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1 Introduction

This work presents a preconditioned conjugate gradient based resolution strat-
egy for a recently developed numerical scheme for the coupling of three-
dimensional and one-dimensional elliptic equations (3D-1D coupling) [3]. Cou-
pled problems with such dimensionality gap arise, in particular, when small
tubular inclusions embedded in a much wider domain are dimensionally re-
duced to 1D manifolds for computational efficiency. This allows to avoid the
complexity related to building a three-dimensional grid within the inclusions.
Examples of applications include the description of biological tissues [18,13],
roots-soil interaction [20,12], fiber-reinforced materials [22,16]. In geological
reservoir simulations [10,9,6], small natural inclusions into a porous matrix,
as well as artificial wells, can be modeled as one dimensional manifolds in
a much larger computational domain. Such inclusions might have a relevant
impact on flow properties as they can be preferential paths for the flow. Fur-
ther, due to the uncertainty in the data, the stochastic nature of underground
flow simulation requires repeated simulations for the application of uncertainty
quantification tools [19] to obtain reliable probability distributions of the quan-
tities of interest. Therefore methods robust to geometrical complexity, strongly
efficient and scalable on parallel computing architectures are often mandatory
in this field.

The mathematical treatment of the coupling between a 3D and a 1D prob-
lem is non trivial, as no bounded trace operator is defined when the dimension-
ality gap between the interested manifolds is higher than one. In [7] suitable
weighed Sobolev spaces were introduced, thanks to which a bounded trace op-
erator was defined and the well-posedness of the problem was worked out by
means of the Banach-Nečas-Babuška theorem [8]. Other approaches rely on the
use of regularizing techniques [23] or lifting strategies [14]. In [15] a topological
model reduction is employed and averaging operators are introduced leading to
a well posed 3D-1D coupled problem. Problems with singular sources on lines
are also studied in [11], where an approach based on the splitting of the solu-
tion in a low regularity part and a regular correction is analysed. The present
work is based on a re-formulation of the original 3D-3D problem into properly
defined functional spaces, thus paving the way for a well posed formulation
of the reduced 3D-1D problem [3]. The numerical resolution is further ob-
tained through a PDE-constrained optimization based approach [4,5,1,2], in
which problems in the 3D bulk domain and in the 1D inclusions are decoupled
using a three-field based domain decomposition method. A cost functional,
expressing the error in the fulfillment of interface conditions, is minimized to
restore the coupling. The discrete problem is re-written as an unconstrained
optimization problem and a conjugate gradient scheme is proposed for its nu-
merical resolution. This allows to treat efficiently large scale problems. The
manuscript is organized as follows: the problem of interest is briefly recalled
in Section 2, along with its re-formulation as a PDE-constrained optimization
problem. The corresponding discrete version is described in Section 3, whereas
the novel preconditioned conjugate gradient based resolution strategy is pre-
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sented in Section 4. Three numerical tests are provided in Section 5, and some
conclusions are proposed in Section 6.

2 Notation and problem formulation

We briefly recall here the derivation of the reduced 3D-1D coupled problem
from the original equi-dimensional formulation, referring to [3] for a more
comprehensive discussion.

Let us consider a three dimensional convex domain Ω with a single cylin-
drical inclusion Σ ⊂ R3 with centreline Λ = {λ(s), s ∈ (0, S)}, see Figure 1.
We denote by Σ(s) the transverse section of Σ at s ∈ [0, S] of radius R and by
Γ (s) its boundary. We suppose that R� diam(Ω) and that R� L, where L is
the longitudinal length of the inclusion. The lateral surface of the whole cylin-
der is Γ , whereas Σ0 = Σ(0) and ΣS = Σ(S) are the two extreme sections.
Let us set D = Ω \Σ the domain without the cylindrical inclusion and let us
denote by ∂D = ∂Ω ∪ {Γ ∪Σ0 ∪ΣS} its boundary, being ∂Ω the boundary
of Ω. We assume that each section, Σ0 or ΣS is either part of the boundary
∂Ω, either inside Ω. In case Σ0 or ΣS is inside Ω, homogeneous Neumann
boundary conditions are enforced on the section. For simplicity of exposition
we assume here that Σ0 and ΣS lie on ∂Ω, and thus we introduce the symbol
∂De = ∂Ω \{Σ0 ∪ΣS} to denote the external boundary of domain D. We are
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interested in the following problem in Ω:

−∇ · (K∇u) = f in D (1)

−∇ · (K̃∇ũ) = g in Σ (2)
u = 0 on ∂De (3)
u|Γ = ψ on Γ (4)
K∇u · n = φ on Γ (5)
ũ = 0 on Σ0 ∪ΣS (6)
ũ|Γ = ψ on Γ (7)

K̃∇ũ · ñ = −φ on Γ (8)

where u and ũ are the unknowns related to domains D and Σ, respectively, n
and ñ are unit normal vectors to Γ outward pointing from D and Σ, respec-
tively, K and K̃ are positive scalars and f and g are source terms. Homoge-
neous Dirichlet boundary conditions are enforced on Σ0 and ΣS , the extension
to other cases being straightforward. Equations (4),(7) and (5),(8), namely the
pressure continuity and the flux conservation conditions on the interface Γ ,
could be written as u|Γ = ũ|Γ and K∇u = −K̃∇ũ · ñ. Nevertheless the equa-
tions can be split, as shown above, by introducing the auxiliary variables φ and
ψ, in view of the application of a three-field domain decomposition approach.

