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Abstract: Driver inattention is the primary cause of vehicle accidents; hence, manufacturers have
introduced systems to support the driver and improve safety; nonetheless, advanced driver assistance
systems (ADAS) must be properly designed not to become a potential source of distraction for the
driver due to the provided feedback. In the present study, an experiment involving auditory and
haptic ADAS has been conducted involving 11 participants, whose attention has been monitored
during their driving experience. An RGB-D camera has been used to acquire the drivers’ face
data. Subsequently, these images have been analyzed using a deep learning-based approach, i.e., a
convolutional neural network (CNN) specifically trained to perform facial expression recognition
(FER). Analyses to assess possible relationships between these results and both ADAS activations
and event occurrences, i.e., accidents, have been carried out. A correlation between attention and
accidents emerged, whilst facial expressions and ADAS activations resulted to be not correlated, thus
no evidence that the designed ADAS are a possible source of distraction has been found. In addition
to the experimental results, the proposed approach has proved to be an effective tool to monitor the
driver through the usage of non-invasive techniques.

Keywords: driver’s attention; DADA; ADAS; RGB-D camera; deep learning; CNN

1. Introduction

The vast majority of vehicle crashes is due to driver’s inattention [1]. Thus, the phe-
nomenon has become a research problem referred to as DADA, driver attention prediction
in driving accident scenario [2,3].

To address this danger and ensure driving safety, several monitoring and control tools
have been introduced within the vehicles over the years. Adaptive cruise control, active
safety brake, parking systems, lane change warning are just a subset of the systems known
as advanced driver assistance systems (ADAS) [4], which aim to support the driver in
the event of a lapse in attention; however, driver’s inattention could also be caused by
excessive automatic support leading to relaxation, as testified by several studies such as
Gaspar et al. [5], and even ADAS may become a source of distraction for the driver [6].

Studies for enhancing safe driving encounter the issue that experimental validity
should not be achieved at the expense of the safety of the humans involved in the experi-
ment [7], so they must be simulation-based. For this reason, the research community has
increasingly focused on virtual reality (VR) simulators: for example, Bozkir et al. [8] aimed
to use VR to train drivers in critical situations, Caruso et al. [9] assessed the impact of
the level of detail (LOD) on the drivers’ behavior, Gaweesh et al. [10] evaluated safety
performance of connected vehicles in mitigating the risk of secondary crashes, and Bakhshi
et al. [11] focused on scenarios which involved truck drivers. However, researchers must be
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careful to make their driver monitoring algorithms robust to the challenges introduced in
naturalistic driving conditions such as lighting changes, occlusions and head pose, which
are not trivial to be reproduced in a simulator [12].

Driver’s attention is often monitored through basic features retrieved by tools the car
is equipped with, such as lane information, inertial sensors and steering operation [13], or
by supervising driver’s behavior in terms of head pose, gaze direction, yawning and eye
state [14]. The quick development of face expression recognition (FER) and the spread of
low-cost 3D cameras observed in the last decade [15] provided the opportunity of intro-
ducing new tools within the vehicle and innovative techniques for driver’s supervision;
for instance, Ceccacci et al. [16] introduced a conceptual model to adapt the behavior of
an emotion-aware vehicle in terms of automation level and support for the driver, by
retrieving the driver’s mood from facial expressions acquired through a low-cost camera.
Nonetheless, considering all and only facial expressions referring to Ekman’s basic emo-
tions [17], i.e., anger, surprise, disgust, enjoyment, fear, and sadness, plus the neutral state,
it is too shortsighted to gather information in all situations. FER implies the possibility of
identifying other emotions and states of mind, such as boredom and excitement [18], or
engagement and frustration [19]. Driver’s attention [20] is no exception; though, only a few
studies about attention detection through FER in the context of driving have been proposed;
for instance, Craye et al. [21] used an RGB-D sensor to develop a module for detecting
driver distraction and recognizing its specific type, and Kowalczuk et al. [22] introduced
a system to monitor the impact of emotions on driver’s attention and, consequently, on
driving safety. Nonetheless, several works focused on uncovering the relationship between
attention and specific action units (AUs), i.e., relaxation or contraction of one or more facial
muscles [23], while others directly dealt with basic emotions. Dubbaka et al. [24] explored
the usage of cameras to monitor attention of students in massive open online courses
(MOOCs). Roohi et al. [25] introduced a deep learning-based methodology to analyze
players’ facial expressions and verify that neural networks, trained with the common six
basic emotions, could link the brief moments of intense concentration required to kill
enemies to the expression of anger. Sharma et al. [26] proposed a system to figure out the
concentration level of students in front of a webcam, identifying concentration with the
neutral facial expression. Furthermore, according to Kowalczuk et al. [22], emotions are
suppressed over time, hence emotion detection can reveal distraction in specific scenarios.

