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Biofuels Analysis Based on the THDI
Indicator of Sustainability
Umberto Lucia* and Giulia Grisolia

Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Torino, Italy

Energy resources, and their management, represent an open ongoing problem of our
present days. An increasing interest in the analysis of the limits of fossil fuels’ use, and their
availability, is growing in order to find solutions to the undesired impact of some anthropic
activities to the environment. So, nowadays, aThe current shift to renewable energy
resources has become a fundamental requirement. In this context, biofuels from micro-
organisms can represent a response to the requirement of reducing the environmental
impact, but also to generatinge new jobs. In this paper, the analysis of the biofuels from
micro-organisms is developed by introducing the Thermodynamic Human Development
Index (THDI). In particular, we show how its performance can be improved by using the
third-generation biofuels in the road transport sector, and how it increases by exploiting
biofuels derived frommutualistic species of somemicro-organisms. The result consists inis
affected by the fundamental role of the mutualistic behaviour of these species in order to
increase the overall sustainability.

Keywords: algae, biofuels, cyanobacteria, sustainability, human development index, thermoeconomics

1 INTRODUCTION

Since the second decade of the XIX centuryIn the 1820s, Jean Baptiste Joseph Fourier (1768–1830)
developed the analysis of the Earth’s temperature in relation to the distance from the Sun; indeed, he
conjectured that the Earth’s temperature results is greater than it should be due to the partial outflow
of the infrared radiation from the atmosphere (Fourier, 1822), today named the greenhouse effect.
This effect was experimentally proven, in 1859, by John Tyndall (1820–1893) who showed the
radiant heat trapping property of carbon dioxide (CO2) and water vapour (Moriarty and Honnery,
2011a). These studies allowed Svante August Arrhenius (1859–1927) to evaluate speculate that a
doubling of atmospheric CO2 concentrations can increase the Earth’s temperature of by around 4°C.

Even if controversy has been developed on global climate change for a long timeAlthough
controversy has surrounded the topic of global climate change, today, it is clear the effect of the
anthropogenic activities on the climate change is now clear (Arango-Miranda et al., 2018). Indeed,
industrialisedindustrialized societiesy consumes large amounts of energy, mainly generated by
using fossil fuels, both for the electric production and for the transportations sectors. The
gGreenhouse gas emissions haveis a well-established effect (Torok and Dransfield, 2017; Qiao
et al., 2019), due to the combustion processes involved in current energy systems, but, recently,
alsoRecently, however, the effect of the related wasted heat, due to human activities, has also been
considered (Flanner, 2009; Manowska and Nowrot, 2019), in order to analyzse the global warming
and the climate change.

Moreover, worldwide economic development and population growth, allow us to conjecture that
there will be an increase in the energy demands at all sectoral levels , observing that tThe world
energy consumption in 1965 and 2019 were respectively 155.69 EJ and 583.88 EJ (British Petroleum,
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2021), with a related decrease in its availability, or and there is the
a need to change the energy use and production before 2050
(Arango-Miranda et al., 2018).

Therefore, new strategies and technologies are required in
order to go effectivelyprogress towards an energetic transition,
and more sustainable and decarbonized societies (Karvonen et al.,
2017). In this context, the sustainable consumption and
production policies represent the key pointskey ways in order
to realize sustainable development, with particular regards to
environmental sustainability and greenhouse gases emissions. So,
economic and social well-being, environmental recovery and
protection, and anthropic emissions’ reduction must be better
integrated into our common practices and policies (McGlade,
2007). But, indicators are required to make and communicate
policies; they are the essential tools to assess and set policies,
collect data, and perform future projections. Indeed, indicators
are useful to inform policy-makers, scientists, and people on
current conditions, but also assist to identify adequate actions,
and assess their effectiveness (McCool and Stankey, 2004). The
need to dispose of sustainable development indicators, as the
main tool to quantify and assess the cCountries’ performances
towards sustainability, has also been highlighted also in Chapter
40 of the United Nations Action Plan Agenda 21 (United Nations
General Assembly, 1992; Strezov et al., 2016).