As mentioned, when R is much smaller than the domain size and than the
longitudinal length of the inclusion, it can be computationally convenient to
recast the previous problem in a 3D-1D coupled problem, assuming that the
variations of ũ on the cross sections of the cylinder can be considered negligible,
as well as the variations of ψ on Γ (s). In order to derive a well posed 3D-1D
coupled problem, we introduce the following function spaces:

H1
0 (D) =

{
v ∈ H1(D) : v|∂De = 0

}
,

H1
0 (Σ) =

{
v ∈ H1(Σ) : v|Σ0

= v|ΣS = 0
}
,

H1
0 (Λ) =

{
v ∈ H1(Λ) : v(0) = v(S) = 0

}
,

the trace operator γ
Γ

: H1(D) ∪H1(Σ)→ H
1
2 (Γ ) s.t.

γ
Γ
v = v|Γ ∀v ∈ H

1(D) ∪H1(Σ) (9)

and the two extension operators E
Σ

: H1(Λ) → H1(Σ) and E
Γ

: H1(Λ) →
H

1
2 (Γ ) such that, for any v̂ ∈ H1

0 (Λ), E
Σ

(v̂) is the uniform extension of the
point-wise value v̂(s), s ∈ [0, S], to Σ(s) and E

Γ
(v̂) is the uniform extension

of v̂(s) to Γ (s). Let us observe that E
Γ

= γ
Γ
◦ E

Σ
. Let us further consider the

spaces:

V̂ = H1
0 (Λ),

Ṽ = {v ∈ H1
0 (Σ) : v = E

Σ
v̂, v̂ ∈ V̂ },

HΓ = {v ∈ H 1
2 (Γ ) : v = E

Γ
v̂, v̂ ∈ V̂ },

VD =
{
v ∈ H1

0 (D) : γ
Γ
v ∈ HΓ

}
.
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We can observe that functions in Ṽ are the extension to the whole domain
Σ of functions defined on the centreline Λ. Similarly functions in HΓ are the
extension on Γ of functions in V̂ or, equivalently, traces on Γ of elements in
Ṽ . The space VD contains functions whose trace on Γ belongs to HΓ .

Denoting by (·, ·)? the L2-scalar product on a generic domain ? and indi-
cating with X ′ the dual of a generic space X, we can write a well posed weak
formulation of problem (1)-(8) in the above function spaces as follows: find
(u, ũ) ∈ VD × Ṽ , φ ∈ HΓ ′ and ψ ∈ HΓ such that:

(K∇u,∇v)D − 〈φ, γΓ v〉HΓ ′,HΓ = (f, v)D ∀v ∈ VD, φ ∈ HΓ
′

(10)

(K̃∇ũ,∇ṽ)Σ + 〈φ, γ
Γ
ṽ〉HΓ ′,HΓ = (g, ṽ)Σ ∀ṽ ∈ Ṽ , φ ∈ HΓ ′ (11)

〈γ
Γ
u− ψ, η〉HΓ ,HΓ ′ = 0 ∀η ∈ HΓ ′, ψ ∈ HΓ (12)

〈γ
Γ
ũ− ψ, η〉HΓ ,HΓ ′ = 0 ∀η ∈ HΓ ′, ψ ∈ HΓ (13)

where φ is the unknown flux through Γ and ψ represents the value of the
solution on Γ . We are now interested in solving this problem, which has the
advantage that it can be easily recast in a 3D-1D reduced problem while still
working with a well posed trace operator γ

Γ
(·) from a three-dimensional to a

two dimensional manifold. Recalling that:

〈φ, γ
Γ
v〉HΓ ′,HΓ =

∫ S

0

(∫
Γ (s)

φ γ
Γ
v dl

)
ds ∀v ∈ VD

we have, denoting by |Γ (s)| the perimeter of the section at s ∈ [0, S] and by
φ(s) the mean value of φ on Γ (s), that

〈φ, γ
Γ
v〉HΓ ′,HΓ =

∫ S

0

|Γ (s)|φ(s)v̌(s) ds =
〈
|Γ |φ, v̌

〉
V̂ ′,V̂

.

Function v̌ ∈ V̂ is introduced s.t. given v ∈ VD for all s ∈ [0, S] we have
by definition γ

Γ
v = E

Γ
v̌ = v̌(s); thus,

∫
Γ (s)

φ γ
Γ
v dl = v̌(s)

∫
Γ (s)

φ dl =

v̌(s)|Γ (s)|φ(s). Proceeding in a similar way we can rewrite equations (12) and
(13) as

〈γ
Γ
u− ψ, η〉HΓ ,HΓ ′ =

〈
|Γ |(ǔ− ψ̂), η

〉
V̂ ,V̂ ′

= 0,

〈γ
Γ
ũ− ψ, η〉HΓ ,HΓ ′ =

〈
|Γ |(û− ψ̂), η

〉
V̂ ,V̂ ′

= 0

where ǔ, ψ̂ ∈ V̂ are such that γ
Γ
u = E

Γ
ǔ, ψ = E

Γ
ψ̂ and γ

Γ
ũ = γ

Γ
E
Σ
û = E

Γ
û,

as ũ ∈ Ṽ . Concerning the problem in Σ:

