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Abstract
Successful commercialisation of wave energy technology inherently incorporates the con-
cept of an array of wave energy converters (WECs). These devices, which constantly
interact via hydrodynamic effects, require optimised control that can guarantee maxi-
mum energy extraction from incoming ocean waves while ensuring, at the same time,
that any physical limitations associated with device and actuator systems are being consis-
tently respected. This paper presents a moment-based energy-maximising optimal control
framework for WECs arrays subject to state and input constraints. The authors develop a
framework under which the objective function (and system variables) can be mapped to
a �nite-dimensional tractable quadratic program (QP), which can be ef�ciently solved using
state-of-the-art solvers. Moreover, the authors show that this QP is always concave, i.e. exis-
tence and uniqueness of a globally optimal solution is guaranteed under this moment-
based framework. The performance of the proposed strategy is demonstrated through a
case study, where (state and input constrained) energy-maximisation for a WEC farm com-
posed of CorPower-like WEC devices is considered.

1 INTRODUCTION

Among the available renewable energy sources, ocean wave
energy, once economically viable, can make a valuable contribu-
tion towards a sustainable, global, energy mix. Ocean waves rep-
resent a massive and untapped source of clean energy: the wave
energy resource has been estimated (worldwide) to be around
3.7 [TW] and about 32, 000 [TWh/year] in [1] and [2], which
would cover �20% of current global energy consumption.

Despite being a vast resource, wave energy conversion tech-
nology has not yet reached commercial reality. The main reason for
the lack of proliferation of wave energy can be attributed to the
fact that harnessing the irregular reciprocating motion of the sea
is not as straightforward as, for example, extracting energy from
the wind. This is clearly re�ected in the current high installa-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.
' 2021 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

tion, operation, maintenance and decommissioning costs, which
are hindering wave energy converters (WECs) in reaching eco-
nomic viability.

As a direct consequence, the roadmap towards successful
commercialisation of wave energy systems inherently embod-
ies the concept of WEC arrays (sometimes called farms), which
incorporate several devices in a common sea area [3]. This can
effectively reduce the associated levelised cost of energy (LCoE)
through an economy of scale, and hence any realistic effort to
commercialise a novel device must include both a single WEC
and a WEC array development process.

Though the economy of scale facilitated through the devel-
opment of arrays can effectively reduce the LCoE, it is
well-established that WECs require of an optimised control
which can consistently ensure maximum energy extraction from
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incoming ocean waves (see, for instance, [4, 5]). Furthermore,
any realistic attempt to realise such a process must ensure that
any physical limitations of both device and power take-off
(PTO) system (i.e. actuator) are being consistently respected,
hence minimising the risk of component damage.

Controlling arrays of wave energy devices is intrinsically chal-
lenging: Devices composing a WEC farm are normally installed
in close proximity, mostly motivated by practical considerations,
such as sharing of electrical infrastructure and mooring systems
and space limitations [3]. This directly complicates both mod-
elling and real-time energy-maximising control design when
compared to the case of a single device, since the motion of
each WEC is directly affected by waves (i.e. radiation effects)
generated by adjacent devices. In the following, we present a
brief review of the main optimal control strategies developed
in the literature for the WEC array case, considering both early
(simpli�ed) theoretical results and advanced optimisation-based
control strategies.

A pioneering, but unconstrained approach, to the control of
WEC farms can be found in the early study [6], where the con-
ditions for optimal energy absorption are presented for the case
of regular wave excitation. Rapidly following this publication, [7]
incorporates constraints in the motion (amplitude and velocity)
of the device, presenting the �rst result on constrained control
of WEC farms with potential practical implications. Contempo-
rary studies in this subject include �advanced� control strategies,
such as model predictive control (MPC) [8�10], design based on
evolutionary algorithms [11] and mean weighted residual meth-
ods [12, 13]. These control strategies are brie�y discussed in the
following paragraph.

The study performed in [8] is an extension of the MPC
strategy for a single WEC developed in [14], and presents a
constrained distributed MPC formulation, where the objective
function is modi�ed with a weighting term to ensure convex-
ity of the problem (and hence, uniqueness of the solution). The
authors essentially divide the WEC array into smaller sub-farms
weakly coupled to the adjacent devices, in an attempt to reduce
the computational burden required by the strategy. We note that
this strong computational burden can be mainly attributed to
the parametrisation of radiation forces inherently required by
MPC, as detailed in [5]. A similar MPC formulation to that of [8],
though not distributed, can be found in both [9] and [10], where
the energy-maximising objective function is also modi�ed by
the introduction of a convexi�cation term. Using a different
approach, the authors of [11] utilise a differential evolution algo-
rithm (see, for example, [15]) to compute an optimal control law
based on the current sea state, though the strategy does not con-
sider either state (displacement and velocities of the devices in
the array) nor input (PTO force) constraints, hence challeng-
ing the practicality of the proposed solution. Finally, a spectral-
based controller can be found in [12, 13]. Though the strategy
presented in [12, 13] considers the original energy-maximising
objective function, we note that the authors do not explicitly
guarantee existence and uniqueness of the optimal control solu-
tion, hence successful convergence towards a unique optimal
law is not speci�cally ensured, but only demonstrated numeri-
cally with speci�c examples.

