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10ABSTRACT
Deep neural networks based purely on attention have been successful across several domains, re-
lying on minimal architectural priors from the designer. In Human Action Recognition (HAR),
attention mechanisms have been primarily adopted on top of standard convolutional or recurrent 15

layers, improving the overall generalization capability. In this work, we introduce Action Trans-
former (AcT), a simple, fully, self-attentional architecture that consistently outperforms more
elaborated networks that mix convolutional, recurrent, and attentive layers. In order to limit
computational and energy requests, building on previous human action recognition research, the
proposed approach exploits 2D pose representations over small temporal windows, providing a 20

low latency solution for accurate and effective real-time performance. Moreover, we open-source
MPOSE2021, a new large-scale dataset, as an attempt to build a formal training and evaluation
benchmark for real-time, short-time HAR. The proposed methodology was extensively tested on
MPOSE2021 and compared to several state-of-the-art architectures, proving the effectiveness of
the AcT model and laying the foundations for future work on HAR. 25

1. Introduction

Human Action Recognition (HAR) is a problem in computer vision and pattern recognition that aims to detect
and classify human actions. The ability to recognize people inside a scene and predict their behavior is fundamental
for several applications, such as robotics [36], surveillance and security [46, 50], autonomous vehicles [33, 7], and 30

automatic video captioning [55, 45, 49]. Most previous works dealing with HAR adopted datasets characterized by
samples with a long temporal duration [25, 47, 32]. Thus, HAR has been mainly treated as a post-processing operation,
classifying complex and long-lasting human actions by exploiting past and future information. Conversely, in this
work, we focus on short-time HAR, which aims at continuously classifying actions within short past time steps (up
to a second). This approach is fundamental to target real-time applications: in robotics, for example, HAR problem 35

should be solved promptly to react to sudden behavioral changes, only relying on near past information.
In this paper, we propose a newmodel for HAR called the Action Transformer (AcT), schematized in Fig.1, inspired

by the simple and prior-free architecture of the Vision Transformer [18]. The Transformer architecture [48] has been
one of the most important deep learning advances of the last years in natural language processing (NLP). Moreover,
multi-head self-attention has proven to be effective for a wide range of tasks besides NLP, e.g. image classification 40
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[18, 44, 15], image super-resolution [54, 56], and speech recognition [17]. Furthermore, optimized versions of the
Transformer have been developed for real-time and embedded applications [8], proving that this architecture is also
suitable for Edge AI purposes. Recently, many models for Human Action Recognition have proposed the integration of
attention mechanisms with convolutional and recurrent blocks to improve the accuracy of models. However, solutions
that rely exclusively on self-attention blocks have not been investigated for this task yet.45

Figure 1: Overview of the Action Transformer architecture. Pose estimations are linearly projected to the dimension of the
model, and together with the class token, they form the input tokens of the transformer encoder. As for Vision Transformer
models [18, 44, 15], a learnable positional embedding is added to each input token. Then, only the output class token is
passed through a multi-layer perceptron head to obtain the final class prediction.

With AcT, we apply a pure Transformer encoder derived architecture to action recognition obtaining an accurate
and low-latency model for real-time applications. We study the model at different scales to investigate the impact of
the number of parameters and attention heads. We use the new single-person, short-time action recognition dataset
MPOSE2021 as a benchmark and exploit 2D human pose representations provided by two existing detectors: OpenPose
[9] and PoseNet [34]. Moreover, we compare AcT with other state-of-the-art baselines to highlight the advantages of50

the proposed approach. To highlight the effectiveness of self-attention, we conduct a model introspection providing
visual insights of the results and study how a reduction of input temporal sequence length affects accuracy. We also
conduct extensive experimentation on model latency on low-power devices to verify the suitability of AcT for real-time
applications.

The main contributions of this work can be summarized as follows:55

• We study the application of the Transformer encoder to 2D pose-based HAR and propose the novel AcT model,
proving that fully self-attentional architectures can outperform existing convolutional and recurrent models for
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Figure 2: The number of samples of MPOSE2021 divided by action. The colors show the distribution of precursor
datasets among classes, highlighting the unbalanced nature of the data. The final dataset contains 15429 samples where
each sample represents one of 100 actors performing one of 20 actions.

pose-based HAR.

• We introduceMPOSE2021, a dataset for real-time short-time HAR, suitable for both pose-based and RGB-based
methodologies. It includes 15429 sequences from 100 actors and different scenarios, with limited frames per 60

scene (between 20 and 30). In contrast to other publicly available datasets, the peculiarity of having a constrained
number of time steps stimulates the development of real-time methodologies that perform HARwith low latency
and high throughput.