(K̃∇ũ,∇ṽ)Σ =

∫
Σ

K̃∇ũ∇ṽ dσ =

∫ S

0

K̃|Σ(s)|
dû

ds

dv̂

ds
ds,
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where û, v̂ ∈ V̂ are such that ũ = E
Σ
û, ṽ = E

Σ
v̂ and |Σ(s)| is the section area

at s ∈ [0, S].
We can thus re-write the limit problem (10)-(13) as a reduced 3D-1D cou-

pled problem: Find (u, û) ∈ VD × V̂ , φ ∈ V̂ ′ and ψ̂ ∈ V̂ such that:

(K∇u,∇v)D −
〈
|Γ |φ, v̌

〉
V̂ ′,V̂

= (f, v)D ∀v ∈ VD, v̌ ∈ V̂ : γ
Γ
v = E

Γ
v̌ (14)(

K̃|Σ|dû
ds
,
dv̂

ds

)
Λ

+
〈
|Γ |φ, v̂

〉
V̂ ′,V̂

= (|Σ|g, v̂)Λ ∀v̂ ∈ V̂ (15)〈
|Γ |(ǔ− ψ̂), η

〉
V̂ ′,V̂

= 0 γ
Γ
u = EΓ ǔ, ∀η ∈ V̂ ′ (16)〈

|Γ |(û− ψ̂), η
〉
V̂ ′,V̂

= 0 ∀η ∈ V̂ ′ (17)

with g(s) = 1
|Σ(s)|

∫
Σ(s)

g dσ, for a sufficiently regular g.
Problem (14)-(17) can be conveniently stated as a PDE-constrained opti-

mization problem, which yields a discrete problem that can be efficiently solved
on independent meshes for the 3D and 1D domains through a gradient based
iterative solver. At this end, let us introduce the functional J : V̂ ′ × V̂ → R:

J(φ, ψ̂) =
1

2

(
||γ

Γ
u(φ, ψ̂)− ψ||2HΓ + ||γ

Γ
ũ(φ, ψ̂)− ψ||2HΓ

)
=

1

2

(
||γ

Γ
u(φ, ψ̂)− E

Γ
ψ̂||2HΓ + ||γ

Γ
E
Σ
û(φ, ψ̂)− E

Γ
ψ̂||2HΓ

)
(18)

expressing the error in the fulfillment of conditions (16)-(17). Equations (14)-
(15) are slightly modified as follows:

(K∇u,∇v)D + α(|Γ |ǔ, v̌)Λ −
〈
|Γ |φ, v̌

〉
V̂ ′,V̂

= (f, v)D + α(|Γ |ψ̂, v̌)Λ (19)
∀v ∈ VD, v̌ ∈ V̂ : γ

Γ
v = E

Γ
v̌,(

K̃|Σ|
dû

ds
,
dv̂

ds

)
Λ

+ α̂(|Γ |û, v̂)Λ +
〈
|Γ |φ, v̂

〉
V̂ ′,V̂

= (|Σ|g, v̂)Λ (20)

+ α̂(|Γ |ψ̂, v̂)Λ, ∀v̂ ∈ V̂ .

where the consistent corrections depending from the parameters α, α̂ > 0 are
introduced in order to guarantee the well posedness of the problems indepen-
dently written on the various domains.

Problem (14)-(17) then becomes:

min
(φ∈V̂ ′,ψ̂∈V̂ )

J(φ, ψ̂) subject to (19)-(20). (21)

3 Matrix formulation

Let us now derive the discrete counterpart of problem (21), and thus, we ex-
tend the domain D to the whole Ω and we introduce a tetrahedral mesh T of
Ω, and linear Lagrangian finite element basis functions {ϕk}Nk=1 on the mesh
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Fig. 2 Four segments intersecting at one endpoint q

T . We will now take into account the more general case where I segments
are embedded in Ω. Inclusions with intersecting or branching centrelines are
allowed. Figure 2 depicts the case of two intersecting inclusions, whose cen-
trelines meet at a point q. We assume that intersections are such that the
intersection volume, marked in red in Figure 2, is small compared to inclu-
sion lengths. Intersecting or branching centrelines are split into sub-segments,
denoted by Λ1,...,4 in the figure, meeting at one of their end-points and con-
ditions of continuity and flux conservation are enforced at each intersection
point q. We build three (possibly) different one-dimensional meshes on each
segment Λi, i = 1 . . . , I, and we denote them by T̂i, τφi and τψi . These meshes
are independent from each other and from the three-dimensional grid T . We
then introduce on such meshes the following basis functions: {ϕ̂i,k}N̂ik=1 on T̂i,
{θi,k}