Thus, researchers, stakeholders, governmental panels, and
international organizations, etc. have made big significant
efforts in order to build and introduce several sustainability
indicators, even if some concerns have emerged in defining
and using them effectively them, mostly due to the fact that
sustainable development is a multi-stakeholder and
interdisciplinary process, that implies involves considering to
consider together all the different sectors and actors involved
together (Moldan and Dahl, 2007; Scerri and James, 2010;
Edmonds et al., 2017).

Many works have been developed in order to introduce and
review sustainability indicators, such as in Refs (Munda, 2005;
Böhringer and Jochem, 2007; Wilson et al., 2007; Moran et al.,
2008; Nourry, 2008; Steinberger, 2008; Fiksel et al., 2012; Evans
et al., 2015; Dong and Hauschild, 2017; Liu et al., 2017; Neri
et al., 2021), which have also referred to specific sectors, like the
energy one sector (Hacatoglu et al., 2015; Sciubba, 2019;
Gunnarsdottir et al., 2020). In the following subsection, we
will only summarizse some of them, in order to present a short
summary.

1.1 Some Indicators of Sustainability: Brief
Overview
The Index of Sustainable Economic Welfare (ISEW) was
proposed by Cobb (Cobb, 1989) as an alternative to the Gross
Domestic Product (GDP). Subsequently, this indicator was
improved by the author himself (Cobb and Cobb, 1994; Cobb
et al., 1999), expanding it also to the remaining pillars of
sustainability, by developing the Genuine Progress Indicator
(GPI). However, its main weak point has been identified in
the non-unique methodology used to calculate it (Pais et al.,
2019).

The Ecological Footprint (EF) constitutes an account-based
system of indicators, which considers the use of the Earth’s finite
resources (Lin et al., 2018), measuring the load imposed by
anthropic activities on nature. EF accounts for the productive
land, useful to support a given population in relation to its level of
consumption (Rees, 1992; Wackernagel and Rees, 1997; Moldan
et al., 2012) giving information on the anthropic impacts on the
ecosystems and biodiversity. However: it covers only the
environmental pillar of sustainability, but the methods to
calculate it are non-unified.

The Genuine Savings Indicator (GSI) measures the variations
in total broad capital stocks, year by year, and gives an indication
on how a society manages them, in order to generate streams of
well-being over time (Hamilton and Naikal, 2014; Labat and
Willebald, 2019). However, recently to date, using with a large
time series (1800–2000) related to Sweden, no one-to-one
relationship between GSI and well-being has been found
(Lindmark et al., 2018).

The Environmental Sustainability Index (ESI) is a composite
index to evaluate sustainability, which encloses 21 different
indicators (environmental, social, and economic), combined
with a finite number of variables (from two to eight) (Esty
et al., 2005). Moreover, this composite index has been
subsequently modified by adding other environmental
indicators, and human-health- related indicators, developing
the Environmental Performance Index (EPI) (Hsu et al., 2013).

Another composite index that has been developed in order to
measure the level of sustainable development of a country is the
Sustainable Society Index (SSI), which includes 22 different
indicators, classified in five main groups (personal
development, clean environment, well-balanced society,
sustainable use of resources, and sustainable world) (van de
Kerk and Manuel, 2008); these groups are not aggregated to
an overall score, due to the correlation between human and
environmental well-being (Burgass et al., 2017).

The Climate Change Performance Index (CCPI) allows us to
assess and compare the climate protection level of the countries,
that actually emit more than 90% of global energy-related carbon
dioxide emissions. The overall score is aggregated from three
main categories, which present different weights: emissions trend,
emissions level, and climate policies (Burck et al., 2014).

The Economy-wide material flow indicators are a framework
of aggregated indicators developed by Eurostat, based on
economy-wide material flow analysis. The focus of this these
indicators is the environmental pillar of sustainable development.
The same characteristic can be highlighted for the European
Environment Agency (EEA) core set indicators (Moldan and
Dahl, 2007). We can highlight that the OECD has created its own
Core Environmental Indicators (CEI), too. Moreover, in order to
measure the state of the world’s biodiversity, the Living Planet
Index (LPI) was also introduced, including data related to human
pressures on natural ecosystems, due to the consumption of
natural resources, and the consequences of pollution included.

