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Abstract: With the rapid development of engineering constructions, especially transportation
facilities, the structural models for the simulation of large-scale structures shall be eventually
enhanced for predicting the complete three-dimensional stress and strain fields in reonforced
concrete-made components. This paper proposes a component-wise approach for the modeling
of reinforced concrete structures in which steel rebars and the concrete part are considered
as two independent one-dimensional entities. Lagrange polynomials are used to express the
cross-section deformations and different component-wise subdomains are joined by simply im-
posing displacement continuity at the chosen Lagrange points along the component boundary.
The Finite Element (FE) method is applied to provide numerical solutions whereas Carrera
Unified Formulation (CUF) is used to generate the related stiffness matrices in a compact
and straightforward way. The classical case of homogenized beam solutions, as well as the
one in which a virtual layer is associated with the steel zones, are implemented too. The
three solutions are compared for a number of reinforced concrete beam problems, from single
to double reinforced beam, including a T-shape cross-section. A final study considering trans-
verse stiffeners (steel stirrups) is investigated. These stiffeners are modeled component-wise
as well. Results clearly show the advantages and superiority of the component-wise FE-CUF
based model to completely capture the three-dimensional strain and stress states, including
shear ones, of reinforced concrete structures.
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1 Introduction

During the last decades, tall towers and long-span bridges have arisen in most of the cities
around the world. This aspect was confirmed and encouraged by the rapid evolution of civil
engineering, relying on always more sophisticated computer-aided techniques and complex
analyses. Among the others, the Finite Element Method (FEM) represented a strong and
notable tool for the growth in the knowledge of structural engineering. Due to the heteroge-
neous nature of the components of a RC structure (concrete and steel), nowadays approaches
rely on mathematical models based on 3D elements, requiring a high effort in terms of com-
putational cost.
In general, buildings and bridges consist of a pattern of beams and columns. Many investiga-
tions focused on modeling the mechanical behavior of Reinforced Concrete (RC) beams and
columns. A comprehensive review of the argument can be reached in the work by Takizawa
[1] and Umemura and Takizawa [2]. Considering that one-dimensional (1D) mathematical
models are widely employed to study the structural behavior of slender bodies, they can
also be applied to RC beam structures. Moreover, the simplicity of 1D theories and their
wide range of applications coupled with their computational efficiency are some of the main
reasons why structural engineers rely on beams rather than two-dimensional (2D) and three-
dimensional (3D) heavier models. The classical and best-known beam theories consist in
the Euler-Bernoulli Beam Model (EBBM) ([3, 4]) and the Timoshenko Beam Model (TBM)
([5, 6]). EBBM does not consider the transverse shear components and rotatory inertia,
whereas the TBM accounts for a uniform shear distribution over the cross-section of the beam,
including the effects of rotatory inertia. According to EBBM, the deformed cross-section re-
mains plane and orthogonal to the beam axis. However, it neglects the cross-sectional shear
deformation phenomena. This drawback makes the classical theories able to describe the me-
chanical behavior of thin and slender structures. Instead, when dealing with short beams or
composite structures, the shear stresses play an important role. Then, this theory could lead
to incorrect results. For this reason, the TBM represents an improved model by accounting
for a uniform shear distribution.
Classical beam models yield reasonably good results when slender, solid section, homogeneous
structures are subjected to bending. Nevertheless, the analysis of deep, thin-walled, open
section beams requires the adoption of more sophisticated mathematical models to achieve
sufficiently reliable results ([7]). For instance, one of the main issues related to TBM is that
the homogeneous conditions of the transverse stress components at the top and bottom sur-
faces of the beam are not fulfilled. To overcome this problem, the third-order displacement
field known as the Vlasov beam theory ([8]) was developed. It represents an improvement of
the EBBM and TBM since the torsional moment is included within the model.
Over the last century, many refined beam theories were proposed to overcome the limitations
of classical beam modeling. An exhaustive and comprehensive review on beam theories can
be found in ([9, 10]). Different approaches were used to improve the beam modeling, which
includes the use of warping functions based on de Saint-Venant’s solution. For instance,
El Fatmi and Zenzri [11] applied the de Saint-Venant’s model for the analysis of compos-
ite beams. El Fatmi [12, 13] included the effects of torsion and shear forces for structures
made of isotropic elastic material. A model able to deal with any arbitrary geometry of the
cross-section of isotropic and anisotropic straight prismatic beams was described by Ladevèze
and Simmonds [14] and by Ladevèze et al. [15]. The extension to free vibration analysis
and composite materials was proposed by Rand [16] and Kim and White [17], respectively.
Another contribution in the field of more refined 1D theories is represented by the variational
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asymptotic solution (VABS). This theory allows for the analysis of a thin-walled cross-section.
For example, Berdichevsky et al. [18] proposed the analysis of anisotropic thin-walled beams
with closed sections, whereas the case of I-shape beams was investigated by Volovoi et al. [19].
Popescu and Hodges dealt with arbitrary cross-section and anisotropic material [20]. Another
important contribution in the analysis of isotropic and prismatic beams with arbitrary cross-
section was proposed by Yu et al.[21] and, starting from TBM, by Yu and Hodges [22, 23].
VABS application was further extended to vibration analysis of composite and thin-walled
beams, see Kim and Wand [24] and Firouz-Abadi [25], respectively. For completeness reasons,
the Generalized Beam Theory (GBT) [26] is also mentioned here. GBT allows for the accurate
description of arbitrary thin-walled cross-section, included the circular shape. Silvestre and
Camotin [27] and Silvestre [28] adopted this approach for the analysis of orthotropic materials
and buckling of circular tubes, respectively. The compression case was also investigated by
Bebiano [29], with non-uniform transverse loading conditions.
As a general guideline, it can be pointed out that by increasing the refinement of the kine-
matic field, the accuracy of the 1D model increases as well. ([30]). On the other hand, the
primary drawbacks of a richer displacement field are the increase of equations to be solved
and the choice of the terms to be added because this choice is generally problem-dependent.
In this work, classical to higher-order 1D models are considered for the structural analysis of
RC structures. The Carrera Unified Formulation (CUF) ([31]) represents the perfect tool to
include any theory within the mathematical model. According to CUF, the 3D displacement
field can be evaluated in a compact way as an arbitrary order expansion in terms of generic
functions. The capability of handling arbitrary expansions makes CUF theories able to deal
with arbitrary geometries, thin-walled shapes, and local phenomena as it was described for
both static ([32, 33]) and free-vibration analyses ([34, 35]. Lagrange-like polynomials were
introduced in the CUF framework ([36, 36]). In this class of models, the discretization of the
displacement field over the cross-section is expressed as interpolation of Lagrange points. In-
vestigations about the static behavior of isotropic [37] and composite structures [38] revealed
the strength of Component-Wise (CW) models in dealing with open cross-sections, localized
boundary conditions, and layerwise descriptions of composite structures. The present work
wants to establish a unified framework to deal with RC beams. Thanks to the CW approach,
steel reinforcements and concrete domain can be analyzed with independent kinematics from
each other, using 1D beam FEs.
This paper is organized as follows: (i) Section 2 reports the present RC model, along with
the adopted modeling approached for the cross-section approximation; (ii) then, the FEM
is explained in Section 3; (iii) the main results are shown in Section 4, including single and
double RC beams, single RC slab and a double RC beam with stirrups. Finally, the main
conclusions are drawn.

