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ABSTRACT 

Friction dampers are one of the most common secondary 
structures utilized to alleviate excessive vibration amplitudes in 
turbomachinery applications. In this paper, the dynamic 
behavior of the turbine bladed disks coupled with one of the 
special damper designs, the so-called Mid-Span Dampers 
(MSDs) that is commonly used in steam turbines of Baker 
Hughes Company, is thoroughly studied. Friction between the 
blade and the damper is modeled through a large number of 
contact nodes by using 2D contact elements with a variable 
normal load. In the solution procedure, the coupled 
static/dynamic Harmonic Balance approach is utilized for the 
first time in the assessment of the dissipation capability of 
MSDs, computationally shown by predicting the forced 
response levels of the system at different resonances. Moreover, 
it is demonstrated that the nonlinear dynamic response is non-
unique and it may vary considerably even if all the user-
controlled inputs are kept identical. This phenomenon is a novel 
observation for MSDs and it is explained by an uncertainty 
present in the contact forces. Contact conditions corresponding 
to multiple responses are also investigated to unveil the 
different kinematics of the damper under the same nominal 
conditions. 

Keywords: Nonlinear Vibration, Friction Damping, 
Turbine Blades, Response Variability, Non-unique Contact 
Forces 

1. INTRODUCTION 
High vibration amplitudes in turbine blades may cause 

severe problems such as high cycle fatigue failure [1, 2]. 
Necessary precautions are taken into account during the design 
stage in order to prevent undesired situations. 

One of the most appropriate solution methods to reduce 
dynamic response amplitudes is to avoid resonance regions 
with blade detuning. Despite the high effectiveness of this 
approach, changing the natural frequency values of the 
turbomachinery parts is not too easy due to their high modal 
density and the wide spectrum of the external excitation force. 
Another efficient technique is to utilize the dry friction 
damping technologies by deliberately implementing contact 
pairs into the turbine blades in order to dissipate the excessive 
energy. Some examples of the use of contacts are at the blade-
disk interfaces [3, 4], at the shrouds on the blade tip [5, 6] or 
with ring dampers [7, 8] and friction dampers located under the 

blade platforms [9-12]. Mid-Span Damper (MSD) is also a 
special type of friction dampers, which is extensively used at 
the Last Stage Blades (LSBs) of Baker Hughes’ steam turbines. 
In this paper, we performed an elaborate investigation on the 
dynamic behavior of LSBs coupled with MSDs.  

LSBs have very low stiffness due to their relatively thin 
airfoils with complex 3D shapes. Moreover, LSBs are exposed 
to very large centrifugal and aerodynamic forces during 
operation, which makes them to operate in a very severe 
condition [13]. This requires a special type of friction dampers 
to be utilized and MSDs are particularly designed for LSBs. 
The design of MSDs is historically based on a more traditional 
damping wire configuration in which a wire passes through a 
hole located on the blade [14]. The geometry of MSDs is 
slightly different than those of other dampers, very well-known 
in the literature, such as under-platform dampers [9-12]. MSDs 
are metal devices with different design shapes such as pin or 
sleeve geometry. Figure 1 representatively shows bladed disks 
coupled with the pin geometry of MSDs which are placed 
approximately at 70% of the airfoil span and come into contact 
with LSBs by the centrifugal force acting during rotation. In the 
literature, MSDs are also known as the so-called friction bolt 
damping element [15, 16]. Nonlinear vibration analyses of 
LSBs with integral connections have been conducted in [17, 
18] and it has been shown that friction damping plays an 
important role for LSBs to be able to reduce stress levels and 
vibration amplitudes. 

In this study, a thorough investigation on the nonlinear 
dynamic assessment of LSBs coupled with MSDs is performed. 
MSD is modeled with free-free boundary conditions where it 
exhibits six rigid body modes and several elastic modes. Only 
constraint between the blade and damper is friction contacts 
that are achieved through a large contact patch by utilizing 2D 
contact elements with a variable normal load. Differently from 
the previous studies, there are three main novel parts in this 
study. Firstly, dynamic response amplitudes are obtained 
through the use of the coupled static/dynamic Harmonic 
Balance approach. Unlike the previous studies, the 0th order 
harmonic is included in the solution procedure and this ensures 
the computation of more accurate results [19]. Secondly, the 
dynamic response variability under the same nominal 
conditions is shown as the first time in LSBs coupled with 
MSDs. To explain the variability phenomenon, the damper 
kinematics is deeply studied by investigating the contact status 
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of each element for different responses. It is demonstrated that 
multiple responses are due to an uncertainty related to the non-
uniqueness of friction forces [20]. Finally, the dissipation 
capability of MSDs is shown in different resonance regions 
with a large amount of excitation levels and pre-loads. This can 
be considered as the most intensive investigation on the 
nonlinear vibration analyses of LSBs with MSDs. We show that 
MSDs are highly capable of introducing friction damping in 
LSBs, which helps to decrease large vibration amplitudes. 

The paper is organized as follows. Section 2 introduces the 
theoretical background of bladed disk dynamics with MSDs. 
Section 3 shows an abundant amount of results with dynamic 
response amplitudes, the variability phenomenon and the 
damper kinematics. Section 4 summarizes and concludes the 
paper. 

 
FIGURE 1: MID-SPAN DAMPERS WITH BLADED DISKS. 