Nφi
k=1 on τφi and {ηi,k}

Nψi
k=1 on τψi . We have

U =

N∑
k=1

Ukϕk, Ûi =

N̂i∑
k=1

Ûi,kϕ̂i,k, Φi =

Nφi∑
k=1

Φi,kθi,k, Ψi =

Nψi∑
k=1

Ψi,kηi,k

representing the discrete versions of variable u in Ω, and ûi, φi, ψ̂i on each
segment Λi, i = 1, . . . , I. Further, replacing the definitions of the discrete vari-
ables into the constraint equations, we collect the integrals of basis functions
into matrices as follows:

A ∈ RN×N s.t. (A)kl = (K∇ϕk,∇ϕl)Ω + α

I∑
i=1

(
|Γ (si)|ϕk|Λi , ϕl|Λi

)
Λi
,

Âi ∈ RN̂i×N̂i s.t. (Âi)kl =

(
K̃i|Σ(si)|

dϕ̂i,k
ds

,
dϕ̂i,l
ds

)
Λi

+ α̂ (|Γ (si)|ϕ̂i,k, ϕ̂i,l)Λi ,
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Bi ∈ RN×N
φ
i s.t. (Bi)kl =

(
|Γ (si)|ϕk|Λi , θi,l

)
Λi
,

B̂i ∈ RN̂i×N
φ
i s.t. (B̂i)kl = (|Γ (si)|ϕ̂i,k, θi,l)Λi ,

Cα
i ∈ RN×N

ψ
i s.t. (Cαi )kl = α

(
|Γ (si)|ϕk|Λi , ηi,l

)
Λi
,

Ĉα
i ∈ RN̂i×N

ψ
i s.t. (Ĉi

α
)kl = α̂ (|Γ (si)|ϕ̂i,k, ηi,l)Λi

and into the following vectors:

f ∈ RN s.t. fk = (f, ϕk)Ω , gi ∈ RN̂i s.t. (gi)k =
(
|Σ(si)|g, ϕ̂i,k

)
Λi
.

Matrices relative to the various segments Λi, i = 1, . . . , I are grouped together,
forming:

B = [B1,B2, ...,BI ] ∈ RN×N
φ

, B̂ = diag
(
B̂1, ..., B̂I

)
∈ RN̂×N

φ

,

Cα = [Cα
1 ,C

α
2 , ...,C

α
I ] ∈ RN×N

ψ

, Ĉα = diag
(
Ĉα

1 , ..., Ĉ
α
I

)
∈ RN̂×N

ψ

,

being N̂ =
∑I
i=1 N̂i, N

ψ =
∑I
i=1N

ψ
i and Nφ =

∑I
i=1 Nφ

i . Matrices Âi are
grouped as follows, forming matrix Â

Â =

[
diag

(
Â1, ..., ÂI

)
QT

Q 0

]
,

where matrix Q simply equates the DOFs placed at the intersections among
segments. We can thus write

AU −BΦ−CαΨ = f, (22)

ÂÛ + B̂Φ− ĈαΨ = g (23)

with

Û =
[
ÛT1 , ..., Û

T
I

]T
∈ RN̂ ; g = [gT1 , g

T
2 , ..., g

T
I ]T ∈ RN̂ ,

Φ =
[
ΦT1 , ..., Φ

T
I
]T ∈ RN

φ

; Ψ =
[
ΨT1 , ..., Ψ

T
I
]T ∈ RN

ψ

,

and, finally setting W = (U, Û),

A =

[
A 0

0 Â

]
, B =

[
B

−B̂

]
, Cα =

[
Cα

Ĉα

]
, F =

[
f
g

]
, (24)

the discrete constraint equations are written as:

AW −BΦ− CαΨ = F . (25)
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Replacing now the definitions of the discrete variables into the cost func-
tional and replacing the norms in the functional with L2 norms, we can collect
the integrals of basis functions into the following matrices

Gi ∈ RN×N s.t. (Gi)kl =
(
ϕk|Λi

, ϕl|Λi

)
Λi
,

Ĝi ∈ RN̂i×N̂i s.t. (Ĝi)kl = (ϕ̂i,k, ϕ̂i,l)Λi ,

Gψi ∈ RN
ψ
i ×N

ψ
i s.t. (Gψi )kl = (ηi,k, ηi,l)Λi ,

Ci ∈ RN×N
ψ
i s.t. (Ci)kl =

(
ϕk|Λi

, ηi,l

)
Λi
,

Ĉi ∈ RN̂i×N
ψ
i s.t. (Ĉi)kl = (ϕ̂i,k, ηi,l)Λi

and

G =

I∑
i=1

Gi ∈ RN×N , Ĝ = diag
(
ĜT

1 , ..., Ĝ
T
I

)
∈ RN̂×N̂ , G =

[
G 0

0 Ĝ

]
(26)

Gψ = diag
(
Gψ1 , ...,G

ψ
I

)
∈ RN

ψ×Nψ ,

C = [C1,C2, ...,CI ] ∈ RN×N
ψ

, Ĉ = diag
(
Ĉ1, ..., ĈI

)
∈ RN̂×N

ψ

, C =

[
C

Ĉ

]
,

thus deriving the discrete version of the functional, denoted by J̃ :

J̃ =
1

2

(
UTGU − UTCΨ − ΨTCTU + ÛT ĜÛ − ÛT ĈΨ − ΨT ĈT Û + 2ΨTGψΨ

)
=

=
1

2

(
WTGW −WTCΨ − ΨTCTW + 2ΨTGψΨ

)
. (27)