2 Modeling approaches for reinforced concrete beams

RC components consist of a concrete structure in which steel bars are placed to increase the
stiffness. Consider a double RC beam, as shown in Fig. 1. A Cartesian reference system is
set so that the y axis is placed along the beam and steel bars length L. As a consequence,
the cross-section of the structure lays on the x, z plane. The cross-section is then made by
a concrete part (in blue) and steel rounds (in brown). Three different types of modelling
approaches are adopted in this work (see Fig 2):

� Classical and homogenized beam approach;
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Figure 1: One-dimensional double RC structure defined over a Cartesian reference system.

� The Virtual Layer approach, here referred to as VL;

� The Component-Wise approach, here referred to as CW.

Figure 2: Beam analysis of RC structures: modeling approaches.
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2.1 Homogenized section

For linear static analysis, the steel rounds can be assumed as rectangular areas As as described

in Fig. 3, so that As =
k π Φ2

4
, where k is the number of bars and Φ is the diameter of each

steel reinforcement (As in the tensile zone and A′s in the compressive one). Considering an
equivalent steel area for the rebars is a popular approach, see [39] for instance. In a homoge-

(a)

Figure 3: Steel rounds described as rectangular areas. A′s in the compression zone, and As in
the tension one.

nized model, a homogenization of the mechanical properties of concrete and steel is conducted
by summing their contributions in the stiffness matrix. In this work, the homogenized model
is employed according to Euler-Bernoulli Beam Theory (EBBM) and Timoshenko Beam The-
ory (TBM), as shown in 4. The 3D displacement field expressed using EBBM and TBM are

φ z 

z
φx =

δuz1

δy 

uz1 uz1

Deformed 

configuration

Undeformed

configuration

φx z 

z
φx

δuz1

δy 

z
y (a) (b)

Figure 4: Schematic representation of RC beam approximated with EBBM (a) and TBM (b).

expressed in Eqs. (1) and (2), respectively.

ux(x, y, z) = ux1(y)

uy(x, y, z) = uy1(y) − ∂ux1(y)

∂y
x − ∂uz1(y)

∂y
z

uz(x, y, z) = uz1(y)

(1)
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ux(x, y, z) = ux1(y)
uy(x, y, z) = uy1(y) + φz (y) x + φx (y) z
uz(x, y, z) = uz1(y)