© 2020 Baker Hughes Company - All rights reserved 

2. THEORETICAL BACKGROUND OF BLADED DISK 
DYNAMICS WITH MID-SPAN DAMPERS 

2.1 Governing Equation of Motion 
Bladed disks consist of sN  number of theoretically 

identical sectors under the assumption of tuned conditions and 
they are exposed to a travelling wave excitation. Each sector is 
divided evenly over a 2π  angle and the dynamic behavior of 
the entire bladed disk can be inferred with cyclic symmetry 
[21] by studying on only one fundamental sector that is 
composed of one LSB and one MSD. 

The differential equation of the motion for the fundamental 
sector under a periodic excitation in time domain can be written 
as 

 ( ) ( ) ( ) ( ( ), , )n ext t t t t   Mq Cq Kq f fq q  , (1) 

where M , C  and K  are the mass, viscous damping and 
stiffness matrices of the linear system, respectively. ( )tq  

represents the vector of generalized coordinates. ( , , )nl tqf q  and 

( )ex tf  are the vector of internal nonlinear contact force and the 

vector of external periodic force, respectively. Dot denotes 
derivative with respect to time t . 

Periodic excitation force can be decomposed to its 
harmonic components as 

 0

1

ˆ ˆ( ) o
H

e h ih t
ex ex ex

h

t e 



 
   

 
f f f  . (2) 

Here, eo  is the fundamental engine order of the travelling wave 

excitation. 0
êxf and ˆ e h

ex
of  are the real and complex amplitude 

vectors of the th0  and the theo h  harmonics, respectively. H  
is the number of harmonics considered in the expansion. i  
represents the imaginary unit number. eo   , being   is 
the rotation speed of the rotor hub. 

In steady state conditions, periodic excitation force 
determines periodic response and periodic contact forces that 
can be written as 

 0

1

ˆ ˆ( )
H

e h ih t

h

ot e 



 
   

 
q q q  , (3) 

 0

1

ˆ ˆ ( )
H

e h ih t
n n n

h

ot e 



 
   

 
f f f  , (4) 

where ˆ e hoq  and ˆ e h
n

o f  are the complex amplitude vectors of the 

response and contact forces corresponding to the theo h  

harmonics, respectively. 0q̂  and 0
n̂f  represent the real bias 

amplitude vectors of the response and contact forces, 
respectively. Substituting Eqs. (2), (3) and (4) into Eq. (1), the 
following set of nonlinear algebraic equations in frequency 
domain can be obtained 
 

    

0 0 0 0

2

ˆ ˆˆ

ˆ ˆˆ 1, ,e

n ex

o h o h o h o h o h o h
n

e e e
e

e
x

eh ih h H      

  

     

K q f f 0

K M C q f f 0 
. (5) 

In Eq. (5), superscript eo h  referring to system matrices means 
that cyclic symmetry boundary conditions corresponding to the 

theo h  harmonic must be enforced. 

2.2 Cyclic Symmetry and Reduced Order Model 
The complex amplitude vector of the fundamental sector, 

ˆ heoq , can be separated into three groups as 

     ˆ ˆ ˆ ˆ, ,
TT T To h o h o h o he e

r
e

l i
e       

q q q q , where superior T is the 

transpose operator. ˆ h
l

eoq  and ˆ h
r

eoq  are the sector interface 

nodes lying on the left and right side, respectively, while ˆ h
i

eoq  

is the remaining interior nodes. It should be noted that ˆ h
l

eoq  

and ˆ h
r

eoq  are cyclically symmetric in tuned bladed disks and 

cyclic symmetry boundary conditions can be imposed to the 
fundamental sector interfaces as [21] 
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ˆ

o h
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e

e
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e
e

e

h i
r

o h

e 
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
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
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q I 0
q

q q 0 I
q

q I 0

T


 , (6) 

where   is the inter-blade phase angle, i.e. = 2π/ sN . heoT  is 

the transformation matrix and it can be used to obtain cyclically 
symmetric system matrices, which is given in Eq. (5), as 

 
   

 

* *

*

o h o h o h oe e e e e e

e e

h o h o h

o h eo h o h

     

  

 



K T KT M T MT

C T CT
 , (7) 

where superior * is the Hermitian operator. 
The use of cyclic symmetry largely reduces the size of the 

models; however, the number of Degrees of Freedoms (DOFs) 
even for one sector may be unmanageably large and needs to be 
decreased. Component Mode Synthesis (CMS) techniques are 
used to further reduce the model order to a reasonable level. 

One of the very-well known CMS methods, which is 
applied in this study, is the Craig-Bampton (CB) reduction 
approach [22]. According to the CB [22], the system DOFs are 
divided into two groups as the master and slave coordinates and 
a reduced order model (ROM) is constructed from the 
fundamental sector through the use of a transformation matrix. 
The master DOFs are selected as the physical contact nodes, 
force application nodes, response monitoring nodes and modal 
coordinates associated with the specific number of linear modes 
chosen by the user. The details about the theory of the CB are 
not presented here for brevity and more information can be 
found in [22]. It should also be noted that Eq. (5) refers to 
DOFs of the ROM, after obtaining the ROM matrices with the 
CB approach. 