In our work, a driving simulator was used to carry out an experiment during which
users had to drive in a highway VR scenario with several types of ADAS and different
types of feedback. A convolutional neural network (CNN) was employed to detect driver’s
attention, in order to evaluate if the presence of ADAS could be a potential source of
distraction.

The paper is organized as follows. Section 2 describes the experiment, the simulator,
the RGB-D camera, and the methodologies adopted to acquire and analyze the data, with
a focus on the neural network used for FER. Section 3 presents the data obtained after
the experiment and Section 4 provides a discussion of the results; finally, in Section 5,
conclusions are drawn looking at possible future improvements.

2. Materials and Methods

The driving simulator used in this study (Figure 1) is property of the iDrive laboratory
of Polytechnic University of Milan and is composed by the following elements: a steering
wheel with force feedback, gear shifter with automatic transmission, gas and brake pedals,
and adjustable driving seat. Furthermore, three 32” size monitors display the driving
scene; their pixel resolution is 1920 × 1080, 36 degrees of vertical field of view (FoV) and
165 degrees of horizontal FoV. Vibrations and force feedbacks are provided on the steering
wheel to improve the realism of the user experience. Unity game engine has been used
to build the virtual driving environment and to interface between vehicle controls and
multi-modality displays (visual, auditory, and haptic feedback) in simulator system. Data
are recorded 10 times per second.
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Figure 1. View of the iDrive driving simulator.

The Intel RealSense SR300 camera has been used to record drivers’ facial expressions
during their driving experiences. This device is an RGB-D camera, which allows to retrieve
both the color (RGB) and the depth (D) information about a scene. The camera recorded at
30 FPS with a 640 × 480 resolution (Figure 2).
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Figure 2. Intel RealSense SR300.

Eleven participants among men and women between the ages of 22 and 45 joined the
experiment. They held a driver’s license and at least 3 years of driving experience. The
designed experiment consists of three driving experiences (Figure 3), each of them lasting
three minutes: the first one is the training phase, whilst the other two experiences are the
testing phase.
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Figure 3. First driving experience.

During the training phase the driver is asked to drive on a traffic-free highway.
This step is mandatory to become familiar with the highway layout and to improve the
sensitivity in being responsive to the pedals and to the wheel feedback. The aim is to
minimize the learning effect during the testing phase [27] and the emotional response to
other elements not belonging to the experiment [28].

During the second and the third driving experiences, the driver is asked to drive on
the same highway in moderate traffic conditions. The scenarios have been specifically
designed to have a particularly arduous driving experience, through the implementation
of a dynamic and unpredictable behavior of other vehicles, such as sudden lane change
and screeching halt; hence, the drivers drove in a context where the number of hazards
was well above average. In both the scenarios the following ADAS are activated: the
speed warning, above 130 km/h and the forward collision warning [29], with two time-
to-collision thresholds: 4 s (preliminary alert) and 2 s (possible collision). The difference
between the two scenarios is that in one of them the feedback provided by the ADAS is
haptic, whilst in the other the feedback is by auditory. A Latin square design has been used
for the testing phase to minimize sequencing effects.

An FER analysis has been carried out to monitor driver’s mood during the whole
experiment. As mentioned in the previous Section, in order to identify the concentration
through a FER methodology, some works ([22,26]) suggest to identify the neutral expression.
Furthermore, the present work also considered the assumption that emotion detection can
reveal driver’s distraction with particular criticality in the presence of anger, sadness, and
emotional agitation, as stated by Dingus et al. [30] in their work about crash risk factors,
and, on the contrary, the concentration can be associated with the neutral expression.
Furthermore, in regard to the Second Strategic Highway Research Program Naturalistic
Driving Study (SHRP 2 NDS), the crash dataset used in that work is highly significative
for our experiment for a twofold reason. Firstly, all the stated considerations arise from
observations in a naturalistic context, providing a solid foundation for the evaluation of
drivers’ emotions; secondly, the scenario referred to in the SHRP 2 NDS is the highway,
which is the same environment designed for our experiment.