The Well-being Index (barometer of sustainability) combines
36 indicators with other 5187 indicators ones into two indices,
which are then aggregated into one single indicator, which
measures how much human well-being of a country can be
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obtained, weighting the effect on the environment (Moldan and
Dahl, 2007).

In 2006, the Happy Planet Index (HPI) was built in order to act
as an alternative to GDP, measuring the environmental impact of
a country, in relation to the ability of its citizens to live a long and
happy life (Tausch, 2011). It is based on three variables: the lLife
eExpectancy at birth, the eEcological fFootprint, and lLife
sSatisfaction. The main concern, about HPI, is that lLife
sSatisfaction is a subjective variable to measure the well-being
(Campus and Porcu, 2010).

Another well-known indicator of sustainable development
and human well-being is the Human Development Index
(HDI), which was introduced by the United Nations
Development Programme in the earlies 1990s (UNDP Human
Development Report Office, 1990), which and has been updated
and improved during the lastin recent years (UNDP Human
Development Report Office, 2010; UNDP Human Development
Report Office, 2015; Hickel, 2020). It is a multidimensional index,
measuring the development of a country from a socio-economic
stand-point, focusing in on human well-being, by considering key
parameters of social development (Sagar and Najam, 1998;
Hickel, 2020). The main advantage, which has favoured the
spread of this indicator, has been the small number of
variables included, even if this property has been also
identified, at the same time, as its weak point. The HDI is a
composite index, measuring a country’s average achievements in
three fundamental aspects of human well-being. However, the
main criticism related to this sustainable development indicator is
that it does not consider the environmental domain.

Recently, the Thermodynamic Human Development Index
THDI has been introduced (Lucia and Grisolia, 2021a), in order
to enclose alsoalso include the environmental domain of
sustainable development into the HDI, considering the
greenhouse gases emissions by means of the fundamental
thermodynamic quantity and, the entropy generation (Lucia
et al., 2020). Indeed, by linking the first to the second law of
thermodynamics, the Gouy-Stodola theorem can be proven: this
theorem provides information about the available work lost
during any process, quantifying the irreversibility of the
process itself (Bejan, 2006).

1.2 The Need of for New Solutions to
Reduce CO2 Emissions in the Energy and
Transport Sectors
As previously highlighted, the issue of reducing CO2 emissions
due to the anthropic activities is one of the challenges of this
century. Moreover, in relation to the global climate change, two
different approaches have been suggested: mitigation (Barker
et al., 2007) and adaptation (Parry et al., 2007). Here, we don’t
do not develop any discussion on adaptation, while as we are
interested in mitigation by the use of biofuels. Mitigation actions
are based on the reduction of the CO2 and greenhouse gasses
concentrations in the atmosphere, by reducing the emissions,
increasing the storage, and introducing renewable energy sources.

Considering the transport sector, which encloses encompasses
aviation, maritime, rail, heavy-duty vehicles, and light-duty

vehicles, and passenger vehicles, it consumes about the 20% of
the total global energy produced, accounting for about 24% of the
total direct CO2 emissions (International Energy Agency, 2021).
Thus, the use of biofuels in the transport sector, and everywhere
anywhere the present technologies cannot be replaced by more
sustainable ones, like in the developing countries, can reduce their
environmental impact (Demirel, 2018b). Indeed,
decarbonisingdecarbonizing transport requires a wide range of
bio-based transport fuels (Alizadeh et al., 2020; Brown et al.,
2020), especially advanced low-carbon fuels.

