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Digital Transformation of a Production Line:
Network Design, Online Data Collection and

Energy Monitoring
Nicola Dall’Ora, Student, IEEE, Khaled Alamin, Member, IEEE, Enrico Fraccaroli, Member, IEEE,

Massimo Poncino, Fellow, IEEE, Davide Quaglia, Member, IEEE, Sara Vinco, Member, IEEE

Abstract—The concept of Industry 4.0 originates from the will to introduce the benefits of digital computation into new and existing
industrial plants to save time, materials and energy. The digital transformation requires that all machinery of the production line are
connected together and with the enterprise applications, to capture and analyze data across all manufacturing stages. Then, such
collected data can be exploited to take strategic decision on the production and to monitor it, reacting to unexpected behaviors and
thus reducing downtime and maintenance costs. This article aims at supporting production engineers approaching digital
transformation by exemplifying its key elements on a real life scenario, the Industrial Computer Engineering laboratory of the University
of Verona. First of all, the article discusses network design, as communication is an enabler of the other technologies. Network is
realized through automatic network synthesis from requirements and characteristics of the production line data flow. Then, the paper
discusses data collection and the construction of a digital twin monitoring power consumption of the production line, with the goal of
detecting any discrepancy between real time data and digital twin data. This allows to trigger an early intervention on the line, to
guarantee an effective maintenance.

Index Terms—Industry 4.0, digital twin, IIoT sensors, online data collection, energy monitoring, network design.
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1 INTRODUCTION

IN the last decade, the technological advancements, both
in terms of networking, electronics, and information sys-

tems, deeply affected the manufacturing environment at
all levels: both existing production lines and under con-
struction ones now can consider opportunities that might
have been marginal until now [1]. Every industry must
thus adapt to external changes involving people, economy,
and the environment: it must react quickly to survive in
the extreme globalization context, while at the same time
reducing costs and downtime to the minimum.

To support these changes, production management must
have decision-making processes and self-configuration ca-
pabilities that are as flexible as possible [2]. Information that
comes from the production line about its real-time evolution
can be used to support the decision-making process, so to
effectively react to external changes at every level.

This article proposes some solutions to help the digital
transformation of a production line throughout its life span,
from when it is designed and built to when it is reconfig-
ured to produce different targets. It is important to note
that all solutions proposed in this work can be applied
to existing plants for their digital transformation. This is
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especially relevant considering that, even though more and
more digital technologies are installed in shop floors every
year, low-technology production systems are still existing,
as the estimated life span of machine tools average out
between 15 and 20 years [3]: it is thus desirable to extend
the opportunities offered by smart manufacturing also to
such obsolete production plants. To support production
engineers in this transformation, this paper applies the main
ingredients of digital transformation to a real-life scenario.

Network infrastructure design is the enabling step for all
other technologies, as the communication infrastructure de-
livers data flows between all the different systems that make
up the production line. When the number of systems to be
connected is large and communications are subject to con-
straints, an automatic synthesis methodology is desirable.

In addition to flowing through the company network,
data must also be efficiently stored and processed, to pre-
serve its availability and value. This requires the construc-
tion of a data collection and management architecture, that
involves data gathering from sensors placed on the line,
its storage according to a precise organization (i.e., local or
on cloud-based), and its pre-processing and cleaning, so to
allow an effective analysis to do what-if analysis, research,
development, and process optimization.

Finally, the collected data can be exploited to monitor
the operation of the production line through the construc-
tion of a digital twin, that predicts plant behavior at run
time and detects any unexpected discrepancy to activate
maintenance and monitoring actions, to early identify any
malfunctioning and reduce both downtime and costs [4].
In this perspective, energy consumption is a very crucial
aspect of the production line since it is related to costs and
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waste of natural resources and can give insights on possible
malfunctioning of machinery. Furthermore, energy monitor-
ing allows to find inefficiencies (thus enabling production
optimization) and to support the predictive maintenance
process [5].

The paper outlines the key aspects that impact an In-
dustry 4.0 installation in the three aforementioned direc-
tions. Section 2 presents background. Section 3 describes
the network synthesis problem for a production plant, and
Section 4 focuses on the infrastructure for data collection.
Section 5 addresses the concepts necessary to monitor the
energy consumption of a plant. In Section 6, the concepts are
exemplified on a physical setup in an Industry 4.0 research
facility. Finally, conclusions are given in Section 7.

2 BACKGROUND

2.1 Operations and communications

The industrial shop floor is managed by different types
of applications, which are usually organized as a pyramid
(shown in Figure 1). At the bottom, we have the field
devices like sensors that inform the Programmable Logic
Controller (PLC) about the status of machinery and actua-
tors. Information circulating in such control loops requires
low and constant propagation delay but usually not a huge
bandwidth. The Supervisory Control and Data Acquisition
(SCADA) system consists of applications and graphical user
interfaces for high-level process supervisory management;
it communicates with PLCs in the shop floor to configure
machine-level control strategies. The Manufacturing Execu-
tion System (MES) is used to organize and track the transfor-
mation of raw materials into finished goods, and it provides
information that helps decision-makers to understand how
current conditions on the plant floor can be optimized to
improve production output. Information flowing from the
shop floor to the MES does not require low delay but its
aggregated throughput can be large. Finally, the Enterprise
Resource Planning (ERP) is a suite of applications that
connects production to other high-level business activities
related to suppliers and customers.

ERP

SCADA

MES

PLC

FIELD DEVICES

Information
Technology (IT)

Operational
Technology (OT) O

P
C

/O
P

C
-U

A

days

hours

minutes
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Fig. 1. Automation pyramid with corresponding applications, network
types and typical communication delays.

These applications are hosted by two types of network:
Information Technology (IT) and Operational Technology
(OT) networks. ERP, SCADA, MES are all hosted by the
IT network, while control applications like PLCs are hosted
on the OT network. All these applications must guarantee
efficiency and functional safety of the production line [6].