A novel energy-maximising optimal control framework for
the case of a single WEC was recently proposed in [16]. Such a
framework is based on the system-theoretic concept of moments
(discussed herein in Section 2), and maps the original energy-
maximising optimal control problem for WECs into a concave
Quadratic Program (QP), systematically guaranteeing a unique
solution for the target energy-maximising control objective,
subject to both state and input constraints. Subsequently, a com-
putationally ef�cient calculation of the moment-based optimal
control law is achieved by means of the state-of-the-art QP
solvers, such as those extensively described in, for instance, [17].
Despite the fact that [16] effectively accomplishes the energy-
maximising control objective, subject to state and input con-
straints, the mathematical formalism proposed considers only
the single-input, single-output (SISO) case, precluding the appli-
cation of the strategy to the case in which an array of WECs
is involved.

Following the array roadmap for a successful WEC commer-
cialisation, we present, in this paper, an energy-maximising con-
trol framework for WEC arrays, exploiting the system-theoretic
notion of moments presented in [18]. The hydrodynamic inter-
actions between bodies (or devices) are fully exploited to com-
pute the optimal control law, therefore optimally maximising the
energy extraction for a WEC array from a given wave �eld, sub-
ject to both state and input constraints. To this end, the paper
provides the following contributions:

� We propose a method to map the energy-maximising objec-
tive function for WEC arrays (and system variables) to a
�nite-dimensional QP problem. In particular, unlike most
of the model based energy-maximising control strategies
reported for both single WECs and WEC farms, we show
that this moment-based strategy does not require an a pri-
ori parametric approximation of the radiation force (convo-
lution) term, but actually provides an analytical description
of the convolution operation in terms of moments. This,
together with the QP characteristic of the objective function
in the moment-domain, renders this moment-based strategy
highly ef�cient in computational terms, appealing for real-
time applications.

� We show that the resulting QP problem is always con-
cave, i.e. we guarantee existence and uniqueness of a glob-
ally optimal energy-maximising solution for the WEC array,
under state and input constraints. This systematically guar-
antees globally optimal performance of the moment-based
strategy.

� Finally, we present an extensive case study based on a WEC
farm composed of CorPower-like devices [19], where the per-
formance of the proposed controller is assessed, under state
and input constraints.

The remainder of this paper is organised as follows. Section 2
discusses key concepts behind the moment-based framework
for both SISO and multi-input multi-output (MIMO) systems.
Section 3 formally introduces the energy-maximising problem
for WEC farms, while Section 4 details the moment-based anal-
ysis of the constrained optimal control formulation. Finally,
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Section 5 discusses the application case described in the pre-
vious paragraph, while Section 6 encompasses the main conclu-
sions of this study.

We note that a preliminary study on this subject has been
presented in [20]. The present paper formalises the theoretical
results presented in [20], while also signi�cantly extending the
application case to a full-scale WEC array composed of heaving
CorPower-like devices.

1.1 Notation and preliminaries

Standard notation is considered throughout this study, any
exceptions detailed in this section. �+ (��) denotes the set of
non-negative (non-positive) real numbers. �0 denotes the set
of pure-imaginary complex numbers and �<0 denotes the
set of complex numbers with negative real part. The symbol
0 stands for any zero element, dimensioned according to the
context. The notation �q indicates the set of all positive natural
numbers up to q, i.e. �q = {1, 2, � , q}. The symbol �n denotes
the identity matrix of order n, while the notation 1n×m is used
to denote an n × m Hadamard identity matrix (i.e. an n × m
matrix with all entries equal to 1). The spectrum of a matrix
A 	 �n×n, i.e. the set of its eigenvalues, is denoted by 
(A).
The superscript � denotes the transposition operator. The sym-
bol

�
denotes the direct sum of n matrices, i.e.

�n
i=1 Ai =

diag(A1,A2, � ,An ). The symmetric-part of a matrix A 	 �n×n

is de�ned (and denoted) as �{A} = (A + A� )
2. The com-
plex conjugate of a matrix A 	 �n×m is denoted as A. The Kro-
necker product between two matrices M1 	 �n×m and M2 	 �p×q

is denoted by M1 �M2 	 �np×mq , while the Kronecker delta func-
tion is denoted as i

j�, for {i, j } � �. The convolution between
two functions f and g over the set� � �, i.e. �� f (�)g(t � �)d�
is denoted as f � g. The set of all real-valued square inte-
grable functions is denoted as L2(�), i.e. L2(�) = { f � � �
�� �� � f (x )2�dx < +�}. Let f and g be two functions belong-
ing to L2(� ), where � � � is closed. Then, the inner-product
between f and g is given by � f , g� = �� f (�)g(�)d�. The sym-
bol eqi j 	 �

q×q denotes a matrix with 1 in the i j entry and 0
elsewhere. Likewise, the symbol eqi 	 �

q denotes a vector with
1 in the i entry and 0 elsewhere. The symbol �n 	 �n denotes
a vector with odd entries equal to 1 and even entries equal
to 0.