2.3 Contact Elements and Computation of Friction 
Forces 

The friction is modeled by using a node-to-node 2D 
Jenkins element with a variable normal load [23]. The contact 
element is uncoupled in two tangential x and y directions, 
where a representative view of a Jenkins element is shown in 
Figure 2a. The tangential friction force, T, can be calculated as 

 
x,y

x,y

x,y t x,y x,y

sign(w )μN slip

T k (u w ) stick

separation0




 




 . (8) 

In Eq. (8), μ  and tk  are the coefficient of friction and 

tangential contact stiffness value, respectively. u  and w  
represent the relative displacement in tangential direction and 
the slip motion of the slider, respectively. N  is the variable 
normal load and can be computed as 

 nkN max( )v, 0  , (9) 

where nk  and v  are the normal contact stiffness value and the 

relative displacement in normal direction, respectively. In this 
study, the complex amplitudes of contact forces are calculated 
by using the Alternating Frequency/Time (AFT) technique [24]. 
In this approach, first, the Inverse Discrete Fourier Transform 
(IDFT) is applied to the complex amplitude of the response to 
obtain time domain responses, and contact forces are calculated 
by using the Jenkins element. Then, contact forces computed in 
the time domain are transformed back to the frequency domain 
by utilizing Discrete Fourier Transform (DFT) to obtain 
complex amplitudes of the contact forces. The whole process is 
briefly shown in Figure 2b. 

 
FIGURE 2: (a) CONTACT MODEL, (b) THE AFT METHOD 

2.4 Receptance Notation and Partition of the 
Equations 

Computational burden is one of the major problems in 
solving Eq.(5). Even though obtaining the ROM relieves it, 
further reduction may be possible with the use of receptance 
notation and by re-ordering the linear and nonlinear DOFs.  

To avoid taking the inverse of system matrices in each 
iteration step of the solution procedure, Eq. (5) can be re-

written with the receptance notation except for the th0  
harmonic as 

 
 

0 0 0 0ˆ ˆˆ

ˆ ˆˆ =   1, ,

n ex

o h o he e eo h o h o h
n ex

e e h H    

  

  

K q f f 0

q α f α f 0 
. (10) 

Here, the th0  harmonic balance equations are left with the 
stiffness matrix, since receptance values for them are not 
defined due to free-free boundary conditions of the damper. 

heoα  is the receptance matrix corresponding to the theo h  
harmonic and can be calculated without performing any inverse 
operation as 

 
 

 

*

2 2 2
1 2

m
eo h eo hN
r ro h

eo h eo h eo h
r

r r

e

rh i h

 

   

 


  


 

α  . (11) 

In Eq.(11), eo h
r

 , eo h
r   and eo h

r
  represent the mode shape, 

natural frequency and the proportional damping ratio for the 

(a) (b) 
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thr  mode corresponding to the theo h  harmonics, respectively. 

mN  denotes the number of modes considered in the expansion 

and it is equal to the number of DOFs of the ROM. 
The contact forces also only depend on the nonlinear 

DOFs. Thus, Eq. (10) can be partitioned by linear (with 
subscription l ) and nonlinear (with subscription n ) DOFs as 

 

00 0 0
,

0 0 0 0 0
,

,

ˆˆ
ˆ ˆˆ

ˆˆ
ˆˆ

ex lll ln l

nl nn n n ex n

o h o h o h o h o h
exl ll ln ll ln

o h o h o h o h o

e e e e e

e e e e e ho h
n nl nn nl nnn

e

    

    

                  
           

                
         

0 fK K q
0

K K q f f

0 fq α α α α

q α α α αf
,

ˆ

o h
l

o h
ex

e

n
e





    
  

0
f

.

 (12) 

After separating the linear and nonlinear DOFs, the first set of 
equations can be utilized to define linear DOFs as 

 
   

   

10 0 0 0 0
,

, ,

ˆˆ ˆ

ˆ ˆ ˆˆ 1, ,

l ll ex l ln n

o h o h o h o he e e e o h o h
l ll ex l ln ex n n

e e h H



     

 

   

q K f K q

q α f α f f 
,  (13) 

and then the final set of equations to be solved iteratively can 
be written for the nonlinear DOFs as 

 
    
   

1 10 0 0 0 0 0 0 0 0 0
, ,

, ,

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ 1, ,

nn nl ll ln n nl ll ex l n ex n

o h o h o h o h o h o h
n nn n ex n nl e
e e e e e

x
e

l h H

 

     

    

    

K K K K q K K f f f 0

q α f f α f 0 
.

 (14) 

After obtaining the unknown response vector for nonlinear 
DOFs from Eq. (14), the response of linear DOFs can be easily 
obtained with Eq. (13) without performing any iteration. 

2.5 Solution Procedure 
In this study, the coupled set of Eq. (14) is solved 

simultaneously by using Newton-Raphson method with pseudo 
Arc-length Continuation [25]. In this approach, frequency is 
also another unknown in addition to the nonlinear DOFs. The 
main aim is to make the residual of Eq. (14) is zero, which can 
be written as 
  ˆ( , ) 0, ,o h

n
e h H  R q 0  . (15) 

It is worth mentioning that the residual of the th0  harmonic 
should be normalized in order to avoid a convergence problem. 
This is necessary, because the residual of the th0  harmonic is 
defined in terms of force, while the one for the theo h  
harmonics is in terms of displacement. Iterative formula for the 
current solution point is then written as 

 

1

1

ˆ

ˆ

( ) ( )

( )
,

( )( ) ( )

o h
n

j j

e
jj j

j j
jj j

e
j

o h
n j













  
             

  

 

R Y R Y

R Y
Y Y

h Yh

q

Y

q

h Y
 (16) 

where 

 
ˆ

an ( ) ( )d
o h

n
e

j T
j j p j

j

    
  

 
q

Y h Y Z Y Y . (17) 

Here, subscript j , Z  and pY  represent the iteration number, 

the unit vector tangent to the solution curve and predicted 
unknown vector before starting iterations, respectively. pY  can 

be estimated as 
 p k s Y Y Z .  (18) 

In Eq. (18), kY  and s  represent the response vector converged 

at the previous solution point and the scalar arc-length 
parameter value that controls the length of the predictor, 
respectively. 