In Industry 4.0, it is essential to structure and collect
as much information as possible regarding each level of
the automation pyramid. The more information available,
the greater the ability to promptly identify all the anoma-
lies on the production line, e.g., consumption, delays, and
bottlenecks. However, data from the field are difficult to
analyze if their semantics is not clearly defined. There
are two emerging communication standards that propose
to facilitate the organization of transmitted data, namely,
Open Platform Communications (OPC) and OPC UA (OPC-
Unified Architecture) [7]. These two standards focus on the
exchange of data between programmable logic controllers
(PLCs), human-machine interfaces (HMIs) and other indus-
trial applications for the purpose of interoperability and
information sharing between the production line layers. In
the context of Industry 4.0, the concept of digital twin has
been recently introduced to support decision making once
the network infrastructure and a data collection mechanism
have been set up.

2.2 Digital twin

The digital twin concept merges all digital transformation
aspects: data, both sensed from the line equipment and
generated by the company management infrastructure, is
collected and merged to enable what-if analysis and future
predictions, to monitor the evolution of the line at run-
time, and to improve the production process [4], [8], [9].
The manufacturing physical space is thus connected with its
virtual representation: the virtual part records the historical
evolution of the physical plant and predicts its evolution
with the goal of identifying malfunctioning and possible op-
timizations; meanwhile, the physical part provides sensed
data and behaviors, to allow a continuous refinement and
calibration of the virtual part.

The role of the digital twin in the lifetime of a pro-
duction line is crucial at different stages [10], [11]: it acts
as a virtual prototype of the production line, to evaluate its
behavior before its actual implementation; it enables effective
decision making to make informed data-driven decisions and
reduce possible sources of inefficiencies; and it monitors
line operation at run time and predicts its behavior, thus
providing a reference golden model of its evolution for
failure detection [12], [13].

To enable the construction of a digital twin, the pro-
duction line must be equipped with a data collection ar-
chitecture that is accurate, scalable and fulfilling real-time
constraints [14]. This objective can be achieved through a
careful network design.

3 NETWORK DESIGN

Machine-to-machine communications as well as interactions
with applications outside the plant are crucial in smart man-
ufacturing. To support the designer in managing communi-
cation complexity we need to start from the identification of
communication flows and synthesize the physical network
infrastructure by satisfying plant constraints (e.g., required
quality of service) and optimizing a given metric (e.g.,
overall cost). This network design can be effectively adopted
both for new production lines and for exiting production
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lines, thanks to the flexibility offered by the more recent
network technologies, like the Internet of Things (IoT) [15].

3.1 Communication requirements
In the simple example in Figure 2, factory layout is anno-
tated with tasks (denoted by circles) and their data flows
(denoted by arrows). Red circles represent sensing and
actuation tasks which generate measurements and apply
commands, respectively, and control tasks (i.e., PLCs) that
interact with sensing and actuation tasks (red arrows) to
implement control strategies. Tasks’ position is a design
requirement, i.e., in the discussed example, the designer
stated that the mobile robot has local control tasks while
the transport belt is controlled by a software process hosted
in the office. Blue circles denote cooperation tasks that
interact to coordinate the movement of pieces between the
mobile robot and the transport line. Green circles denote
monitoring tasks that collect data from the environment,
robots, machinery and belt for further analysis (e.g., for
predictive maintenance). Green data flows originate from
a large number of sensors in the shop floor and are directed
towards the digital twin process hosted in the office.

From the communication perspective, data exchanges on
different arrow types have different typical requirements.
Red data flows require very low delays (around 1-10 ms)
while the data rate is usually below 400 kb/s. Blue data
flows require moderate delays (around 10-100 ms) with a
data rate around 20 kb/s. Green arrows have no constraints
on delay but exhibit a very high data rate of about 1 Mb/s.
All these Quality of Service requirements should be considered in
the design of the OT network infrastructure.

The design of the OT network should also take into
account the position of tasks in the factory layout. As
depicted in Figure 2, the drilling station, the mobile robot
and the transport belt occupy specific areas in the shop floor
and are separated from the office. In the specific case of the
transport belt, a sensor should be placed at each end of the
equipment, while the actuator should be placed in the left
end. The specification of the spatial displacement of the data flows
end points affects the design of the network. For instance, the
two sensing tasks of the belt cannot be hosted by the same
node, while the sensing task and the actuating task in its
left end can be implemented in the same node if this choice
reduces costs. Furthermore, the size of the rooms and the presence
of walls affect the network topology both for wired and wireless
communications, while we can assume that network properties
are homogeneous inside a room. To group tasks inside areas
and to represent areas of homogeneous network properties
we introduce the concept of zone denoted in Figure 2 by
rounded boxes. Finally, the network design methodology
should consider that the mobile robot is a moving object.
Data exchanges for vehicle control (red arrows) are inside
the zone represented by the robot and thus they can be
handled by a static network while data exchanges for co-
operation and monitoring should be handled by a mobile
(i.e., wireless) communication channel.

3.2 Methodology for Network Synthesis
The physical network infrastructure to be added to the plant
can be considered as a container of data flows necessary to

Office Mobile Robot Drilling Station
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Control
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Fig. 2. Example of production plant information for network design.
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Environment
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Fig. 3. Schematic representation of the network synthesis methodology.

exchange information to improve manufacturing. The prob-
lem of the automatic allocation of data flows into physical
channels and network protocols can be seen as a Network
Synthesis problem as stated in [16]. For this purpose, the
designer should map the communication requirements of
the plant onto the set of entities formalized in the network
synthesis approach, i.e., tasks, data flows, abstract channels,
zones and contiguity relationships [17].

Figure 3 describes the methodology for network syn-
thesis. The functional description of communications inside
the plant consists of the list of entities named tasks and
data flows, annotated with computational and communica-
tion requirements, respectively. The structural description of
communication consists of grouping tasks into zones. Tasks
belonging to the same machine can be grouped into the
same zone. The designer should also provide the Network
Synthesizer with a catalog of network architectures (e.g.,
Ethernet, WiFi, CAN bus), mapped onto the concept of



Auth
or ver

sio
n

IEEE TRANSACTION ON EMERGING TOPICS IN COMPUTING 4

Abstract channel. The environment description consists of
instances of Contiguity relationship which ties two zones and
an abstract channel. It can be used to model the impact
of the environment between the two given zones on the
behavior of the given network architecture (e.g., bandwidth
reduction or cabling cost). Such information can be specified
by performing a site survey of the shop floor.