In the remainder of this section the formal de�nitions of two
important operators are presented, since their de�nition in the
literature can often be ambiguous.

De�nition 1 (Kronecker sum). [21] The Kronecker sum between
two matrices P1 and P2, with P1 	 �n×n and P2 	 �k×k, is
de�ned (and denoted) as

P1 ��P2 � P1 � �k + �n � P2. (1)

De�nition 2 (Vec operator). [21] Given a matrix P =
[p1, p2, � , pm] 	 �n×m , where p j 	 �n, j 	 �m , the vector val-

ued operator vec is de�ned as

vec{P} �

�
�
�
�
�
�

p1

p2

�
pm

	








�

	 �nm. (2)

Finally, we recall a useful property of the vec operator.

Property 1. [21] Let P3 	 �n×m and P4 	 �p×q . Then

vec{P3P4} = (�q � P3)vec{P4} = (P�4 � �n )vec{P3}. (3)

2 PRELIMINARIES ON
MOMENT-BASED THEORY

We recall and extend, in this section, some of the fundamental
concepts behind the so-called moment-based framework, as devel-
oped in key studies such as [18, 22].

Consider �rst a �nite-dimensional, SISO, continuous-time
system described, for t 	 �+, by the following state-space
model:1

�x = Ax + Bu,

y = Cx,
(4)

where x(t ) 	 �n, u(t ) 	 �, y(t ) 	 �, A 	 �n×n, B 	 �n and
C � 	 �n and assume that (4) is minimal, i.e. controllable and
observable.

Lemma 1. [18, 22] Consider system (4) and the autonomous signal
generator

�� = S �,

u = L �,
(5)

with �(t ) 	 �� , S 	 ��×� , L� 	 �� and �(0) 	 �� . Suppose the
triple (L, S , �(0)) is minimal [23], 
(A) � �<0, 
(S ) � �0 and the
eigenvalues of S are simple. Then, there is a unique matrix � 	 �n×�

which solves the Sylvester equation

A� + BL = �S , (6)

and the steady-state response2 of the output of the interconnected system
(4)�(5) (as depicted in Figure 1) is yss (t ) = C��(t ).

De�nition 3. The matrix C�, with � solution of the Sylvester
equation (6), is the moment of system (4) at the signal generator
(5).

1 From now on, we drop the dependence on t when clear from the context.
2 See [24] for a formal de�nition of steady-state response.
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FIGURE 1 Schematic of the interconnection between the system (4) and
the signal generator (5) (adapted from [18])

Remark 1. From this point on, we refer to the matrix Y = C�
as the moment-domain equivalent of y(t ).

2.1 MIMO case

Consider a �nite-dimensional, MIMO, continuous-time system
described, for t 	 �+, by the following model, given in state-
space form as

�x = Ax + Bu,

y = Cx,
(7)

with3 x(t ) 	 �n, u(t ) 	 �q , y(t ) 	 �q , A 	 �n×n, B 	 �n×q,
C 	 �q×n and assume that (7) is minimal, i.e. controllable
and observable.

We are now ready to present an adaptation of Lemma 1 for
the MIMO case, i.e. system (7).

Lemma 2. Let each input ui � �+ � � of system (7), with u(t ) =
[u1(t ), � , uq (t )]�, be generated by the autonomous, single-output signal
generator4

�� = S �,

ui = Li�,
(8)

with �(t ) 	 �� and L�i 	 �
� . Assume that the pair (Li , S ) is observ-

able for all i 	 �q, 
(A) � �<0, and S is as in Lemma 1. Consider
the autonomous multiple-output signal generator

�� = (�q � S )�,

u =

� q


i=1
eqii � Li

�

�,
(9)

�(t ) 	 �q� and assume that the pair ((�q � S ), �(0)) is excitable
[23]. Then, there is a unique matrix � 	 �n×q� which solves the

3 We focus on square systems, motivated by the WEC control application.
4 Although we assume the same dynamic matrix S for all ui to simplify the notation, each
input can be driven by an independent signal generator, i.e. ��i = Si�i , ui = Li�i .

Sylvester equation

A� + B

� q


i=1
eqii � Li

�

= �(�q � S ), (10)

and the steady-state response of the output of the interconnected system is
yss (t ) = C��(t ).

Proof. The proof follows the same arguments as in the SISO
case considered in [18] and, hence, is omitted for brevity.  

Remark 2. As in the SISO case presented in Section 2, the
moment for system (7) is computed in terms of the unique solu-
tion of a Sylvester equation, i.e. Equation (10).

