
09 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Retina: An open-source tool for flexible analysis of RTC traffic / Perna, Gianluca; Markudova, Dena; Trevisan, Martino;
Garza, Paolo; Meo, Michela; Munafò, Maurizio. - In: COMPUTER NETWORKS. - ISSN 1389-1286. - ELETTRONICO. -
202:(2022), p. 108637. [10.1016/j.comnet.2021.108637]

Original

Retina: An open-source tool for flexible analysis of RTC traffic

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.comnet.2021.108637

Terms of use:

Publisher copyright

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.comnet.2021.108637

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2944312 since: 2021-12-10T14:14:19Z

Elsevier

Retina: An Open-Source Tool For Flexible Analysis of RTC Traffic

Gianluca Pernaa, Dena Markudovaa, Martino Trevisana,∗, Paolo Garzaa, Michela Meoa, Maurizio M. Munafòa

aPolitecnico di Torino, Italy

Abstract

Retina is an open-source command-line tool that produces rich and complex statistics from real-time communication
(RTC) traffic. Starting from raw packet captures, it creates summaries of observed streams with flexible statistics
and tracks the evolution of the stream over time. Retina is modular and highly configurable, providing the ability to
configure output statistics, temporal resolution as well as many other parameters. Furthermore, if the packet captures
are accompanied by application logs, it can reconcile the data and enrich its output with application and QoE- related
statistics.
Retina helps troubleshoot RTC applications and enables the use of Machine Learning models for traffic classification
and Quality of Experience assessment. We believe Retina can be extremely useful for researchers studying RTC traffic
and network professionals interested in effective traffic analysis.

Keywords: Network Traffic Monitoring, Real-Time Communications

1. Context and Motivation

In recent years, the proliferation of broadband Internet
access and mobile networks has spurred the adoption of
Real-Time Communication (RTC) applications that allow
people to communicate via voice and video. They are now
essential for both leisure and business, helping people to
reach friends and relatives and enabling remote working.
The importance of RTC was particularly evident during
the COVID-19 pandemic, when social distancing and lock-
down measures adopted to curb the outbreak forced mil-
lions of people to communicate exclusively through RTC
platforms. This led to a global increase of RTC traffic
by more than 200% [1, 2]. It is therefore of utmost im-
portance that researchers and practitioners are supported
with tools to analyze RTC traffic and gain insights into
the operation of RTC applications.

In this paper we present Retina, an easy-to-use
command-line tool that extracts advanced network statis-
tics for RTC sessions found in packet captures. It also
generates graphical output with various charts and visu-
alizations of the statistics for easy analysis. Retina fo-
cuses on the Real-Time Protocol (RTP) [3] protocol used
in most RTC applications [4], with its encrypted version
SRTP (which however leaves the packet headers in clear).
Retina goes deeper than general tools in understanding
RTC traffic. Starting from a capture, Retina searches for
RTC traffic, identifies streams and outputs more than 130
statistics on packet characteristics, such as timing and size,

∗Corresponding author
Email address: martino.trevisan@polito.it (Martino

Trevisan)

and tracks the evolution of the stream over time bins of
a chosen duration. It is highly configurable, and the user
can customize the output statistics as well as a number of
other parameters. Retina can enrich its output by merging
the information available in the RTC application logs to
provide the ground truth required for many classification
problems.

Retina is open-source and available to the research com-
munity and network practitioners.1 We believe it can be
useful for traffic monitoring, and we have successfully used
it for data processing and feature extraction to feed Ma-
chine Learning (ML) algorithms in the context of RTC-
aware network management.

1.1. Literature Review
Several tools already perform in-depth traffic analy-

sis, and packet dissectors such as Wireshark2 (and its
command-line version Tshark) are the first resources for
network troubleshooting. Flow monitoring is also com-
monly used to analyze traffic summaries [5], and Net-
Flow [6] is the de facto standard for collecting and pro-
cessing flow records. Sophisticated network meters also
expose application-level statistics using Deep-Packet In-
spection on Layer-7 protocols. Tstat [7], for example, pro-
vides global statistics on RTP streams, while nProbe [8] of-
fers a VoIP plugin as a closed-source commercial product.
In contrast to these works, Retina provides comprehensive
statistics both per time unit and per flow. It specializes in
RTC traffic and detects numerous RTC applications, in-
cluding some that modify the RTP protocol. It also offers
a wide range of parameters for personalized log creation.