In this context, algae-based biofuels represent an interesting
technology both to improve energy security and to reduce the
CO2 emissions from the transportation sector (Moheimani et al.,
2015; Allen et al., 2018). Biofuels include products derived from
biomasses, or their residues. They contain around 80% of
renewable materials constituted by biomass, obtained by
photosynthesis processes, which represent carbon sequestration
with energy storage and little low sulphursulfur content. Biofuels
can be classified in four different sets (Demirel, 2018a; Ruan et al.,
2019):

• The first generation one involves the use of agricultural
biomass products, mainly derived from food-based
biomasses (i.e., corn, sugar-cane, soybean, oil seeds,
vegetables, etc.); they present ethical consequences in
relation to the food supply chain and may not be
sustainable (Demirel, 2016), even if they represent the
first proof of response to energy security and global
warming by using sugar and lipid platforms, without the
need for new infrastructures for feedstock delivery and
biomass-to-biofuel conversion (Demirel, 2018b);

• The second generation one involves the use of non-food-
biomass (cellulose and hemicellulose) and agricultural waste
products. Nevertheless, these biofuels are not yet profitable
due to the need of for technological improvements for in
biorefinery in relation to the use of waste lignin as a
feedstock for new chemicals and products (Demirel, 2018b);

• The third generation one involves the use of micro-
organisms such as algae, microalgae, yeasts, fungi,
bacteria, and cyanobacteria: algal technology coupled
with wastewater treatment facilities and the anaerobic
digestion represent some of the present improvements of
biofuels towards a sharper sustainability;

• The fourth generation one involves the use of engineered
micro-organisms, or genetically modified living organisms,
in order to improve the production of their useful co-
products.

Nowadays, bioethanol and biodiesel are the most used biofuels
(Demirel, 2018a), even if they are mostly derived from edible
crops. This trend must be vary, due to ethical concerns and
negative consequences on land use (Indirect Land Use Change)
(Parra Paitan and Verburg, 2019). In order to reduce these
negative effects, it is important to produce biofuels in
alternative ways, and policy guiding this sector must ensure
that biomass is derived sustainably (Collotta et al., 2019). In
order to do so, biorefineries with multigeneration technologies
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are continuously improving with the development towards their
integration into the existing fuels networks. In this context,
biofuels from algae and cyanobacteria represent an important
response to the constraints for biofuels production and use
(Demirel, 2018b), such as sustainability, reduction in
greenhouse gas emissions, local food security, energy
conservation, soil, air and water protection, and land rights.
Moreover, other fundamental aspects of sustainability are
related to the biofuel productions such as human and labour
rights, but also legality, rural and social development, technology
improvements, and wastes treatments (Demirel, 2018b). Indeed,
biofuel production could cause some adverse consequences on
biological diversity through land conversion, introduction of
invasive species, soil and water consumption in agriculture,
habitat loss, and nutrient pollution. But, on the other hand,
we must also consider that society, the environment, and the
economy could benefit from a sustainable biofuels’ production
and use, if well developed.

All these topics must be taken into account in the analyses of
biofuels’ production and in their future developments.

1.3 Aim of This Paper
The aim of this paper is to analyzse a viable way to optimize the
third generation of biofuels by introducing a thermodynamic
viewpoint. Indeed, we wish to introduce in this context a new
indicator (THDI) (Lucia and Grisolia, 2021a), recently developed
just to consider both the human well-being and the
environmental impact of the human activities. In order to do
so, first we summarisesummarize the fundamental aspects of this
indicator, then we use it in the thermodynamic analysis of
biofuels, with particular regards to the possible optimizsation
of their production, based on the spontaneous behaviour of the
living beings (mutualism between different species).

Consequently, the fundamental result consists in of pointing
out how mutualism can improve the sustainability of biofuels
derived from micro-organisms.