3. RESULTS AND DISCUSSION 

3.1 Modeling Approach 
Finite element model of the fundamental sector is 

constructed by utilizing one of the commercial software. Linear 
solid elements are used with a total of 2.5 million DOFs 
approximately in the full model. The models are shown in 
Figure 3. 

 
FIGURE 3: (a) DAMPER MODEL, (b) BLADE SECTOR MODEL, 
(c) ASSEMBLED VIEW. © 2020 Baker Hughes Company - All rights 

reserved 

The material of the structures is steel with Young’s 
modulus 210E   GPa, Poisson coefficient 0.3   and 

(a) 

(b) (c) 
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density 7800   kg/m3. The MSD has a bi-conical shape, 

while the slots, where the damper penetrates into the blade, are 
cylindrical. Only some portion of the damper comes into 
contact with the blade pocket located approximately around 
70% of the airfoil span. It should be noted that the friction 
damping generated at the blade root is neglected in this study 
and the blade–disk joint is modeled as perfectly linearly elastic. 

The static pre-load that simulates the centrifugal force and 
keeps the damper in contact with the blade during operation is 
applied on the damper model at 5 different nodes along the 
damper axis, as shown in Figure 4a. With this type of static 
forcing, upper portion of the MSDs touches to the blade. The 
contact surfaces between the blade and damper are precisely 
meshed so that the contact nodes of the blade and damper in the 
slot overlap and couple the system through contact elements. It 
has been shown in [26] that wear is generally localized along a 
line for a cylindrical contact surface. In addition, based on the 
previous experience of Baker Hughes Company, the cylindrical 
surface typically restricts the contact patch to a very limited 
region on a line. Hence, a theoretical line contact with 31 pair 
nodes at each side is assumed in the analyses. Each pair node 
has two tangential directions in the circumferential and axial 
direction of the damper, while the normal direction is defined 
radially from the rotor hub. Contact lines are shown in Figure 
4b with a section view. 

 
FIGURE 4: (a) STATIC PRE-LOAD ON THE DAMPER,             

(b) SECTION VIEW OF THE CONTACT REGION. © 2020 Baker 
Hughes Company - All rights reserved 

Contact parameters play an important role on the dynamic 
characterization of dampers. Several studies have been 
performed in the last years [27-30] to correctly determine the 
contact properties. In this study, a numerical approach [29] is 

utilized to calculate the contact stiffness values. In this 
technique, the main principle of a flat indenter with rounded 
edges that is pressed onto an infinite half-space is used. 
However, since the contact surface is cylindrical in our case, 
the extent of the punch flat area is set equal to zero. It should be 
noted that contact stiffness values are directly dependent to 
centrifugal force in the turbomachinery applications. It 
increases with the rotor rotation speeding up, while it decreases 
with slowing down. Hence, it varies with different pre-load 
values. The overall contact stiffness value obtained for each 
surface is equally divided into number of contact nodes and 
shared by each contact element evenly. Eventually, the normal 

contact stiffness is obtained in the range of 31.24 10 
31.76 10 N/mm for the normal direction, and the tangential 

contact stiffness value is computed within the range of 
31.19 10  31.66 10  N/mm for the circumferential and axial 

directions. The coefficient of friction,  , is assumed 0.5 and 

kept constant throughout the numerical simulations. 
Dynamic excitation force is distributed over the airfoil and 

applied at 19 different nodes as shown in Figure 5. Unit force is 
exerted to each node from the direction of the nozzle axis. 
Linear viscous damping is used and 1% proportional damping 
ratio is assumed. The 0th and the 1st harmonics are used in the 
coupled Harmonic Balance equations. Displacement amplitude 
of the blade tip is presented in the results. 

 
FIGURE 5: EXCITATION FORCE APPLICATION NODES. 

© 2020 Baker Hughes Company - All rights reserved 

3.2 Dynamic Behavior of the Last Stage Blades with 
Mid-Span Dampers 

Nonlinear response analyses are performed with the 6th 
engine order around the first four resonances. The first four 
mode shapes of the sector for the 6th harmonic index are given 
in Figure 6a-d, respectively. The first one is in-plane bending 
mode. The second one is a coupled mode of the damper and 
blade, while the third one is a torsional mode. The fourth one is 
another coupled mode of the torsional and out-of-plane 
bending. 