1https://github.com/GianlucaPoliTo/Retina
2https://www.wireshark.org/

1

https://github.com/GianlucaPoliTo/Retina
https://www.wireshark.org/

Figure 1: Retina architecture.

2. System overview

In this section, we describe Retina’s operation. As in-
put, Retina takes one or more packet captures as well as
optional configuration parameters. It processes the traffic
and outputs the desired output in various forms. We de-
pict its overall architecture in Figure 1. Retina is written
in Python and depends on Tshark and a number of mod-
ules that can be installed via the package manager pip.
We also provide a dockerized version to allow the use as a
standalone container.3

2.1. Inputs and Configuration

Retina requires the user to specify one or more cap-
tures in PCAP format, the most common format used
in many traffic capture softwares (Wireshark, TCPdump,
etc.). Retina can also process an entire directory by
searching for all captures in it. If it finds more than one,
Retina uses multiprocessing to process multiple files at
once. The number of processes is a configurable parame-
ter.

For some RTC applications, the user can provide ap-
plication log files that Retina uses to calculate additional
statistics and enrich the output. The application logs typ-
ically contain details about the media sessions, including
the Source Identifiers of the RTP streams, the type of me-
dia (audio, video, or screen sharing), the video resolution,
the number of frames per second, etc. When available,
Retina uses this additional information to provide finer-
grained per-second statistics – e.g., media type, video reso-
lution or concealment events at the codec level. Currently,
Retina supports log files of: (i) Cisco Webex 4, which logs
second-by-second details for each RTP stream, and (ii)

3The dockerized version is available at: https://hub.docker.

com/r/gianlucapolito/retina
4https://www.webex.com/

Google Chrome when collecting WebRTC debugging logs
with WebRTC 5 browser-based RTC services.6

In Retina, the user can customize a variety of param-
eters. All are optional, with carefully set default values.
Retina has personalized features for many RTC applica-
tions, which can be enabled by specifying the name of the
RTC application whose traffic is included in the capture
as an input parameter. While it supports all applications
that use RTP at their core, we have tested it extensively
for Webex, Jitsi, Zoom, and Microsoft Teams. Retina ac-
cepts threshold parameters, such as the minimum number
of packets or the minimum duration of a stream for it to be
considered valid. The user can also control the statistics
computed at each time bin (see Section 2.3) and can ask
Retina to create (interactive) graphs. The full list of pa-
rameters can be found in the documentation, while in the
rest of the paper we will only mention the most important
ones.

2.2. System core

We show the overall architecture of Retina in Figure 1,
with the middle rectangle indicating the building blocks
at its core. At the bottom, in blue, there are the basic
functionalities, while, on the top, in purple, the optional
modules. We also show a sample command line at the top
of Table 1.

The basic functionalities of Retina analyze the raw pack-
ets contained in the input PCAP captures and gather
statistics, organized in tables per stream and per time-
bin. For example, consider a PCAP capture collected at
a user side, containing RTP traffic from a two-party call
consisting of 4 RTP streams (outgoing and incoming au-
dio and video). Setting a time bin duration of 1 s, Retina

5https://webrtc.org/
6These logs can be obtained by creating and downloading a dump

at chrome://webrtc-internals

2

https://hub.docker.com/r/gianlucapolito/retina
https://hub.docker.com/r/gianlucapolito/retina
https://www.webex.com/
https://webrtc.org/
chrome://webrtc-internals

Figure 2: Aggregation process and some of the statistics computed
by Retina.

maintains a table where, for each of the 4 streams and
for each second, it accumulates several statistics. Given
a packet characteristic, such as packet size or interar-
rival time, Retina calculates several statistical indicators,
such as mean, median, third and fourth moments, or per-
centiles. We report the list of packet features and available
statistics in Figure 2, which summarizes the whole process
of statistics extraction. The user can configure the dura-
tion of the time bin for this aggregation of packets, which
is 1 s by default. The duration of the time bin directly af-
fects the number of packets used to compute the statistics,
and should therefore be varied judiciously. For example, in
1 s of audio, 50 packets are sent, while, in 1 s of HD video,
more than 200. Clearly, if the time window is 200 ms for
audio, no significant features can be computed, while this
would be fine for video.