(2)

where,

φz = γxy −
∂ux1

∂y

φx = γyz −
∂uz1
∂y

γxy =
∂uy
∂x

+
∂ux
∂y

γyz =
∂uy
∂z

+
∂uz
∂y

(3)

Equations (1) and (2) can be considered as a special case of the Taylor polynomial series of
order 1 in the primary unknowns. It reads:

ux(x, y, z) = ux1(y) + ux2 x + ux3 z
uy(x, y, z) = uy1(y) + uy2 x + uy3 z
uz(x, y, z) = uz1(y) + uz2 x + uz3 z

(4)

One can, then, employ Taylor polynomials of higher-order to refine the mathematical model.
For instance, Eq. (5) reports the Taylor polynomial expansion series of order 2.

ux(x, y, z) = ux1(y) + ux2 x+ ux3 z + ux4 x
2 + ux5 xz + ux6 z

2

uy(x, y, z) = uy1(y) + uy2 x+ uy3 z + uy4 x
2 + uy5 xz + uy6 z

2

uz(x, y, z) = uz1(y) + uz2 x+ uz3 z + uz4 x
2 + uz5 xz + uz6 z

2

(5)

Classical theories, as well as Taylor polynomial expansions, are employed for the numerical
results in this paper. Finally, the homogenized cross-section is shown in Fig. 5.

Figure 5: Homogenized assembling scheme for a RC structure.
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2.2 VL models

A beam model can be imposed for each concrete and steel rebars zone. In the case of a
double RC beam structure, five 1D classical models can be employed within the structure,
as shown in Fig. 6. A problem arises when the compatibility condition of the displacement
has to be imposed between the interfaces of each 1D beam. This issue can be mitigated
employing mathematical artifices, such as the Lagrange multipliers, as shown in Fig. 6 and
in Eq. (6), where Π is the contribution added to the energy of the system for the derivation
of the equilibrium, λ is the vector of the Lagrange multipliers and k is the interface between
the ith and the ith + 1 1D beam.

Five 1D classical models

for concrete and steel rebars

} 
1
2

3

4
5

} 

} 

 

Mathematical artifices to impose

displacement compatibilities

Lagrange

multipliers

Figure 6: Displacement compatibility condition for classical 1D models.

Π = λT (ui(xk, yk, zk)− ui+1(xk, yk, zk))
λ = {λx, λy, λz}T

(6)

The usage of complicated mathematical tools can be overcome by using Lagrange polynomials
for expanding the displacement field. They allow the users for the employment of Lagrange
Points (LPs), where displacement variables are located. In this way, by imposing LPs on the
interfaces between concrete and steel rebars, the displacement compatibility is automatically
ensured. An application of this method is reported in Fig. 7. The cross-section is approxi-
mated with a pattern of Lagrange Points (LPs), which are divided into opportune Lagrange
polynomials. The 3D displacement field is, then, a result of an interpolation of the displace-
ments calculated at the LPs. The degree of the interpolation is defined by the number of the
employed LPs, namely a 4 LPs (L4) ensures a bilinear interpolation, a 9 LPs (L9) a quadratic
interpolation and a 16 LPs (L16) a cubic interpolation. The number of DOFs equals the sum
of the displacements for each LP. For an L9, as shown in Fig. 8, the interpolation functions
are:

Lτ =
1

4
(r2 + rrτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Lτ =
1

2
s2
τ (s

2 − ssτ )(1− r2) +
1

2
r2
τ (r

2 − rrτ )(1− s2) τ = 2, 4, 6, 8

Lτ = (1− r2)(1− s2) τ = 9

(7)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the nine LPs
whose locations in the natural coordinate frame are shown in Fig. 8. The relation between the
natural and physical coordinates can be found in many books, see [40] for instance. Briefly,
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Displacement continuity ensured

by Lagrange Points (LPs)

Lagrange

Points (LPs)

Figure 7: Displacement compatibility condition for refined 1D models with Lagrange points.
The displacement compatibility is ensured “a priori” by the use of displacement values at
Lagrange points as unknown variable. The Lagrange points are chosen at the interface of the
various components/layers.

one can write:
x = L1x1 + L2x2 + . . . + L9x9

z = L1z1 + L2z2 + . . . + L9z9
(8)

where x1, x2, . . . , x9 and z1, z2, . . . , z9 are the physical coordinates of the Lagrange nodes. The
displacement field of a L9 is therefore

ux(x, y, z) = L1(x, z)ux1(y) + L2(x, z)ux2(y) + . . . + L9(x, z)ux9(y)
uy(x, y, z) = L1(x, z)uy1(y) + L2(x, z)uy2(y) + . . . + L9(x, z)uy9(y)
uz(x, y, z) = L1(x, z)uz1(y) + L2(x, z)uz2(y) + . . . + L9(x, z)uz9(y)

(9)