Starting from this formalization, network synthesis con-
sists of finding a suitable mapping of data flows onto
abstract channels (i.e., network architectures) taken from the
catalog which optimizes a given metric.

3.3 Design tool suite

As described in [16] and sketched in Figure 3, the opti-
mization problem was formulated as a Mixed Integer Lin-
ear Programming (MILP) problem. The MILP formulation
contains a set of variables that represent specific aspects of
the solution and a set of constraints, that allow to check the
valid assignments to the variables. Finally, the formulation
contains an objective function, a mathematical expression
defined using the model’s variables that usually evaluates
to a numerical value. The goal of the underlying solver is to
minimize or maximize the value of the objective function, by
assigning a value to the variables while making sure that the
constraints still hold. An example of variable is:

hd,c,p =

{
1

if the data flow d is placed in
the p-th channel of type c,

0 otherwise.

where hd,c,p is a boolean variable that, if true, associates
a given data flow to a specific instance of a channel. An
example of constraint is one that makes sure that the capac-
ity of a given channel instance is higher than the sum of
the throughput values of the contained data flows. In MILP
formulation, constraints like this, as well as the objective
function, are represented as linear combinations of integer
variables. This formulation is written in Python and relies
on the solver Gurobi [18].

Even if this approach could be sound from a scientific
perspective, it is quite hard to be addressed by the plant
designer. Therefore a graphical front-end tool was created
as shown in Figure 4. The graphical front-end tool is a
stand-alone application written in Python to be executed on
different platforms. It follows a drag-and-drop approach to
specify the input data for the network synthesis, namely,
zones and tasks inside zones. Zones are represented by
rectangles and can be nested, and tasks are represented
by circles. It allows to draw data flows as arrows between
tasks and contiguity relationships as links between zones.
For each task, data flow and contiguity relationship, their
attributes for the synthesis can be specified by using the
second vertical panel on the left. Figure 4 also shows another
window to provide the catalog of the network architec-
tures that will be instantiated to host the data flows as a
result of the network synthesis. The graphical front-end tool
maintains a JSON description of all this information, that
can be saved locally or uploaded to the back-end tool for
network synthesis. The back-end tool is a Python server-side
application which takes the JSON description and generates
the problem description for the Gurobi solver. The back-end

service is exposed as a REST webservice called by the graph-
ical front-end tool. The optimization result is not provided
synchronously in the REST response since optimization may
take time to be performed by the solver; the back-end tool
sends the textual description of the result to the user by
email.

4 DATA COLLECTION AND MANAGEMENT

Achieving communication with the physical plant and col-
lecting real time data opens the door to smart manufactur-
ing, as they allow manufacturers to better measure, under-
stand, and optimize production and to leverage analytics to
make decisions that are rooted in facts [19].

4.1 Data sources
In manufacturing, relevant data comes both from the op-
erations management infrastructure (Figure 1) and from
sensors installed on the production environment: the former
provides information about the operation of the line (e.g.,
the production recipe being executed, status and configu-
ration information about the equipment), while the latter
allows to monitor the physical evolution of the machinery
(e.g., power consumption, vibrations, movements) [14]. The
correlation of these different sources of data provides the
necessary knowledge about the evolution of the production
line. Note that sensor installation (e.g., to monitor power
consumption, vibration, temperature) is possible also on
obsolete production lines with no digital support: sensors
will indeed enable connection to the digital infrastructure,
as will be shown later in this section.

The choice of sensors to be installed on the production
line is crucial, as they are the real heart of a smart factory.
Considering the heterogeneity of the quantities to be mon-
itored, different sensors will be applied to data acquisition.
Transversely to all monitored quantities, the choice must
take into account the technological characteristics of the
sensor in terms of connectivity and of integration with the
enterprise software.

Data is then collected in a variety of ways: environmental
sensors usually adopt IoT infrastructures, whereby equip-
ment and product information can be collected directly from
the operations management infrastructure, e.g., through
dedicated servers and database technologies [14], [20]. Dif-
ferent sources imply different data formats and types, that
must be integrated to allow efficient processing and intelli-
gence extraction. Data formats involving a large number of
bits may lead to reduce the sampling rate if the channel ca-
pacity is low, thus compromising the real-time effectiveness
of data collection.

4.2 Data storage and processing
The large amount of collected data must be securely stored
and effectively integrated. In this sense, cloud computing
allows to effectively store large quantities of data in highly
cost effective, energy efficient and flexible fashion. Addi-
tionally, the distributed nature of cloud storage allows a
highly scalable and shareable storage [21]. This is critical as
the stored data includes both real-time monitored data and
historical data, that must be available to increase awareness
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Fig. 4. Screenshot of the graphical front-end tool for network synthesis.

of the evolution of the equipment over time and to build
prediction and control models [22].

Collected data must then be pre-processed to ease extrac-
tion of relevant knowledge: redundant, misleading, dupli-
cated, and inconsistent information must be removed, and
data reduction techniques must be applied to transform a
massive amount of data into ordered, meaningful and clean
information, useful for subsequent analysis [22], [23]. To
improve the scalability of the proposed data architecture
and meet real time constraints, such data pre-processing
can be moved closer to data collection, e.g., in dedicated
edge nodes that collect data from sensors, clean it, and then
upload it to the centralized cloud infrastructure [24], [25].

After these steps, data is made available to services such
as digital twins, that exploit the real-time line monitoring
and data coming from the management infrastructure to
improve the production process.

5 ENERGY MONITORING

Equipment energy consumption is a large portion of the
total consumption of manufacturing (∼ 75%), and thus
should be tightly monitored and optimized to cope with se-
rious situations such as rising energy price, global resource
depletion and climate warming [26].