Contact Lines 

Fc/5 Fc/5 Fc/5 Fc/5 Fc/5 

(a) 

(b) 
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FIGURE 6: THE FIRST FOUR MODE SHAPES OF THE 

FUNDAMENTAL SECTOR FOR THE 6TH HARMONIC INDEX. 
© 2020 Baker Hughes Company - All rights reserved 

Figure 7 shows the steady-state vibration response 
obtained with different pre-loads around the first resonance. X 
and Y axes of the graph are normalized with respect to the first 
linear natural frequency value and the maximum free linear 
response value, respectively. The damper clearly dissipates 
energy and reduces vibration amplitudes. The response 
behavior shifts from the free linear response to the fully stuck 
linear response with the increase of static pre-load value, as 
expected. It should be noted that the natural frequency value of 
the fully stuck linear case is considerably higher than the free 
linear one. The reason for this high stiffening effect is that 
MSD is placed approximately 70% above from the blade root, 
which affects the system dynamics considerably and makes the 
coupled system much stiffer. This property of MSDs is highly 
critical in terms of the damper effect on the blade dynamics due 
to the location of the damper. Moreover, for the nonlinear 
analysis with the lowest pre-load (the orange curve), resonance 
is obtained at a frequency that is smaller than the free linear 
natural frequency value. This shows for relatively low pre-loads 
that the damper mass is more dominant on the resonance value 
than the stiffness provided with the presence of the damper. 

Contact maps give valuable information to visualize the 
partial slip behavior of the damper by monitoring the contact 
conditions. Figure 8a-f shows the contact states at six 
consecutive frequency points marked with black dots around 

1.7 n    for a response curve that is close to fully stuck 

region of the first mode, i.e. blue response curve shown in 
Figure 7. A cross-section view of the upper line of the damper 
is simply visualized by highlighting the contact nodes with 
markers depending on the contact states. The red circle 
represents that the contact node is under fully stuck state, while 
the green stars indicate that there is an alternating stick-slip 
motion without separation during the cycle. Blue line in Figure 
8 also represents the upper damper line that is not in contact 
with the blade. In this particular case, frequency sweep is 
performed from higher to lower values. Figure 8a is the contact 
map obtained at the first frequency just before slip starts, which 
means the damper is fully stuck. Figure 8b shows that partial 
slip initiates at the edge contact nodes for both sides and it is 

propagated through the inner nodes with progressing frequency 
values as can be seen in Figure 8c-f. 

 
FIGURE 7: FREQUENCY RESPONSE CURVES AROUND THE 
1ST RESONANCE WITH DIFFERENT PRE-LOADS. © 2020 Baker 

Hughes Company - All rights reserved 

 
FIGURE 8: CONTACT CONDITIONS AT SIX CONSECUTIVE 

FREQUENCIES. © 2020 Baker Hughes Company - All rights 
reserved 

The responses obtained for different excitation values with 
the same initial pre-load around the 1st resonance are also 
shown in Figure 9. It can be seen that the damper is completely 
stuck for relatively low excitation values. There is just a 
frequency shift for this particular case and no damping 

(b) (a) (c) (d) 

Increasing Pre-load 

Free Stuck 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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supplied. The damper starts to slip and provides energy 
dissipation for the moderate excitation values. The MSDs are 
designed to operate in these regions, since most of the damping 
is achieved around these frequencies. The curves finally 
approach to the free linear case for the higher excitation values, 
in which the dissipation effect of the damper decreases. 

 
FIGURE 9: FREQUENCY RESPONSE CURVES AROUND THE 

1ST RESONANCE WITH DIFFERENT EXCITATIONS. © 2020 
Baker Hughes Company - All rights reserved 

A similar response behavior is obtained around the 2nd 
resonance region, as shown in Figure 10. It is also interesting to 
note that the change of contact stiffness due to different pre-
loads can be clearly seen by comparing the resonance 
frequencies of two response curves close to the fully stuck 
region. The resonance frequency of the fully stuck linear 
response curve is slightly larger than the other one; because the 
centrifugal force is higher in the former, which results in a 
larger contact stiffness value. The same observation is also 
valid in the first resonance region as can be seen in Figure 7. 
All the analyses show that MSDs work very well around the 
first two resonances to reduce the vibration amplitudes. 

 
FIGURE 10: FREQUENCY RESPONSE CURVES AROUND THE 
2ND RESONANCE WITH DIFFERENT PRE-LOADS. © 2020 Baker 

Hughes Company - All rights reserved 

Vibration responses obtained with different pre-loads 
around the 3rd and the 4th resonances are also given in Figure 
11. Similarly, the damper is capable of reducing the vibration 
amplitudes with friction for both resonance regions. It is 
interesting to note that although there is a stiffening effect for 
the 3rd resonance region, this observation is not valid for the 4th 
resonance region. On the contrary, the resonance frequency 
decreases due to the mass effect of the damper. This can be 
explained by the fact that the 4th mode of the sector (see Figure 
6d) is a coupled mode of the torsional and out-of-plane 
bending, where the MSD and blade move together in the 
direction of out-of-plane. Thus, linear natural frequency of the 
free blade is not considerably affected by the presence of the 
damper, which prevents the stiffening effect. 

Contact conditions during the energy dissipation for 
different resonances play an important role on the 
characterization of damper kinematics. In this study, contact 
maps are extracted at the frequency points marked with red dots 
on the purple response curves. These points are intentionally 
selected; because, purple curves are obtained with a relatively 
low pre-load under which the damper provides a large vibration 
reduction. Figure 12a-d illustrate the contact conditions at 

1.2 n   , 2.6 n   , 3.8 n    and 4.1 n    for 

the first four resonance regions, respectively. Figure 12a and 
Figure 12b show that a stick-slip-separation motion takes place 
in some of the contact nodes around the first and the second 
resonances, respectively. Partial slip behavior is observed for 
all resonances at the left side of the damper, while all the nodes 
on the right side makes a stick-slip motion except the first 
resonance. All contact maps show that MSDs are an efficient 
type of dampers to reduce the vibration amplitudes of LSBs 
with a partial slip behavior. 
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FIGURE 11: FREQUENCY RESPONSE CURVES AROUND THE 