In which ux1 , . . ., uz9 are the displacement variables of the problem and they represent the
displacement components of each of the nine LPs (see Fig. 8). This approach allows for

x y

z

ux ,uy ,uz

1 2 3

4

567

8

9

r

s

   

 = 1, 2, ... , 9 

Figure 8: RC beam discreized with Lagrange points.

the imposition of LPs to subdivide the concrete and steel zones, as shown in Fig. 9. This
approach is here recalled as Virtual Layer (VL), for the similar approach used for composite
materials ([41]). Namely, VL considers different sets of variables per each zone (concrete and
steel), and the homogenization is just conducted at the interface level, as shown in Fig. 9,
where LPs are put in the interfaces between concrete and steel.
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Figure 9: Virtual layer assembling scheme for a RC structure.

2.3 Component-Wise approach

As a further step, the capability of Lagrange polynomials to opportunely put LPs within the
cross-section allows for the modeling of steel rebars and concrete in an independent way. Fig-
ure 10 describes the Component-Wise (CW) technique for a RC beam, whose components are
modeled individually and simultaneously using LE cross-sectional elements. Each component
keeps its independent material and geometrical properties. In the case of the RC components
considered in the present study, LPs are employed for each component (steel and concrete),
as depicted in Fig. 10. After considering the RC structure (Fig. 10(a)), the steel and the
concrete components are dealt as independent entities from each other (Fig. 10(b)). Then,
LPs are opportunely chosen in the boundaries of the two components (Fig. 10(c)). Finally,
the components can be joined in correspondence of the aforementioned LPs (Fig. 10(d)). The
resulting approach is declared as CW since multiple LPs were used to evaluate displacement
variables in each structural component. This methodology allows for the tuning of the capa-
bilities of the model by (1) choosing which component requires a more refined model and (2)
setting the order of the structural model to be used. Up to now, this result could only be
obtained using solid FEs. An example of CW approach can be found in [42].

2.4 Homogenized, virtual layer and component-wise approaches in
a unified form

The three described approaches can be written in a unified form, recalling the Carrera Unified
Formulation (CUF). Namely, according to the CUF, the 3D displacement field, as well as its
variation (denoted by δ), of the structure can be written in the following unified way:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M
δu(x, y, z) = Fs(x, z)δus(y), s = 1, 2, ....,M

(10)

where u(x, y, z) is the displacement vector, whose components are expressed in the general
reference system (x, y, z) of Fig. 1, Fτ represent the cross-sectional functions depending on
the x, z coordinate, τ is the sum index and M is the number of terms of the expansion in the
cross-section plane assumed for the displacements. For the homogenized section approach,
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(a) (b)

(c) (d)

Figure 10: Component-wise approach for the cross-section discretization of a single RC beam.
(a) Definition of RC structure; (b) individual definition of steel and concrete; (c) Lagrange
points applied to each component boundary; (d) joining of the different components.
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the classical EBBM and TBM theories are employed by using Taylor polynomials as Fτ , with
no more than constant and linear terms. In case of EBBM, it becomes:

ux(x, y, z) = ux1(y) F1x

uy(x, y, z) = uy1(y) F1y +
∂ux1(y)

∂y
F2y +

∂uz1(y)

∂y
F3y

uz(x, y, z) = uz1(y) F1z

(11)

where F1x = F1y = F1z = 1, F2y = −x and F3y = −z. In the case of TBM, one has:

ux(x, y, z) = ux1(y) F1x

uy(x, y, z) = uy1(y) F1y + φz (y) F2y + φx (y) F3y

uz(x, y, z) = uz1(y) F1z

(12)

where F1x = F1y = F1z = 1, F2y = x and F3y = z. When dealing with the VL approach, the
3D displacement of a L9 can be written, in the context of CUF, as:

ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + . . . + F9(x, z)ux9(y)
uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + . . . + F9(x, z)uy9(y)
uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + . . . + F9(x, z)uz9(y)

(13)

where the F1, F2, . . ., F9 are those shown in Eq. (7), when ezpressed in the physical domain.
Finally, every approach here described can be written in a generic form as shown in Eq. (10).

3 Finite Element Approximation

The Finite Element Method (FEM) is adopted to discretize the structure along the y axis.
Thus, the generalized displacement vector us(y) and its variation is approximated as follows:

uτ (y) = Ni(y)qτi i = 1, 2, . . . , Nn

δus(y) = Nj(y)δqsj j = 1, 2, . . . , Nn
(14)

whereNi(y) stands for the i-th 1D shape function, qτi is the vector of the FE nodal parameters,
i indicates summation and Nn is the number of the FE nodes per element. An exhaustive
review of the shape functions Ni is given by Bathe [43] and by Carrera et al. [40, 44]. In
this work, a cubic interpolation is assumed. Basically, four nodes FEs (B4) are employed to
discretize the 1D structure along the y axis