The rest of the paper is organized as follows. Section 2 briefly reports the relevant research on HAR and self-
attention deep learning methodologies. Section 3 presents theMPOSE2021 dataset, highlighting features and elements 65

of novelty with respect to other existing datasets. Then, Section 4 describes the architecture of the proposedAcTmodel,
shortly recalling the main features of the Transformer encoder. Section 5 summarizes the experimentation conducted
to verify the effectiveness of the proposed approach, gives a visual insight into the model functioning, studies its
behavior under temporal information reduction, and measures its latency for real-time applications. Section 6 draws
some conclusions for this work and indicates future research directions.0 70

2. Related Works

Human Action Recognition algorithms aim at detecting and classifying human behaviors based on a different
source of information. Works in this field can be mainly subdivided into two broad categories: video-based and depth-
based methodologies [42]. In both, the input consists of a sequence of points representing body joints, extracted from
the corresponding RGB frame [28], in the case of video-based methods, or a point cloud, in the case of depth-based 75
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ones. In the latter, body joints are provided as 3D coordinates (skeletal data), such as those captured by Kinect sensors
[38, 29], that can be possibly projected onto the 2D space [11, 53]. On the opposite, in this work, we focus on a video-
based analysis, where body joints are already provided as 2D coordinates (pose data) by pose detection algorithms
such as OpenPose [9] and PoseNet [34]. This characteristic makes 2D HAR methodologies applicable in a great range
of applications using a simple RGB camera. Conversely, skeletal data require particular sensors to be acquired, such80

as Kinect or other stereo-cameras. That raises substantial limitations, such as availability, cost, limited working range
(up to 5-6 meters in the case of Kinect [27]), and performance degradation in outdoor environments.

Angelini et al. first collected the MPOSE dataset for video-based short-time HAR [2], obtaining 2D poses by
processing several popular HAR video datasets with OpenPose. Moreover, the authors proposed ActionXPose, a
methodology that increases model robustness to occlusions. The sequences were classified using MLSTM-FCN [26],85

which exploits a combination of 1D convolutions, LSTM [23], and Squeeze-and-excitation attention [24]. The same
authors successively applied their approach to anomaly detection [4, 3] and expanded MPOSE with the novel ISLD
and ISLD-Additional-Sequences datasets. Conversely, Yan et al. [53] first applied OpenPose to extract 2D poses from
the Kinetics-400 RGB dataset [11] and used graph convolutions to capture spatial and temporal information. Similarly,
Shi et al. [39, 40] applied graph convolutions to pose information using two streams that extract information from both90

joints and bones to represent the skeleton. Hao et al. [21]introduced knowledge distillation and dense-connectivity
to explore the spatiotemporal interactions between appearance and motion streams along different hierarchies. At the
same time, Si et al. [41] put together a hierarchical spatial reasoning network and temporal stack learning network
to extract discriminative spatial and temporal features. On the other hand, Liu et al. [30] proposed an ensemble of
two independent bone-based and joint-based models using a unified spatial-temporal graph convolutional operator.95

Conversely, Cho et al. [14] first applied self-attention [48] to the skeletal-based HAR problem. More recently, Plizzari
et al. [35], inspired by Bello et al. [6], employed self-attention to overcome the locality of the convolutions, again
adopting a two-stream ensemble method, where self-attention is applied on both temporal and spatial information.

Unlike previous methodologies, this paper presents an architecture for HAR entirely based on the Transformer
encoder, without any convolutional or recurrent layer. Moreover, we focus on verifying the suitability of our method for100

low-latency and real-time applications. For this reason, we introduce a new 2D pose-based dataset specifically designed
for short-time HAR. Traditional datasets used by previous works, such as 3D NTU RGB+D [38, 29], or Kinetics-
Skeleton [11, 53], include long temporal sequences which must be entirely scanned to make the correct classification.
In contrast, the proposed MPOSE2021 dataset includes samples with a temporal duration of at most 30 frames. That
makes it a new and more suitable benchmark to test the short-time and low-latency performance of HAR models.105

V. Mazzia et al.: Preprint submitted to Elsevier Page 4 of 30



Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

KT
H

IXMAS

i3D
Po

st

Weiz
man

n
ISL

D

ISL
D-AS

UTK
ine

ct

UTD
-M

HAD

dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

av
er

_c
on

f
detector

openpose
posenet

Figure 3: Comparison between OpenPose and PoseNet average confidence (aver_conf) in the different MPOSE2021
sub-datasets. The detectors achieve different average confidence based on the considered precursor dataset.

