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ABSTRACT Nowadays, many electronic systems store valuable Intellectual Property (IP) information inside
Non-Volatile Memories (NVMs). Designers widely use encryption mechanisms to enhance the integrity of
such IPs and protect them from any unauthorized access or modification. At the same time, often such
IPs are critical from a reliability standpoint. Thus, dedicated techniques are employed to detect possible
reliability threats (e.g., transient faults affecting the NVM content). The weights of a neural network (NN)
model (e.g., integrated into an object detection system for autonomous driving or robotics) are typical
examples of precious IP items. Indeed, NN weights often constitute proprietary data, stemming from an
extensive and costly training process; moreover, their correctness is key for the NN to work reliably.
In this article, we explore the capability of encryption mechanisms to ensure protection from both reliability
threats. In particular, we assess, via extensive fault injection campaigns, the capability of different memory
encryption schemes – usually used only for security purposes – to detect faults and thus, enhance the
reliability of the system. Experimental results show that, by cleverly choosing the proper encryption scheme,
it is possible to achieve very high fault detection rates (greater than 99%) with respect to Multiple Bit Upsets.
The gathered results pave the way to the integration of reliability and security mechanisms to achieve better
results with lower costs.

INDEX TERMS Artificial neural networks, convolutional neural networks, encryption, fault detection, fault
injection, non-volatile memories, reliability, security.

I. INTRODUCTION
Information technology is a major aspect of modern soci-
ety. Digital systems have become widespread, considerably
changing the way people interact with computing machines.
The design process and the architectures of electronic sys-
tems had evolved considerably since their emergence sev-
eral decades ago. Nowadays, designers must consider several
constraints, including those related to reliability, and follow
standards such as DO-254 for avionics and ISO-26262 for
automotive to meet certain criteria and thresholds. These
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constraints derive from the needs of safety-critical systems.
Indeed, these systems must be able to detect a sufficiently
high percentage of faulty conditions that could compromise
their correct operation, thus avoiding incurring critical fail-
ures, which in turn could endanger human lives or cause large
economic losses.

In the last years, the interest in security-oriented tech-
niques to prevent possible attacks on such systems has been
exponentially growing. These attacks aim to either change
the behavior of the systems or extract private and/or pre-
cious information (Intellectual Property or IP) from them [1].
Some of these IP data items are stored into Non-Volatile
Memories (NVMs) that are an attractive target for malicious
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users due to the persistence of the data [2]. Studies have
been conducted to evaluate and mitigate the security threats
for NVMs [3]. NVMs are also prone to faults caused by,
for example, radiation effects. To harden the memories with
respect to faults, designers typically adopt redundancy solu-
tions (e.g., Error Correction Codes, or ECCs) to detect the
occurrence of single- and multiple-bit errors and possibly
correct some of them [4]–[6]. On the other side, when the
memory content represents a valuable IP, designers protect it
against possible attacks via encryption [7].

A prime example of a system where both safety and secu-
rity play a crucial role is an autonomous system [8] that
employs the Machine Learning (ML) technology [9], [10].
Machine learning is a widely adopted technology in various
sectors such as healthcare [11], automotive [12]–[14] and
aerospace [15]. In these scenarios, the weights of the ML
model represent a valuable asset [16] for the system since they
are strongly linked to the application’s overall functionality.
Furthermore, the weights result from a typically long (hence,
expensive), non-intuitive training process of the model. As a
result, the weights of an ML model represent a valuable IP
for the system and are typically stored into NVMs that shall
not be compromised or tampered with.

Currently, existing solutions to protect the NVM content
are not designed to protect from faults and malicious attacks
at once. In fact, reliability experts decide about the former
ones, while security experts deal with the latter, often with
limited interactions between the two groups. This work orig-
inates from the observation that encryption mechanisms may
also offer some interesting fault detection capabilities since,
in some cases, they tend to amplify the effect of faults, making
them more evident, and thus detectable. Hence, studying the
reliability features of different encryption solutions becomes
attractive. This enables taking also reliability into account
when selecting the most suitable encryption mechanism for
a given system. Indeed, we believe that designers who need
to adopt encryption mechanisms in their systems may benefit
from the intrinsic fault-detection capability of such mecha-
nisms. This, in turn, facilitates the achievement of the target
reliability goals for the system.

In this work, we experimentally evaluate the positive
effects that data encryption/decryption may have in terms
of reliability enhancements with respect to the effects of
possible transient faults. In particular, we focus on systems
having NVMs already provided with encryption/decryption
mechanisms to protect the stored data frommalicious attacks.
As case studies, we use an Artificial Neural Network (ANN)
and a Convolutional Neural Network (CNN), whose weights
represent the IP, encrypted and stored in the NVM. In our
experiments, we inject faults in the encrypted weights and
analyze their effects on the Neural Network behavior and the
system fault detection capabilities with and without encryp-
tion. We perform various experiments with different ciphers
and extensive fault injection campaigns to evaluate the effect
of the encryption on the system fault detection capabilities.
The gathered experimental results show that by carefully

selecting a cryptographic algorithm, we can achieve a very
high rate of fault detection, in particular with respect to Mul-
tiple Bit Upsets (MBUs). Hence, this work paves the way to a
more clever selection of an encryption mechanism protecting
the stored memory content with respect to malicious attacks,
and providing a sufficiently high reliability degree.

The major contributions of this work are the following.

1) A thorough analysis of the fault tolerance capabilities
of different operational modes of theAdvanced Encryp-
tion Standard (AES), widely employed for memory
encryption.

2) An extensive experimental validation of AES fault tol-
erance capabilities on a meaningful case study, a Con-
volutional Neural Network (CNN). To the best of our
knowledge, this is the first work studying the AES fault
tolerance capabilities in the context of a CNN.