Remark 3. We note that previous literature in moment-
matching, for the MIMO case, utilises the so-called tangen-
tial interpolation framework (see, for instance, [25, 26]), where
moments are de�ned along speci�c directions in �q . Though
this tangential approach does not require �in�ation� of the
matrix S as a function of the number of inputs (as in (9)),
the one-to-one relationship between moments and the steady-
state output response of system (7) is lost. Herein there is spe-
cial interest in retaining such a relation, in spite of the conse-
quent increase in the order of the associated signal generator
(9).

3 ENERGY-MAXIMISING CONTROL
FORMULATION

As discussed in Section 1, this paper proposes a moment-based
energy-maximising control framework for wave energy farms.
In the remainder of this paper, we consider the case of an array
composed of N devices each with a single degree-of-freedom
(DoF), to simplify the notation. Multiple DoF devices can be
incorporated within this framework in a straightforward fash-
ion with minor modelling modi�cations (see, for example, [27,
Chapter 8]).

The energy-maximising control problem for a wave energy
farm composed of N WEC devices can be informally posed
as follows: compute the optimal control input (i.e. PTO force)
acting on each body ui such that the time-averaged energy
absorbed by the wave energy farm is maximised over a time
interval � = [0, T ] � �+. This energy-maximising criterion
can be posed in terms of an objective function, by noting that
the total useful energy converted by the PTO of each WEC in
the array can be computed as

� =
N


i=1

1
T ��

ui (�) �xi (�)d� =
1
T ��

P (�)d�, (11)

where �xi and P denote the velocity of the ith device and the
total instantaneous power of the WEC array, respectively.
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3.1 Equations of motion of an array of
WECs

We introduce, in this section, the fundamentals of time-domain
linear modelling of arrays of WECs. Note that the assumptions
considered herein are consistent across a wide variety of WEC
control and estimation studies presented in the literature, such
as those utilised by both WEC array estimation [28, 29], and
control studies [8�10], among others (see [5]).

The equation of motion for an array of N WECs can be
expressed in the time-domain according to Newton�s second
law, obtaining the following hydrodynamic formulation [30]
[27, Chapter 8]:

M !" = �r + �h + �e �� , (12)

where M =
�N

i=1 mi is the mass matrix of the buoy array with
mi the mass of the ith device, and each element of the vectors
{"(t ),�e (t ),�h(t ),�r (t )} � �N contain the excursion xi , the
excitation force fei , the hydrostatic restoring force fhi and
the radiation force fri acting on the ith device (i 	 �N )
of the array, respectively.5 The control variable � (t ) is com-
posed of the PTO forces ui (i.e. control inputs) exerted on each
device.

Continuing with the description of Equation (12), the lin-
earised hydrostatic force �h can be written as �Sh", where
Sh =

�N
i=1 shi and each shi > 0 denotes the hydrostatic stiffness

of the ith WEC of the array. The radiation force �r is modelled
from linear potential theory and, using the well-known Cum-
mins� equation [31], is

�r (t ) = �#� !"(t ) � ��+
K (�) �"(t � �)d�, (13)

where6 #� = lim$�+� %A($), #� > 0 represents the added-
mass matrix at in�nite frequency and K (t ) =

�N
i=1

�N
j=1 eNi j �

ki j (t ) 	 �N×N , ki j 	 L2(�), contains the (causal) radiation
impulse response of each device (if i = j ) and each interaction
due to the radiated waves created by the motion of other devices
(if i 	 j ). Finally, the equation of motion of the WEC array can
be expressed as

(M + #� ) !" + K � �" + Shx = �e �� . (14)

The dynamical system described in terms of the Volterra
integro-differential equation (14), for the WEC array case, is
internally stable (in the Lyapunov sense) and strictly passive with
respect to the output (velocity), for any physically meaningful
values of the parameters and the radiation mapping K � �&
�N×N involved, see [27, 30].

5 Note that diffraction effects are included, within the linear potential �ow framework
adopted in our manuscript, in the description of the wave excitation force input.
6 See [30] for the de�nition of %A($).

3.2 Optimal control formulation and motion
constraints

As discussed throughout Section 1, any realistic attempt to
design an energy-maximising optimal controller for WECs
should consider both state (displacement and velocity) and
input (PTO force) constraints, given that the associated uncon-
strained optimal solution is often unrealistic in terms of body
motion and PTO force requirements (see, for instance, [5, 30]).

In particular, we consider constraints on the displacement xi
and velocity �xi of each WEC composing the array, simultane-
ously with constraints on each PTO force ui , which can be com-
pactly written, for all i 	 �N , as7

�
�
�
�
�

�xi (t )� 
 Xmax,

� �xi (t )� 
 Vmax,

�ui (t )� 
 Umax,

’t 	 �, (Xmax,Vmax,Umax) 	 �+3 .

(15)

With the de�nition of the objective function in Equation
(11), the governing dynamics of the WEC farm in (14), and the
set of state and input constraints de�ned in (15), the energy-
maximising optimal control problem can be posed as

� opt = arg max
�

� (� )

subject to:
�

WEC array dynamics (14),
state and input constraints (15).