3. The MPOSE2021 Dataset

In this section, MPOSE2021 is presented as an RGB-based dataset designed for short-time, pose-based HAR. As
in [2, 4, 3], video data have been previously collected from popular HAR datasets (precursors), i.e. Weizmann [20],
i3DPost [19], IXMAS [51], KTH [37], UTKinetic-Action3D (RGB only) [52], UTD-MHAD (RGB only) [12], ISLD,
and ISLD-Additional-Sequences [2]. 110

Due to the heterogeneity of actions across different datasets, labels are remapped to a list of 20 common classes. Ac-
tions that cannot be remapped accordingly are discarded. Therefore, precursor videos are divided into non-overlapping
samples (clips) of 30 frames each whenever possible and retaining tail samples with more than 20 frames. A visual
representation of the number of frames per sample for each sub-dataset of MPOSE2021 is shown in Fig. 4. The
peculiarity of a reduced number of time steps contrasts with other publicly available datasets and stimulates the devel- 115

opment of methodologies that require low latency to perform a prediction. That would largely benefit many real-world
applications requiring real-time perception of the actions performed by humans nearby.

Subsequently, clips not containing a single action are discarded. Moreover, ambiguous clips are relabelled when-
ever possible or discarded otherwise. This process leads to 15429 samples, where each sample represents a single actor
performing a single action. The total number of distinct actors in MPOSE2021 is 100, and the number of samples for 120

each action is reported in Fig.2, which also shows the distribution of precursor datasets.
OpenPose [9] and PoseNet [34] are used to extract landmarks fromMPOSE2021 samples. The average confidence

is computed for each sample as the mean across landmarks and frames. It turns out that the two detectors achieve
different average confidences based on the considered precursor dataset. The box plot of Fig.3 describes the comparison
statistics. 125
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Figure 4: MPOSE2021 sequence length distribution for the different sub-datasets. It is possible to notice how most of
them present a mode of 30 frames per scene.

Due to the significant sample heterogeneity and the high number of actors, three different training/testing splits
are defined for MPOSE2021, i.e. Split1, Split2, and Split3, by randomly selecting 21 actors for testing and using
the rest of them for training. This division makes the proposed dataset a challenging benchmark to effectively assess
and compare the accuracy and robustness of different methodologies. Moreover, the suggested evaluation procedure
requires testing a target model on each split using ten validation folds and averaging the obtained results. That makes130

it possible to produce statistics and reduces the possibility of overfitting the split testing set with an accurate choice of
hyperparameters.

With MPOSE2021, we aim at providing an end-to-end and easy-to-use benchmark to robustly compare state-of-
the-art methodologies for the short-time human action recognition task. We thus release a code repository1 to access
the different levels of the dataset (video, RGB frames, 2D poses). Moreover, we open source a practical Python package135

to access, visualize and preprocess the poses with standard functions. The Python package can be easily installed with
the command pip install mpose.

4. Action Transformer

In this section, we describe the architecture of the AcT network (Fig.1) briefly recalling some preliminary concepts
associated with the Transformer model[48].140

1https://github.com/PIC4SeR/MPOSE2021_Dataset
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Figure 5: Transformer encoder layer architecture (left) and schematic overview of a multi-head self-attention block (right).
Input tokens go through L encoder layers and H self-attention heads.

4.1. AcT Architecture

A video input sequence with T frames of dimensionH ×W and C channels Xrgb ∈ ℝT×H×W ×C is pre-processed
by a multi-person 2D pose estimation network

X2Dpose = F2Dpose(Xrgb) (1)

that extracts 2D poses of dimension N × T × P , where N is the number of human subjects present in the frame and
P is the number of keypoints predicted by the network. The Transformer architecture receives as input a 1D sequence 145

of token embeddings, so each of the N sequences of pose matrices X2Dpose ∈ ℝT×P is separately processed by the
AcT network. Nevertheless, at inference time, all detected poses in the video frame can be batch-processed by the AcT
model, simultaneously producing a prediction for allN subjects.

Firstly, the T poses are mapped to a higher dimension Dmodel using a linear projection map Wl0 ∈ ℝP×Dmodel . As
in BERT [16] and Vision Transformers [18, 44, 8, 10], a trainable vector of dimension Dmodel is added to the input T 150

sequence. This class token [CLS] forces the self-attention to aggregate information into a compact high-dimensional
representation that separates the different action classes. Moreover, positional information is provided to the sequence
with a learnable positional embedding matrix Xpos ∈ ℝ(T+1)×Dmodel added to all tokens.