Experimental results show that a particular AES mode of
operation – the Propagating Cipher Block Chaining (PCBC)
with padding – allows achieving nearly 100% fault detection
for both considered Neural Networks with respect to the
Single Event Upset (SEU) faults model and the Multiple
Bit Upset (MBU) faults model with multiplicity varying
from 10 to 500.

In this article, we significantly extend the work presented
in [17], introducing a completely new analytical study of
the effects of different encryption/decryption mechanisms
on the system’s reliability. Moreover, experimental results
are now extended to both an ANN and a CNN, thus better
supporting the claim that security mechanisms, if suitably
selected, can provide advantages from the reliability point of
view.

The remainder of the article is organized as follows.
Section II reports an overview on the state-of-the-art work on
NVM reliability and provides a preliminary background on
memory encryption. Section III illustrates the study that we
conducted. Section IV details both case studies along with the
experimental setup. Section V illustrates the obtained experi-
mental results and, finally, Section VI draws the conclusions.

II. STATE-OF-THE-ART AND BACKGROUND
A. NVM RELIABILITY
NVMs (e.g., flash memories) are widely used as a storage
medium for numerous devices since they are characterised
by high performance with low power consumption and large
storage density. They are used by designers in various busi-
ness sectors, e.g., the mobile phone industry and the automo-
tive industry. However, there is a notable difference between
the two aforementioned domains. In the latter, the memory
design criteria are strongly influenced by safety standards
(e.g., ISO-26262) since the memory is meant to be used
in safety-critical systems on the vehicle. Conversely, when
realizing systems that can hardly endanger human lives (such
as a mobile phone), the design constraints tend to be more
relaxed. For example, the data retention rate in an embedded
flash memory that is planned to be used in a car spans
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from 10 to 20 years; in the case of a mobile phone, the
stored data may last for a maximum of 5 years. Moreover,
devices expected to be in the field for a long period of time
are prone to error accumulation primarily due to the aging
of the hardware components. Furthermore, designers have
to consider that NVMs are prone to errors due to radiation
effects [18], [19] and error accumulation. A recent study [20]
reports an unexpected error explosion phenomenon in flash
memories, where multiple errors occur in flash blocks over
several operation cycles that exceed the ECCs detection and
correction capabilities.

The reliability of NVMs has been extensively studied [21].
Also, numerous design methodologies, based on ECCs, have
emerged over the years to enhance the resilience of NVMs to
(soft and hard [22]) errors. As prominent examples, we can
mention IBM’s Chipkill used in combination with dynamic
bit-steering [23] and Intel’s Lockstep [24]. The security of
NVMs has also been thoroughly studied [25], [26].

The aspect of the reliability and the tolerance of ML
applications to faults has been also extensively studied in the
past [27]–[29]. In [30], the authors present a novel methodol-
ogy that exploits the relationship between input, parameters
and output of CNNs in order to detect and correct bit errors.
In [31], the authors perform an analysis on the reliability of
CNNs and employ fault tolerance techniques to enhance their
reliability on GPUs.

Typically, reliability and security are two aspects that are
accounted for separately and independently. The main objec-
tive of our work is to pave the way to new approaches
combining the two aspects. An approach considering both
aspects has been proposed in [32], in the context of remote
patient monitoring. In [32], a cooperative communication
scheme is proposed to ensure reliability, along with a cryp-
tography mechanism for privacy preservation. In this work,
we aim instead at analyzing the inherent fault-detection fea-
tures of a prominent and widely-used security mechanism,
i.e., encryption. The goal is to assess whether the security
mechanisms provided by the encryption are suitable also for
fault-detection.

B. MEMORY ENCRYPTION
NVMs are particularly sensitive in terms of security. Their
ability to permanently retain the stored information makes
them easily exploitable by invasive attacks. Through chip
decapsulation, an attacker can obtain direct access to the
NVM surface and perform several kinds of attacks. One
common threat is IP stealing. This is achieved by reading out
the content of the NVM, which normally contains application
code and data that represent a valuable IP for the company
producing the target system. Another threat stems from the
possibility for the attacker to tamper with the NVM content
and provoke malfunctions in the processing elements that
could ultimately result in privilege escalation on the system.
A famous example is the code reuse attack and its variants,
such as Return-oriented Programming (ROP) [33], [34] and
Jump-oriented Programming (JOP) [35].

In this article, we focus on machine learning applications
based on neural networks for safety-critical systems. In this
context, the neural network weights stem from a long and
expensive training process, making them a valuable asset.
Moreover, inmany safety-critical applications, the computing
systems are deployed in close proximity to the user, mak-
ing them easily accessible for the aforementioned physical
attacks.

Memory encryption is a powerful mechanism for counter-
acting such threats. If the NVM content is fully encrypted,
an attacker who obtains physical access to the memory can-
not perform the aforementioned attacks. In fact, even if the
attacker can read out the memory, the encryption makes the
understanding of its content impossible. Moreover, encryp-
tion makes tampering-based attacks much more complex: an
attacker would have to modify the encrypted data so that the
decryption mechanism transforms them into data causing the
desired corrupt behavior.

Validating the different solutions for the possible attacks
has been a popular area of investigation. For example, in [36],
the authors investigate the security aspect of a Deep Neural
Network (DNN) application on a low-cost microcontroller.
Specifically, they perform fault injections on the systemwhile
the DNN classifier is active and observe the role various
activation functions have in terms of result misclassification.
In [37], the authors explore the impact of bit-flip attacks on
a wide variety of neural network architectures and showcase
that it is possible for a hardware fault attack to dramatically
lower the accuracy of the networks (up to 99%). Lastly, they
propose heuristics for the identification of possible vulnera-
ble parameters on such networks.