The discrete formulation of problem (21) thus is:

min
(Φ,Ψ)

J̃(Φ, Ψ) subject to (25). (28)

4 Application of preconditioned conjugate gradient solver

The resolution of the previous problem can be efficiently performed via a
gradient based method, see [17]. By formally replacingW = A−1(BΦ+CαΨ+
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F) in the functional (27), we obtain

J?(Φ, Ψ) =
1

2

(
(A−1BΦ+A−1CαΨ +A−1F)TG(A−1BΦ+A−1CαΨ +A−1F)+

− (A−1BΦ+A−1CαΨ +A−1F)TCΨ+

− ΨTCT (A−1BΦ+A−1CαΨ +A−1F)
)

=

=
1

2
[ΦT ΨT ]


BTA−TGA−1B BTA−TGA−1Cα+

−BTA−TC

(Cα)TA−TGA−1B+

−CTA−1B

(Cα)TA−TGA−1Cα+

−CTA−TCα+
−(Cα)TA−1C+2Gψ



Φ

Ψ

+

+ FT
[
A−TGA−1B A−TGA−1Cα −A−TC

] [Φ
Ψ

]
+

+
1

2

(
FTA−TGA−1F

)
.

If we set X = [ΦT , ΨT ]T , we can rewrite J? in a compact form as

J?(X ) =
1

2

(
X TMX + 2dTX + q

)
, (29)

with

M =


BTA−TGA−1B BTA−TGA−1Cα −BTA−TC

(Cα)TA−TGA−1B+

−CTA−1B
(Cα)TA−TGA−1Cα−CTA−TCα+

−(Cα)TA−1C+2Gψ

 (30)

dT = FT
[
A−TGA−1B A−TGA−1Cα −A−TC

]
, (31)

q = FTA−TGA−1F . (32)

Matrix M is symmetric positive definite [3], as it follows from the structure
of functional (27) and from the equivalence of this formulation with the well
posed problem (28). The minimum of (29) is given by condition

∇J? = MX + d = 0. (33)

It is possible to define a preconditioner P for the resolution of system
MX + d = 0, such that P is an approximation of M that can be easily
computed. We set:

P =

[
B̂T (Â

−T
)∗Ĝ(Â−1)∗B̂ 0
0 2Gψ

]
(34)
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Algorithm 1: Preconditioned conjugate gradient method for MX +
d = 0
1 Guess X0 = [ΦT0 , Ψ

T
0 ]T ;

2 r0 =MX0 + d;
3 solve Pz0 = r0;
4 set δX0 = −z0 and k = 0;
5 while ||rk||||d|| > toll do

6 ζk =
rTk zk

δXTk MδXk
;

7 Xk+1 = Xk + ζkδXk;
8 rk+1 = rk + ζkMδXk;
9 solve Pzk+1 = rk+1;

10 βk+1 =
rTk+1zk+1

rTk zk
;

11 δXk+1 = −zk+1 + βk+1δXk;
12 k = k + 1;
13 end

where (Â−1)∗ is an approximation of the inverse of Â. Matrix P is thus ob-
tained from M setting to zero the off-diagonal blocks and keeping, in the 1-1
block, only the part depending from the 1D matrix Â and in the 2-2 block only
the term 2Gψ . Matrix P can be computed assembling terms which are inde-
pendently computed on each inclusion, as the inverse of matrix Â is approx-
imated inverting the stiffness matrix related to each segment independently,
i.e. (Â−1)∗ = diag(Â−11 , . . . , Â−1I ), and also the Gψ-term can be computed
assembling blocks related to each 1D domain. Thus the preconditioning matrix
has a block diagonal structure, each block related to a 1D domain. We remark
that (Â−1)∗ coincides with Â−1 for disjoint segments. The performances of
this preconditioner are shown in Section 5 for the last two, more complex,
considered configurations.

The minimization of the unconstrained problem (29) can be performed
via a conjugate gradient method, as reported in Algorithm 1. Let us observe
that the application of matrix M to a vector, say δX , does not involve the
explicit computation of matrixM and of the inverse matrix A−1 . Indeed the
quantity MδX , whose computation is required several times in Algorithm 1,
can be performed as:

MδX =

[
BT δP

(Cα)T δP − CT δW + 2GψδΨ

]
where δP is obtained as the solution of the system

AT δP = GδW − CδΨ,

which, in virtue of the structure of matrix A, requires the resolution of inde-
pendent sub-problems on each of the 1D segments and on the 3D domain.
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5 Numerical results

In this section we propose three numerical tests to show the applicability
and the performances of the proposed conjugate gradient solver for the op-
timization formulation of coupled 3D-1D problems. The first test proposes a
comparison between the solution of a fully 3D-3D simulation on a conforming
mesh and the solution of the corresponding reduced 3D-1D problem with the
proposed approach. The quality of the solution is evaluated in terms of total
flux conservation. The second test takes into account the problem of the com-
putation of the equivalent permeability of a porous medium when crossed by
a set of conductive small channels. Finally, the third test shows the potential
of the approach in dealing with extremely complex configurations, considering
a set of 1000 possibly intersecting segments embedded in a porous matrix.