To achieve energy monitoring, the equipment of inter-
est is enriched with sensory devices, that measure power
or current demand over time. Energy sensor installation
is straightforward, as energy sensors simply clip around
single-phase or three-phase power cables (thus being ap-
plicable to any kind and any age of production machinery).
Additionally, they provide built-in connectivity to dedicated
gateways that transmit information collected from one or

more sensors over a wireless network [27]. The monitored
data can thus be easily collected and monitored in real time,
and it can be transmitted over the network to make further
analysis about the correlation of such power consumption
w.r.t. equipment operation parameters [28], [29], [30].

The construction of the energy monitoring infrastructure
requires to intervene both on the physical layer and on the
virtual layer:

• identify relevant machine parameters, i.e., machine-
related information that allows to identify the op-
eration mode of the equipment (e.g., moving, cut-
ting, idle) and the relative configuration (e.g., speed,
acceleration) that is considered relevant from the
perspective of power consumption;

• insertion of power consumption sensors to extract
power measurements in real time during machine
operation;

• construction of an IoT collection and transmission in-
frastructure, that allows fast collection and integration
of data, through the adoption of edge technology or
of cloud servers for data storage.

Once that real-time data is available, it is compared
against models of power consumption, either based on histori-
cal data or on models built on equipment specifications. This
comparison allows to detect any misalignment of the real
equipment w.r.t. the expected behavior, as an effect of grad-
ual degradation (e.g., due to wear or corrosion) and sudden
disturbances [31]. In this perspective, energy monitoring
becomes thus an important instrument to achieve predictive
maintenance, i.e., localization of quality losses in machining,
better prioritization of the maintenance schedule, avoid-
ing unscheduled downtime and losses in product quality
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[32]. Additionally, the power consumption models allow
to optimize the production process, by comparing the impact
of different production scheduling settings or of different
parameters of the same production process [31], [33].

A relevant role is thus performed by the chosen energy
models, that identify relations between machine operation
and the corresponding power consumption. Different mod-
els have been proposed in the literature, depending on the
available data and on the goal of the analysis:

• power state machines, a power consumption model
inherited by Electrical System Design that identifies
the device typical operation states and associates
each state with the corresponding power consump-
tion [17], [34]. Power values are either derived from
available documentation or extrapolated from avail-
able data sensed from the plant;

• mathematical and statistical models describing the man-
ufacturing system as a stochastic dynamic system,
characterized by analyzing on sensed data [33], [35];

• learning-based approaches, that exploit actual historical
data obtained from the plant to train neural networks
or learning algorithms, that capture nonlinear rela-
tionships between input parameters of the plant and
output power consumption [36], [37], [38].

The kind of approach to be adopted strictly depends on
the characteristics of the production line and of its data
monitoring infrastructure:

• availability of data sensors: if data is collected at run
time from the plant, it is possible to build data-aware
models, with a higher level of fidelity w.r.t. plant
operation; else, it is necessary to rely on available
documentation, thus including an implicit glitch;

• availability of information related to the equipment: build-
ing a detailed correspondence between device op-
eration and power consumption requires for the
equipment to export relevant information about its
operating parameters, like speed, acceleration, po-
sition, etc., without whom it becomes possible to
reason only in terms of general idleness or activity.
This kind of information is not available for obsolete
production machinery, that does not have a data
transmission capability to export its internal status.
In this case, simpler models will be adopted for
relating power consumption with macro-information
related to equipment status (e.g., ON/OFF);

• desired level of detail w.r.t. the actual plant operation,
i.e., whether it is necessary to have a high accuracy
and adaptability w.r.t. the evolving conditions of the
physical plant.

In this way, the power consumption model becomes a
digital twin of the production plant [4], focusing only on one
major aspect, i.e., energy consumption monitoring (Figure
5). The digital twin is enabled by a sound data-collection
infrastructure, that collects real-time data along with the
historical data to track its energy consumption, and by
the power estimation models, that are used for parameter
optimization, scheduling, and equipment upgrading and
maintenance. The digital twin can also be extended with
error correction, compensation, and feedback control, whose

Data Collection
(Power, State,

Parameters, ...)

Predictive
Manteinance
Optimization

Production Line
Power Consumption
Models (Digital Twin)

Fig. 5. Power monitoring digital twin.

operation is regulated by a maintenance decision support mod-
ule that may try to restore normal operation condition, stop
the production or raise an alert to the user [39]. Different
techniques can be used to correct and compensate the errors,
as they are mainly dependent on the types of machines
and processes, on the severity of the alerts and on the
requirements of the specific application.

6 CASE STUDY: INDUSTRIAL COMPUTER ENGI-
NEERING (ICE) LABORATORY

The reference production line for this work is an Industry 4.0
research facility called Industrial Computer Engineering (ICE)
Laboratory (ICELab). The structure of the ICELab includes a
fully fledged production line (Figure 6) consisting of:

• a vertical warehouse storing materials and products;
• two collaborative Autonomous Mobile Robots

(AMRs), i.e., two Robotnik RB-Kairos AMR [40]
equipped with anthropomorphic manipulators, that
can load and unload materials from the warehouse
to a dedicated point on the conveyor belt, actively
cooperate with an operator, and perform advanced
and cooperative handling tasks;

• a quality check station;
• a collaborative robotic assembly station, compris-

ing two lightweight collaborative robots: an ABB
Yumi [41], and a Kuka Lightweight Robot (LR) [42];

• two 3D printers: a stereo-lithography mono material
3D printer and a multi-material polijet 3D printer;

• a milling machine;
• an electronic automatic tester;
• a complex transportation system composed of a main

conveyor belt that spans across the entire laboratory
in a ring configuration, and an unloading conveyor
bay for each machine and for the AMRs.

This laboratory allows to represent the most modern
automation technologies adopted in production processes.
This paper focuses on a subset of the equipment, specifically,
the parts labeled in Figure 7.

The considered production process is divided into four
phases. First, a set of LEGO-like blocks is transported from
the vertical warehouse to the assembly station by means of
the mobile robots and the transport belt. Second, the pieces
are assembled by the two cooperating robotic arms, i.e.,
Kuka and ABB. Third, the assembled product is transported
to the quality check station by means of the same transporta-
tion belt used before. At the quality check station, a robotic
arm rotates the assembled piece and exposes all critical parts
to the cameras: if the desired quality standards are achieved,
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Warehouse

Mobile Robots Quality Check Assembly Station Transport Line

Fig. 6. ICELab production line stations.
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Fig. 7. ICELab production line schematical view.

the piece is put back on the belt and transported to the
vertical warehouse for storage.