However, encryption alone is not capable of exhaustively
detecting memory corruptions. More powerful techniques
based on integrity primitives (e.g., authenticated encryption)
can protect computing systems against most kinds of per-
turbations (i.e., fault attacks) that involve the memory con-
tent [38], [39]. In this article, we do not deal with artificial
faults induced by an attacker, but we focus on natural faults
coming from environmental sources instead. Although many
similarities exist between artificial and natural faults, these
are two problems that are traditionally dealt with very dif-
ferent technologies. In fact, protection mechanisms against
fault attacks are based on security techniques, possibly based
on cryptographic primitives (e.g., the already mentioned
authenticated encryption), while natural faults are dealt with
memory hardening techniques (e.g., error-correcting codes).
This article introduces the possibility of dealing with natural
faults relying on techniques belonging to the security domain.
We consider very simple memory encryption techniques
without the additional cost of the data integrity primitives, and
we evaluate their properties in aiding the processing system
in detecting natural faults that can affect the data stored in the
NVM.

We consider a memory encryption implementation where
data are loaded into the NVM already encrypted. When
data are read by the processing element (in our case,
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a general-purpose CPU), they are streamed through a hard-
ware decryption module interposed between the NVM and
the CPU. The encryption algorithm is based on a symmetric
cryptography primitive, where the same secret key is used for
both encryption and decryption. In the memory decryption
scenario, the secret key must be stored inside the decryption
module, possibly hardwired inside the module logic to avoid
easy access through invasive attacks.

On the same architecture, we evaluate several encryption
algorithms, all based on the Advanced Encryption Standard
(AES), which can be implemented according to different
modes of operation. The common element is a pseudorandom
permutation (PRP) that processes a 128-bit block of plaintext
to generate a 128-bit block of ciphertext. The PRP is con-
ceived to have the following characteristics:

1) The permutation is dependent on the secret key. This
implies that if the key is not known, the permuta-
tion looks like a random transformation. Hence, it is
unfeasible to derive the corresponding plaintext only
by knowing a ciphertext.

2) The permutation is invertible. This allows building the
decryption function using the same key.

3) The permutation has confusion and diffusion proper-
ties. This means that each bit of the output is depen-
dent on all the 128 bits of the input. For the fault
detection purpose, this is a critical property because the
corruption of one bit on the input block results in the
corruption of the whole output block. In the following,
we will refer to this property as fault spreading, that
is related to the multiplicity and to the location of the
errors stemming from a single bit error on the input
message.

The AES basic PRP, also called block cipher, allows build-
ing several types of ciphers with different characteristics
(i.e., different modes of operation).

III. ANALYSIS OF THE AES FAULT DETECTION
CAPABILITY
This section details the thorough analysis that we performed
on the fault detection capabilities of different encryption
mechanisms. In particular, we define the different AESmodes
and highlight their capability to spread the fault effects.

A. AES MODES OF OPERATION AND THEIR FAULT
SPREADING PROPERTY
In the following, we detail the modes of operation that
we analyze in this article, highlighting their fault spreading
properties:

• Cipher Block Chaining (CBC) mode: in this mode of
operation, each block of plaintext is added to the previ-
ous ciphertext block before being encrypted. This way,
each ciphertext block depends on all plaintext blocks
processed up to that point. In the decryption function,
each plaintext block is added to the previous ciphertext
after decryption. This implies that a 1-bit corruption on

the ciphertext block i is propagated to the whole 128-bit
plaintext block i, plus 1 bit of the plaintext block i + 1.
This is because the addition operation (i.e., a bit-wise
XOR) does not spread the fault, but it simply transmits
it to the corresponding bit of the result (Fig. 1a). Thus
the fault spreading of the CBC mode is equal to 1 block
plus 1 bit of the next block.

• Cipher Feedback (CFB) mode: in this mode of oper-
ation, each ciphertext block is computed as the sum of
the corresponding plaintext block plus the encryption of
the previous ciphertext block. In the decryption function,
each plaintext block is computed as the sum of the
corresponding ciphertext block and the encryption of
the previous ciphertext block. Here, the encryption of
the ciphertext block i is used as a keystream for both the
encryption and the decryption of the block i + 1. This
implies that a 1-bit corruption on the ciphertext block i
is transmitted to the corresponding bit of the plaintext
block i, and it is also spread over the entire block i + 1
(Fig. 1b). Thus the fault spreading of the CFB mode is
equal to 1 bit in the present block plus the entire next
block.

• Propagating CBC (PCBC) mode: in this mode of
operation, each block of plaintext is added to both the
previous plaintext block and the previous ciphertext
block before being encrypted. This leads to a simi-
lar decryption behavior, i.e., each block of plaintext
is added to both the previous plaintext block and the
previous ciphertext block after the decryption function.
This implies that a 1-bit corruption on the ciphertext
block i is spread over the plaintext block i, plus all the
following blocks up to the last one (Fig. 1c). Thus the
fault spreading of the PCBCmode is equal to the number
of blocks present between the block where the fault has
happened and the last block of the encrypted data.

• Counter (CTR) mode: in this mode of operation, the
encryption function is applied to a sequence of values
that are generated by a counter initialized by a seed. The
resulting output blocks (i.e., the keystream) are added
to the plaintext blocks to obtain the ciphertext blocks.
The decryption operation is performed by generating the
same keystream and adding it to the ciphertext blocks in
order to obtain the plaintext blocks. This implies that a
1-bit corruption on a ciphertext block is propagated to
the same bit on the resulting plaintext block (Fig. 1d).
Thus, the fault spreading of the CTR mode is equal to
1 bit in the same encrypted block.

• Output Feedback (OFB) mode: in this mode of opera-
tion, a keystream is generated starting from an initializa-
tion value that is passed through the encryption function
multiple times. The ciphertext block is obtained as the
sum between the plaintext block and the correspond-
ing keystream block. In the decryption operation, the
same keystream is generated (i.e., starting from the same
initialization value), and this is added to the ciphertext
blocks to compute the corresponding plaintext blocks.
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FIGURE 1. Decryption process of different AES modes of operations and their related fault spreading property.