(16)

4 MOMENT-BASED WEC ARRAY
FORMULATION

To consider the moment-based theoretical framework outlined
in Section 2 on this WEC array case, the equation of motion in
(14) needs to be re-written in a �suitable� structure. We propose
the state-space representation:

�( = A(( + B(),

y( = C(( = �",
(17)

where ((t ) = [*1(t ), � , *N (t )]� 	 �2N is the state-vector of
the continuous-time model, with *i (t ) = [xi (t ), �xi (t )]�. The
function ) � �+ � �N , assumed to be the input to the sys-
tem (17), is de�ned as

) = �e �� � K � �". (18)

7 Note that there is no loss of generality in assuming that the maximum allowed values are
the same for the N devices composing the array. This is considered to simplify the notation.
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Under this speci�c representation, the matrices in (17) can be
written, in compact form, as

A( =
N


i=1

N


j=1
eNi j � A(i j , B( =

N


i=1

N


j=1
eNi j � B(i j ,

C( = �N � [0 1],

(19)

with each A(i j 	 �
2×2, B(i j 	 �

2 de�ned as

A(i j =

�
0 i

j�

��i j shi 0

�

, B(i j =
�

0
�i j

�
, (20)

where �i j is the i j th element of the inverse generalised mass
matrix, i.e. (M + #� )�1.

Within the moment-based framework, presented in Sec-
tion 2, each ith entry of the vectors �e and � are expressed
as the output of the signal generators

��i = S �i ,

fei = Lei �i ,

ui = Lui �i ,

(21)

where the dimension of S , Lei and Lui are as in (5), �i (t ) 	 ��
and the pairs (Lei , S ) and (Lui , S ) are observable. Given the char-
acteristics of 
(S ), we consider the �nite set- = {$p}

f
p=1 � �

+

and write the matrix S in block-diagonal form as

S =
f�

p=1

�
0 $p
�$p 0

�
, (22)

where � = 2 f , f � 0 integer. Note that the speci�c structure of
the matrix S in (22) is inherently motivated by standard assump-
tions within the �eld of numerical generation of ocean waves.
This is further discussed in Remark 9. Finally, both the control
force and excitation force vectors are expressed as the solution
of the autonomous multiple-output signal generator as

�� = (�N � S )�,

�e =

� N


i=1
eNii � Lei

�

� = Le �,

� =

� N


i=1
eNii � Lui

�

� = Lu �,

(23)

where, without loss of generality, the initial condition of the sig-
nal generator is chosen as �e (0) = �N� .

Remark 4. To simplify the notation used throughout the upcom-
ing results, and to explicitly focus this manuscript on the formu-

lation of a non-linear moment-based controller, it is assumed
that the moment-domain equivalent Le , characterising the wave
excitation �e as in Equation (17), is known, i.e. full (instanta-
neous and future) knowledge of �e is available over the time
interval � � �+. This is without loss of generality, since estima-
tion and forecasting algorithms for �e (which are often required
due to the inherent dif�culty behind measuring wave excitation
forces in a moving body [32]) can be incorporated straightfor-
wardly, by following the adaptation of the moment-based rep-
resentation of �e for the receding-horizon control method pre-
sented in [32, Section IV-A], without further modi�cations.

Remark 5. Though beyond the scope of this study, we note
that sensitivity and robustness of moment-based optimal con-
trol solutions with respect to potential errors arising in the wave
excitation force estimation and forecasting processes has been
analysed, in the SISO case, in [32, Section V]. In addition, we
refer the interested reader to [33], which derives a framework
to assess the sensitivity of a general class of energy-maximising
WEC controllers to wave excitation force prediction errors.

Under this selection of matrices, the moments of system
(17), driven by the autonomous signal generator (23), can be
computed by solving the following Sylvester equation (see
Lemma 2)

A(�( + B( (Le � Lu �
) = �((�N � S ), (24)

where �( 	 �2N×N� and 
 is the moment-domain equivalent
of the radiation matrix convolution term. The moment-domain
equivalent of the velocity can be expressed in terms of the solu-
tion of (24) straightforwardly as � = C(�(. Nonetheless, the
term 
 depends on �(, hence we cannot yet solve (24). We
now de�ne the quantity 
 and then provide an explicit solution
for (24).

Proposition 1. The moment-domain equivalent of the convolution inte-
gral in (13) can be computed as


 =
N


i=1

N


j=1
eNi j �

�
�N �/i j

�
, (25)

where each/i j 	 ��×� is a block-diagonal matrix de�ned as

/i j =
f�

p=1

� i
j ir$p

i
j im$p

�i
j im$p

i
j ir$p

�

, (26)

with

i
j ir$p = %B($p)i j , i

j im$p = $p

�
%A($p)i j � #�i j

�
, (27)

where %A($)i j is the added-mass matrix, %B($)i j is the radiation damping
matrix8 of the device at each speci�c frequency induced by the eigenvalues of
S , and #�i j is the i j th entry of the matrix #�.