All the active entities of the production line are instru-
mented to provide the IT office with real-time data by
using OPC UA protocol with end-to-end encryption [43].
Each station implements an OPC UA server that exposes
relevant parameters of the equipment. This OPC UA server
is implemented inside the PLC of the equipment.

6.1 Network design

This section provides a small but exhaustive example
of network synthesis for the plant described in Figure 6.
Figure 8 shows the problem described by using the pro-
posed graphical tool in which network entities can be super-
imposed on a picture of the real environment. Tasks are
denoted by circles whose radius is proportional to their
computational complexity. Zones are denoted by rectangles

Fig. 8. Screenshot of the tool for the network synthesis of a portion of
the ICELab.

<ZONE_LABEL>
0 Environment
1 MobileRobot1
2 OFFICE
3 Transport Line
4 Assembly Station
5 LEFT_END
6 RIGHT_END
7 Warehouse

</ZONE_LABEL>
<ZONE>

1 0
2 0
3 0
4 0
5 3
6 3
7 0

</ZONE>
<CONTIGUITY>

7 2 0 1 10
7 2 1 0.5 1
7 2 2 1 10
1 2 0 1 10
1 2 2 1 10
1 2 1 0.5 1
3 2 0 1 10
3 2 2 1 10
3 2 1 0.5 1
4 2 0 1 10
4 2 2 1 10
4 2 1 0.5 1
5 2 0 1 10
5 2 2 1 10
5 2 1 0.5 1
6 2 0 1 10
6 2 2 1 10
6 2 1 0.5 1

</CONTIGUITY>
<TASK>

SENSOR_MR 1 1 0
ACT_MR 1 1 0
LEFT_SENSOR 1 5 0
CTRL_BELT 5 2 0
RIGHT_SENSOR 1 6 0
TS_MR 1 1 1
TS_S6 1 5 0
DIGITAL_TWIN 10 2 0
RFID_Bi 1 4 0
ACT_Bi 1 4 0
VS_S6 1 5 0
OBJ-PALLET-ASSOC 1 7 0
VS_MR 1 1 1
CTRL_MR 5 1 0
TS_Bi 1 4 0
VS_Bi 1 4 0
ACT_S6 1 5 0
VS_STORE 1 7 0
TS_STORE 1 7 0

</TASK>
<DATAFLOW>

DF32 VS_MR DIGITAL_TWIN 50 50 100
DF33 TS_MR DIGITAL_TWIN 50 50 100
DF34 TS_Bi DIGITAL_TWIN 50 50 100
DF35 VS_Bi DIGITAL_TWIN 50 50 100
DF36 TS_STORE DIGITAL_TWIN 50 50 100
DF37 VS_STORE DIGITAL_TWIN 50 50 100
DF40 RIGHT_SENSOR CTRL_BELT 1 2 100
DF41 LEFT_SENSOR CTRL_BELT 1 2 100
DF42 CTRL_BELT ACT_S6 1 2 100
DF43 OBJ-PALLET-ASSOC DIGITAL_TWIN 10 10 100
DF44 RFID_Bi DIGITAL_TWIN 10 10 100
DF45 DIGITAL_TWIN ACT_Bi 10 10 100
DF78 SENSOR_MR CTRL_MR 1 2 100
DF79 CTRL_MR ACT_MR 1 2 100
DF16 VS_S6 DIGITAL_TWIN 50 50 100
DF17 TS_S6 DIGITAL_TWIN 50 50 100

</DATAFLOW>

Listing 1. Network synthesis problem description for the ICELab.
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to group tasks belonging to the same item, i.e., warehouse,
office, mobile robot and belt (as well as parts of it). As
shown in Figure 3, the front-end tool also allows to specify
the catalog of network architectures as depicted in Figure 4
which in this examples are Ethernet, CAN and WiFi. As
reported in Figure 4, each network architecture has also a
cost associated.

Listing 1 shows the input file generated by the graphical
tool for the solver. It consists of several sections for the
different plant aspects reported in Figure 3. Highlighted
text denotes examples of pieces of information which are
described in the following. The first three sections contain
the environment description of Figure 3. The first section
lists the zones into which the plant has been decom-
posed. The second section describes their hierarchy. For
instance, LEFT_END and RIGHT_END are two sub-zones of
Transport Line. The section on contiguity relationships
describes how the various channel types are affected by
crossing zone boundaries. For instance, the capacity of Eth-
ernet and CAN is not affected (attenuation= 1) while WiFi’s
capacity is halved. Regarding the cabling cost, Ethernet and
CAN are more expensive than WiFi. The plant structural
description is contained in the task section where task char-
acteristics are reported, e.g., the computational complexity
(first number in each row) and mobility (last number of
each row). For instance, task VS_MR and TS_MR (green
circles inside the mobile robot in Figure 8) are mobile with
respect to the digital twin task in the office. Finally, the plant
functional description is contained in the data flow section
which reports the quality of service required by the various
data flows, e.g., throughput and maximum tolerated delay.
Monitoring data flows (green arrows in Figure 8) require
high throughput (about 50 kb/s) without tight constraints
on delay (≤ 50 ms). Control data flows (red arrows) con-
vey control loop information with low throughput (about
1 kb/s) but a strict constraint on delay (≤ 2 ms). Coordina-
tion data flows (cyan arrows) require medium throughput
(about 10 kb/s) and a moderate constraint on delay (≤
10 ms).

In this use case, the MILP formulation consists in min-
imizing the sum of costs of the allocated instances of the
different network architectures subject to constraints on
fulfilling data flow requirements on quality of service (e.g.,
data flow throughput should be compliant with channel ca-
pacity). The formulation takes into account also the quality
loss and the cost increase due to zone crossing.