The linearly projected tokens and [CLS] are fed to a standard Transformer encoder FEnc of L layers with a post-

V. Mazzia et al.: Preprint submitted to Elsevier Page 7 of 30
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norm layer normalization [48, 13], obtaining155

XL = FEnc(Xl0 ) = FEnc([x
l0
cls;X2Dpose] + Xpos) (2)

where XL ∈ ℝ(T+1)×Dmodel is the overall representation produced by the Transformer encoder at its last layer. Finally,
only the [CLS] token xcls is fed into a linear classification head MLPℎead that performs the final class prediction

ẑ = MLPℎead(xLcls) (3)

where ẑ is the output logit vector of the model. At training time, the supervision signal comes only from the [CLS]
token, while all remaining T tokens are the only input of the model. It is important to notice how the nature of the
network makes it possible to accept a reduced number of frames as input even if trained with a fixed T . That gives an160

additional degree of freedom at inference time, making AcT more adaptive than other existing models.
The resulting network is a lightweight solution capable of predicting actions for multiple people in a video stream

with high accuracy. The advantage of building on 2D pose estimations enables effective real-time performance with
low latency and energy consumption.

4.2. Transformer Architecture165

The Transformer encoder [48] is made of L layers with alternating H multi-head self-attention and feed-forward
blocks. Dropout [43], Layernorm [5], and residual connections are applied after every block. The overall sequence of
blocks of a Transformer encoder is summarized on the left of Fig.5.

Each feed-forward block is a multi-layer perceptron with two layers and GeLu [22] non-linearity. The first layer
expands the dimension from Dmodel to Dmlp = 4 ⋅ Dmodel and applies the activation function. On the other hand, the170

second layer reduces the dimension back from Dmlp to Dmodel.
Instead, the multi-head QKV self-attention mechanism (MSA) is based on a trainable associative memory with

key-value vector pairs. For the l-th layer of the Transformer encoder and the h-th head, queries (Q), keys (K) and
values (V) are computed as Q = XWQ, K = XWK and V = XWV respectively, where WQ, WK and WV belong
to ℝDmodel×Dℎ , being Dℎ the dimension of the attention head. So, for each self-attention head (SA) and element in175

the input sequence X ∈ ℝT×Dmodel we compute a weighted sum over all values V. The attention weights Aij are
derived from the pairwise similarity between two elements of the sequence and their respective query Qi and key Kj
representations. Therefore, it is possible to compute the attention weights A ∈ ℝT×T for the l-th layer as

A = Softmax
(

QKT
√

Dℎ

)

(4)
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Table 1
Action Transformer parameters for the four version sizes. We fix Dmodel∕H = 64, linearly increasing H, Dmlp, and L in order
to obtain different versions of the AcT network.

Model H Dmodel Dmlp L Parameters
AcT-� 1 64 256 4 227k
AcT-S 2 128 256 5 1,040k
AcT-M 3 192 256 6 2,740k
AcT-L 4 256 512 6 4,902k

and the final weighted sum SA as
SA(X) = AV (5)

We perform this SA operation for all the H heads of the l-th layer. We concatenate the results and linearly project the 180

output tensor to the original dimension model as

MSA(X) = [SA1(X);SA2(X); ...;SAH(X)]WMSA (6)

where WMSA ∈ ℝH⋅Dℎ×Dmodel . All operations are schematized on the right side of Fig. 5. The input tensor X is
firstly projected to T × H ⋅ Dℎ, and then a SA operation is performed to all H splits of the resulting projected tensor.
Finally, all head outputs are concatenated and linearly projected back to Dmodel. So, the attention mechanism takes
place in the time-domain, allowing a global class embedding representation by correlating different time windows. 185

In order to reduce the number of hyperparameters and linearly scale the dimension of AcT, we fixDmodel∕H = 64,
varying H,Dmlp, and L to obtain different versions of the network. A simple grid search using train and validation sets
is performed to determine lower and upper bounds for the four parameters. In particular, in Table 1, we summarize
the four AcT versions with their respective number of parameters. The four models (micro, small, medium, and large)
differ for their increasing number of heads and layers, substantially impacting the number of trainable parameters. 190

5. Experiments

This section describes the main experiments conducted to study the advantages of using a fully self-attentional
model for 2D pose-based HAR. First, the four variants of AcT described in Section 4 are compared to existing state-
of-the-art methodologies and baselines onMPOSE2021. Only for a specific comparison with ST-TR [35] andMS-G3D
[30], we use additional ensemble versions of ourmodel namedAcT-� (x n), n being the number of ensembled instances. 195

Then, we further analyze the behavior of the network in order to get a visual insight of the attention mechanism and
study the performance under a reduction of temporal information. Finally, we study model latency for all the designed
architectures with two different CPU types, proving that AcT can easily be used for real-time applications.
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Table 2
Hyperparameters used in AcT experiments.