2 MATERIALS AND METHODS

Since In 1990, the United Nations have introduced the Human
Development Index (HDI) to measure the development level of a
country, with particular regards to human well-being in relation
to: education, health, and salary conditions (Javaid et al., 2018), by
a geometric mean of three related normalizsed indices (UNDP
Human Development Report Office, 1990; United Nations
Development Program, 2020):

HDI � ����������
LEI · EI · II3

√
(1)

where:

• LEI � (LE − 20)/65 is the Life Expectancy Index, where LE is
the Life Expectancy at birth, related to the overall mortality
level of a population. It quantifies the years expected a
newborn is expected to live at present mortality rates
(World Bank Group, 2021);

• EI � 0.5 (MYSI + EYSI) is the Education Index (Saisana,
2014), withMYS/15 the Mean Years of Schooling Index and
EYSI � ESI/18 the Expected Years of Schooling Index
(United Nations Development Program, 2020);

• II � ln(0.01 GNIpc)/ln(750) is the Income Index, with GNIpc
the gross national income per capita at purchasing power
parity (PPP), with minimum and maximum values set by
the United Nations (United Nations Development Program,
2020) as 100.00 $ and 75, 000.00 $, respectively.

This indicator is considered as a measure of sustainability.
However, it represents a socio-economic approach to the analysis
of the countries, without considering their environmental impact
and their technological level. So, recently, in order to introduce
the technological level and the environmental impact into the
United Nation index HDI, we have improved it by considering
the Gouy-Stodola theorem and, consequently, the entropy
variation due to irreversibility, which is inversely proportional
to the technological level of a country and to the effects of its
technological level to the environment (Bejan, 2006; Lucia, 2013;
Lucia, 2016; Lucia and Grisolia, 2017; Grisolia et al., 2020; Lucia
et al., 2020):

T0
_Sg � T0 _mCO2sg (2)

where T0 is the environmental temperature, _Sg is the entropy
generation rate, _mCO2 is the carbon dioxide mass flow rate emitted
for obtaining the useful effect _W, and sg is the specific entropy
generation due to the process developed. Consequently, the
Thermodynamic Development Index, THDI, results (Lucia
et al., 2021a; Lucia and Grisolia, 2021a):

THDI �
�������
LEI · EI

IT

3

√
(3)

where it is possible to introduce a relation between _Sg and the II
by only one indicator (Lucia and Grisolia, 2021b):

IT � T0
_Sg

_W · GNIpc
� 0.01 · T0

_Sg
_W

· 750−II � 0.01 · ηλ
1 − ηλ

· 750−II

(4)

where ηλ � T0 _Sg/ _Exin is the second law inefficiency, with _Exin
inflow exergy rate. For simplicity we have introduced the symbol
I � ηλ/(1 − ηλ) � T0

_Sg/ _W.
The THDI expresses both the well-being and the well-

behaviour in relation to sustainability of a country. In
particular, the more the country is sustainable, the higher
more the value of THDI is high.

So, from Eq. 2, it follows that a decrease in the environmental
impact of a country could be achieved by decreasing its carbon
dioxide emissions _mCO2. In this context, biofuels can play a
fundamental role, with particular regards to biofuels produced
by micro-orgnismsorganisms. Indeed, to live, these organisms
absorb atmospheric CO2 and, by through photosynthesis, they
produce biomass, from which we can produce biofuels.
Consequently, during combustion, the biofuel emits the same
quantity of CO2 that the biomass absorbed from the atmosphere

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7946824

Lucia and Grisolia Biofuels Analysis for Sustainability

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


in the course of its growth, with a near-zero net balance.
Consequently, biofuels concur to a net reduction of the CO2

emission, with a related increase in the THDI index. So, in order
to improve their impact reduction, it is possible to
optimiseoptimize their production.

To do so, we consider that, when more species co-exist in the
same ambient, for some of them, symbiosis can occur (Willey
et al., 2013; Oulhen et al., 2016). It is the association between at
least two distinct species of living organisms (Douglas, 1994;
Paracer and Ahmadjian, 2000; Willey et al., 2013) and represents
a fundamental natural behaviour of living species for life
development and evolution (Boucher et al., 1982; Bronstein,
1994; Dimijian, 2000; De Mazancourt et al., 2005; Stanley,
2006; Peacock, 2011; Martin and Schwab, 2013; Munzi et al.,
2019). Symbiosis is a set of cooperative phenomena in biology,
with different behavioural classifications. Here, we consider the
mutualism, a symbiotic association in which each symbiont gets a
benefit (Martin and Schwab, 2013).