Listing 2 shows the resulting output file sent by the back-
end tool to the user. The most relevant result is the allo-
cation of data flows to the network architectures provided
as catalog to the optimizer. Most of the data flows have
been assigned to Ethernet, which provides high capacity
without strong guarantees on delay. Data flows related to
control loops have been assigned to CAN bus to fulfill delay
constraint. Data flows involving mobile tasks have been
assigned to WiFi to satisfy mobility constraint. The tool also
provides statistics on relevant metrics for the infrastructure
such as cost, energy consumption, sum of delay values and
error rate values.

List of activated channels:
Use 3 channels of type Ethernet
Use 1 channels of type WiFi
Use 2 channels of type CAN

Data-Flows allocation:
Dataflow DF32 inside channel WiFi.1
Dataflow DF33 inside channel WiFi.1
Dataflow DF34 inside channel Ethernet.3
Dataflow DF35 inside channel Ethernet.3
Dataflow DF36 inside channel Ethernet.1
Dataflow DF37 inside channel Ethernet.1
Dataflow DF38 inside channel Ethernet.2
Dataflow DF39 inside channel Ethernet.2
Dataflow DF40 inside channel CAN.1
Dataflow DF41 inside channel CAN.2
Dataflow DF42 inside channel CAN.2
Dataflow DF43 inside channel Ethernet.1
Dataflow DF44 inside channel Ethernet.3
Dataflow DF45 inside channel Ethernet.3

Economic Cost : 9031
2442 (Nodes) + 1201 (Wireless) + 5388 (Channels)

Energy Consumption : 581
42 (Nodes) + 201 (Wireless) + 338 (Cable)

Total Delay : 128
80 (Wireless) + 48 (Cable)

Total Error : 16
4 (Wireless) + 12 (Cable)

Elapsed Time : 1.20 s
File parsing : 0.02 s
Structure creation : 0.12 s
Constraints definition : 0.63 s
Optimization : 0.42 s

Listing 2. Network synthesis output for the ICELab.

6.2 Online monitoring and data collection

The ICE Laboratory is innovative because it combines the
knowledge of many industrial partners, enabling the shar-
ing of technologies and new ideas in the context of Industry
4.0. The combination of IIoT sensors and of a complete
infrastructure for data collection allows online monitoring
of the entire production process [14], [44]. The data col-
lection architecture (shown in Figure 9) is built based on
the network infrastructure described in Section 6.1. The
IIoT sensors placed on the production line include sensors
of vibration, temperature, position, and power. All these
sensors are connected to a BOX-IO gateway [45]. The pre-
requisite to apply this data collection architecture is a plant
equipped with OPC UA servers providing equipment status
by native or custom OPC UA servers and environment data
(IoT and Industrial IoT).

An OPC UA server provides secure access to industrial
automation data using OPC UA information models, that
specify how data is organized, stored, and collected. The
proposed data collection architecture (Figure 9) is based on
the OPC UA communication protocol relies on a Kubernetes
infrastructure [46]. The goals of this infrastructure are:

• Monitoring through OPC UA servers;
• Data logging;
• Data analytics and filtering;
• Data upload to different cloud providers;
• Provide a unique interface to access data;
• Secure connections.

The data sources are the IoT sensors and the equipment
(highlighted in yellow). Different OPC UA clients read data
from the sources (OPC UA server application); each OPC
UA client is reconfigurable because it allows to retrieve data
from an OPC UA server through the OPC UA server URI,
and it can subscribe to each variable. For each variable of the
OPC UA information model, it is possible to set sampling
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Fig. 9. Data collection architecture of the ICELab.

interval, datatype and unit, and other custom static fields.
All data retrieved through the OPC UA clients is sent to
a publish/subscribe data buffer, i.e., a large data stream
handling data partitioned in different topics (our configura-
tion is based on the Apache Kafka open-source application).
This application is subdivided into multiple instances to
guarantee fault tolerance and high performance. Moreover,
the data buffer is extensible, as it allows to easily add data
producers/consumers. Data from the data buffer allows to
safely monitor parts of the production line before storing
them in a time-series database through data uploader nodes.
Each node of the data uploader sends chunks of data to
the database (our configuration is based on the Telegraf, a
plugin-driven agent that collects, processes, aggregates, and
writes metrics into an InfluxDB time-series database).

The time-series database chosen for the ICE Laboratory
is a NoSQL database, InfluxDB [47]. InfluxDB is an open-
source time-series database that provides real-time visibility
into stacks, sensors, and automation data for monitoring
metrics and events. Data is stored in a persistent volume
and optionally can filter incoming values and perform data
aggregation. Data in the database is organized in buckets:
each data saved in the time-series database is associated
with a time-stamp, i.e., the time instant in which the data
is read from the production line. The best configuration
of the database is to subdivide the buckets for different
purposes, e.g., raw data, clean data, and cloud data. The
database has multiple instances managed by the Kubernetes
infrastructure. Data is analyzed through a filter, cleaned,
and manipulated, and the results of such manipulations are
usually stored in a different bucket inside the database. The
data collection architecture’s final steps consist of uploading
part of the data stored in the time-series database to the
cloud providers: only the necessary data for other analyses
are uploaded to the cloud. The quantity of data on the
cloud depends on the company policy. Moreover, through
custom applications and viewers, it is possible to visualize
the query results on the data stored in the database (our im-
plementation of custom dashboards is based on the Grafana
Dashboards). All the nodes of the data collection architec-
ture are bundled in a container, an application abstraction
that packages code and dependencies together (application,
binaries, and libraries). In a physical plant, a system could

handle thousands of containers: for that reason, clusters
are managed by Kubernetes, a container orchestration tool
from CNCF Foundation and automatically manages the
containers without an IT manager’s control.

6.3 Energy monitoring
This Section focuses on constructing a digital twin for power
consumption of the portion of the production line that was
equipped with sensors at the time of this experimental
analysis: the quality check station, the robotic assembly
station and the transportation system.

6.3.1 Sensing infrastructure
Accessing the power consumption of the devices of interest
required the installation of sensors for monitoring the evo-
lution of the AC power quantities [48]: active power (W),
phase angle (degrees, i.e., the phase between the voltage and
current sinusoidal curves), power factor (used to estimate
the amount of dissipated power), and current (A).