8 See [30] for the de�nition of %B($).
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Proof. The proof can be carried out analogously to the SISO
case in [16] and, hence, is omitted.  

Remark 6. As brie�y discussed in Section 1 and explicitly
expressed in Proposition 1, this moment-based strategy does
not require an a priori parametric approximation of the radia-
tion force (convolution) term, but actually provides an analytical
description of the convolution operation in moment-domain.
This characteristic, together with the QP formulation presented
in this section, renders this moment-based strategy highly ef�-
cient in computational terms and, hence, appealing for real-
time applications.

With the analytical de�nition of the moment-domain equiv-
alent of the radiation force convolution term in (25), we state
the following two propositions, which address the uniqueness
of the solution of the Sylvester equation (24) and the explicit
computation of the moment equivalent � .

Proposition 2. The solution of the Sylvester equation (24) is unique if
and only if




� f�

p=1

�
Gp 0
0 Gp

��

0 
(S ) = 1, (28)

where the matrix Gp is de�ned as

Gp = A( � B((2ir$p
+ j2im$p

)C(, (29)

with

2ir$p
=

N


i=1

N


j=1

i
j ir$p � eNi j , 2im$p

=
N


i=1

N


j=1

i
j im$p � eNi j .

(30)

Proof. See the Appendix for the proof.  

Proposition 3. Suppose (28) holds. Then, the moment-domain equiva-
lent of the output y( of system (17) can be uniquely determined as

vec{�} =
�
�N �3/(

�
vec{Le � Lu}, (31)

where

3/( = (�� �C( )3�1
( (�� � B( ),

3( =
�
S ��A(

�
+

N


i=1

N


j=1
/�i j ��B(eNi j C(,

(32)

with 3( 	 �2N�×2N� and 3/( 	 �N�×N� .

Proof. Recall that � = C(�(. Then, Equation (31) follows
directly from (A.1) (see Section 6).  

Remark 7. Equation (28) always holds for the WEC array case:
it follows from the internal stability of (17) (see Section 3.1) that

(Gp) � �<0 for all p 	 � f , with the matrices Gp as in Propo-
sition 2.

Remark 8. Note that, given the structure of the matrices Lu
and Le in (23), the moment-domain equivalent � can always be
expressed as � =

�N
i=1 eNii � �

i
, where ��

i
	 �� denotes the

moment-domain equivalent of the velocity of the ith device.

Propositions 2 and 3 explicitly show how to compute the
(unique) moment-domain equivalent of the output of system
(17), i.e. the velocities of the WEC array elements. With this last
result, we address the formulation of (16) using a moment-based
approach. Speci�cally, we show that the energy-based objec-
tive function � can be greatly simpli�ed under the proposed
moment-based framework.

Proposition 4. Suppose (28) holds, and consider the expression for the
instantaneous power P in (11) and the representation for ui as in (21).
De�ne the set - considered to compute S in (22) as - = {p$0}

f
p=1.

Then, the absorbed power � over the time period � = [0, T ], with T =
24
$0, can be computed as

� = 1
2

N


i=1
�

i
L�ui , (33)

where �
i

denotes the moment-domain equivalent of the velocity of the
ith device.

Proof. See the Appendix for the proof.  

Remark 9. The selection of the set - in Proposition 4 fol-
lows from a standard assumption in the numerical generation of
ocean waves: the so-called free-surface elevation, fully characterising
the input wave, can be described as a �nite sum of f harmon-
ics of a (suf�ciently small) fundamental frequency $0 (see, for
instance, [34]).

Note that Proposition 4 explicitly shows that, under the pre-
sented moment-based strategy, the objective function of (11)
can be computed as the sum of N inner-product operations in
�1×N� . Moreover, under the presented moment-based strategy,
the (unconstrained9) optimisation problem associated with (16)
has a strictly concave QP formulation, as detailed in the follow-
ing proposition.

Proposition 5. Consider the (unconstrained) energy-maximising opti-
mal control problem (16). Then, under the same assumptions of Proposi-
tion 4, the optimal control law � opt = Lopt

u � can be computed in the

9 This refers to the objective function (16) under the assumption that the state and input
constraints de�ned in (15) are not considered in the formulation.
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moment-domain as

Lopt
u = arg max

Lu
�1

2 vec{Lu}�
�
�N �3/

�
(

�
vec{Lu} +

1
2 vec{Le}�

�
�N �3/

�
(

�
vec{Lu}.

(34)

Proof. See the Appendix for the proof.  

Proposition 6. The QP formulation in (34) is strictly concave for any
physically meaningful values of the parameters of (17).

Proof. See the Appendix for the proof.  