The FER analysis has been performed using a convolutional neural network (CNN).
Each frame is processed singularly. This specific deep learning-based algorithm was chosen
in order to have the flexibility to tune the methodology for a purpose that has not been
explored yet in the literature, namely, monitoring driver’s attention. Facial expressions are
usually classified according to Ekman’s basic emotions; hence, to meet the requirements of
this work, and the considerations mentioned above in the study of Dingus et al. as well, a
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neural network has been specifically trained. In particular, an InceptionV3 model has been
chosen, due to its reduced number of trainable parameters compared to other well-known
architectures, such as VGG or ResNet. First, the network has been trained on two public
databases, BU-3DFE and Bosphorus, to recognize neutral and non-neutral classes. Levels 3
and 4 of BU-3DFE, i.e., the highest in terms of facial expression intensity, have been selected
to train the CNN. This choice has been made considering the standard dataset used for FER
in literature [31–34]. Indeed, relying on the study of Dingus et al. [30], to identify driving
attention it is necessary to look for moments when the driver does not show emotions
(“focused” moments); conversely, when drivers express emotions, distraction is present
(“inattentive”). In order to fix the data imbalance problem of the databases, and at the
same time to reduce the risk of overfitting, data augmentation [35] has been implemented
in the training set to increase the number of neutral images. Data augmentation is a
set of techniques, such as rotations, flips, cuts and clippings, color changes, and noise
injection, that broaden the available dataset without actually gathering new elements.
After trying different configurations, the best results have been obtained using a batch
size of 32, Adam optimizer [36] with a learning rate of 0.0001, and the ‘sparse categorical
crossentropy’ function to calculate the loss. Furthermore, one Dense layer followed by a
dropout layer, used to avoid overfitting, and a subsequent batch normalization layer—used
to make the network more stable—have been added to the starting architecture. Then,
using transfer learning technique, the model has been fine-tuned on our specific related
task, to distinguish focused and inattentive RGB frames captured with the RGB-D camera
during the experiment.

In addition to considering facial expressions, accidents (which we also refer to as
‘event occurrences’) and ADAS activations have been monitored during the experiment
to reveal possible sources of distraction. For the sake of clarity, events refer to what is not
predictable in the driving experiences. In the context of this experiment, event occurrences
are accidents due to sudden movements of other vehicles, for instance sudden lane changes.
An ADAS activation does not necessarily imply an accident (e.g., the driver exceeds the
speed limit or gets too close to another car, but there is no collision, so there is ADAS
activation but no accident) and an accident does not necessarily imply an ADAS activations
(e.g., the driver hits the guardrail sideways without committing other infractions, so there
is not ADAS activation, but only accident). All these data have been gathered instant by
instant, so that for each moment it is possible to determine if the facial expression is focused
or inactive, if an ADAS has been activated or not and whether an event has occurred.

To assess driver’s concentration, analyses to investigate the linear relationship be-
tween facial expressions and ADAS activations, and between facial expressions and event
occurrences have been carried out using the Pearson correlation coefficient.

3. Results

Amongst the eleven participants, two subjects have not been recorded properly by
the RGB-D camera due to a technical issue; therefore, the results of Participants #5 and #8
are not available. For the sake of clarity, a driving experience ID has been used to identify
each driving experience. This code is composed of a number, that identifies each subject
(01—first driver, 02—second driver, . . . , 11—eleventh driver), and a letter, to classify the
driving experience according to the feedback provided: “S” stands for sound (auditory
feedback), “H” stands for haptic (haptic feedback).

The deep learning-based FER has been carried out to analyze the drivers’ concentra-
tion during the driving experiences. The training phase has resulted to be particularly
important for the drivers to familiarize with the simulator and to be engaged with the task
to accomplish; indeed, since also facial expressions acquired during the training phase
have been analyzed to tune the neural network, some users showed to be not completely
focused on driving due to some kind of anxiety expressed through nervous smiles. Only in
a few driving experiences the user did not show any facial expression; the reason is that the
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driving experiences were specifically designed to propose a dynamic environment in order
to trigger ADAS with an average driving style, hence not aggressive nor overly cautious.