3.1 Constitutive and geometrical relations

The 3D stress, σ, and strain, ε, components are introduced in the following, with a vectorial
notation:

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(15)

Thus, the geometrical relations take the following form:

ε = bu (16)

where b is the matrix of the differential operators. Interested readers can find the expression
of b in [44, 40].
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A linear elastic isotropic material is considered in this work. Consequently, the constitutive
relation reads as:

σ = Cε, (17)

where and C is the material elastic matrix of homogenoeus and isotropic materials. The
components of C matrix are function of the Young modulus E and Poisson’s ratio ν. If not
otherwise stated, for steel reinforcements Es = 210 MPa and νs = 0.3 are assumed, whereas
for concrete portion the assumed Young modulus is Ec = Es/n, where n is the homogenization
coefficient, taken as 15 and νc = 0.2.

3.2 Fundamental nuclei

The principle of virtual work is recalled for the evaluation of the equilibrium equations. In
the case of static analysis, it states that the virtual variation of the internal work equals the
virtual variation of the external one. The formes can be expressed as follows:

δLint =

∫
Ωk

∫
L

(
δεTσ

)
dΩkdl (18)

where Ωk and L are the integration domains in the cross-section and axis direction, respec-
tively. On the other hand, from the virtual variation of the external work, the external
loadings arise. Considering the constitutive equations, the geometrical relations and applying
CUF and the FEM approximation, the governing equations can be obtained straightforwardly.
A detailed step-by-step explanation of this procedure is described in [31]. In a compact form,
the following system of linear algebraic equations holds:

δqTsj Kijτs qτi = Psj (19)

where Kijτs is a 3 × 3 matrix representing the called fundamental nucleus of the mechanical
stiffness matrix. The nucleus is the basic building block from which the stiffness matrix of the
whole structure can be computed automatically. First, the fundamental nucleus is expanded
on the indexes τ and s. Then, the matrix is assembled at the cross-sectional level depending
on the considered approach. Psj is a 3 × 1 matrix which consists in the fundamental nucleus of
the external load. The explicit expressions of the CUF fundamental nuclei for beam structures
are not reported here. Complete formulation and related mathematical passages can be found
in the recent book by Carrera et al. [40]. In this paper, the main attention is focused on
the use of these hierarchical nuclei for the formulation of various kinematics models with
combined homogenization and VL capabilities for the cross-section domain.

4 Numerical results

In this section, the proposed FE model for the static analysis of RC structures is validate
with analytical results. The following reference problems were considered to serve the scope:

� Single RC beam;

� Double RC beam;

� Single RC slab;

� Double RC beam with stirrups.
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Homogenized models is here denoted as “hTN ” or “hLN ”, where “h” stands for homogeniza-
tion, T stands for Taylor expansions, L stands for Lagrange polynomials, and N denotes the
number of terms of the expansion and the polynomial order.

4.1 Single reinforced concrete beam

The first analysis case regards a RC beam, as shown in Fig. 11. The length L of the beam
equals 6096 mm, whereas the heigth h is equal to 543 mm and the width b measures 495
mm. The homogenization coefficient n is equal to 15, and the Young modulus of the steel

Es is equal to 210 GPa (consequently, the Young Modulus of the concrete equals Ec =
Es
n

).

Figure 12 depicts the cross-section of the beam. Four steel bars (diameter Φ = 25.4 mm) are

Figure 11: Geometry of the single RC beam.

equispaced and placed at a distance d = 495 mm from the top. For the following analysis,
the four steel bars are modeled as a rectangular with area As = 4πΦ2 and placed at the same
distance d than the four steel bars.
The beam is supposed to be simply supported and loaded with a uniform transverse pressure
of 0.05 MPa. A preliminary convergende study was conducted to evaluate the FE model to be
used. The results are shown in Fig. 13, and 20B4 FEs are chosen as converged approzimation.

Table 1 shows the vertical displacement of point (0,
L

2
,0) using the analytical solution and the

proposed low- to higher-order beam model. Moreover, the axial stress component of concrete
and steel are evaluated. The results are demonstrated to be in agreement with the analytical
ones, and they increase as the refinement of the theory increases. The analytical model makes
use of EBBM, considering an homogenized model.
The through-the-thickness distribution of the axial stress in the midspan of the beam is
reported in Fig. 14 for every adopted kinematic order. On the other hand, Fig. 15 shows
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z

Figure 12: Cross-section geometry of the single RC beam (left) and the current cross-section
(rigth).
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Figure 13: Convergence results for the single RC beam.
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Model −uz, mm −σyy,c, MPa σyy,s, MPa DOFs

at point (0,
L

2
,0) at

L

2
at

L

2
Analytical [39] 3.8216 4.1477 40.4084 -

EBBM 3.8403 4.1571 40.3248 183
TBM 3.8997 4.1530 40.3015 305
hT1 3.8997 4.1530 40.3015 549
hT5 3.8650 4.1017 43.3864 1098
hT10 3.8841 4.1682 42.9542 1830
hL4 3.6428 4.0871 44.5910 732
hL9 3.9014 4.1362 43.0510 1647
hL16 3.9373 4.1607 42.9603 2928
VL4 3.7908 4.1763 40.5529 1464
VL9 3.9125 4.1641 41.5236 3843
VL16 3.9207 4.1506 41.5813 7320