Remark 10. Propositions 5 and 6 have a strong impact on
the practicality of the moment-based solution proposed in this
study: the original optimal control formulation in (16) can be
transformed into a QP program, which always has a unique
(global) maximiser due to the fact that strict concavity is guaran-
teed. Hence, we can use well-known and highly ef�cient state-
of-the-art quadratic programming solvers [17].

4.1 State and input constraints in
moment-domain

Following the moment-based framework for a single device pro-
posed in [16], we map the set of motion constraints using their
respective moment-domain equivalents10, i.e.

Equation (15) 5

�
�
�
�
�
�
�

   � i
(�N � S�1)e(�N�S )t �N�

   
 Xmax,

   � i
e(�N�S )t �N�

   
 Vmax,

   Lu e(�N�S )t �N�
   
 Umax.

(35)
Let � = {ti}

Nc
i=1 � �

+ be a set of uniformly spaced time
instants. We propose to enforce the set of constraints de�ned
in at the set � : De�ning the matrices 6 	 �NNc×N 2� and
7 	 �2NNc×N 2� as

6 =
!
e(�N�S )t1�N� � �N�e

(�N�S )tNc �N� � �N
"�

7 =
!
6��6�

"�
,

(36)

and substituting � using (31), the motion constrained energy-
maximising optimal control law can be written in moment-
domain as an inequality-constrained QP problem, i.e.:

Lopt
u = arg max

Lu
�1

2 vec{Lu}�
�
�N �3/

�
(

�
vec{Lu}

+ 1
2 vec{Le}�

�
�N �3/

�
(

�
vec{Lu}

10 Note that the moment-domain equivalent of the position xi (t ) can be expressed [35] as
�

i
(�N � S�1 ).

subject to

�"vec{Lu} 
 �",

� �"vec{Lu} 
 � �",

�� vec{Lu} 
 �� ,

where

�" = �7
�
�N � (S�1 � �N )�3/(

�
,

�" = Xmax12NNc×1 ��"vec{Le},

� �" = �7
�
�N �3/(

�
,

� �" =Vmax12NNc×1 �� �"vec{Le},

�� = 7,

�� = Umax12NNc×1.

(37)

The moment-based constrained QP formulation of (37)
offers a globally optimal solution for the energy-maximising
problem for WECs under state and input constraints. The
performance of such a formulation is analysed in Sec-
tion 5, both in terms of energy absorption, and constraint
satisfaction.

5 APPLICATION TO A WEC ARRAY

We present, in this section, an application case to illustrate
the proposed moment-based strategy, based on the regular-
polytope-type WEC array layout depicted in Figure 2, com-
posed of N = 5 converters. Each of the �ve devices composing
this WEC farm is a full-scale CorPower-like device oscillating
in heave (translational motion). Such a device is illustrated in
Figure 3, with its corresponding physical dimensions speci�ed
in metres. Moreover, to fully characterise the wave farm, Fig-
ure 4 presents the hydrodynamic characteristics of the WEC
array considered in this application case in terms of its corre-
sponding radiation damping and radiation added-mass matri-
ces, i.e. %B($) and %A($), respectively. Note that, due to the
fact that the devices composing the WEC farm are identical
(i.e. CorPower-like devices), the corresponding hydrodynamic
characteristics (including interactions due to radiation effects)
present symmetrical behaviour, in accordance with the layout
depicted in Figure 2. That said, only three elements of the
matrices { %B($), %A($)} � �5×5 are required to completely char-
acterise the hydrodynamic parameters of the farm. These are
plotted in Figure 4, along with the corresponding symmetry
pattern11 for both matrices %A and %B. We note that, consistent
with the main literature in WEC array control (see Section 1),
we consider, for the remainder of this section, the linear model

11 The reader is referred to [27, Chapter 8] for an extensive discussion on the hydrodynamic
coef�cients of WEC arrays and the principles behind this symmetrical behaviour.
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FIGURE 2 Regular-polytope-type WEC array layout considered for the application case. The distance d between devices is set to twice the diameter of the
upper part of the �oat, i.e. d � 17 m

FIGURE 3 Schematic of the CorPower-like device. Dimensions are
expressed in meters, G denotes the centre of gravity of the device, and the
acronym SWL stands for still water level

FIGURE 4 Hydrodynamic coef�cients %B($) (solid, left axis) and %A($)
(dashed, right axis) for the CorPower-like WEC array. Note that there is a
one-to-one relation between the colours of the lines and the corresponding
symmetry pattern depicted in the top-left �gure

de�ned by Equation (14) (with the parameters corresponding to
the CorPower-like WEC array presented in Figure 4), for both
design and performance evaluation of the proposed moment-
based control strategy. Given that our primary objective is the
development of a novel and ef�cient optimal control strategy
for WEC arrays with guarantees of globally optimal solutions,
the application case presented in this section is intended as a
proof of concept for our novel controller, rather than an assess-
ment in a �realistic� environment.