The ABB Yumi and the Kuka LR are single-phase AC
devices, and the quality station is a DC station converted
to single-phase AC through an inverter. All such devices
are thus monitored through single-phase Eastron SDM 230
power meters [49]. The transport line is made of 15 three-
phase AC motors. To ease the monitoring of power con-
sumption, all motors are monitored through a single three-
phase Eastron SDM630 meter, exporting the accumulated
AC power characteristics of all phases [50]. This sensing
strategy allows to consider the transport line as a single-
phase AC load, thus avoiding the burden of separating
the power models of each single phase. The power sensors
allow to retrieve the sensed data with a polling rate of 2
seconds in our Modbus configuration.

6.3.2 Data processing
All real-time data, including measurements made by the
sensors and information about the production recipe, are
made available to the power consumption digital twin
through the MES interface (as explained in Section 6.2).
Information about the device operating mode, exported
from the PLC, consists of the macro-state of the device, i.e.,
whether it is idle or active, and in the latter case the action
performed (e.g., in case of the robots, pick or place). More
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detailed parameters (e.g., operating speed and acceleration)
were not available at the time of the experimental analysis.

To model power consumption of the devices, we decided
to adopt approaches that exploit both historical and real
time data. This required a collection campaign, to store data
relative to a number of production cycles, and a cleaning
phase of such data, to extract timestamps, remove dupli-
cated data and identify unavailable samples.

6.3.3 Models of power consumption
The goal of the digital twin is to predict active power
consumption of each device, given information about the
production recipe and the device operating mode received
at run time: if the corresponding sensed value is different
from the predicted one (given a certain tolerance threshold),
an alert is notified. Data pre-processing has been applied
on historical data of each device in order to determine the
correlation of its settings with the corresponding power
consumption of the machine. The developed model will
strictly depend on the kind of monitored device and of its
available information.

An analysis of the correlation ρ between the quantities
monitored by power sensors proved that all of them are
highly correlated with active power: e.g., correlation ρ w.r.t.
active power for the Kuka robot is 0.76 for current, 0.89
for power factor and 0.84 for phase angle1. Thus, modeling
power consumption is a good bias also for the other quan-
tities. This allows reducing the amount of data that must
be transferred from the sensors to the digital twin and the
complexity of the models to be developed.

Quality of prediction w.r.t. the sensed power consump-
tion is measured for all models in terms of mean squared
error (MSE), defined as: MSE = 1

n

∑n
t=1(yt − ŷt)

2, where y
is the actual power consumption received from the sensors
at time t, ŷ is the predicted power consumption, and n is
the number of samples under analysis.

6.3.4 Power model of the quality check station
The QC station is always active, as the work station and the
camera are always on. As a result, its power consumption is
quite stable, and it is normally distributed (mean 110.69W)
with a small standard deviation (σ = 1.29W ).

To predict its power consumption, we thus adopted a
mathematical model, that allows to identify any behavior
not included in the range of the expected ones. The model
relies a moving average algorithm, where the predicted value
ŷ is the mean of the previous n data points. The choice of
the size n of the sliding window depends on the desired
smoothing: an increased value of n enhances the smoothing
at a cost of accuracy. The estimated power consumption at
time t is therefore computed as:

ŷ[t] =
y[t− 1] + y[t− 2] + ...+ y[t− n]

n
(1)

where y is the measured power consumption in the previous
time steps at time t− 1...t−n, and ŷ is the predicted power
consumption. This model assumes that consecutive power
demand samples have a similar consumption; as such, most

1. A value closed to 1 indicates that the variables tend to increase
together, while a value closed to 0 indicates that they are independent.

of the estimate depends on the latest measurement with a
defined sliding window (n = 15).

Historical data are then used to derive the typical stan-
dard deviation of the distribution σ. The resulting power
model thus exploits both the moving average and the
standard deviation: at any time instant t, moving average
is used to predict power consumption ŷ[t]: if the sensed
power consumption falls in the range ŷ[t] ± 3 · σ then the
sensed value is considered coherent with the estimation, else
an alarm is set. This mechanism is exemplified in Figure
10, where the red line is ŷ, the shaded area highlights the
allowed prediction interval over time, and the blue line
are the measured values y. The achieved MSE is very low
(1.23W ), thus achieving a very good prediction accuracy.

Fig. 10. Power model fo the quality check station: active power (blue
line), estimated power consumption ŷ[t] (Equation 1), and allowed pre-
diction interval ŷ[t]± 3 · σ (light blue area).

6.3.5 Power models of the robot assembly station

The ABB Yumi and the Kuka LR robot arms are used to pick
and place LEGO-like blocks from the pallet, so to assemble
them. Their task is thus periodic: when the pallet enters the
bay, each arm picks one block from the pallet, puts it in the
correct position and then goes back to idle. The resulting
power consumption curves have peaks in correspondence
to each pick or place phase (Figures 11 and 12).

For both robots, the data infrastructure exports the status
and the operating mode of the robot (idle, active and pick,
active and place), plus the measured power consumption.
The available historical data is used to construct a model of
power consumption based on a neural network that creates a
relationship between input parameters (i.e., the Idle, Pick,
and Place operating modes of the robot arms) and the
outputO, i.e., the estimated power consumption. The neural
network has two hidden layers with 32 and 64 neurons
respectively, and one output layer that predicts the power
consumption with 300 epochs used to update the weights
and the bias of the parameters by optimizing the error
between the training sample with the predicted power. For
each robot, the model has been trained using 80% of the
available historical data by using the Levenberg–Marquardt
back-propagation training algorithm (training set) and veri-
fied using the remaining 20% (test set). The estimated MSE
is 13.21W for the Kuka LR and 2.11W for the ABB Yumi:
the model thus proves to be accurate in the estimation of
the power consumption of the robots. Figures 11 and 12
show a snapshot of the evolution of the models, by reporting
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measured vs. predicted power consumption (top, solid and
dashed, respectively). The power model generates an alarm
if the measured power consumption does not fall in the
range ŷ±MSE, thus allowing a tolerance threshold to take
into account the possible prediction error.
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Fig. 11. Kuka measured (solid blue) and estimated (dashed red) power
consumption (top) and error of the prediction model (bottom).