This implies that a 1-bit corruption on a ciphertext block
is propagated to the same bit on the resulting plaintext
block (Fig. 1e). Thus the fault spreading of the OFB
mode is equal to 1 bit in the same encrypted block.

From this point forward, we separate the AES modes of
operation into two different categories, according to their
fault spreading property:

• Non-spreading category including the CTR and the
OFB modes of operation.

• Spreading category including the CBC, CFB and
PCBC modes of operation.

In the non-spreading category, the faults on the ciphertext
are not spread over the plaintext during decryption, but they
are transmitted to the corresponding bit. Conversely, modes
of operation in the spreading category can spread the effect
of one-bit corruption on the ciphertext over at least an entire
block of plaintext.

B. THE ROLE OF PADDING IN AES
Block-based encryption needs padding to work properly.
Indeed, since the encryption is performed on 128-bit blocks,
it is necessary to conceive a way to deal with plaintexts whose
size is not multiple of 128 bits. The padding standards are
conceived in order to add the number of bytes to the plaintext
required to reach a multiple of 16 bytes (i.e., 128 bits).
Thus, the size of the resulting ciphertext is always a multiple
of 16 bytes. After decryption, the extra padding bytes are
removed to obtain the original plaintext. The procedure used

by the decryption module to determine the number of bytes
that must be removed is mandated by the standard. One of
the most popular padding techniques for block ciphers relies
on the PKCS #7 - RFC 2315 standard [40]. According to
this standard, if n bytes are added to pad the last block, then
each of these bytes will encode the value n. After decryp-
tion, the last byte of the resulting plaintext is read, and its
value determines the number of bytes that must be discarded.
To provide an example, let us imagine a plaintext message of
100 bytes, which corresponds to 6 128-bit blocks plus 4 bytes.
In order to complete the seventh block, 12 bytes are added as
padding. Therefore, each padding byte will contain the value
0x0C (12 in decimal). After decryption, the presence of the
value 0x0C on the last byte of the plaintext implies two
things:

(i) the last 12 bytes of the resulting plaintext must all
encode the value 0x0C;

(ii) the last 12 bytes of the resulting plaintext must be
removed after decryption.

C. FAULT TOLERANCE ANALYSIS
The phenomena described in Section III-A entail different
consequences for the system.

The non-spreading modes of operation do not exacerbate
the fault effect, leaving it confined to a specific bit of the
plaintext. From a fault tolerance standpoint, a fault has the
same probability of being masked or detected by the system
or by the running application as if no encryption was applied.
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Conversely, the spreading modes of operation aggravate the
fault effect by extending it to multiple plaintext bits. From a
fault tolerance standpoint, this could potentially entail worse
consequences if no extra detection mechanism is available in
the hardware platform or the running application.

Therefore, using the spreading AES modes of operation
may seem extremely counterproductive, as it aggravates the
fault effects and does not help detect their presence. However,
as mentioned in Section III-B, the padding standard intro-
duces some redundancy that may improve the fault tolerance.
Indeed, storing the information about the number of added
padding bytes into the padding bytes themselves (0x0C in
the example in Section III-B) is not strictly necessary for the
correct operation of the encryption. Nonetheless, the redun-
dancy turns out to be a powerful property for fault detection.
In fact, considering the above example, if the value 0x0C
appears on the last byte, but not all the 12 last bytes contain
the same value, the decryption operation can detect and signal
a decryption error.

Concerning the AES modes of operation described in
Section III-A, for the padding check to be used for fault
detection, the effect of a fault must reflect on the padding
bits. In general, the event of having a fault impacting a
padding bit is as probable as for the other bits. Thus, for
non-spreading operation modes, the presence of the padding
check is not likely to have a significant impact on fault
tolerance. Conversely, when the fault effect is extended to
other bits (as in spreading operation modes), the probability
of obtaining a corrupted padding increases, and so does the
detection capability. In detail, CBC andCFB (Figs. 1a and 1b)
operation modes propagate the effect of a fault occurring on
a single ciphertext bit only to the corresponding plaintext
block and to the next one. Therefore, also these two operation
modes are not much likely to benefit from the padding check.
Nevertheless, the PCBC mode (Fig. 1c) has the interesting
property to propagate a fault in a given block to all the
successive blocks, all the way to the padding blocks. As a
result, the probability of spreading the effect of a fault to the
padding and detecting it is much higher in the PCBC mode
of operation.

IV. EXPERIMENTAL VALIDATION OF AES FAULT
DETECTION CAPABILITY
In this section, we describe the experimental setup that we
adopted to validate the AES fault detection capabilities dis-
cussed in Section III. Firstly, we describe the adopted fault
models and the classification that we use to categorize faults
depending on their effects on the application under study.
Then, we present the two ML applications used as case stud-
ies, and the adopted fault injection setup and experimental
flow.

A. FAULT MODELS, FAULT CLASSIFICATION, AND FAULT
EFFECTS
For the purpose of our analysis, in order tomodel the transient
faults affecting the NVM that stores the IP of our system,

we consider the Single Event Upset (SEU) (error multiplicity
equal to 1) and the Multiple Bit Upset (MBU) (error mul-
tiplicity > 1). We perform fault injection campaigns only
on the ML application weights and not on other ML data
or application code. Concerning the application code, in a
previous work [41] we have shown that encryption enables
high fault detection rates. We classify faults as follows:
• Safe: the fault does not impact the classification results
of the ML application and is not detected. We consider
2 sub-categories of safe faults:
1) Masked: the faulty results match the expected ones,

i.e., the fault-free (golden) classification results.
The fault does not propagate to the outputs of the
network.

2) Critical Safe: although the resulting classification
matches the fault-free one, the fault reached the
network outputs.