Training

Training epochs 350
Batch size 512
Optimizer AdamW
Warmup epochs 40%
Step epochs 80%

Regularization

Weight decay 1e-4
Label smoothing 0.1
Dropout 0.3
Random flip 50%
Random noise � 0.03

Table 3
Benchmark of different models for short-time HAR on MPOSE2021 splits using OpenPose
2D skeletal representations.

MPOSE2021 Split OpenPose 1 OpenPose 2 OpenPose 3

Model Parameters Accuracy [%] Balanced [%] Accuracy [%] Balanced [%] Accuracy [%] Balanced [%]

MLP 1,319k 82.66 ± 0.33 74.56 ± 0.56 84.41 ± 0.60 74.58 ± 1.0 83.48 ± 0.58 76.60 ± 0.77
Conv1D 4,037k 88.18 ± 0.64 81.97 ± 1.4 88.93 ± 0.43 80.49 ± 0.95 88.67 ± 0.38 83.93 ± 0.58

REMNet [1] 4,211k 89.18 ± 0.51 84.20 ± 0.84 88.77 ± 0.35 80.29 ± 0.88 89.80 ± 0.59 86.18 ± 0.40

ActionXPose [2] 509k 87.60 ± 0.98 82.13 ± 1.5 88.42 ± 0.70 81.28 ± 1.4 89.96 ± 1.0 86.65 ± 1.6
MLSTM-FCN [26] 368k 88.62 ± 0.74 83.55 ± 0.88 90.19 ± 0.68 83.84 ± 1.2 89.80 ± 0.94 87.33 ± 0.67

T-TR [35] 3,036k 87.72 ± 0.87 81.99 ± 1.64 88.14 ± 0.53 80.23 ± 1.19 88.69 ± 0.95 85.03 ± 1.60
MS-G3D (J) [30] 2,868k 89.90 ± 0.50 85.29 ± 0.98 90.16 ± 0.64 83.08 ± 1.1 90.39 ± 0.44 87.48 ± 1.2

AcT-� 227k 90.86 ± 0.36 86.86 ± 0.50 91.00 ± 0.24 85.01 ± 0.51 89.98 ± 0.47 87.63 ± 0.54
AcT-S 1,040k 91.21 ± 0.48 87.48 ± 0.76 91.23 ± 0.19 85.66 ± 0.58 90.90 ± 0.87 88.61 ± 0.73
AcT-M 2,740k 91.38 ± 0.32 87.70 ± 0.47 91.08 ± 0.48 85.18 ± 0.80 91.01 ± 0.57 88.63 ± 0.51
AcT-L 4,902k 91.11 ± 0.32 87.27 ± 0.46 91.46 ± 0.42 85.92 ± 0.63 91.05 ± 0.80 89.00 ± 0.74

ST-TR [35] 6,072k 89.20 ± 0.71 83.95 ± 1.11 89.29 ± 0.81 81.53 ± 1.39 90.49 ± 0.53 87.06 ± 0.70
MS-G3D (J+B) [30] 5,735k 91.13 ± 0.33 87.25 ± 0.50 91.28 ± 0.29 85.10 ± 0.50 91.42 ± 0.54 89.66 ± 0.55

AcT-� (x2) 454k 91.76 ± 0.29 88.27 ± 0.37 91.34 ± 0.40 86.88 ± 0.48 91.70 ± 0.57 88.87 ± 0.37
AcT-� (x5) 1,135k 92.43 ± 0.24 89.33 ± 0.31 91.55 ± 0.37 87.80 ± 0.39 92.63 ± 0.55 89.77 ± 0.35
AcT-� (x10) 2,271k 92.54 ± 0.21 89.79 ± 0.34 92.03 ± 0.33 88.02 ± 0.31 93.10 ± 0.53 90.22 ± 0.31

5.1. Experimental Settings

In the following experiments, we employ both the OpenPose and PoseNet versions of the MPOSE2021 dataset.200

Either set of data has T = 30 and P = 52 or 68 features, respectively. In particular, for OpenPose we follow the
same preprocessing of [2] obtaining 13 keypoints with four parameters each (position x, y and velocities vx, vy), while
PoseNet samples contain 17 keypoints with the same information. The training set is composed of 9421 samples and
2867 for testing. The remaining 3141 instances are used as validation to find the most promising hyperparameters with
a grid search analysis. All results, training, and testing code for the AcT model are open source and publicly available2.205

In Table 1 are summarized all the hyperparameters for the four versions of the AcT architecture and in Table 2 all
settings related to the training procedure. The AdamW optimization algorithm [31] is employed for all training with
the same scheduling proposed in [48], but with a step drop of the learning rate � to 1e-4 at a fixed percentage (80%) of
the total number of epochs. We employ the TensorFlow 23 framework to train the proposed network on a PC with 32-
GB RAM, an Intel i7-9700K CPU, and an Nvidia 2080 Super GP-GPU. Following the previously defined benchmark210

strategy, the total training procedure for the four versions takes approximately 32 hours over the three different splits.
2https://github.com/PIC4SeR/AcT
3https://www.tensorflow.org
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Figure 6: Visual representation of the benchmark of different models for short-time HAR on
MPOSE2021 splits using OpenPose 2D skeletal representations. For brevity and clearness,
the average balanced accuracy on the three splits of MPOSE2021 is reported. The lines
connect models that use the same methodology.

