we can write n = qnm for an integer m ≥ 3 with
qm = 1 and such that the hypothesis of Lemma 3.5 holds with m in place of n. Moreover,
by [19, Eqs. (2)] we have that Fn,k(X,Y ) = Fm,k(X

qn , Y qn) and Gn,k(X,Y ) = Gm,k(X
qn , Y qn).

Therefore, without loss of generality, we can assume that qn = 1.
Let in,k be the order of Z[X,

√
kX]/I, where I is the ideal generated by

(3) Fn,k(X, 1)−Gn,k(X, 1)
√
kX and Fn,k(X, 1) +Gn,k(X, 1)

√
kX
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in Z[X,
√
kX]. Then in,k is a linear combination of (3) in Z[X,

√
kX], and by homogeneization

in,kY
j is a linear combination of

Fn,k(X)−Gn,k(X)
√
kXY and Fn,k(X,Y ) +Gn,k(X,Y )

√
kXY ,

in Z[X,Y,
√
kXY ], for some integer j ≥ 0. Substituting X = ζ and Y = η, we get that

if p divides both Fn,k(ζ, η) and Gn,k(ζ, η) then it divides in,kη
j , and so it divides in,k(ζη)j .

From [19, Lemma 2.6] (which requires qn = 1) we have that in,k divides (8n)ϕ(n), and thus the
claim follows. �

Now we can prove a result on primitive divisors of Lehmer sequences.

Lemma 3.7. Let (uk(γ, δ))k≥0 be a Lehmer sequence and write (γ2 − δ2)2 = D0D
2
1 where

D0, D1 ∈ Z and D0 is squarefree. Suppose that D0 ≥ 5 and D0 ≡ 1 (mod 4). Then, for
every positive integer ` such that 4D0 | `, we have that each odd primitive divisor p of u`(γ, δ)
satisfies p ≡ 1 (mod 4).

Proof. Since 4D0 | `, we can write ` = 2vn for some positive integers v and n with 2D0 | n and
4D0 - n. Put k := −D0. By the hypotheses on D0, we have that k is negative and squarefree,
n ≥ 3, and (c2) holds. Moreover, since D0 is squarefree and D0 ≡ 1 (mod 4), it follows that
4 | ϕ(D0), and so 4 | ϕ(n). Therefore, by Lemma 3.5, we get that

(4) Φn(X,Y ) = Fn,k(X,Y )2 +D0(XY )qnGn,k(X,Y )2,

for some homogeneous polynomials Fn,k, Gn,k ∈ Z[X,Y ], with Fn,k symmetric and Gn,k an-
tisymmetric. Since Gn,k is antisymmetric and homogeneous, we have that Gn,k(X,Y ) =
(X − Y )Hn,k(X,Y ) for some symmetric homogeneous polynomial Hn,k ∈ Z[X,Y ]. Now

Fn,k
(
X2v , Y 2v

)
and Hn,k

(
X2v , Y 2v

)
are both symmetric homogeneous polynomials of even

degree, and thus they are polynomials in XY and (X + Y )2 with integer coefficients. Then,
recalling that γδ and (γ+ δ)2 are integers, it follows that Fn,k

(
γ2

v
, δ2

v)
and Hn,k

(
γ2

v
, δ2

v)
are

integers. Since 2 | n, by (4) we get that

Φ`(γ, δ) = Φ2vn(γ, δ) = Φn

(
γ2

v
, δ2

v)
= Fn,k

(
γ2

v
, δ2

v)2
+D0(γδ)

2vqnGn,k
(
γ2

v
, δ2

v)2
(5)

= Fn,k
(
γ2

v
, δ2

v)2
+D0(γδ)

2vqn
(
γ2

v − δ2v
)2
Hn,k

(
γ2

v
, δ2

v)2
= Fn,k

(
γ2

v
, δ2

v)2
+D0(γδ)

2vqn(γ2 − δ2)2u2v(γ, δ)2Hn,k

(
γ2

v
, δ2

v)2
= A2 +B2,

where A := Fn,k
(
γ2

v
, δ2

v)
and B := D0D1(γδ)

2v−1qnu2v(γ, δ)Hn,k

(
γ2

v
, δ2

v)
are both integers.