Simulations are performed using linear Lagrangian finite elements on tetra-
hedral meshes for the 3D domain, whereas linear Lagrangian finite elements
on equally spaced meshes are used on each segment Λi i = 1, ...I for the un-
knowns Û and Ψ . Piecewise constant basis functions on equally spaced nodes
are instead used for Φ on each segment. As mentioned, one of the key aspects
of the proposed approach lies in the possibility of de-coupling the 3D problem
from the 1D problems on the inclusions. Also the meshes can be independently
generated in the 3D domain and on the 1D segments, such that standard mesh
generator can be used. For the generation of the tetrahedral mesh of the 3D
domain the software TetGen [21] is used. For simplicity, mesh refinement is de-
noted by means of a unique parameter h, representing the maximum diameter
of the tetrahedra for the 3D mesh of Ω. The refinement level of the 1D meshes
is related to h as follows: called N?

i the number of intersection points between
the faces of the tetrahedra of the 3D mesh and segment Λi, we build on Λi a
mesh made of N?

i equally spaced nodes for variable Û and 1
2N

?
i equally spaced

nodes for variables Ψ and Φ. Clearly different refinement levels could be chosen
on each segment and for each 1D unknown. Such analysis, however, is out of
the scope of the present work; the interested reader can refer to [3] for more
detail on this issue. Parameters α and α̂ are set to one for all the simulations.
Any other strictly positive value can be used, also with α 6= α̂, as long as the
correction terms remain non-negligible with respect to the expected order of
magnitude of the solution.

5.1 Problem 1: comparison with a 3D-3D simulation

The first example takes into account a simple setting, with a single inclusion
lying in the interior of a cubic domain. A comparison is proposed between the
solution obtained solving the equi-dimensional 3D-3D problem via a conform-
ing mesh, and the solution of the reduced 3D-1D problem on a non-conforming
mesh via the proposed approach. In particular, for this numerical example, we
consider a non-preconditioned scheme, solving the problem up to a relative
residual of 10−6. Let us consider a cube of edge length l = 2 whose barycentre
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Fig. 3 Problem 1 - Coarse mesh and solution on a plane containing the centreline of the
inclusion for equi-dimensional problem

Fig. 4 Problem 1 - Coarse mesh and solution on a plane containing the centreline of the
inclusion for the 3D-1D reduced problem

Table 1 Problem 1 - Comparison with the 3D-3D case: number of DOFs and fluxes across
the faces

h = 1.0 · 10−1 h = 4.6 · 10−2

3D-1D 3D-3D 3D-1D 3D-3D
N 2998 11295 26109 36343

N̂ 37 − 87 −
σ1 (outflow) 2.0117 2.0112 2.0116 2.0108

σ2 8.60 · 10−7 −2.03 · 10−6 −1.06 · 10−6 1.15 · 10−6

σ3 −1.68 · 10−5 4.80 · 10−6 1.10 · 10−7 7.28 · 10−7

σ4 2.81 · 10−6 −2.27 · 10−6 −4.21 · 10−7 −2.81 · 10−6

σ5 −4.14 · 10−6 −6.97 · 10−6 −2.78 · 10−6 −1.26 · 10−6

σ6 (inflow) −2.0120 −2.0107 −2.0116 −2.0109
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is located at the origin of a reference system xyz, and a segment Λ lying on
the z-axis and going from z = −0.8 to z = 0.8. This segment is supposed to be
the centreline of a cylindrical channel of radius Ř = 10−2 and transmissivity
K̃ = 102, while in the cube we consider a permeability coefficient K = 1. Let
us impose homogeneous Neumann conditions on all the lateral faces of the
cube, and Dirichlet boundary conditions on the top and bottom faces, respec-
tively equal to 1 and 0. Homogeneous Neumann conditions are also imposed
at segment endpoints lying in the interior of the domain.

In the equi-dimensional setting, the cylindrical inclusion is approximated
by a prism with 16 faces and the mesh is conforming at the interface between
the inclusion and the outer domain. The resulting mesh is thus refined towards
the inclusion, in order to match the edge-size of the elements on the interfaces
as shown in Figure 3, where such adapted mesh is shown by its intersection
with the plane containing the centreline of the inclusion and normal to the x-
axis. For the 3D-1D problem, instead, the inclusion is reduced to its centreline,
which arbitrarily crosses the elements of the 3D mesh, see Figure 4. Figures 3-4
also provide a plot of the solution on the same plane.