¡

125

140

155

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

0 250 500 750
Time (s)

7.0

3.5

0.0

3.5

7.0

Er
ro

rs
 (W

)

Fig. 12. ABB measured (solid blue) and estimated (dashed red) power
consumption (top) and error of the prediction model (bottom).

6.3.6 Power model of the transport line
Transport line movement is managed by 15 motors, of which
two control the main belts, while the others allow movement

from the main belts to the bays (Figure 7 shows only the
motors used in the following of this section). Sensor data
monitors overall power consumption of the transport line,
thus aggregating not only the three AC phases but also
the power consumption demand of all motors. To derive
an accurate model of power consumption it thus becomes
crucial to know which motors are active at any time. For
this experiments we activated only the belts of interest
for the monitored devices, i.e., motors M1 and M2 that
control the main belts, plus motors M12, M7 and M8 that
move the belt connecting the bay with the robot assembly
station. Reducing the number of motors active at any time
allows indeed to reduce the noise and to better control
power consumption, given that we get an aggregated power
consumption curve for all motors.

Data received from the MES allows to know what motor
is active at any time (green labels). We thus analyzed his-
torical data of power consumption jointly with information
about active motors over time, to separate the contribution
of each motor to the overall power consumption. Then, we
built a moving average model similar to the one in Section
6.3.4, that takes into account also which motors are active at
any instant. Motors M1 and M2 are always active, thus the
base predicted moving average is ŷ = µM1 + µM2. When
one motor Mi becomes active, the current overall moving
average is increased by the mean power contribution of the
motor µMi, so to build the power prediction by considering
also its contribution to power consumption; vice versa,
when a motor Mi becomes idle, the mean of its contribution
to power consumption µMi is subtracted from the current
overall moving average, to make a prediction that considers
this motor as turned off.

To exemplify this process, Figure 13 shows the evolution
of sensed power consumption (blue line), moving average ŷ
(red) and allowed prediction interval when turning on and
off line motors alternatively (green labels). At the beginning,
only motors M1 and M2 are active, thus ŷ = µM1 + µM2.
Then, motors M7 and M8 are activated to move the pallet
to the robot assembly bay: ŷ is increased with the estimation
µM7, and then of µM8. When the motors are turned off, the
estimation goes back to ŷ = µM1+µM2. Then, the prediction
follows the subsequent activation of the motors. This model
allowed to reach a MSE of 5.58W , thus achieving a very
good prediction accuracy.

6.3.7 Adoption of the digital twin for anomaly detection
The built models for power consumption concur in building
a digital twin of the production line. The digital twin runs
in parallel with line operation: it is fed with commands and
sensed data, it estimates the expected power consumption
of the single devices based on the developed models, and
it compares the prediction ŷ w.r.t. the sensed data. The data
processing infrastructure can be used to build services, like
graphical rendering of the real-time power consumption
and of the predicted consumption. Additionally, the digital
twin allows live detection of unexpected behaviors, identi-
fied as a misalignment between the sensed and the predicted
power consumption: in this case, an alert is notified to the
user, that can monitor the operation of the device of interest
to identify any possible wear and tear effect, or to discard
the alert as an anomalous sensed data.
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Fig. 13. Transport line Power Consumption (blue line) and application of
the prediction model: the red line is the estimated power consumption
ŷ[t], while the light blue area represents the allowed prediction interval.
Motors M1 and M2 are always active; green labels indicate the activa-
tion of additional motors.

Fig. 14. Example of adoption of the digital twin of power consumption for
anomaly detection: the unexpected power peaks of the Kuka robot are
detected and used to fire an alert to the user and to the production line.

Figure 14 shows an example of this for the Kuka robot
arm. The Figure is similar to Figure 11, in that it reports
the real time power consumption of the robot arm (solid
blue line) and the corresponding prediction of the model
presented in Section 6.3.5 (dashed red line). In this case, the
model detects three anomalous behaviors of the robot, i.e.
three peaks that consume up to 30% more than the predicted
value: these anomalies are detected by the power model,
that sends an alert both to the plant and to the user interface.
This allows the user to analyze robot behavior and identify
any disturbance in data monitoring infrastructure or any
malfunctioning of the robot arm. The subsequent step is
the application of monitoring and maintenance actions to
prevent further damage of the equipment [39], like com-
pensation (e.g., slow down of Kuka operation to mitigate
stress), raising an alert (either stopping line operation to
restore normal operation, or continuing it to ensure effective
production), or giving a feedback to the user, with the
measured values and the Kuka operating conditions so to
allow an informed maintenance decision. In our scenario,
an alert is risen but line operation goes on, leaving further
investigation to the user. As future work, the production line
will be extended with control devices and a maintenance
management system, that will apply different policies de-
pending on user settings and on the level of severity of the
risen alarm.

7 CONCLUSIONS

Smart manufacturing nowadays is mandatory to maintain
competitiveness. This article has proposed techniques to
support the digital transformation of a production line and
the connection of these techniques to the digital twin, to
show how it is possible to introduce digital content in a
novel or existing production line, so to take full advantage of
the Industry 4.0 methodologies. First, the connecting network
of the production line has been built by using a network
synthesis tool starting from the communication flows inside
the plant. Second, the techniques to apply online monitoring
based on standard and IIoT sensors and to collect the data
have been presented. Finally, we exemplified how the digital
data sensing and collection infrastructure can be used to
monitor plant operation through the construction of a dig-
ital twin for energy monitoring, that highlights deviations
with respect to the expected energy consumption models
to witnessing aging and faults of machines. The presented
concepts have been exemplified in the Industrial Computer
Engineering laboratory of the University of Verona. As
future work, we will work on the application of the edge
computing paradigm to improve data management, and
on the exploitation of the digital content to optimize and
improve production effectiveness, e.g., by focusing on the
impact of production recipes on communication and on
energy consumption.
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