Table 1: Values of the transverse displacement of point (0,
L

2
,0) and axial concrete and steel

stress of a simply supported RC beam undergoing a vertical uniform pressure. Analytical
solution compared to the homogenized and VL models of Fig. 12.
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the σyz for every theory, along with a focus on the L16 model. To address the capability
of the present mathematical approach, three aditional schematic representation of the single
RC beam is considered. They are described in Fig. 16 and, in particular, the CW approach
is used for Fig. 16(c). The results for the Fig. 16(a) model are reported in Table 2, and
they show a great accuracy compared to the previous approach. The through-the-thickness

Model −uz, mm −σyy,c, MPa σyy,s, MPa DOFs

at point (0,
L

2
,0) at

L

2
at

L

2
Analytical [39] 3.8216 4.1477 40.4084 -

EBBM 3.8429 4.1601 39.8444 183
TBM 3.9022 4.1559 39.8287 305
hT1 3.9022 4.1559 39.8287 549
hT5 3.8677 4.1049 42.8737 1098
hT10 3.8871 4.1779 42.3277 1830
hL4 3.6829 4.0925 43.8462 1464
hL9 3.8839 4.1385 42.2806 3843
hL16 3.9064 4.1609 42.1581 7320
VL4 3.8971 4.1817 39.9277 2928
VL9 3.9302 4.1676 40.9402 8967
VL16 3.9334 4.1538 40.9922 18300

Table 2: Values of the transverse displacement of point (0,
L

2
,0) and axial concrete and steel

stress of a simply supported RC beam undergoing a vertical uniform pressure. Analytical
solution compared to the homogenized and VL models of Fig. 16(a).

σyy and σyz distributions are reported in Fig. 17. Moreover, the results for the Fig. 16(b)
model are described in Table 3, and they show a great accuracy compared to the previous
approaches. The through-the-thickness σyy and σyz distributions are reported in Figs. 18 and
19. The capability of the present approach to accurately describe the through-the-thickness
stress distribution is ensured, whether if the steel is excluded or included. The CW approach,
described in Fig. 16(c), is adopted to analyze the reinforcement bars with a own independent
kinematic from the concrete zone. L16 elements are used for the cross-section discretization,
with 206058 DOFs. The results are described in Table 4, and the distributions of the through-
the-thickness σyy and σyz are reported in Figs. 20 and 21 Finally, configurations of the CW
approach for the σyz and σyz distributions are reported in Fig. 22.

4.2 Double RC beam

As a further analysis, a double RC beam is considered. The geometry is shown in Fig. 23,
where L = 8555.8 mm, b = 406 mm and h = 762 mm. The cross-sectional geometric properties
are reported in Fig. 24. 2 steel bars are used in the compression zone, whereas 8 bars in the
tension one, with Φ = 25.4 mm. Finally, d = 660 mm and d’ = 64 mm. The structure is
analyzed using the LW approach, so that the bars are simulated with an equivalent portion
with the same area, so that A’s = 1290 mm2 and As = 5161 mm2.
In this context, preliminary convergence analysis is performed and the results are shown in
Fig. 25. Clearly, a 20 B4 configuration can be considered as reliable and, therefore, is used for
the subsequent analysis as axial discretization. Then, the static analysis is performed. The

16
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(a) (b) (c)

Figure 16: Different cross-section approximation for the single RC beam.
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Model −uz, mm −σyy,c, MPa σyy,s, MPa DOFs

at point (0,
L

2
,0) at

L

2
at

L

2
Analytical [39] 3.8216 4.1477 40.4084 -

EBBM 3.8387 4.1588 39.8033 183
TBM 3.8982 4.1545 39.7877 305
hT1 3.8982 4.1545 39.7877 549
hT5 3.8606 4.1034 42.8291 1098
hT10 3.8802 4.1704 42.4546 1830
hL4 3.7054 4.0858 43.3656 2196
hL9 3.8749 4.1388 42.0996 6039
hL16 3.9043 4.1591 41.8769 11712
VL4 3.9062 4.1765 39.8295 4392
VL9 3.9106 4.1673 40.7289 14091
VL16 3.9186 4.1458 40.7551 29280

Table 3: Values of the transverse displacement of point (0,
L

2
,0) and axial concrete and steel

stress of a simply supported RC beam undergoing a vertical uniform pressure. Analytical
solution compared to the homogenized and VL models of Fig. 16(b).
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Figure 19: Through-the-thickness σyy and σyz distribution for the single RC beam at y =
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for the cross-section approximation 16(b).