3RD AND THE 4TH RESONANCES WITH DIFFERENT PRE-
LOADS. © 2020 Baker Hughes Company - All rights reserved 

 
FIGURE 12: CONTACT CONDITIONS AT FOUR DIFFERENT 

RESONANCES. © 2020 Baker Hughes Company - All rights reserved 

3.3 The Response Variability Phenomenon 
Partial slip in friction dampers may result in multiple 

responses, even if all the inputs controlled by the user are kept 
identical [31]. It has been shown in [20] that the response 
variability can be related to an uncertainty present in the 
friction forces. For a simple illustration, consider a fully stuck 
contact element whose cycle is shown in Figure 13. According 
to the Coulomb’s law, the tangential force is bounded by the 
upper and lower limits; however, its static component can take 
a set of value within a range of T0

max and T0
min. This means that 

an infinite number of tangential contact forces is possible with 
the non-unique T0 for a stuck element. Under the partial slip 
and the coupling between the two damper sides, different static 
balances can be obtained for the same nominal conditions. This 
phenomenon may change the dissipation ability of the damper 
and provide non-unique vibration responses. Experimental 

studies [32, 33] have also shown that the nonlinear response 
may vary considerably under the same nominal system 
parameters, due to non-uniqueness of the contact forces. 

 
FIGURE 13: VARIABILITY OF THE TANGENTIAL FORCE 

FOR A FULLY STUCK CYCLE. © 2020 Baker Hughes Company - 
All rights reserved 

In this study, the variability phenomenon is separately 
investigated in two particular cases with a low and a high pre-
load. This allows identifying the kinematics of the variability 
under different conditions. The first case is examined with a 
relatively low pre-load, in which Figure 14 shows the response 
curves. The three nonlinear response curves are obtained by 
keeping all the system parameters exactly the same. The only 
difference between the analyses is the frequency step used 
during simulations. This provides the static tangential force 
component of fully stuck elements to change in each analysis; 
because, the nonlinear solver uses the converged results at the 
previous frequency point for the next one as an initial guess, 
which in turn, becoming a different one in each analysis. As a 
result, once the frequency points change in the analyses, 
different static balances on the damper and a non-unique 
response is achieved, although the inputs are identical. 

It is clearly seen from Figure 14 that the response may vary 
significantly. For this specific example, the responses are 
obtained by sweeping the frequency from higher to lower. The 
same initial guess value is assigned at the very first frequency (

1.95 n   ) in each analysis, which provided the same 

response value initially. However, the response curves are 
separated from each other after a certain frequency value, since 
different contact states are progressively achieved during the 
analyses. There is almost even ten times difference between the 
green and blue responses around 1.15 n    frequency 

value. 
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FIGURE 14: THE VARIABILITY OF THE FREQUENCY 

RESPONSE FOR A RELATIVELY LOW PRE-LOAD. © 2020 Baker 
Hughes Company - All rights reserved 

In order to investigate the underlying kinematics of the 
variability, the contact states at frequency points marked in 
Figure 14 with black dots ( 1.15 n   ) are studied. Figure 

15a-c show the contact conditions for the green, purple and 
blue curves, respectively. It is seen that contact states at the 
same frequency are quite different in each case, although all the 
system parameters are kept same. The general pattern is similar, 
but non-unique tangential forces induced the contact states to 
propagate in a different way during the analyses. Partial slip is 
observed, as expected, since it is one of the main reasons for 
the variability. It is also interesting to note that the number of 
separating nodes in Figure 15a is higher than the other ones. 
This provides a loss of stiffness and the green curve to be closer 
to the free linear response than the other ones. 

 
FIGURE 15: CONTACT CONDITIONS FOR THE NON-UNIQUE 

RESPONSE WITH A RELATIVELY LOW PRE-LOAD. © 2020 
Baker Hughes Company - All rights reserved 

The variability is also investigated with a higher pre-load. 
In this case, the non-unique nonlinear response is obtained 
close to the fully stuck linear one, as shown in Figure 16. It 

should be noted that the variability in the response is 
considerably smaller than the previous case and the curves 
almost overlap each other. The main reason of this fact can be 
better understood with the contact conditions. Figure 17a-c 
depicts the contact states for three curves around the resonance 
frequency marked with a black dot in Figure 16. The damper 
motion is dominated by an alternating stick-slip behavior on the 
contacts. Hence, the uncertainty in the friction forces highly 
decreases due to the fact that it is originated by the fully stuck 
contacts. An almost unique response is obtained and a small 
difference in contact states causes a slight variation in the 
response curves as can be seen in Figure 16. It can be inferred 
from all of the results that if the damper is in gross slip or fully 
stuck, the nonlinear response approaches an identical pattern 
and becomes unique. On the other hand, once the partial slip is 
high, the response may vary considerably in different analyses 
with the same system parameters. 