Let us denote by σi = −
∫
∂Ωi

K∇U · ni the amount of flux leaving the
i-th face of the 3D domain, being ni the outward pointing normal vector to
face ∂Ωi, i = 1, ..., 6. We analyze the performances of our 3D-1D reduced
model by comparing the computed fluxes with the ones obtained with the
3D-3D simulation on two different meshes for the 3D domain. The results
are collected in Table 1. A coarse mesh with h = 1 · 10−1 and a fine mesh
with h = 4.6 · 10−2 are considered. Since the mesh for the equi-dimensional
case is adapted at the interface, mesh size close to the inclusion is constrained
by the conformity requirement and not by mesh parameter h. The number
of the degrees of freedom N is also provided in Table 1 and can be used
to compare the refinement level of the meshes of the different approaches.
The reference 3D-3D solution is obtained using a direct solver, whereas the
3D-1D solution is obtained with Algorithm 1, requiring 15 iterations on the
coarse mesh and 32 iterations on the fine mesh to reach a relative residual
norm of 10−6. We can observe that the results carried out by the proposed
approach for the reduced problem are in line with the ones obtained by solving
the equi-dimensional problem. In particular, the weak approximation of the
homogeneous Neumann boundary conditions is comparable between the two
solutions and also the value of the influx and outflux is in good agreement.
Denoting by σtot := |

∑
i σi| the total flux mismatch, we obtain values of

3.48 ·10−4 on the coarse mesh and 3.00 ·10−5 on the fine mesh for the solution
of the reduced problem and values of 4.73 · 10−4 and 9.00 · 10−5 on the coarse
and fine meshes for the solution of the equi-dimensional problem.

5.2 Problem 2: computation of equivalent transmissivity

Let us consider the same cube of edge length l = 2 that was introduced
for the previous numerical example, and a set of I segments {Λi}Ii=1. In a
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first configuration, labeled Seg40 , we have I = 40 and all the segments are
parallel to the z-axis and go from z = −0.8 to z = 0.8. The location on the xy-
plane is randomly generated from a uniform distribution, with −0.8 < x, y <
0.8 (see Figure 5). As in the previous numerical example, we suppose these
segments to be the reduction to the centreline of 40 cylinders Σi of radius
Ři = 10−2 and transmissivity K̃ = 102, whereas in the cube we consider again
a permeability coefficient K = 1. A second configuration is also considered,
called Seg80 , in which 40 additional segments with random orientation and
position in space are added to the Seg40 setting. Even these segments are
supposed to be the reduction to the centreline of cylinders of radius 10−2

and transmissivity K̃ = 102. Their extremes are contained in a box with
−0.8 < x, y, z < 0.8 (see Figure 6). We compute the equivalent transmissivity
Keq of an homogenized material, resulting from the presence of the inclusions,
by the proposed gradient based scheme for the optimization approach. We
expect this material to be anisotropic as, for both settings, at least 40 segments
are all oriented in the same direction: for this reason we compare the equivalent
transmissivity in the z direction and the one along an orthogonal direction,
namely the x-direction, denoting them by Kz

eq and Kx
eq, respectively. In order

to compute Kz
eq we impose Dirichlet boundary conditions on the top and on

the bottom faces of the cube, prescribing a unitary pressure drop, whereas
we consider homogeneous Neumann conditions on the other faces. This means
that the top face will be the flux inlet face, while the bottom face will be the
outlet. To compute Kx

eq we impose, instead a unitary pressure drop between
the two faces of the cube orthogonal to the x-axis, with the inlet face at x = 1
and the outlet face at x = −1, and no flux conditions on the other faces.
In both cases we impose homogeneous Neumann conditions at all segment
endpoints. Let us denote by σout the flux leaving the cube from the outlet
face ∂Ωout, of area |∂Ωout| and outward unit normal vector nout. We thus
have

Keq =
|σout|

|∂Ωout| · 0.5
(35)

with σout = −
∫
∂Ωout K∇U · nout, being 0.5 the value of the average pressure

gradient across the cube in the flux direction.
A uniformly refined mesh with parameter h = 0.086 is used for the simula-

tions, and the resulting number of degrees of freedom for the various unknowns
is reported in Table 2. Table 2 also shows the number of iterations, relative
to the total number of DOFs Nφ + Nψ, required to reach a relative residual
norm of 10−6, for both the conjugate gradient (CGIt) and the preconditioned
conjugate gradient (PCGIt) scheme. We can observe that the preconditioner
is quite effective in reducing the number of iterations, with a reduction rang-
ing from a factor of about 3.5, for the simpler problem, where also the non
preconditioned solver shows good performances, up to a factor of 65 for the
more complex cases.

As an example, the solution obtained for the Seg80 setting on a mesh with
parameter h = 0.086 is shown in Figure 7, whereas Figures 8-9 show a section
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Table 2 Problem 2 - DOFs and CG iterations for the two considered settings

flux dir. N N̂ Nφ Nψ CGIt
(Nφ+Nψ)

PCGIt
(Nφ+Nψ)

Seg40
z-axis

4609 1924 932 972
1.16 1.79 · 10−2

x-axis 5.72 · 10−2 1.63 · 10−2

Seg80
z-axis

4609 3383 1631 1711
1.06 1.59 · 10−2

x-axis 8.79 · 10−1 1.44 · 10−2

Fig. 5 Problem 2 - Seg40 configuration

Fig. 6 Problem 2 - Seg80 configuration

of the solution on a plane orthogonal to the z-axis located at z = −0.25, for
the two settings, on the same mesh. We can see how the inclusions alter the
pattern of the solution.