Model −uz, mm −σyy,c, MPa σyy,s, MPa DOFs

at point (0,
L

2
,0) at

L

2
at

L

2
Analytical [39] 3.8216 4.1477 40.4084 -

EBBM 3.8387 4.1545 39.7998 183
CW 3.9207 4.1577 40.4811 206058

Table 4: Values of the transverse displacement of point (0,
L

2
,0) and axial concrete and steel

stress of a simply supported RC beam undergoing a vertical uniform pressure. Analytical
solution compared to the homogenized and CW models of Fig. 16(c).
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for the cross-section approximation 16(c).
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Figure 22: σyz and σyz distribution for the single RC beam at y =
L

2
for the cross-section

approximation 16(c).

Figure 23: Geometry of the double RC beam.
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beam is simply supported at its ends and subjected to a uniform transverse pressure equals
0.05 MPa. The results are reported in Table 5 in terms of transverse displacement, axial
concrete and steel stress, in both compression and tension zones. A good agreement with
respect of the analytical results is demonstrated, and the values increas as the refinement of
the adopted theory increases. Classical, ESL and LW approaches are employed.

Model −uz × 10−2, mm −σyy,c, MPa σyy,s, MPa -σ
′
yy,s, MPa DOFs

at point (0,
L

2
,0) at

L

2
Analytical [39] 4.6270 3.5437 30.9993 45.0633 -

EBBM 4.6302 3.5421 30.6192 45.5356 183
TBM 4.7127 3.5370 30.5127 45.5668 305
hT1 4.7127 3.5370 30.5127 45.5668 549
hT5 4.6681 3.4523 32.3095 48.4454 1098
hT10 4.6975 3.4687 32.2931 48.5222 1830
hL4 4.3773 3.4162 33.0356 50.1058 732
hL9 4.6817 3.4540 32.3071 48.4719 1647
hL16 4.7188 3.4683 32.2930 48.5165 2928
VL4 4.6789 3.5076 30.7426 45.0040 2196
VL9 4.7597 3.5328 31.2629 45.9101 6039
VL16 4.7654 3.5257 31.2934 45.9332 11712

Table 5: Values of the transverse displacement of point (0,
L

2
,0) of a simply supported RC

beam undergoing a vertical loading of 100 N. Analytical solution compared to the homogenized
and VL models of Fig. 24.

The through-the-thickness distribution of the axial stress is reported in Figs. 26 and 27 for
every adopted theory. Similar distribution as the previous example are evaluated and the
distribution of the σyy is accurately evaluated for the concrete and steel materials. The
distribution of the shear stress component is reported in Fig. 28. Clearly, classical theories
fail on adequately describing the distribution of σyz in correspondence of the conrete-steel
interfaces and over the steel portions, overestimating the stress.
Finally, an application of the ESL approach is adopted hereafter. Three different cross-
sectional theories are applied, and they are reported in Fig. 29. Figure 29(a) involves a EL16
element including the compressed steel area, while imposing LPs on both top and bottom
interfaces of the tensile steel area. The theories shown in Figs. 29(b, c) employ LPs only
on the top and bottom interfaces of the tensile steel area, respectively. The goal of this
investigation is to test if the models described in Fig. 29 can be reliable if only the σyz values
at both top and bottom interfaces (Fig. 29(a)) or just top/bottom (Fig. 29(b/c)) are wanted,
neglecting the accuracy on the compression zone. The results are compared with the L16
theory, here taken as reference.
The results are reported in Table 6. Several conclusions can be drawn:

� The ESL model Fig. 29(a) reports the same σyz values at both top and bottom interfaces
compared to the L16 model, provig that the tensile steel zone can be neglected with
this approach.

� If one is interested only on the top of bottom interface, it is enough to impose LPs
on the correspondent interface. In fact, the model shown in Fig. 29(b)can adequately
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(a) (b) (c)

Figure 29: Schematic rapresentation of three different double RC corss-section approxima-
tions. LP on both top and bottom sides of the steel (a), LP on top side of the steel (b) and
LP on bottom side of the steel (c).
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evaluate the top interface, while failing on describing the bottom one and viceversa for
the model shown in Fig. 29(c)

Model −σyz,TOP , MPa −σyz,BOTTOM , MPa DOFs

VL16 0.1457 0.0540 11712
Fig. 29(a) 0.1446 0.0539 7320
Fig. 29(b) 0.1446 0.0169 5124
Fig. 29(c) 0.0489 0.0532 5214

Table 6: Values of the shear stress component for different double RC cross-section approx-
imation (see Fig. 29). σyz,TOP and σyz,BOTTOM are evaluated in correspondence of the red
crosses.

Finally, the through-the-thickness σyz distribution is reported in Fig. 30. It can be state that
the present model allows the user to choose which side of the interface to analyse, gaining
DOFs and, consequently, computational cost, without any loss of accuracy.