 
FIGURE 16: THE VARIABILITY OF THE FREQUENCY 

RESPONSE FOR A RELATIVELY HIGH PRE-LOAD. © 2020 Baker 
Hughes Company - All rights reserved 

 
FIGURE 17: CONTACT CONDITIONS FOR THE NON-UNIQUE 

RESPONSE WITH A RELATIVELY HIGH PRE-LOAD. © 2020 
Baker Hughes Company - All rights reserved 
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4. CONCLUSION 
In this study, the nonlinear vibration analysis of a steam 

turbine bladed disk with a different configuration type of 
dampers, the so-called Mid-Span Damper (MSD), is 
investigated. Although this type of damper has been used by 
Baker Hughes Company for a while, this study presents the first 
intensive nonlinear dynamic characterization of MSDs with the 
coupled approach of static and dynamic equations in the 
solution procedure, to the best of authors’ knowledge. It is 
shown in the numerical analyses that MSD greatly affects the 
dynamic behavior of the bladed disk and reduces the large 
vibration amplitudes effectively. The analyses are performed 
for various pre-loads and excitation levels around different 
resonance regions. It is concluded that MSDs has a high 
capability of dissipating the excessive energy with friction.  

It is also shown for the first time that the nonlinear vibration 
response in the MSD applications may vary considerably under 
the same nominal conditions, due to an uncertainty related to 
the non-uniqueness of friction forces. The damper kinematics in 
different cases is shown by investigating the contact conditions. 
It is inferred that variability decreases when the damper 
approaches a gross slip motion. On the other hand, partial slip 
may allow obtaining a non-unique response and the variability 
can be extremely large. 

REFERENCES 
[1] Cowles, B. A. “High Cycle Fatigue in Aircraft Gas 

Turbines - An Industry Prospective.” Int. J. Fracture Vol. 80 
No. 2-3 (1996): pp. 147–163. 

[2] Srinivasan, A. V. “Flutter and Resonant Vibration 
Characteristics of Engine Blades.” ASME J. Eng. Gas Turbines 
Power Vol. 119 No. 4 (1997): pp. 742–775. 

[3] Petrov, E. P. and Ewins, D. J. “Effects of Damping 
and Varying Contact Area at Blade-Disc Joints in Forced 
Response Analysis of Bladed Disk Assemblies.” ASME J. 
Turbomach. Vol. 128 No. 2 (2006): pp. 403-410. 

[4] Charleux, D., Gibert, C., Thouverez, F. and Dupeux, J. 
“Numerical and Experimental Study of Friction Damping Blade 
Attachments of Rotating Bladed Disks.” Int. J. Rotating Mach. 
Vol. 2006 (2006): Article ID. 71302. 

[5] Petrov, E. P. and Ewins, D. J. “Analytical Formulation 
of Friction Interface Elements for Analysis of Nonlinear Multi-
Harmonic Vibrations of Bladed Discs.” ASME J. Turbomach.  
Vol. 125 No. 2 (2003): pp. 364-371. 

[6] Siewert, C., Panning L., Wallaschek, J. and Richter C. 
“Multiharmonic Forced Response Analysis of a Turbine 
Blading Coupled by Nonlinear Contact Forces.” ASME J. Eng. 
Gas Turbines Power Vol. 132 No. 8 (2010): 082501. 

[7] Laxalde, D., Thouverez, F. and Lombard, J. P. “Forced 
Response Analysis of Integrally Bladed Disks with Friction 
Ring Dampers.” J. Vib. Acoustics Vol. 132 No. 1 (2010): 
011013. 

[8] Tang, W., Epureanu, B.I. “Nonlinear Dynamics Of 
Mistuned Bladed Disks With Ring Dampers.”, Int. J. Nonl. 
Mech. Vol. 97 (2017): pp. 30-40. 

[9] Sanliturk, K.Y., Ewins, D. J. and Stanbridge, A. B.  
“Underplatform Dampers for Turbine Blades: Theoretical 
Modeling, Analysis and Comparison with Experimental Data.” 
ASME J. Eng. Gas Turbines Power Vol. 123 No. 4 (2001): pp. 
919-929. 

[10] Cigeroglu, E., An, N. and Menq, C. H. “Forced 
Response Prediction of Constrained and Unconstrained 
Structures Coupled Through Frictional Contacts.” ASME J. 
Eng. Gas Turbines Power Vol. 131 No. 2 (2009): 022505. 

[11] Zucca, S., Firrone, C. M. and Gola, M. “Modeling 
Underplatform Dampers for Turbine Blades: A Refined 
Approach in the Frequency Domain.” J. Vib. Control Vol. 19 
No. 7 (2012): pp. 1087-1102. 

[12] Pesaresi, L., Armand, J., Schwingshackl, C. W., 
Salles, L. and Wong, C. “An Advanced Underplatform Damper 
Modelling Approach Based on a Microslip Contact Model.” J. 
Sound Vib. Vol. 436 (2018): pp. 327–340. 

[13] Yamashita, Y., Shiohata, K., Kudo, T. and Yoda, H. 
“Vibration Characteristics of a Continuous Cover Blade 
Structure with Friction Contact Surfaces of a Steam Turbine.” 
10th International Conference on Vibrations in Rotating 
Machinery: pp. 323-332. IMechE London, UK, September 11-
13, 2012. 

[14] Drozdowski, R., Völker, L., Häfele, M. and Vogt, D. 
M. “Numerical and Experimental Analysis of Low-Pressure 
Steam Turbine Blades Coupled with Lacing Wire.” 
Proceedings of the Institution of Mechanical Engineers, Part A: 
Journal of Power and Energy Vol. 230 No. 3 (2016): pp. 332-
342. 

[15] Szwedowicz, J., Secall-Wimmel, T. and Dünck-Kerst, 
P. “Damping Performance of Axial Turbine Stages with 
Loosely Assembled Friction Bolts: The Nonlinear Dynamic 
Assessment.” ASME J. Eng. Gas Turbines Power Vol. 130 No. 
3 (2008): 032505. 