So, when two species of microorganisms (i.e., bacteria,
bacteria/alga, alga/alga) act together, they absorbed exergy Exin
and release useful products to obtain biofuels, bioplastics, or other
bioproducts. To develop our analysis, we consider that the
biofuels production, from photosynthetic microorganisms is
related to the biomass productivity and the amount of lipids
stored inside their cells. So, in order to evaluate the effect of a
mutualistic production of biofuels, we consider the lipid mass
production as a useful required effect required.

To do so, we consider first the lipid production of two species
separately (indicated respectively with the subscript 1 and 2), and
then we compare it with the lipid production of their symbiotic
condition. Therefore, when the two species live separately, they
release:

• The mass of useful products m1 and m2;
• The energy (m1 + m2)hf, where hf is the formation enthalpy
of the product (Demirel and Sandler, 2002; Demirel, 2010;
Grisolia et al., 2020);

• In this case, Inm � T0Sg,nm/Exin, where the subscript nm
indicates the non-mutualistic condition, while, if the species
live in a mutualistic condition, they release:

• The mass of useful products m1 + m2 + Δm, where the
amount Δm corresponds to the increase in their production
due to mutualism;

• The energy (m1 + m2 + Δm)hf;
• In this case, Im � T0Sg,m/Exin � Inm + (Inm − 1) ·Δm/(m1 +
m2) (Grisolia et al., 2020), where the subscript m indicates
the mutualistic condition.

Last, after some algebraic manipulations, the consequent effect
into the Thermodynamic Human Development Index results in:

THDIm
THDInm

�
����������������������������
1 + Inm − 1( ) Δm

Inm m1 +m2( ) + Inm − 1( ) Δm
3

√

�
��������������������������
1 + ηr Δm

1 − ηr( ) m1 +m2( ) + ηr Δm
3

√ (5)

where we have considered that:

Inm � T0 Sg
Exin

� Exin − m1 +m2( ) hf
Exin

� 1 − hf
Exin

m1 +m2( ) (6)

and also that:

m1 +m2( ) hf � ηr Exin (7)

where ηr( < 1) is the efficiency of the chemical formation reaction
of the biomass. Consequently, the ratio in Eq. 5 results always
graterproduces a result greater than 1.

3 RESULTS

In this Section, we develop some examples of the use of the
analytical results obtained in the previous Section, by considering
the production of biofuels that involves photosynthetic
microorganisms. In particular, we analyzse the results due to
their co-cultivation, exploiting their natural positive symbiotic
interactions, in order to increment their lipid productivity.

Photosynthesis is the bio-process that leads to complex
organic molecules starting from simple molecules and by
absorbing solar radiation (Andriesse and Hollestelle, 2001;
Albarrán-Zavala and Angulo-Brown, 2007). Any species
presents a metabolic pathway to live; consequently, we could
examine any single metabolic pathway to obtain numerical
evaluation. But, in Ecology and Biology, it is possible to
develop a general analysis by considering the following
chemical reaction, for plants and cyanobacteria, combining
different mass production for any species pathway (Albarrán-
Zavala and Angulo-Brown, 2007; Lucia and Grisolia, 2018):

6CO2 + 12H2O → C6H12O6 + 6H2O + 6O2 (8)

The mean efficiency value of the chemical reaction formation
of the biomass results ηr � 27.288% (Albarrán-Zavala and
Angulo-Brown, 2007).