4.3 Single RC slab

The third study case regards a single RC slab, as shown in Fig. 31(a). The adopted approach
is to analyze representative portion of the structus, which results to be a T-shape beam. The
geometry of it is taken by [39] and it is reported in Fig. 31(b). where L = 8130 mm, b = 813
mm, bw = 203 mm, d = 305 mm, D = 339 mm, hf = 102 mm, and As = 1935 mm2.
The employed mathematical model is reported in Fig. 32, and 20 B4 Fes (in blue) are adopted
for the beam axis discretization, along with 6 LE for the cross-section LW approximation.
Table 7 reports the values of the midspan deflection and axial concrete and steel stresses. The
results show a great accuracy between the adopted theories and the analytical results, being
the L16 approach the closest to them, in particular for the axial steel stress.

Model −uz, mm −σyy,c, MPa σyy,s, MPa DOFs

at point (0,
L

2
,0) at

L

2
at

L

2
Analytical [39] 56.4832 16.7751 273.8205 -

EBBM 54.9673 16.2612 268.5704 183
TBM 55.1949 16.2385 268.1975 305
VL16 55.2803 16.2071 274.0356 13908

Table 7: Values of the transverse displacement of point (0,
L

2
,0) and axial concrete and steel

stress of a T-shape single RC beam.

Finally, the through-the-thickness distribution of the axial and shear stresses at y =
L

2
and

y =
3L

4
, respectively.
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Figure 30: Through-the-thickness σyz distribution for the double RC beam at y =
L

2
, adopting

the cross-section approximations shown in Fig. 29.
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Figure 31: Geometry of the single RC slab (a) and particular on the analyzed T beam (b).

Figure 32: Axial and cross-sectional mathematical model of the T-shape RC beam.
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Figure 33: Through-the-thickness σyy and σyz distribution for the T-shape single RC beam
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and y =
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4
, respectively.

4.4 Double RC beam with stirrups

As a final example, the CW capability of the present approach is further proved on a dobule
RC beam with stirrups. The analysis case is taken from the work of Azam et al. [45]. The
geometric, boundary and loading conditions are reported in Fig. 34, where L = 2700 mm,
b = 250 mm, h = 400 mm, s1 = 250 mm, s2 = 66,7 mm, a = 200 mm and c = 300 mm. 6
mm stirrups at a spacing of 250 mm c/c are adopted, along with six bars in the tension zone
and three in the compression one. Every bar has a diameter of 25.2 mm. One B4 FE are
employed for the approximations of the axis between two adjacent stirrups, and one B2 FE
for every stirrup, whereas the CW approach is adopted for the cross-sectional approximation
and to give a own kinematic for concrete, steel stirrups and reinforcement bars. The total
number of DOFS is 129780. The Young modulus of the concrete is set as 14000 Mpa, whereas
200000 MPa for the steel.
Figure 35 reports the numerical simulation of the experimental test reported in the reference
work, where the external load over the transverse midsap displacement is reported. Clearly,
the present model is able to accurately dercibe the linear behavior of the structure, whereas
the nonlinear one is described by the experimental results. The deformed configuration is
reported.
Finally, the axial and shear component of the stress are reported in Fig. 36.
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Figure 36: Through-the-thickness σyy and σyz distribution for the double RC beam with

stirrups at y =
L

2
.

5 Conclusions

The present research work was addressed to enstablish a unified one-dimensional (1D) for-
mulation for the structural analysis of Reinforec Concrete (RC) components. The Finite
Elements (FEs) are employed in the framework of the Carrera Unified Formulation (CUF),
and particular attention is given to various modeling approaches for the cross-sectional dis-
cretization. In particular, the heterogeneous mechanical properties of the steel and concrete
can be homogenized into a uniform cross-section or a Virtual Layer (VL) can be built to
transform the steel rounds into a layer, as happens in composite structures. Finally, the
Component-Wise (CW) approach is adoped to analyze indipendently the steel and concrete
domains, by the usage of Lagrange Elements (LE). Both single and double RC structure are
analyzed, and the modeling approaches turned to be reliable in terms of displacement and
and axial stress, by comparing their solution with analytical ones. However, when dealing
with shear stress component, the adoption of the CW approach is demanded, to accurately
describe the stress situation in the interface between concrete and steel. In addition, a single
RC T-shape beam is investigated and the results are evaluated using the aforementioned mod-
eling approaches. Finally, a RC beam with stirrups is studied and the result are compared
with experimental ones. A great match between the numerical simulation and experimental
tests is achieved, until the plasticity occurs in the concrete/steel interface. Future works will
include a node-dependent kinematic approach to the model (see [46]) to cut down the number
of degrees of freedom for the mathematical model. Moreover, the Willam and Warnke [47]
failure criterion will be considered to model the mechanical behavior of concrete and steel
rebars.
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