To identify RTP streams in traffic, Retina relies inter-
nally on Tshark, the command-line version of Wireshark.
This step is not straightforward, as RTP packets often ap-
pear in a UDP flow along with other protocols. In fact,
many applications use STUN [9] to establish the media
session and/or TURN [10] to relay the streams if no di-
rect connection between peers is possible. In addition,
it is common to use DTLS [11] interleaved among RTP
packets to exchange control information such as encryp-
tion keys. Retina supports two methods for identifying
RTP streams: (i) with a user-defined list of ports or (ii)
by examining the STUN-initiated UDP flows. Retina at-
tempts to decode the UDP payload as RTP and verifies
that the protocol headers are compatible with RTP. We de-
fine an RTP stream using the combination of IP addresses
and ports (the classic tuple) plus the RTP Synchroniza-
tion Source Identifier (SSRC), which is used to multiplex
multiple streams within a single UDP flow. For some RTC
applications, we also use the RTP Payload Type (an RTP
field that specifies the media codec). Retina maintains
internal data structures to efficiently collect statistics for
each RTP stream.

Retina has a number of optional modules that target

17:46:45

17:46:50

17:46:55

17:47:00

17:47:05

17:47:10

17:47:15

Time

0

200

400

600

800

1000

1200

1400

B
it

ra
te

[k
b

it
/s

]

Video

FEC-Video

Audio

FEC-Audio

Figure 3: Example plot of the stream bitrate in a call.

RTC applications, for which we have implemented special
support. First, the traffic of some popular RTC applica-
tions (Zoom and Microsoft Teams) needs to be prepro-
cessed to become standard RTP traffic. This is because
they use the RTP protocol in a non-standard form. Mi-
crosoft Teams encapsulates RTP in a proprietary version
of TURN called MTURN, while Zoom adds its own un-
documented header. To make Retina work for these RTC
applications, we have created specific modules that can
also be used as standalone command line tools. They can
be found in a separate folder in the code repository.

Second, Retina can read and process the application log
of (i) Webex and (ii) Google Chrome, as mentioned in
Section 2.1. Retina can parse these logs and provide addi-
tional information about the RTP flows. If the application
logs are available, we enrich the output logs from Retina
with information such as the video resolution, employed
codec, frames per second, jitter, codec concealment events,
etc. We also provide a classification of media types into 7
classes, such as audio, FEC streams, 3 different qualities
of video and screen sharing, for easier recognition. Note
that the information in the application logs is particularly
useful for training ML models, as it contains the necessary
ground truth for many problems and Retina can match it
with the network traffic.

Lastly, Retina includes a plotting engine based on the
Matplotlib and Plotly libraries7 to create both static and
responsive graphs of all RTP streams. It draws the time-
series of stream characteristics, such as bitrate or interar-
rival time, so that the user can easily get an overview of the
traffic or debug an RTC application. It also draws several
histograms for each stream to show the stream-wise dis-
tribution of packet characteristics (e.g. packet size). For
an example graph, see Figure 3. Here we show the bitrate
of 4 RTP streams present in a portion of a Webex call.
The plotting engine also labels the time-series with their
media type (audio, video, FEC etc.), if the information is
provided (e.g. through an application log file).

7https://matplotlib.org/, https://plotly.com/

3

https://matplotlib.org/
https://plotly.com/

Command line: ./Retina.py -d capture.pcap -so webex -log webex.log

Timestamp
Packet size

(mean)
Packet size
(std dev)

Bitrate
(kbit/s)

Interarrival
(max)

Packets/s
Frame
width

Frame
height

Frames/s

2021-06-08 14:32:11 1041.84 66.74 1163.93 0.043 143 480 270 30
2021-06-08 14:32:12 1080.72 100.75 1578.86 0.045 187 640 360 30
2021-06-08 14:32:13 1023.49 72.21 1023.49 0.045 128 640 360 30
2021-06-08 14:32:14 1076.80 52.91 1362.82 0.043 162 640 360 30
2021-06-08 14:32:15 1055.50 52.41 1410.08 0.044 171 640 360 30
2021-06-08 14:32:16 1074.62 62.71 1989.73 0.089 237 640 360 30
2021-06-08 14:32:17 1055.22 40.09 2588.59 0.033 314 640 360 30
2021-06-08 14:32:18 1057.73 51.67 1479.17 0.040 179 640 360 30

Table 1: Example command line and Retina log for an RTC stream. The last three columns are derived from the application logs.

2.3. Outputs

Retina produces a CSV file for each RTP stream found
in the input capture, reporting the selected statistical fea-
tures for each time bin. The logs contain different columns
according to user preferences and additional stream infor-
mation if the RTC application log is provided. We show
an example output log in Table 1, along with the com-
mand line used to create it. Optionally, Retina creates
a summary log file in which it reports stream-wise statis-
tics. The file contains the most important information for
each stream – i.e., the source and destination IP addresses
and ports as well as general statistics such as the number
of packets, duration, etc. Having per-stream information
is useful for many applications that rely the analysis of
flow/stream records for e.g., traffic accounting. Addition-
ally, Retina provides traffic plots, which we described in
Section 2.2.