The distinction betweenMasked and Critical Safe faults
is only performed on ML applications that do not pro-
vide binary outputs (0/1).

• Silent Data Corruption (SDC): the fault affects the
classification results of the ML application and is not
detected. The results do not match the golden classifica-
tion results. The top-1 classification, namely the result
predicted with the highest probability, is modified.

• Detected: we consider 2 fault detection mechanisms:
1) Exception: the fault effect generates an ‘illegal’

condition and either the software or the hardware
triggers an exception revealing the fault occur-
rence.

2) Decryption Detection: the fault is detected by
the decryption mechanism. In particular, the fault
affects one (or more) of the padding bytes
appended to the plaintext (weights) for the
encryption; the decryption mechanism detects the
padding incorrectness and triggers an error, allow-
ing the detection of the fault occurrence.

It has been shown that ML-based systems are rather
resilient to errors [42]–[44]. Obviously, we want to avoid
SDC cases that may be catastrophic for the system and its
environment. For example, in a self-driving vehicle, an object
detection ML application impacted by a fault could lead to
incorrect detection of, for instance, pedestrians. This could
put human lives in harmful situations [45].

In most ML applications, the weights are represented by
floating-point numbers. The IEEE-754 standard [46] speci-
fies a special value, ‘Not a Number’ (NaN), resulting from
invalid operations. The presence of a NaN value reveals an
incorrect behavior and, in our scenario, triggers an exception.
According to the IEEE-754 standard, a sequence of bits inter-
preted as NaN satisfies the following conditions:

1) the exponent bits are all set to 1,
2) at least one bit of the mantissa is set to 1.
NaN values may be detected at hardware level by the

CPU or at software level by the application code. In both
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FIGURE 2. IEEE-754: Binary64 floating point number representation.

cases, an exception is typically triggered. In our context,
a fault affecting an encrypted weight is detected if its
effect generates either a NaN value – thus a software
exception – or a corrupted padding caught by the decryption
mechanism – thus a hardware exception. Otherwise, it will
be either a masked fault or an SDC. This depends on the fault
criticality, which is connected to the fault location. In Figure 2
we report the binary representation of a 64-bit floating-point
number. If the effect of an undetected fault happens to corrupt
one (or more) of the Least Significant Bits (LSBs) of the
floating-point number, then it will most probably be a safe
fault (critical safe or masked) since the change of the weight’s
value will not be significant. Conversely, as the fault location
moves towards the Most Significant Bits (MSBs), the effects
will be more severe and can lead to SDC [47], [48]. More in
detail, as observed in [47], faults impacting the sign and the
mantissa bits have a weaker impact on the network behavior
than faults impacting the exponent bits.

B. CASE STUDY A: SIMPLE ANN
The first case study used for our experiments is anANN. It is a
classifier, which was developed using an ANSI C library [49].
Given as input a point in the (x, y) Cartesian plane, the ANN
assigns it to one of the three following classes:

• C1: The point belongs to either one of the circles:
(x ± 1)2 + (y± 1)2 ≥ 0.16

• C2: The point belongs to either one of the disks:
0.16 < (x ± 1)2 + (y± 1)2 < 0.64

• C3: The point belongs to neither circle nor disk:
(x ± 1)2 + (y± 1)2 ≥ 0.64

The aforementioned loci are depicted in Figure 3. The train-
ing and the testing set of the network contain 3, 000 points
each (6, 000 in total). In each set 1, 500 randomly gener-
ated points are located inside the [0, 2] × [0, 2] rectangle
and 1, 500 points are located inside the [0,−2] × [0,−2]
rectangle.

The network is composed of 1 input layer, 3 hidden layers,
and 1 output layer. The input layer has 2 neurons, one for
each of the coordinates of the points (x, y). The hidden layers
have 10 neurons each, and the output layer, which has 3 neu-
rons, one for each of the classes (C1, C2, C3). The neurons
of the output layer of the network provide a binary value
(0/1). In total, the network contains 283 weights (including
each neuron’s BIAS input weight), each corresponding to a
64-bit floating-point number. To train the network, we used
the supervised learning technique. Every point in our training
and test dataset was encoded using one-hot encoding. The
adopted training algorithm was gradient descent.

FIGURE 3. Graphical visualisation of the loci determined by the
classification boundaries of the target ANN.

The generalization error of the network was found to be
1.33%. This is the probability for the classifier to misclassify
a given point of the test-set (e.g., to classify a point of the class
C1 as a point of the class C2 or C3). The activation function
selected for this network is the sigmoid function.

C. CASE STUDY B: CNN
The CNN that we used for our experiments is the LeNet-5
network [52]. It was first introduced in [51], where it was
used to detect handwritten zip codes digits [21].

We resort to a LeNet-5 variant [50] trained on the MNIST
dataset of handwritten digits [53] using the darknet frame-
work [54]. The CNN takes as input 28× 28 pixel images, and
its architecture, depicted in Figure 4, consists of the following
layers:

C1: A convolutional layer that produces as output 32 fea-
ture maps of size 28 × 28. C1 has 2,400 trainable
weights.

S2: A sub-sampling layer that reduces the dimension of
the feature maps from 28× 28 to 14× 14. To generate
a single value of a given output feature map, S2 takes
the maximum value among a subset of four (2 × 2)
input values.

C3: A convolutional layer that produces 64 feature maps
of size 14 × 14. C3 has 51,200 trainable weights.

S4: A sub-sampling layer producing 64 feature maps of
size 7× 7, similarly to S2. Also S4 takes themaximum
value among a subset of four (2 × 2) input values to
generate an output value.

FC5: A fully connected layer with 1024 neurons. FC5 has
3,211,264 trainable weights.

FC6: A fully connected layer with 10 neurons. FC6 has
10,240 trainable weights.