Let p be an odd primitive divisor of u`(γ, δ). Hence, also by Lemma 3.2(p1) and (p6), we
have that p - γδ(γ2 − δ2)2n and p | Φ`(γ, δ). Thus, from (5) and Lemma 3.6, it follows that
p | A2 +B2 but p - A and p - B. Consequently, we have that p ≡ 1 (mod 4). �

4. Proof of Theorem 1.2

Let us begin by proving the equivalence of (i) and (ii). Let D := (α−β)2 be the discriminant
of f . First, assume that αβ = −1. Note that γδ = 1 and (γ + δ)2 = D are nonzero coprime
integers and γ/δ = −α/β is not a root of unity, so that (uk(γ, δ))k≥0 is a Lehmer sequence.

Put R
(ε)
m := Res(f(εX),Φm(X)) for ε ∈ {−1,+1}. The roots of f(−X) are −α and −β, while

γ/δ = α2 and δ/γ = β2. Hence, from Lemma 3.3, it follows that

R+
mR
−
m = Φm(α)Φm(β)Φm(−α)Φm(−β) = Φm(α)Φm(−α)Φm(β)Φm(−β)(6)

=
(
Φn

(
α2
)
Φn

(
β2
))e

=
(
Φn(γ/δ)Φn(δ/γ)

)e
=
(

Φn(γ, δ)δ−ϕ(n)Φn(δ, γ)γ−ϕ(n)
)e

=
(
Φn(γ, δ)Φn(δ, γ)

)e
= ±Φn(γ, δ)2e,

where e := 1 if 4 - m, and e := 2 if 4 | m.
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Suppose that (i) holds. By Lemma 3.1, we have that p | R+
m and p ≡ 1 (mod m). Hence,

from (6) and the fact that n | m, we get that p | Φn(γ, δ) and p ≡ 1 (mod n). Therefore,
Lemma 3.2(p6) implies that p is a primitive divisor of un(γ, δ), and (ii) follows.

Now suppose that (ii) holds. Thus, from Lemma 3.2(p6), it follows that p | Φn(γ, δ).
Consequently, by (6), we get that either p | R+

m or p | R−m. In the first case, (i) follows
immediately from Lemma 3.1. In the second case, from Lemma 3.1 it follows that there exists
b ∈ Z such that p | f(−b) and ordp(b) = m. Since f is quadratic and has a root modulo p, we
have that f splits completely modulo p. Let a ∈ Z be such that f(X) ≡ (X−a)(X+b) (mod p).
Recalling that αβ = −1, we get that ab ≡ 1 (mod p), and consequently ordp(a) = ordp(b) = m.
Thus (i) follows.

Now assume that αβ = +1. Note that γδ = 1 and (γ+ δ)2 = α+β+ 2 are nonzero coprime
integers and γ/δ = α is not a root of unity, so that (uk(γ, δ))k≥0 is a Lehmer sequence. Since
γ/δ = α and δ/γ = β, we have that

Res(f,Φm) = Φm(α)Φm(β) = Φm(γ/δ)Φm(δ/γ) = Φm(γ, δ)δ−ϕ(m)Φm(δ, γ)γ−ϕ(m)(7)

= Φm(γ, δ)Φm(δ, γ) = ±Φm(γ, δ)2 = ±Φn(γ, δ)2.

Suppose that (i) holds. From Lemma 3.1 and (7), it follows that p | Φn(γ, δ) and p ≡ 1
(mod m). Hence, Lemma 3.2(p6) yields that (ii) holds.

Now suppose that (ii) holds. Then Lemma 3.2(p6) and (7) give that p | Res(f,Φm).
Consequently, by Lemma 3.1, we get that (i) holds.

The proof of the equivalence of (i) and (ii) is complete. Let us prove that each of (iii), (iv),
and (v) implies (ii) (and consequently also (i)).