The obtained results are collected in Table 3 which, in particular, reports
the amount of flux |σout| leaving the cube from the outlet face, the relative
mismatch between σout and the flux σin = −

∫
∂Ωin K∇U ·nin entering from the

inlet face, and the computed values of Kz
eq and Kx

eq. We remark that the rel-
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Fig. 7 Problem 2 - Solution on the full domain for the Seg80 setting

Fig. 8 Problem 2 - Seg40 : Solution on a section of the domain with a plane orthogonal
to the z-axis located at z = −0.25

Fig. 9 Problem 2 - Seg80 : Solution on a section of the domain with a plane orthogonal
to the z-axis located at z = −0.25
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Table 3 Problem 2 - Values of outlet flux, relative flux mismatch and Keq for the two
considered settings

flux dir. |σout|
||σout| − |σin||
|σout|

Keq

Seg40
z-axis 2.44 2.11 · 10−5 Kz

eq = 1.22

x-axis 2.00 3.64 · 10−7 Kx
eq = 1.00

Seg80
z-axis 2.55 1.60 · 10−4 Kz

eq = 1.28

x-axis 2.10 4.01 · 10−4 Kx
eq = 1.05

Fig. 10 Problem 3 - domain segments

ative mismatch
||σout| − |σin||
|σout| can be used as a proxy for solution accuracy.

Data is obtained for a mesh parameter h = 0.086. As expected, the pres-
ence of a set of parallel vessels along the flux direction leads to an equivalent
transmissivity Kz

eq higher than the permeability of the porous medium alone.
On the contrary, the value of Kx

eq remains equal to K for the Seg40 setting,
as expected given the orientation of the inclusions, whereas it is slightly in-
creased by the presence of the additional segments with random orientation in
the Seg80 configuration. We can observe that, in all cases, very small values
of relative flux mismatch are observed, in line with the values obtained for
Problem 1.

5.3 Problem 3: multiple inclusions - 1000 segments

The last proposed problem, takes into account a set of 1000 segments embed-
ded in a cubic block of porous material. As in the previous case, the cube
has edge length equal to 2, its barycentre is placed at the origin of a refer-
ence system xyz and we set a permeability of K = 1. The segments, which
are all supposed to be the reduction to the centerline of cylinders of radius
R = 10−2 and transmissivity K̃ = 102, are randomly oriented in the 3D
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Fig. 11 Problem 3 - statistics of domain segments: length distribution

0 18 36 54 72 90 108 126 144 162
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100
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Fig. 12 Problem 3 - statistics of domain segments: distribution of angle with respect to
the vertical line (deg)

Fig. 13 Problem 3 - Solution on the whole 3D domain
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Fig. 14 Problem 3 - Solution on a section of the domain with a plane orthogonal to the
z-axis located at z = −0.25

Fig. 15 Problem 3 - Solution on the coarse mesh h = 10−
2
3

Fig. 16 Problem 3 - Solution on the mean mesh h = 10−1
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Fig. 17 Problem 3 - Solution on the fine mesh h = 10−
4
3

Table 4 Problem 3 - DOFs and CG iterations

h N N̂ Nφ Nψ CGIt
(Nφ+Nψ)

PCGIt
(Nφ+Nψ)

Coarse 10−
2
3 400 14885 6695 7695 2.4 · 10−1 1.3 · 10−2

Mean 10−1 2998 28351 13426 14426 2.2 · 10−1 1.7 · 10−2

Fine 10−
4
3 26109 58736 28604 29604 2.4 · 10−1 2.1 · 10−2

Table 5 Problem 3 - fluxes data

|
∑∑∑
σi| |σout|

||σout| − |σin||
|σout|

Coarse 1.17 · 10−2 3.2482 1.02 · 10−3

Mean 3.30 · 10−3 3.6289 4.53 · 10−4

Fine 9.90 · 10−4 3.6053 6.31 · 10−5

space, as detailed in Figure 10 and Figures 11-12. A unitary pressure drop
is imposed between the top and bottom faces of the domain, all other faces
being instead insulated, as well as the extreme of the segments. Simulations
are performed on three meshes: a coarse mesh with parameter h = 10−

2
3 , an

intermediate mesh with h = 10−1 and a fine mesh with h = 10−
4
3 , as shown

in Figures 15-17. The solution obtained in the whole 3D domain using the
finest mesh is shown in Figure 13, while Figure 14 shows a section of the same
solution on a plane orthogonal to the z-axis and located at z = −0.25. The
numbers of degrees of freedom corresponding to the three considered meshes
are reported in Table 4. The table also reports the number of iterations re-
quired by the conjugate gradient scheme, relative to the number of unknowns
of the unconstrained problem, both for the non-preconditioned (CGIt) and the
preconditioned (PCGIt) cases. As in the previous example we solve the prob-
lem up to a relative residual of 10−6. We can observe that, also for this more
complex configurations and for all the considered meshes, the preconditioning
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strategy can reduce the number of required iterations of over a factor 10. The
global flux mismatch is reported in Table 5 as a proxy of solution accuracy.

6 Conclusions

A gradient based resolution scheme is here proposed for a three-field PDE-
constrained optimization approach for coupled 3D-1D problems. An equiva-
lent unconstrained formulation of the minimization problem is derived and the
application of the conjugate gradient scheme to such problem is described and
discussed along with a suitable low-cost preconditioning strategy. Numerical
examples on quite complex configurations show the applicability and effective-
ness of the approach and the good performances of the proposed preconditioner
in reducing the number of iterations of the solver.
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