OUT At the output of the network, a Softmax operation is
performed. This maps the output values to the range
[0,1], to treat them as probabilities. Finally, the sum of
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FIGURE 4. LeNet-5 variant architecture [50] (inspired from [51]).

TABLE 1. LeNet-5 classification accuracy, training and testing data for the
MNIST dataset.

squared error (SSE) is calculated to compute the dis-
tance between the values from FC6 and some parame-
ter vectors that correspond to the ten classes of digits.
The parameter vectors were determined manually and
kept fixed.

Neurons in layers C1, C3, FC5, and FC6 compute a dot
product between their input vector and their weight vector
and add a bias. For C1, C3, and FC5, the result is then passed
through a Rectified Linear Unit (ReLU) activation function.
For FC6, a linear activation function is used. Table 1 reports
the percentage of images classified correctly per-digit after
training the network along with the number of images that
were used for the training and testing purposes of the network.
In total, 70,000 images were used.

The total number of weights of the whole network, includ-
ing neurons of both the convolutional and fully connected lay-
ers, is 3, 275, 104. For more details on the LeNet-5 structure
and functionality, please refer to [51].

D. FAULT INJECTIONS
As already mentioned, in this study we focus on transient
faults affecting the NVM that stores the ML application’s
weights. To correctly model this scenario, we performed fault
injection campaigns on the encrypted version of the ML
applications’ weights, before decrypting and using them to
execute the ML application. Table 2 presents the size (in
terms of total number of bits used to represent the weights)

TABLE 2. Network sizes and total experiments.

of the two ML applications, along with the total amount of
experiments performed.

For the experiments executed under the SEU fault model,
we performed one fault injection campaign for each of the
six considered cryptographic configurations. For the experi-
ments executed under the MBU fault model, we performed
six fault injection campaigns for every cryptographic con-
figuration. Specifically, we injected faults of six different
multiplicities, namely 10, 20, 50, 100, 200 and 500. Thus, the
total amount of experiments (i.e., fault injection campaigns)
related to the MBU model was 6 × 6 = 36.

1) FAULT INJECTIONS PER ML APPLICATION
In order to obtain statistically meaningful results with an
error margin of ≈1.5% and a confidence level of 95% we
had to perform 3, 454 fault injections for every experiment
on the ANN and 4, 145 fault injections for every experiment
on the CNN application. The number of injected faults per
experiment was calculated according to [55] as:

fault_injections =
N

1+ e2 × N−1
t2×0.25

where:
• N is the population size, i.e., column 2 of Table 2.
• e is the desired error margin.
• t depends on the desired confidence level (t=1.96 corre-
sponds to 95% confidence level).

Furthermore, a uniform distribution was used for each fault
injection campaign. Hence, each memory bit had the same
probability of being selected.

E. EXPERIMENTAL FLOW
Figure 5 depicts the flow of our experiments. To study the
effect of the padding check on fault detection capabilities,
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FIGURE 5. Experimental setup.

we organized the flow as follows. Firstly, the weights are
either padded and then encrypted; then, a fault is injected in
one of the weights, and finally they are decrypted and then un-
padded. The effect of a fault on the encrypted memory con-
tent may propagate to the padding, thanks to the decryption.
In this case, if padding integrity checks are performed during
un-padding, the check mechanism detects that the padding
bytes have been altered, thus leading to the fault detection.
On the other hand, if a padding byte has not been altered (or
if the target system does not perform the padding integrity
check), then it is up to the application to possibly detect the
fault. As already mentioned, in our scenario this happens
only if a NaN is generated and a software exception is trig-
gered. Finally, the classification results are compared with the
golden classification results. Classification is performed as
follows:
• If the results match i.e., exactly the same classification
was performed with respect to the fault-free scenario,
then the fault is classified as safe.

• If the results do not match i.e., items have been miss-
classified, then the fault is classified as SDC.

• If the decryption mechanism detects a discrepancy in the
padding segment or the application detects a NaN value
while loading the weights, an exception is triggered and
the fault is classified as detected.

In order to support the fault injection experiments
we developed a tool using Python. This tool is respon-
sible of (i) encrypting the weights of the respective

ML application using a given cipher configuration, (ii) inject-
ing a fault of a given multiplicity in the form of bit-flips and
finally (iii) decrypting the memory data segment.

First of all, the tool executes the fault-free (golden) ML
application with the given test set and obtains the fault-free
NN results. Then, in order to have a point of reference
and comparison, we perform fault injections on the net-
works’ weights without using encryption. The criticality of
the fault strongly depends on the fault location, as explained
in Section IV-A. In this scenario, the only case where a fault is
detected is when it causes a NaN value, which in turn triggers
a software exception.

V. RESULTS
In this section, we present the experimental results that we
obtained for our case studies. SEU results are summarized
in Table 3, while MBU results are presented in the plots
of Figure 6 and Figure 7. In both cases, two scenarios are
considered. In the first scenario (NO PAD), checks on the
padding segment of the ciphertext are not performed, while
in the second scenario (PAD), checks are performed during
the decryption process.

A. SEU EXPERIMENTS
1) ANN
Regarding the SEU experiments on the ANN, in the upper
part of Table 3 we show that the differences between the
results of the experiments performed with no encryption (our
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TABLE 3. SEU results.

reference baseline) and those performed with non-spreading
encryption ciphers are not significant, regardless of the
padding utilization. Thus, non-spreading encryption ciphers
do not provide any enhanced fault-detection capabilities. The
majority of the injected faults are classified as safe. Specifi-
cally, all these safe faults fall under the masked category since
the network provides only binary outputs.