Suppose that (iii) holds. Since 4 - m, m /∈ {3, 6}, and u1(γ, δ) = u2(γ, δ) = 1, we have that

n ≥ 5 and 2 - n. Hence, by Lemma 3.2(p7) it follows that p ≡
(
γδ(γ−δ)2

p

)
≡ 1 (mod 2n), since

γδ = 1 and γ− δ = α+β is an integer. Then from m | 2n we get that p ≡ 1 (mod m), and (ii)
follows.

Suppose that (iv) holds. We have that 4 | n, γδ = 1, γ − δ = α + β ∈ Z, p is a primitive
divisor of un(γ, δ), and p ≡ 1 (mod 4). From Lemma 3.2(p8) it follows that p ≡ 1 (mod 2n),
i.e., p ≡ 1 (mod m), and (ii) follows.

Suppose that (v) holds. Then by Lemma 3.2(p6), we have that either p ≡ 1 (mod m) or
p ≡ −1 (mod m). Since 4 | m and p ≡ 1 (mod 4), the second case is impossible. Therefore,
p ≡ 1 (mod m) and (ii) follows.

The proof is complete.

5. Proof of Theorem 1.3

Let f, α, β, δ, γ be as in Theorem 1.2 with αβ = −1, let g ∈ Z[X] be a monic polynomial
with f | g, and let m ≥ 7 be an integer with m 6= 10 and 4 - m. Since γδ = 1 and
m/(m, 2) /∈ {1, 2, 3, 4, 5, 6, 10, 12}, from Lemma 3.4 we get that um/(m,2)(γ, δ) has a primitive
divisor p. Hence, from the implication (iii)⇒(i) of Theorem 1.2 and from Lemma 1.1, it follows
that m ∈M(g). The proof is complete.

6. Proof of Theorem 1.4

Let f, α, β, δ, γ be as in Theorem 1.2 and let g ∈ Z[X] be a monic polynomial with f | g.
Also, write (α−β)2 = D0D

2
1, where D0, D1 ∈ Z and D0 is squarefree, and suppose that D0 ≥ 5

and D0 ≡ 1 (mod 4).
First, assume that αβ = −1. Hence, we have that (γ2−δ2)2 = (α2−β2)2 = D0(D1(α+β))2,

where D1(α + β) is an integer. Let m be a positive integer with 8D0 | m. Since m/2 ≥ 20,
from Lemma 3.4 and Lemma 3.2(p2) and (p3), it follows that um/2(γ, δ) has an odd primitive
divisor p. Furthermore, Lemma 3.7 yields that p ≡ 1 (mod 4). Hence, (iv) holds and, by
Theorem 1.2 and Lemma 1.1, we get that m ∈M(g).

Now assume that αβ = +1. Hence, we have that (γ2 − δ2)2 = (α− β)2 = D0D
2
1. Let m be

a positive integer with 4D0 | m. Since m ≥ 20, from Lemma 3.4 and Lemma 3.2(p2) and (p3),
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it follows that um(γ, δ) has an odd primitive divisor p. Furthermore, Lemma 3.7 yields that
p ≡ 1 (mod 4). Hence, (v) holds and, by Theorem 1.2 and Lemma 1.1, we get that m ∈M(g).

The proof is complete.

7. Further remarks

For the sake of completeness, we also include the case in which g has a linear factor.

Proposition 7.1. Let g ∈ Z[X] be a nonconstant monic polynomial with an integer root
a /∈ {−1, 0,+1}. Then every positive integer m belongs to M(g), with the possible exception of
m = 2 if a = ±2v − 1 for some positive integer v, m = 3 if a = −2, and m = 6 if a = 2.

Proof. It is clear that 1 ∈ M(g). By Zsigmondy’s theorem [14, p. 1], for every integer
a /∈ {−1, 0,+1} and for every positive integer m with (a,m) /∈ {(±2v − 1, 2) : v ≥ 1} ∪
{(−2, 3), (2, 6)}, there exists a prime number p such that ordp(a) = m. Hence, by Lemma 1.1
with f(X) = X − a, we get that m ∈M(g). �

8. Acknowledgements

The authors thanks the anonymous referee for carefully reading the paper.

References

1. M. Abouzaid, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordeaux 18
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