Table 4
Benchmark of different models for short-time HAR on MPOSE2021 splits using PoseNet
2D skeletal representations.

MPOSE2021 Split PoseNet 1 PoseNet 2 PoseNet 3

Model Parameters Accuracy [%] Balanced [%] Accuracy [%] Balanced [%] Accuracy [%] Balanced [%]

Conv1D 4,062k 85.83 ± 0.71 79.96 ± 1.1 87.47 ± 0.35 78.51 ± 0.78 87.46 ± 0.67 81.31 ± 0.58
REMNet [1] 4,269k 84.75 ± 0.65 77.23 ± 0.94 86.17 ± 0.68 75.79 ± 1.3 86.31 ± 0.60 79.20 ± 0.79

ActionXPose [2] 509k 75.98 ± 0.72 64.47 ± 1.1 79.94 ± 1.1 67.05 ± 1.4 77.34 ± 1.4 66.86 ± 1.4
MLSTM-FCN [26] 368k 76.17 ± 0.84 64.75 ± 1.1 79.04 ± 0.72 65.62 ± 1.4 77.84 ± 1.3 67.05 ± 1.2

AcT-� 228k 86.66 ± 1,10 81.56 ± 1.60 87.21 ± 0.99 79.21 ± 1.60 87.75 ± 0.53 82.99 ± 0,87
AcT-S 1,042k 87.63 ± 0.52 82.54 ± 0.87 88.48 ± 0.57 81.53 ± 0.68 88.49 ± 0.65 83.63 ± 0.99
AcT-M 2,743k 87.23 ± 0.48 82.10 ± 0.66 88.50 ± 0.51 81.79 ± 0.44 88.70 ± 0.57 83.92 ± 0.96

We exploit publicly available code for what concerns other state-of-the-art models and use the same hyperparameters
and optimizer settings described by the authors in almost all the cases. The only exception is made for learning rate,
epochs number, and batch size to adapt the methodologies to our dataset and obtain better learning curves.

5.2. Action Recognition on MPOSE2021 215

We extensively experiment on MPOSE2021 considering some baselines, common HAR architectures, and our
proposed AcT models. We report the mean and standard deviation of 10 models trained using different validation
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splits to obtain statistically relevant results. The validation splits are constant for all the models and correspond to 10%
of the train set, maintaining the same class distribution. The benchmark is executed for both OpenPose and PoseNet
data and repeated for all the three train/test splits provided by MPOSE2021. The baselines chosen for the benchmark220

are aMultilayer Perceptron (MLP), a fully convolutional model (Conv1D), and REMNet, which is a more sophisticated
convolutional network with attention and residual blocks proposed in [1] for time series feature extraction. In particular,
the MLP is designed as a stack of three fully connected (FC) layers with 512 neurons each, followed by a dropout layer
and a final FC layer with as many output nodes as classes. Instead, the Conv1D model is built concatenating five
1D convolutional layers with 512 filters alternated with batch normalization stages and followed by a global average225

pooling operator, a dropout layer, and an FC output stage as in the MLP. Finally, the configuration used for REMNet
consists of two Residual Reduction Modules (RRM) with a filter number of 512, followed by dropout and the same
FC output layer as in the other baselines.

Regarding state-of-the-art comparisons, four popular models used for multivariate time series classification, and in
particular HAR, are reproduced and tested. Among those, MLSTM-FCN [26] combines convolutions, spacial atten-230

tion, and an LSTM block, and its improved version ActionXPose [2] uses additional preprocessing, leading the model
to exploit more correlations in data and, hence, be more robust against noisy or missing pose detections. On the other
hand, MS-G3D [30] uses spatial-temporal graph convolutions to make the model aware of spatial relations between
skeleton keypoints, while ST-TR [35] joins graph convolutions with Transformer-based self-attention applied to both
space and time. As the last two solutions also propose a model ensemble, these results are further compared to AcT235

ensembles made of 2, 5, and 10 single-shot models. We also report the achieved balanced accuracy for each model
and use it as the primary evaluation metric to account for the uneven distribution of classes.