As for the spreading encryption ciphers, we observe that
almost always, they produce more SDCs than the reference
scenario, regardless of the padding utilization. The reason
behind this behavior is the propagation of the fault during
decryption. As explained in Section II-B, these modes of
operation tend to amplify the fault effect by propagating
it to neighbouring blocks of information. This attribute of
the ciphers increases the probability of corrupting signifi-
cant information bits that will eventually lead to an SDC
case. However, the PCBC cipher configuration with padding
utilization (PAD scenario) stands out for achieving a fault
detection rate of 99,4%. This result is due to the nature of
the PCBC decryption process: when a fault is injected in the
ciphertext, the PCBC decryption mechanism propagates the
fault effects to all of the following blocks, resulting in the
corruption of the padding segment. Hence, the corruption is
detected by the padding check, and an exception is raised.

2) CNN
The SEU results of the CNN case study are reported in the
lower half of Table 3. Encryption with non-spreading ciphers
does not provide any notable fault detection capabilities,
as for the ANN scenario. Indeed, the results do not substan-
tially deviate from the no encryption scenario, and the vast
majority of the faults fall into the safe category. For the CNN,
the output layer performs the softmax operation which maps
the output values to the range [0,1]. Thus, the number of safe
faults in this case is the sum of the masked and the critical
safe faults (see Section V-C for further details). In [56], the
authors, while considering LeNet-5 as a case study perform

extensive fault injection campaigns on the network layers and
classify the fault effects in a similar manner. We observe a
similar behavior when comparing with the amount of faults
classified as safe and SDC for the no encryption scenario of
Table 3, thus confirming previous findings. As for the ANN
results, CBC and CFB block ciphers produce many SDCs,
regardless of the padding utilization. On the other hand, the
PCBC configuration shows improved detection capabilities.
In fact, when the padding check is not used, the PCBC
can detect 75,5% of the faults. Moreover, when the padding
check is performed, the PCBC achieves a detection rate
of 99,9%.

One notable difference between the two case studies can
be observed for the PCBC case in the NO PAD scenario.
Without padding checks, PCBC achieves a higher fault detec-
tion rate when applied to the CNN, compared to the ANN.
Note that the only way for a fault to be detected in this case
is for the fault to generate a NaN value that will trigger an
exception. We think that the reason behind this peculiarity
may be the difference in size and number of operations
between the two networks in combination with the PCBC’s
fault spreading property to all the following blocks. Indeed,
the CNN’s weights, as shown in column 2 of Table 2, are
104 times as many as the weights of the ANN network.
In order to be encrypted with a spreading cipher configura-
tion, the weights are split into 128-bit blocks. In the ANN
there are 142 blocks whilst in the CNN there are 6,550,208
blocks. Thus, during the decryption process, the effect of a
fault impacting a random encrypted block in the CNN will
be propagated to much more subsequent blocks than in the
ANN, thus impacting more weights. Moreover, much more
operations are carried out in the CNN than in the ANN.
This surely contributes to error accumulation and propagation
and increases the probability of getting a NaN. To give an
example, we think that when a fault impacts a lot of weights
(thanks to PCBC spreading property), it is likely that one or
more of them assume a large value. The large values would
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FIGURE 6. ANN MBU results for the (a) NO PAD and (b) PAD scenarios.

grow even bigger thanks to the convolution operations, which
involve multiplications and additions, eventually turning into
the infinity value. Ultimately, operations with infinity values
(e.g., multiplication with zero or the∞−∞ operation) could
more likely generate a NaN.

B. MBU Experiments
1) ANN
Figure 6 reports the results of the MBU experiments for the
ANN application. Regarding the NO PAD scenario (Figure 6-
a), we observe that non-spreading ciphers behave similarly
to the no encryption scenario. As the fault multiplicity rises,
the fault detection rates rise as well. This means that, as the
number of injected faults rises, the probability of inducing a
NaN increases. On the other hand, spreading cipher configu-
rations tend not to provide any significant fault detection rate.
Specifically, we can see that their fault detection rate drops for
fault multiplicity higher than 200.

Concerning the PAD scenario where the padding integrity
checks are performed (Figure 6-b), we observe PCBC domi-
nating over the rest of the ciphers. Indeed, the PCBC achieved
high fault detection capabilities, very close to 100%, regard-
less of the injected fault multiplicity. In general, the per-
formance of all the ciphers in terms of their fault-detection
capabilities was also enhanced since, in this scenario, a fault
may corrupt bytes of the padding segment, generating an
immediate detection.

2) CNN
The results of the CNN case study are depicted in Figure 7.
Similarly to what happens in the SEU experiments, we can
see that the plots deviate from the ANN case. Regarding
the NO PAD scenario (Figure 7-a), non-spreading ciphers do
not provide significant fault detection. In fact, they achieve
a detection rate close to the no encryption scenario. On the
other hand, the fault detection rates obtained for spreading

ciphers are higher for the CNN than for the ANN. In particu-
lar, the PCBC configuration also showed high detection capa-
bilities, very close to 100%. We think that this phenomenon
is related to what was previously stated in Section V-A for
the SEU experiment for the NO PAD scenario: the number of
weights and operations in the CNN is much larger than in the
ANN. Therefore, we think that, when multiple faults impact
the CNN weights and the effect is spread to other weights
thanks to spreading AES configurations, it is highly likely
to generate high values that could eventually turn into infin-
ity. Operations with infinity values could likely generate a
NaN.

In the PAD scenario (Figure 7-b), where padding checks
are performed, we observe again PCBC dominating over the
rest of the ciphers by achieving very high fault detection rates,
close to 100%.

3) SAFE FAULTS AND SDCs
As already discussed, the faults that remain undetected can
be classified either as safe or SDC. In both the analyzed ML
applications, the percentage of undetected faults classified as
SDCs is directly proportional to the injected fault multiplicity.
Consequently, the percentage of undetected faults that are
classified as safe is inversely proportional to the fault mul-
tiplicity. Indeed, as the multiplicity of faults increases, the
likeliness of an undetected fault impacting significant mem-
ory bits increases as well; thus, the probability of a fault being
safe and not causing data corruptions decreases. We observed
the same trend for both spreading and non-spreading cipher
configurations.