The public dataset consists of 165 and 530 images, respectively for the two classes of
neutral and non-neutral facial expressions, divided into training, validation, and testing
subsets. After the first pre-training phase, the neural network model reaches a validation
accuracy of 91%, similarly to the performance of state-of-the-art methods for monitoring a
driver’s emotions [37]. The private dataset consists of 404 frames, equally divided into the
focused and inattentive classes, and the CNN has then been empirically tested on all the
remaining ones, for a total of 61863. The integration of depth frames to combine depth and
RGB information did not improve the overall recognition rate. This issue was caused by the
poor depth resolution since the camera was positioned too far from the drivers’ faces. The
driving simulator required to position the RGB-D camera on the top of the central monitor;
any other position would have obstructed the driver’s view, negatively influencing the
experimental validity. The optimal functioning distance is 0.35–0.40 m, while drivers had
to seat 0.5 m or further depending on their height, causing a too high loss of information to
favorably use depth frames.

In Figure 4, an example of the testing of two frames with predictions and activation
analysis has been reported.
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activation maps of CNN using the Grad-CAM algorithm highlighting the important regions in the
image for the result prediction [38].

The FER analysis has been conducted in order to monitor the driver’s concentration.
In Figure 5 results of the frame classification provided by the CCN are shown. In particular,
green columns represent drivers’ concentration in terms of temporal duration during each
driving experience; instead, red columns represent drivers’ inattention. Since all the frames
have been split in two classes, values referring to the inattentive frames are dual of the
focused ones and have not been reported not to make the visualization too complicated.
Values are expressed as percentages.

Despite videos have been recorded at 30 FPS, in order to make the frame rate coherent
with the frequency of acquisition of data related to vehicle (among which events and ADAS
activations), 10 frames per second have been analyzed, ensuring to select the frames in
the same instants of time of vehicle information, comparing the timestamp for the time
alignment. This way it is possible to compute the correlation between the three parameters
(events, ADAS activations and facial expressions) for the same moments of time. All
the drivers remained focused for most of the time, especially #4 and #6, although only
Participant #10 was not distracted at all during either the haptic feedback experience or the
sound feedback experience. Driver #3, during the driving experience with haptic feedback,
obtained the worst result in terms of concentration (59.1%). In all other experiences, drivers’
concentration percentage was above the 75%.
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As reported in Table 1, number of accidents, mainly fender bender, ranges from a
minimum of 0 and a maximum of 2 for each driving experience. The ADAS activation
values, expressed as a percentage related to the overall time of the session, is reported.
Differences between values are mainly related to drivers’ driving style.

Table 1. Number of accidents and ADAS activation time per driving experience.

Experience ID Number of Accidents ADAS Activation

01S 2 2.58%
01H 2 0.77%
02S 2 9.28%
02H 1 32.15%
03S 2 17.48%
03H 1 7.30%
04S 1 1.59%
04H 0 0%
06S 0 24.68%
06H 1 22.79%
07S 1 10.38%
07H 1 21.49%
09S 0 15.01%
09H 1 15.28%
10S 0 5.20%
10H 0 8.01%
11S 1 28.78%
11H 2 9.05%
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In order to understand the causes of driver’s inattention, hence the sources of dis-
traction, correlation analysis both between event occurrences and facial expressions and
between ADAS activation and facial expressions have been performed.

Event occurrences and facial expressions resulted to be correlated in the vast majority
of the driving experiences analyzed (Figure 6). Events and ADAS resulted to be triggered
depending on users’ driving style. A more aggressive driving style resulted in a greater
number of ADAS activations and accidents, whilst a more cautious guidance reduced this
number; for instance, one of the participants (#10) never run into an accident nor activated
an ADAS during the testing experiences.
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Some driving experiences have not recorded any event occurrence, thus, the cor-
relation was not computable, for example for both the experiences of Subject #10. The
correlation in the other 13 cases was always positive, except from the experience with
haptic feedback regarding Subject #4; in particular, as it can be seen in Table 2, a strong
positive correlation has been found twice, 01H and 09S, a moderate positive correlation
has been noticed for 01S, 02S, 02H, 03H, 06S, 07H, and 11S, and a weak positive correlation
has been found for the remaining 01S, 03S, 07S and 11H.

Table 2. Correlation analysis between event occurrences and facial expressions. The experience ID is
composed by a number that identifies a subject.

Experience ID Event-CNN

01S 0.248
01H 0.942
02S 0.630
02H 0.469
03S 0.114
03H 0.466
04S -
04H −0.008
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Table 2. Cont.