The results of the experimentation for OpenPose are reported in Table 3 and, in synthesis, in Fig.6. The fully
convolutional baseline strongly outperforms the MLP, while REMNet proves that introducing attention and residual
blocks further increases accuracy. As regards MLSTM-FCN and ActionXPose, it is evident that explicitly modeling240

both spatial and temporal correlations, made possible by the two separate branches, slightly improves the understand-
ing of actions with respect to models like REMNet. MS-G3D, in its joint-only (J) version, brings further accuracy
improvement by exploiting graph convolutions and giving the network information on the spatial relationship between
keypoints. On the other hand, ST-TR shows performance comparable to all other single-shot models, despite, as MS-
G3D, taking advantage of graph information.245

The proposed AcT model demonstrates the potential of pure Transformer-based architectures, as all four versions
outperform other methodologies while also showing smaller standard deviations. Moreover, even the smallest AcT-�
(227k parameters) is able to extract general and robust features from temporal correlations in sequences. Increasing
the number of parameters, a constant improvement in balanced accuracy can be observed for splits 3, while split 1
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Figure 7: Self-attention weights A of MPOSE2021 test samples. (l, t, p) represents the AcT-M l-th layer, the true label
and the prediction respectively. The three rightmost columns show three attention maps of a failed prediction and the
other columns are from correct classifications. It is clear from all examples how the model focuses on certain particular
frames of the series in order to extract a global representation of the scene.

and 2 present oscillations. The difference between splits reflects how much information is conveyed by training sets 250

and how much the model can learn from that. So, it is evident that AcT scales best on split three because it presents
complex correlations that a bigger model learns more easily. On the contrary, it seems AcT-� is able to extract almost
all the information relevant for generalization from split 2, as the accuracy only slightly increases going towards more
complex models.

As explained in Section 2, ST-TR exploits an ensemble of two networks modeling spatial and temporal sequence 255

correlations, respectively. Moreover, MS-G3D leverages further information such as skeleton graph connections and
the position of bones in one of the ensembled networks. Ensembles are very effective in reducing model variance and
enhancing performance by exploiting independent representations learned by each network, so it is unfair to compare
them with single architectures. For this reason, we create three ensemble versions of AcT-� to have an even confront,
with 2, 5, and 10 instances, respectively. To compute ensemble predictions, we average the output logits of the network 260

instances before passing through a softmax function. The results reported at the bottom of Table 3 show that AcT-�
(x2) outperforms MS-G3D (J+B) in all the benchmarks except for balanced accuracy in split 3, despite having less
than one-tenth of its parameters. Finally, the ensembles AcT-� (x5) and AcT-� (x10), made of 5 and 10 instances
respectively, achieve even higher accuracy on all the splits with only around 1 to 2 million parameters. That proves
how the balancing effect of the ensemble enhances model predictions even without feeding the network additional 265

information.
As PoseNet data is mainly dedicated to real-time and Edge AI applications, only the models designed for this

purpose have been considered in the benchmark, excluding MS-G3D, ST-TR, and AcT-L. In general, the results give
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Figure 8: Self-attention of the [CLS] token, computed as the normalized sum of the last layer of the different heads. Scores
give a direct insight into the frames exploited by AcT to produce the classification output. The example clearly shows how
bending positions are more insightful for the network to predict the jumping-in-place action. In the image, the attention
score defines the skeleton alpha channel.

similar insights. The tested models are the same as the previous case, with all the necessary modifications given by
the different input formats. In the MLP case, however, performance seriously degrades as networks strongly tend to270

overfit input data after a small number of epochs, so the results are not included in Table 4. That is caused by the fact
that PoseNet is a lighter methodology developed for Edge AI, and hence noisy and even missing keypoint detections
are more frequent. That results in less informative data and emphasizes the difference between sequences belonging
to different sub-datasets, confusing the model and inducing it to learn very specific but unusable features. The MLP is
too simple and particularly prone to this kind of problem. Naturally, all the models are affected by the same problem,275

and the balanced accuracy on PoseNet is generally lower. The same considerations made for OpenPose apply in this
case, where AcT outperforms all the other architectures and demonstrates its ability to give an accurate and robust
representation of temporal correlations. Also, it is interesting to notice that Conv1D performs better than REMNet,
proving to be less prone to overfitting, and that standard deviations are more significant than in the OpenPose case.

5.3. Model Introspection280

In order to have an insight into the frames of the sequence the AcT model attends to, we extract the self-attention
weights at different stages of the network. In Fig.7, MPOSE2021 test samples are propagated through the AcT-M
model, and attention weights A of the three distinct heads are presented. It can be seen that the model pays attention to
specific frames of the sequence when a specific gesture defines the action. On the other hand, attention is much more
spread across the different frames for more distributed actions such as walking and running. Moreover, it is clear how285

the three heads mostly focus on diverse frames of the sequence. Finally, the rightmost columns show three attention
maps of failed predictions. In these last cases, attention weights are less coherent, and the model cannot extract a valid
global representation of the scene.