Finally, Retina also provides a dashboard for analyzing
RTC traffic through an interactive interface.8 The dash-
board requires an input .pickle file, which can be pro-
duced by passing one or more packet captures to Retina
and specifying an argument for the plot. Here the user
can see interactive plots of stream statistics and compare
streams of interest.

3. System design assets

We have designed Retina following principles of scala-
bility and modularity, so that it can be easily extended.
It adopts a multiprocessing architecture, so when there
are multiple PCAP files to process, it uses an independent
process for each of them and stores separate output log
files. These files can then be merged at the end of the
processing. This also increases the robustness of the tool.

Retina is highly modular, with separate functions orga-
nized into logical modules for all the different operations.
This also allows for extensibility, as a user can write new
functionalities with minimal effort. For example, it is easy
to support the application log of a new RTC application

8An online demonstrator of the dashboard is available at:
https://share.streamlit.io/gianlucapolito/retina-dashboard/

main/dashboard.py

(e.g. Microsoft Teams), as it is only necessary to add a
parser function and call it with an argument.

Retina can be used to analyze any kind of RTP traffic,
and it is not limited to video conference applications. For
example, we have successfully used Retina to gain insights
into the operation of cloud gaming applications running
over the browser [12]. Similarly, our parser for the Chrome
WebRTC log works seamlessly for any type of browser-
based application.

Finally, Retina, as described in Section 2.1, is highly
configurable. The user can limit the statistics to be com-
puted (potentially speeding up the computation), the de-
sired time aggregation, and several internal parameters -
e.g., the minimum length of an RTP stream for it to be
considered - which are detailed in the README file.

4. Publications enabled by the software

Retina was first developed at the end of 2019, and within
2 years of its existence, it has already been a valuable asset
for 4 scientific publications that target RTC traffic. Retina
sits at the core of [13], where we used it to engineer fea-
tures and extract the ground truth for an ML classifier that
distinguishes media types. Using these features, we devel-
oped a Decision Tree classifier that performed with 97%
accuracy. We further built on it in [14], to do data prepro-
cessing and identify RTC streams in traffic. It also served
for data characterization in [4], where we compare 13 dif-
ferent RTC applications. We also successfully employed
it to study cloud gaming traffic, and it allowed us to un-
derstand the networking operation behind Google Stadia,
GeForce NOW and PSNow in [12].

5. Limitations and Future work

While Retina supports most RTC applications, it still
does not support those that do not use RTP (or a modified
version of it), like GoToMeeting or Telegram. Moreover, it
relies on the RTP headers, so if in a future protocol version
these are encrypted, the tool will need major revisions.

As future work we aim to make Retina work in real-
time and be able to support traffic at high speeds (e.g.
40 Gb/s links). We also want to introduce better support

4

https://share.streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py
https://share.streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py

for gaming traffic, cover different cloud gaming platforms,
and output more gaming-specific ML features. We also
plan to support Retina in the long run and follow the
future developments of the underlying protocols such as
RTP, STUN, and TURN, as well as tackle new protocols
from novel providers.

6. Conclusion

This article presented Retina, a flexible command-line
tool for extracting advanced statistics from network traffic
of RTC applications. We provided a schematic descrip-
tion of all its features: the inputs, the system core and the
outputs with examples. We also highlighted the design
strengths of Retina, its modularity, scalability and config-
urability. We believe Retina can help both the scientific
community in studying RTC applications and network ad-
ministrators in troubleshooting RTC traffic. Our final goal
is to make in-network devices regain visibility of RTC traf-
fic and promote network management policies that favor
this type of traffic. In particular, we designed it to be used
directly for feature engineering of ML algorithms, since it
can provide the ground truth for classification problems
by processing the application log files.

7. Acknowledgements

This work has been supported by the Smart-
Data@PoliTO center for BigData and Data Science and
Cisco Systems Inc.

References

[1] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Di-
etzel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-
Rodriguez, O. Hohlfeld, G. Smaragdakis, The Lockdown Effect:
Implications of the COVID-19 Pandemic on Internet Traffic,
in: Proceedings of the ACM Internet Measurement Conference,
IMC ’20, Association for Computing Machinery, New York, NY,
USA, 2020, p. 1–18.