Experience ID Event-CNN

06S 0.698
06H -
07S 0.202
07H 0.695
09S 0.991
09H -
10S -
10H -
11S 0.422
11H 0.148

Conversely, ADAS activations and facial expressions resulted to be not positively
correlated in any case, with the exception of a weak positive correlation for 02H (Figure 7).
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As detailed in Table 3, in the vast majority of the driving experiences, either linear
correlation can be considered not significant, or a weak negative correlation can be observed.
A single moderate linear relationship has been found for 02S, but the correlation is negative.

Table 3. Correlation analysis between ADAS activations and facial expressions.

Experience ID ADAS-CNN

01S −0.020
01H 0.024
02S −0.346
02H 0.124
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Table 3. Cont.

Experience ID ADAS-CNN

03S −0.027
03H 0.012
04S -
04H 0.008
06S −0.04
06H -
07S −0.030
07H −0.179
09S −0.172
09H -
10S -
10H -
11S −0.165
11H −0.110

4. Discussion

Results obtained through the comparison of event occurrences, ADAS activations and
FER lead to the considerations outlined below.

First, there is a correlation between event occurrences and driver’s inattention. Inatten-
tion progressively makes the user unable to realize what is happening in the environment
and to predict, and thus to react to, other drivers’ behavior [37], resulting in a higher
probability of accidents. Nonetheless, there could be a second interpretation observed for
this correlation; a user involved in a driving experience using the simulator is focused on
his task as long as he is in control of the situation. If a perturbing event occurs, especially
an unpredictable one such as an incident, then her/his concentration will reduce until
vehicle controls will respond again.

Instead, there is no correlation between designed ADAS activations and drivers’
inattention, at least for what concerns facial expressions. This outcome suggests that the
feedbacks provided by ADAS for this experiment have been designed properly, both for
sound and haptic, since the driver is not distracted, but rather can receive clues to adjust
the driving behavior and to maintain safe driving conditions. The risk of reducing safety
benefits is the most important issue when designing ADAS [39], hence a related quantitative
analysis is mandatory. In this sense, the adopted strategy for FER has delivered the expected
results and proved to be suitable for this purpose. The usage of a deep learning-based
methodology on RGB-D images for monitoring the drivers has been chosen to guarantee
the experimental validity of data. There are alternative techniques, involving for example
physiological data, which can monitor drivers’ concentration or, eventually, other states of
mind. These solutions can provide accurate evaluations, yet at the same time could result
more invasive due to the need of placing sensors directly on users. In the current work,
images have been the only source of information and have guaranteed a user experience as
transparent as possible. Experimental validity is critical in doing research and assumes
an even more crucial role in a study about concentration, a reason why minimizing the
invasiveness was inevitable.

5. Conclusions

A study to monitor driver’s attention through 3D cameras has been successfully
pursued. The designed experiment aimed to evaluate the presence of ADAS as a possible
source of distraction for the driver using RGB-D images and FER. After a training phase
necessary for the drivers to become familiar with the simulator, two driving experiences
have been presented to the participants according to a Latin square design. In one of the
driving experiences the feedback provided by the ADAS was haptic, whilst in the other one
it was auditory. In both cases the users had to drive in a virtual scenario on a highway with
moderate traffic. Users have been monitored with an Intel RealSense SR300, an RGB-D
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camera, and images have been used to identify concentration and inattention with a deep
learning-based methodology to fulfill FER.

Results highlighted that drivers have been distracted in case of events, mostly ac-
cidents, whilst ADAS did not affect their attention except from a single user in a single
scenario; anyway, the linear correlation between ADAS activation and inattentive facial
expression for this outlier resulted to be also weak.

RGB-D images coupled with a deep learning-based method has proved to be an effec-
tive tool to monitor concentration without being invasive, a particularly useful advantage
to preserve the experimental validity, but also for not being a disturbing element for the
driver in a naturalistic environment, i.e., on a real car.

ADAS resulted not to be correlated with facial expressions. Future works could inves-
tigate whether it is possible to establish the ADAS effectiveness, intended as how much
the ADAS feedback is perceived by the user. To this aim, facial micromovements could be
studied as possible indicators, possibly integrated with physiological data for increasing
the sensitivity, and it should be considered to adapt the deep learning methodology to
assess the temporal correlation between facial expressions in different times. Further-
more, the extension of the driving experience sessions could provide more data regarding
drivers’ concentration; nonetheless, such a study should take place in a naturalistic con-
text or should require an even more complex scenario to preserve experimental validity
not influencing participants’ driving style due to possible recognition of patterns in the
unpredictable behavior of the other vehicles.
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