Instead, in Fig.8, the last-layer self-attention scores of the [CLS] token are shown together with the RGB and
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Figure 9: AcT-M balanced accuracy with an incremental reduction of temporal information. Due to the intrinsic nature of
the network, it is possible to reduce the number of temporal steps without a retraining or any kind of explicit adaptation.

skeleton representations of the scene. The scores are computed as the normalized sum of the three attention heads and 290

give a direct insight into the frames exploited by AcT to produce the classification output. It can be seen that bent
poses are much more informative for the model to predict the jumping-in-place action.

Moreover, we analyze the behavior of the network under a progressive reduction of temporal information. That
can be easily done without retraining due to the intrinsic nature of AcT. In Fig.9, we present how the test-set balanced
accuracy is affected by frame dropping. The two curves show a reduction starting from the beginning and the end of 295

the temporal sequence, respectively. It is interesting to notice how the performance of AcT degrades with an almost
linear trend. That highlights the robustness of the proposed methodology and demonstrates the possibility of adapting
the model to applications with different temporal constraints.

Finally, we also study the positional embeddings of the AcT-Mmodel by analyzing their cosine similarity, as shown
in Fig.10. Very nearby position embeddings demonstrate a high level of similarity, and distant ones are orthogonal or 300

in the opposite direction. This pattern is constant for all T frames of the sequence, highlighting how actions are not
particularly localized and that relative positions are essential for all the frames.

5.4. Latency Measurements

We test the performance of all the considered models for real-time applications. To do so, we use the TFLite
Benchmark4 tool, which allows running TensorFlow Lite models on different computing systems and collecting statis- 305

tical results on latency and memory usage. In our case, two CPUs are employed to measure model speed both on a PC
and a mobile phone: an Intel i7-9700K for the former and the ARM-based HiSilicon Kirin 970 for the latter. In both
experiments, the benchmark executes 10 warm-up runs followed by 100 consecutive forward passes, using 8 threads.

4https://www.tensorflow.org/lite/performance/measurement
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Figure 10: Cosine similarities of the learned T position embeddings of AcT-M model.

Figure 11: Study of the latency of different tested models on a high-performance Intel CPU and on a mobile phone
equipped with an ARM-based CPU.

The results of both tests are reported in Fig. 11, where only the MLP has been ignored because, despite being the
fastest-running model, its accuracy results are much lower than its competitors. The graph shows the great computa-310

tional efficiency of Transformer-based architectures, whereas convolutional and recurrent networks result in heavier
CPU usage. Indeed, in the Intel i7 case, REMNet achieves almost the same speed as AcT-S, but its accuracy is 2%
lower. Moreover, AcT-� is able to outperform REMNet, running at over four times its speed. MLSTM-FCN and
ActionXPose, being smaller models, achieve lower latencies than the baselines: the former stays between AcT-� and
Act-S, while the latter performs similarly to AcT-S. Those results are remarkable but still outperformed by AcT-� both315

on accuracy and speed.
The difference with the baselines is even more evident on the ARM-based chip, as convolutional architectures seem

to perform poorly on this kind of hardware. Indeed, REMNet and Conv1D run as fast as AcT-M with significantly
lower accuracies, and AcT-� is ten times quicker. Nothing changes for what concernsMLSTM-FCN and ActionXPose,
less accurate and three times slower than AcT-�.320
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6. Conclusion and Future Work

In this paper, we explored the direct application of a purely Transformer-based network to human action recognition.
We introduced the AcT network, which significantly outperforms commonly adopted models for HAR with a simple
and fully self-attentional architecture. In order to limit computational and power requests, building on previous HAR
and pose estimation research, the proposed methodology exploits 2D skeletal representations of short time sequences, 325

providing an accurate and low latency solution for real-time applications. Moreover, we introduced MPOSE2021, a
large-scale open-source dataset for short-time human action recognition, as an attempt to build a formal benchmark for
future research on the topic. Extensive experimentation with our methodology clearly demonstrates the effectiveness
of AcT and poses the basis for meaningful impact on many practical computer vision applications. In particular, the
remarkable efficiency of AcT could be exploited for Edge AI, achieving good performance even on computationally 330

limited devices. Future work may further investigate the AcT architecture with 3D skeletons and long sequence in-
puts. Moreover, relational information between points of the estimated pose are currently scarcely exploited by our
methodology. So, future investigations may attempt to include skeleton graphs as prior knowledge in the positional
embedding of the network without impacting latency.
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