[2] T. Favale, F. Soro, M. Trevisan, I. Drago, M. Mellia, Campus
traffic and e-Learning during COVID-19 pandemic, Computer
Networks 176 (2020) 107290.

[3] R. Frederick, S. L. Casner, V. Jacobson, H. Schulzrinne, RTP:
A Transport Protocol for Real-Time Applications, RFC 1889
(Jan. 1996). doi:10.17487/RFC1889.
URL https://rfc-editor.org/rfc/rfc1889.txt

[4] A. Nistico, D. Markudova, M. Trevisan, M. Meo, G. Carofiglio,
A comparative study of RTC applications, in: 2020 IEEE In-
ternational Symposium on Multimedia (ISM), IEEE, 2020, pp.
1–8.

[5] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre,
A. Sperotto, A. Pras, Flow monitoring explained: From packet
capture to data analysis with netflow and ipfix, IEEE Commu-
nications Surveys & Tutorials 16 (4) (2014) 2037–2064.

[6] B. Claise, Cisco Systems NetFlow Services Export Version 9,
RFC 3954 (Oct. 2004). doi:10.17487/RFC3954.
URL https://rfc-editor.org/rfc/rfc3954.txt

[7] M. Trevisan, A. Finamore, M. Mellia, M. Munafò, D. Rossi,
Traffic analysis with off-the-shelf hardware: Challenges and
lessons learned, IEEE Communications Magazine 55 (3) (2017)
163–169.

[8] L. Deri, N. SpA, nProbe: an open source netflow probe for
gigabit networks, in: TERENA Networking Conference, 2003,
pp. 1–4.

[9] J. Rosenberg, C. Huitema, R. Mahy, J. Weinberger, STUN -
Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs), RFC 3489 (Mar. 2003).
doi:10.17487/RFC3489.
URL https://rfc-editor.org/rfc/rfc3489.txt

[10] P. Matthews, J. Rosenberg, R. Mahy, Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN), RFC 5766 (Apr. 2010). doi:10.

17487/RFC5766.
URL https://rfc-editor.org/rfc/rfc5766.txt

[11] E. Rescorla, N. Modadugu, Datagram Transport Layer Security,
RFC 4347 (Apr. 2006). doi:10.17487/RFC4347.
URL https://rfc-editor.org/rfc/rfc4347.txt

[12] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, D. Giordano,
A network analysis on cloud gaming: Stadia, GeForce Now and
PSNow (2021). arXiv:2012.06774.

[13] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo,
M. M. Munafò, G. Carofiglio, Online Classification of RTC
Traffic, in: 2021 IEEE 18th Annual Consumer Communica-
tions Networking Conference (CCNC), 2021, pp. 1–6. doi:

10.1109/CCNC49032.2021.9369470.
[14] D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Munafo,

G. Carofiglio, What’s my App?: ML-based classification of RTC
applications, ACM SIGMETRICS Performance Evaluation Re-
view 48 (4) (2021) 41–44.

5

https://rfc-editor.org/rfc/rfc1889.txt
https://rfc-editor.org/rfc/rfc1889.txt
https://doi.org/10.17487/RFC1889
https://rfc-editor.org/rfc/rfc1889.txt
https://rfc-editor.org/rfc/rfc3954.txt
https://doi.org/10.17487/RFC3954
https://rfc-editor.org/rfc/rfc3954.txt
https://rfc-editor.org/rfc/rfc3489.txt
https://rfc-editor.org/rfc/rfc3489.txt
https://rfc-editor.org/rfc/rfc3489.txt
https://doi.org/10.17487/RFC3489
https://rfc-editor.org/rfc/rfc3489.txt
https://rfc-editor.org/rfc/rfc5766.txt
https://rfc-editor.org/rfc/rfc5766.txt
https://rfc-editor.org/rfc/rfc5766.txt
https://doi.org/10.17487/RFC5766
https://doi.org/10.17487/RFC5766
https://rfc-editor.org/rfc/rfc5766.txt
https://rfc-editor.org/rfc/rfc4347.txt
https://doi.org/10.17487/RFC4347
https://rfc-editor.org/rfc/rfc4347.txt
http://arxiv.org/abs/2012.06774
https://doi.org/10.1109/CCNC49032.2021.9369470
https://doi.org/10.1109/CCNC49032.2021.9369470

	Context and Motivation
	Literature Review

	System overview
	Inputs and Configuration
	System core
	Outputs

	System design assets
	Publications enabled by the software
	Limitations and Future work
	Conclusion
	Acknowledgements