By using the data collected in Refs (Asmare et al., 2014; Rashid
et al., 2019; Zhao et al., 2014), three different examples of
comparison for the mutualistic and non-mutualistic cultivation
can be summarizsed as follows:

• Coproduction of Scenedesmus dimorphus and Chlorella
vulgaris (Asmare et al., 2014):

• Scenedesmus dimorphus lipid mass produced in mono-
cultivation m1 � 68.15 ± 13.89 mg L−1;

• Chlorella vulgaris lipid mass produced in mono-cultivation
m2 � 11.46 ± 0.84 mg L−1;

• Mutualistic lipid production of Ettlia sp. and Chlorella sp.
m1 + m2 + Δm � 101.6 ± 15.11 mg L−1;

• Coproduction of Ettlia sp. and Chlorella sp. (Rashid et al.,
2019):

• Ettlia sp. lipid mass produced in mono-cultivation m1 �
30.3 ± 4.7 mg L−1;

• Chlorella sp. lipid mass produced in mono-cultivation m2 �
201.7 ± 8.2 mg L−1;
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• Mutualistic lipid production of Ettlia sp. and Chlorella sp.
m1 + m2 + Δm � 353.7 ± 6.0 mg L−1;

• Coproduction of Chlorella sp. and Monoraphidium sp.
(Zhao et al., 2014):

• Chlorella sp. lipid mass produced in mono-cultivation m1 �
370.6 ± 177.3 mg L−1;

• Monoraphidium sp. lipid mass produced in mono-
cultivation m2 � 95.6 ± 26.7 mg L−1;

• Mutualistic lipid production of Chlorella sp and
Monoraphidium sp. m1 + m2 + Δm � 592.6 ± 184.6 mg L−1.

These numerical evaluations allow us to stress that the
mutualism represents a possible improvement in the biofuels
production, related to the reduction of environmental impact.

Now, we consider the data for the Italian road transport,
summarizsed in the Report (Romano et al., 2021). In 2019, the
Italian road transport carbon dioxide emissions were
97.739 MtCO2. This last value represents the 23.37% of the total
national GHG emissions. Moreover, the total diesel road vehicles
CO2 emissions account for ∼ 70 % of this sector. Our analysis is
developed by considering the THDI ratio for the following two
cases:

• The carbon dioxide emissions from the use of biodiesel from
micro-organisms, related to the present conditions;

• The carbon dioxide emissions from the use of biodiesel from
micro-organisms in mutualistic conditions, related to the
present conditions, in relation to the three previous cases of
co-cultivation. In Figure 1 the results obtained are
represented.

The Figure 1 shows that the use of biofuel from microalgae
reduces the CO2 emissions, and also that the mutualistic
conditions improve this decrease. Consequently, the
mutualistic conditions result in a powerful way to improve the
sustainability of the biofuels’ use. Indeed, the values of THDI

result higher in the biofuel scenario, and, moreover, the value of
the mutualistic condition is even greater than the biofuels one.

4 DISCUSSION AND CONCLUSION

Nowadays, the present energy resources, and their management,
must be analysedanalyzed in relation to their future availability
(Moriarty and Honnery, 2011b). Indeed, recently, there has been
an increasing interest in the analysis of the limits of fossil fuels use
and their availability, but also in the ecosystem in relation to fresh
water and air pollution (Beddoe et al., 2009; Day et al., 2009), with
particular regards to (Rockström et al., 2009): climate change, rate
of biodiversity loss, nitrogen cycle and the phosphorus cycle,
stratospheric ozone depletion, ocean acidification, global
freshwater use, change in land use, atmospheric aerosol
loading, and chemical pollution. These analyses have pointed
out that human activities could have already exceeded safe limits;
indeed, in relation to climate change, atmospheric CO2 peak
levels are 420 ppm compared with the recommended threshold of
350 ppm (Moriarty and Honnery, 2011b). This implies several
challenges across multiple sectors. So, sustainable policies play a
central role in our present dayscurrent society and for the next
generations, too: policy-makers, stakeholders, and people could
should take into account the actual and future needs of social,
economic, and environmental systems. This goal can be
facilitated by adopting indicators, needed to assess progress
towards goals for sustainability (Shields et al., 2002).

As concerns sustainability indicators, it has been highlighted
that most indicator sets of sustainable development neglect some
of the fundamental aspects of sustainable development itself, or
the interlinkage among all the domains, despite their relevance in
policy-making (Moldan and Dahl, 2007).