While the trend is the same, the non-spreading configura-
tions tend to produce higher percentages of safe faults (thus
lower percentages of SDCs) than the spreading configura-
tions for low fault multiplicities. This is due to the intrinsic
property of these latter configurations to spread the fault
effects to multiple bits in the decryption process.
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FIGURE 7. CNN MBU results for the (a) NO PAD and (b) PAD scenarios.

FIGURE 8. Analysis of safe faults for the CNN per fault injection campaign.

C. CNN: ANALYSIS OF SAFE FAULTS
In Section IV-A we defined safe faults as those faults that
do not alter the functionality of the network. Namely, the
classification produced by the faulty network is exactly the
same as the classification produced by the fault-free network.
However, for the case of the CNN, the network outputs are not
binary, namely they map the output values to the range [0,1]

via the softmax operation. Thus, we can further differentiate
between masked faults and critical safe faults. A similar
classification and analysis of the masked faults in CNNs is
performed in [56], [57].

Figure 8 shows the total amount of the safe
faults – divided into masked and critical safe – for each fault
injection campaign performed on the CNN.
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Firstly, let us consider the SEU fault injection campaigns.
For the non-spreading cipher configurations, we observe that
the vast majority of safe faults falls into the masked category.
For the spreading cipher configurations we observe fewer
cases of safe faults in general, since the vast majority of
faults are classified as SDCs. Furthermore, the percentage
of critical safe faults is higher than the masked ones for
the spreading cipher configurations. Regarding PCBC, the
amount of safe faults is zero. This behavior can be fully
justified by the fault spreading properties of the employed
ciphers as explained in Section III-A. In particular, there
is a small chance that a non-spreading cipher configuration
amplifies and propagate the fault effect, since one bit-flip on
the ciphertext is responsible for one bit-flip on the plaintext.
On the other hand, when it comes to spreading cipher con-
figurations, the impact of a single fault is amplified, since
a single bit-flip on the ciphertext corresponds to more than
one bit-flip on the plaintext. More details are provided in
Section III-A.

For the case of the MBU fault injection campaigns, on the
x-axis of the bar plot, the multiplicity of each fault is noted
after the name of the employed cipher configuration. Con-
cerning the non-spreading cipher configurations, we observe
a similar trend among the different configurations. In general,
we observe a lower amount of safe faults w.r.t. the respective
configuration in the SEU fault injection campaign. Then,
we observe that the amount of critical safe faults is higher
than the masked faults, while for the SEU fault injection
campaign we had a number of masked faults higher than
the number of critical safe faults. This is due to the higher
fault multiplicities in the MBU fault injection campaigns: the
higher the fault multiplicity, the higher the probability that
the effect of a fault reaches the network outputs. Concerning
the spreading cipher configurations, for almost every MBU
fault injection campaign, no safe faults were identified and
thus they are not included in the Figure 8. In the scenario
of the spreading ciphers, each bit-flip performed is amplified
during the decryption, since it corrupts the whole data block
in which it is contained. Thus, even with the lowest multiplic-
ity considered, namely 10, we observed a high amplification
effect leading to either an SDC or a Detection. A very small
amount of critical safe faults is only observed for the CBC
configuration for the fault injection campaign with fault mul-
tiplicity equal to 10.

VI. CONCLUSION
Modern society is permeated with digital computing systems,
which are increasingly vital to our everyday life. The design
process of these systems has become incredibly complex,
as many requirements have to be considered. In particu-
lar, reliability constraints have profoundly impacted the way
designers implement these systems. Furthermore, in the last
years, the growing interest in effectively facing malicious
attacks on intellectual properties information within these
systems led designers to adopt security-oriented techniques,
such as memory encryption.

Autonomous systems employing Machine Learning (ML)
technology are a prominent example where both reliability
and security constraints are crucial. In particular, the cor-
rectness of the ML model weights determines the proper
behavior of the system; simultaneously, the weights are also
considered a precious Intellectual Property (IP) item since
they result from an expensive and not trivial training process.
Thus, companies need to protect them at once from faults
and malicious attacks. Unfortunately, these two aspects are
studied and handled separately, with little interaction between
the respective experts.

In this work, we analyzed and highlighted the fault-
detection capabilities offered by memory encryption mecha-
nisms. The results of this work enable designers to single out
themost suitablememory encryptionmechanism for a system
while taking into account not only its security but also its
reliability. We experimentally evaluated the positive impact
that data encryption has in terms of reliability enhancements
with respect to the effects of transient faults. To do so, we per-
formed extensive fault injection campaigns on the encrypted
weights of an Artificial Neural Network (ANN) and of a Con-
volutional Neural Network (CNN) and evaluated the fault-
detection capabilities provided by the decryption mechanism.
The underlying idea is that the effect of a fault affecting
encrypted data will spread to adjacent data in the decryption
process, thus increasing the probability of detecting the fault
occurrence. The obtained results show that selecting a par-
ticular Advanced Encryption Standard (AES) configuration,
i.e., the Propagating Cipher Block Chaining (PCBC), in com-
bination with padding check mechanisms allow to achieve
very high fault detection rates (> 99%), with respect to the
Single Event Upset (SEU) and the Multiple Bit Upset (MBU)
fault models.

This showcased behavior could be observed even in larger
(i.e., deeper) networks than the CNN considered in our work.
The fault spreading property of the PCBC scheme is indepen-
dent of the plaintext size, which corresponds to the number
of weights of the ML application in the considered scenario.
Given that an appropriate padding checking mechanism is
also employed, the overall fault detection capability of the
system would be similar to the CNN case study analyzed in
this article.

This work encourages and paves the way to develop-
ing new integrated design techniques that take into account
multiple crucial requirements of new-generation advanced
computing systems.
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