[16] Drozdowski, R., Völker, L., Häfele, M. and Vogt, D. 
M. “Experimental and Numerical Investigation of the 
Nonlinear Vibrational Behavior of Steam Turbine Last Stage 
Blades with Friction Bolt Damping Elements.” Proceedings of 
ASME Turbo Expo 2015: Turbine Technical Conference and 
Exposition. Montreal, Canada, June 15-19, 2015. 

[17] Voldřich, J., Lazar J. and Polach P. “Nonlinear 
Vibration Analysis of Steam Turbine Rotating Wheel Equipped 
with the LSB48 Blades.” The 14th IFToMM World Congress: 
pp. 48-55. Taipei, Taiwan, October 25-30, 2015. 

[18] Siewert, C., Sieverding, F., McDonald, W. J., Kumar, 
M. and McCracken, J. R. “Development of a Last Stage Blade 
Row Coupled by Damping Elements: Numerical Assessment of 
Its Vibrational Behavior and Its Experimental Validation 
During Spin Pit Measurements.” Proceedings of ASME Turbo 
Expo 2017: Turbomachinery Technical Conference and 
Exposition. Charlotte, NC, USA, June 26-30, 2017. 

[19] Firrone, C. M., Zucca, S. and Gola, M. M. “The Effect 
of Underplatform Dampers on the Forced Response of Bladed 
Disks by A Coupled Static/Dynamic Harmonic Balance 
Method.” Int. J. Non-linear Mech. Vol. 46 No. 2 (2011): pp. 
363-375. 



Journal of Engineering for Gas Turbines and Power 

 11 GTP-21-1567, Ferhatoglu 

[20] Ferhatoglu, E., Zucca, S. “On the Non-Uniqueness of 
Friction Forces and the Systematic Computation of Dynamic 
Response Boundaries for Turbine Bladed Disks with Contacts.” 
Mech. Syst. Signal Proc. Vol. 160 (2021): 107917. 

[21] Petrov, E. P. “A Method for Use of Cyclic Symmetry 
Properties in Analysis of Nonlinear Multiharmonic Vibrations 
of Bladed Disks.” ASME J. Turbomach. Vol. 126 No. 1 (2004): 
pp. 175-183. 

[22] Craig, R. R. and Bampton, M. C. C. “Coupling of 
Substructures for Dynamic Analyses.” AIAA J. Vol. 6 No. 7 
(1968): pp. 1313-1319. 

[23] Jenkins, G.M. “Analysis of the Stress–Strain 
Relationships In Reactor Grade Graphite.” Br. J. Appl. Phys. 
Vol. 13 No. 1 (1962): pp. 30. 

[24] Cameron, T. M. and Griffin, J. H. “An Alternating 
Frequency/Time Domain Method for Calculating the Steady-
State Response of Nonlinear Dynamic Systems.” J. Appl. 
Mech. Vol. 56 No. 1 (1989): pp. 149-154. 

[25] Chan, T. F. C. and Keller, H. B. “Arc-Length 
Continuation and Multigrid Techniques for Nonlinear Elliptic 
Eigenvalue Problems.” SIAM J. Sci. and Stat. Comput. Vol. 3 
No. 2 (1982): pp. 173–194. 

[26] Zucca, S., Berruti, T. and Cosi, L. “Experimental and 
Numerical Investigations on the Dynamic Response of Turbine 
Blades with Tip Pin Dampers.” J. Physics: Coneference Series 
Vol. 744 No. 1 (2016): 012131. 

[27] Lavella, M., Botto, D. and Gola, M. M. “Fretting Wear 
Characterization by Point Contact of Nickel Superally 
Interfaces.” Wear Vol. 271 No. 9-10 (2011): pp. 1543-1551. 

[28] Schwingshackl, C. W., Petrov, E. P. and Ewins, D. J. 
“Measured and Estimated Friction Interface Parameters In a 
Nonlinear Dynamic Analysis.” Mech. Syst. Signal Proc. Vol. 
28 (2012): pp. 574-584. 

[29] Allara, M. “A Model for the Characterization of 
Friction Contacts In Turbine Blades.” J. Sound Vib. Vol. 320 
No. 3 (2009): pp. 527-544. 

[30] Stingl, B., Ciavarella, M. and Hoffmann, N. 
“Frictional Dissipation in Elastically Dissimilar Oscillating 
Hertzian Contacts.” Int. J. Mech. Sciences Vol. 72 (2013): pp. 
55-62. 

[31] Yang, B. D. and Menq, C. H. “Characterization of 
Contact Kinematics and Application to the Design of Wedge 
Dampers in Turbomachinery Blading: Part 2—Prediction of 
Forced Response and Experimental Verification.” ASME J. 
Eng. Gas Turbines Power Vol. 120 No. 2 (1998): pp. 418-423. 

[32] Botto, D. and Umer, M. “A Novel Test Rig to 
Investigate Under-Platform Damper Dynamics.” Mech. Syst. 
Signal Proc. Vol. 100 (2018): pp. 344-359. 

[33] Gastaldi, C., Gross, J., Scheel M., Berruti, T. M. and 
Krack, M. “Modeling Complex Contact Conditions and Their 
Effect On Blade Dynamics.” ASME J. Eng. Gas Turbines 
Power Vol. 143 No. 1 (2021): 011007