Remark 11. For the next simulation results, the normalised run-
time (i.e. ratio between the time required to compute the energy-
maximising optimal control input for the duration of the simu-
lation, and the length of the simulation itself) of the proposed
WEC array moment-based controller is always less than a sec-
ond (for a MATLAB-based ; more customised coding can likely
reduce this by an order of magnitude), being consistent with
the typical sampling time of a full-scale WEC (see, for instance,
[16]). Note that real-time application of the proposed controller
can be effectively performed in a receding-horizon fashion, by
directly following the moment-based method described in [32,
Section IV] (see also Remark 4).

The performance assessment of the presented moment-
based strategy initially considers the case of regular waves, tak-
ing into consideration both state and input constraints. We
remind the reader that, as discussed in Section 3.2, the con-
sidering motion constraints is required due to the fact that
the unconstrained energy-maximising optimal solution often
requires unrealistic values for the physical variables of the WEC
system [30]. Constraining the motion of the device, however,
can consequently lead to a decrease in the total absorbed energy.
This motivates us to analyse the effect of enforcing the set of
state and input constraints, de�ned in Section 3.2, in terms of
total power absorbed by the WEC farm presented in 2, when
using the moment-based strategy proposed in this paper. In
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FIGURE 5 Power absorption ratio Rp for different wave period T , where
the displacement of the device (left column) and control input are constrained
following Equations (39) and (40), respectively. Each row of the �gure
represents a different wave height H

particular, we propose the de�nition of a power absorption ratio
as a function of the constrained variable (i.e. motion variable or
control input): Let "opt

unc and � opt
unc be the vectors containing the

displacements and control forces for each device in the WEC
array under unconstrained optimal conditions, for a particular
wave excitation force �e .

Then, we consider the following power absorption ratio as a
performance indicator:

RP =
� con,RA�C

T
� unc

T
, (38)

where � con,RA�C

T is the total power absorption for a regular wave
of period T with either displacement (� con,RA ) or control force
(� con,RC ) constrained to

Xmax = RA max �"unc
T �, RA 	 [0, 1], (39)

Umax = RC max �� unc
T �, RC 	 [0, 1]. (40)

Figure 5 illustrates the results obtained for RP with varying
wave period T , and both displacement and control force con-
straint factors RA (left column) and RC (right column), respec-
tively. Furthermore, the results presented herein are for three
different wave heights, i.e. H 	 �3 m. A key element to high-

light from Figure 5 is that the proposed moment-based strat-
egy is able to maintain a constant performance with respect
to H , giving extremely similar power absorption ratio results
for the full set of analysed wave heights. Focusing on the left
column of Figure 5, where the displacement of the device
is constrained following Equation (39), it is noteworthy that
with a constraint of 408 of the optimal unconstrained motion
the energy-maximising moment-based strategy is capable of
extracting �80% of the unconstrained optimal result for the
totality of the analysed periods, being almost 908 for some
values of T . Similar behaviour can be appreciated in the right
column of Figure 5, where now the maximum PTO force is
constrained within the optimal energy-maximising control com-
putation, as in Equation (40). Note that the deterioration in
power performance becomes higher in the case in which the
PTO force (control input) is constrained, while a milder effect
can be appreciated in the case of displacement constraints.
We note that this is consistent with previous results, such as
those reported in [7] (simpli�ed theoretical analysis) and [12,
13] (numerical assessment).

Completing the results for regular excitation, Figure 6 illus-
trates the WEC array motions under optimally controlled con-
ditions (left column), along with each corresponding moment-
based energy-maximising control laws (right column). The input
wave is considered to have a wave height H = 2 m and a period
T = 8 s. The state and input constraints, for each device com-
posing the array, are set as follows:

9 Maximum allowed displacement Xmax = 2 m;
9 Maximum allowed velocity Vmax = 2 m/s;
9 Maximum control force Umax = 1 × 106 N.

More precisely, the left column of Figure 6 shows displacement
(solid black), velocity (dashed black) and wave excitation force
input (dotted grey), for each device composing the array, from
device 1 (�rst row) to device 5 (last row). The constraint limits
for displacement and velocity are denoted with a dash-dotted
red line.

We note that there are some key features that can be appreci-
ated in the left column of Figure 6, which we detail in the follow-
ing. To begin with, it is straightforward to notice that the state
constraints are being consistently respected for the totality of
the devices composing the WEC array, illustrating the capability
of the moment-based strategy to maximise energy absorption
while respecting the physical limitations of each device. More-
over, we note that even in this fully constrained case, the velocity
of the device under optimal control conditions remains in-phase
with the wave excitation force, agreeing with the well-known
theoretical results for unconstrained energy-maximisation of
(single) WECs [30]. The right column of Figure 6 presents the
control inputs for each device computed with the moment-
based strategy (solid black), used to elicit each corresponding
motion results, along with each wave excitation force (dotted
grey). Once again, it can be appreciated that the PTO force
constraints (dash-dotted red) are being respected consistently,
showing the ability of the strategy to handle both state and input
constraints simultaneously. Finally, we also note that the optimal