At present, a widespread approach to overcome the limits in the
fossil fuels provisions is represented by renewable energy technologies
(Ausubel and George, 2009); indeed, some considerations have been

FIGURE 1 | The Italian case (2019 data): ratio between the THDI values in three different cases: THDIpresent, which considers the actual carbon dioxide emissions of
road transport; THDIbio, which considers the carbon dioxide emissions in the case of use of biodiesel from micro-organisms instead of the actual supply and
THDImutualistic, which considers the case of mutualistic biodiesel use.
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developed on the possibility to replace fossil fuels with non-
conventional ones, and on the possible mitigation of the global
climate change by introducing, on a large-scale of use, new non-
carbon energy sources, carbon capture and sequestration, and
geoengineering (Moriarty and Honnery, 2011b).

Then, a shift to renewable energy resources is a fundamental
requirement of our time. Just considering only the solar radiation
captured by the Earth, it is possible to understand the important
role that the renewable energy could play in the human life;
indeed, the power output from the Sun is ∼ 3.86 × 1014 W, of
which around ∼ 5.6 × 1024 J are is annually captured by the
Earth, at its top of the atmosphere, with a related power input on a
plane normal to the insulation of ∼ 1366 Wm−2.: Thethe
atmosphere, the Earth’s water, and land surfaces reflect part of
this power input into the space, but an energy of around 3.9 ×
1024 J affects the Earth’s surface (Hafele, 1981). Despite the great
amount of energy influx from the Sun, only a small fraction of it (
∼ 2% of the insulation) drives the winds in the atmosphere,
especially in the jet streams, located between 7 and 16 km of
altitude, with a speed greater than the winds near the ground
(Archer and Caldeira, 2009). But, around 6.30 × 1029 J of the wind
energy is dissipated into oceans’ wave energy (Moriarty and
Honnery, 2009).

But, this energy can be stored in the biomass obtained by
microorganisms, and it can be used in order to obtain biofuels,
which can support humans to decrease their impact on the Earth
system.

In this context, microalgae represent a possible pathway to
obtain biomass feedstock, in order to produce biofuels. This can
be linked to different characteristics of microalgae (Lucia et al.,
2021b):

1. They can provide a continuous biomass supply, due to the
non-seasonality of their harvesting;

2. They can be harvested in all kinds of water, such as: seawater,
freshwater, or wastewater, that can result in a fewerless
freshwater consumption for their harvesting and the
possibility to use areas not otherwise exploitable;

3. They have a short doubling time during their exponential
growth, usually less than 3.5 h;

4. They present a great potential yield per unit of cultivated area,
if compared to land-based crops, presenting a biofuel yield
10–102 times greater;

5. Their ability to live in mutualistic conditions.

In this paper, we have suggested to introduce the mutualism as
a possible improvement of biofuels’ production, and we have
analyzsed it by means of a recently developed thermodynamic
indicator, related to human well-being, which encloses the main
socio-economic quantities, already used in the HDI, and an
environmental related one. The introduction of a
thermodynamic quantity into this indicator, directly related to
irreversibility by the Gouy-Stodola theorem, brings to some
advantages that can be summarizsed as follows (Demirel, 2002):

• It allows us to see the unavoidable footprint of each
process;

• It allows us to consider the energy quality: it is a measure
of the useful energy wasted during a process, and the
degradation of the performance of any engineering
system;

• It allows us to introduce engineering
optimisationoptimization methods to improve the
performance of a system, which means also to takealso
taking into account the technological level of any process
considered.

We have shown that the use of biofuels derived from micro-
organisms can improve the performance of the THDI, by
reducing the GHG emissions, and this behaviour increases by
using biofuels, obtained from two positive symbiont species.
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NOMENCLATURE

Latin symbols

GNI Gross national income [$]

HDI Human development index

I Indicator suggested [W h−1]

II Income index

S Entropy production [J K−1]

T Temperature [K]

THDI Thermodynamic human development index

_W Power [W]

Greek symbols

ηλ Second law inefficiency

Subscript

0 Environment or reference

h Hour

pc Per capita

λ Lost due to irreversibility and dissipation
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