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Cross-feature Trained Machine Learning Models for
QoT-Estimation in Optical Networks

Fehmida Usmania, Ihtesham Khanb, Mehek Siddiquia, Mahnoor Khana, Muhammad Bilalb,
M Umar Masoodb, Arsalan Ahmada,*, Muhammad Shahzada, Vittorio Currib
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Abstract. The ever-increasing demand for global internet traffic, together with evolving concepts of Software-defined
network (SDN) and Elastic-optical-network (EON), not only demands the total capacity utilization of underlying
infrastructure but also demands dynamic, flexible, and transparent optical network. Generally, worst-case assumptions
are utilized to calculate the quality of transmission (QoT) with provisioning of high-margin requirements. Thus precise
estimation of the QoT for the lightpaths (LP) establishment is crucial for reducing this provisioning margins. This
article proposes and compares several data-driven Machine learning (ML) models to make an accurate calculation of
QoT before the actual establishment of LP in an unseen network. The proposed models are trained on the data acquired
from an already established LP of a completely different network. The metric considered to evaluate the QoT of LP
is the Generalized Signal-to-Noise Ratio (GSNR) which accumulates the impact of both Non-Linear Interference
(NLI) and Amplified Spontaneous Emission (ASE) noise. The dataset is generated synthetically using well tested
GNPy simulation tool. Promising results are achieved, showing that the proposed Neural network (NN) considerably
minimizes the GSNR uncertainty and consequently, the provisioning margin. Furthermore, we also analyze the impact
of cross-features and relevant features training on the proposed ML models’ performance.

Keywords: Machine learning, Quality of Transmission estimation, Generalized SNR.
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1 Introduction1

In the last decades, optical transmission systems revolutionized the telecommunication industry to2

meet the rapidly increasing global internet traffic demands. In the last few years, internet traffic3

has been growing continuously1 with the evolution of new technologies and bandwidth-intensive4

applications, such as video-on-demand, Full High Definition (FHD) or 4K, cloud computing and5

the Internet of Things (IoT). This increasing trend of global internet traffic requires the maxi-6

mum utilization of the remaining capacity of the already working network infrastructure. Around7

this direction, the fundamental key enabler technologies are coherent technology for optical trans-8

mission and DWDM for spectral usage of fiber propagation. In addition to these, the network9

dis-aggregation paves a path for the technologies such as EON and SDN. The distinctive features10

of SDN and EON offers versatile and dynamic resource provisioning in optical networks for both11

control and data plane.2, 3 EONs provide flexible spectral assignment in the data plane and boost the12

network’s capacity while lowering network cost. This adaptability results in much more complex13

LP provisioning than conventional fixed-grid wavelength-division multiplexing (WDM) networks.14

On the other hand, the SDN controller in the control plane handles the operating points of dif-15

ferent network components independently, which consequently enables the customized network16

management.17

Today’s optical networks have started evolving to partial dis-aggregation, with a full dis-18

aggregation goal eventually. The prime step towards network dis-aggregation is the consideration19

of optical-line systems (OLSs), which link the network nodes. In the current reference frame,20
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the capacity of OLS controllers to function at the optimum working point determines the QoT21

degradation.4, 5 The precise accomplishment of this working point leads to achieve lower margin22

and higher traffic rates for traffic deployment. Therefore, it is compulsory to utilize the QoT-E23

for accurate estimation of LP performance – the path computation – before its deployment. In24

the current context, QoT is effectively evaluated by the GSNR, which comprises the accumulated25

effect of NLI and ASE noise.6 Exploiting the transceiver characteristics, the GSNR describes the26

feasibility of the path as well as deployable rate. Typically, the network elements suffer a variation27

on their working point (insertion losses, noise and gain figure, ripples in amplifiers, etc.). This28

implies uncertainty in QoT-E that needs a system margin to avoid out-of-services.29

In the present investigation, we suppose a Domain Adaption (DA) approach. The DA approach30

uses only the available data from source domain ”S” (e.g., well-deployed in-service network),31

where the network operator has the sufficient knowledge about the working point of network nodes32

and provide useful information related to the QoT prediction in the target domain ”T” (e.g., a33

newly deployed or unseen network), i.e., the kind of a network where the system administrator34

does not have the sufficient information of the operating point of network components. This work35

aims to minimize the margin in the GSNR estimation of the target domain. This decrease in the36

GSNR uncertainty enables the network controller in target domain to accurately establish the LP37

with reduced margin. Generally, the controller can acquire an accurate description of the system38

parameters i.e.,network status. The QoT-E exploit several analytical approaches that can measure39

the GSNR with a very good precision as shown in.7 The use of an analytical approach is not40

reliable without the exact knowledge of system parameters, as it is essential to acquire system41

parameters in the current context of DA. The present work-frame regarding DA concludes that the42

use of analytic approach is not recommended in such an agnostic scenario to estimate the QoT of43

LP prior to its deployment.44

To overcome this challenge, we opted to use data-driven ML approach as an alternative way,45

which has already been proved very effective in several different contexts of managing optical net-46

works; look at8–11 for performance monitoring of optical network operations. A comprehensive47

assessment of ML practiced in optical networks is described in.12 In particular, moving towards a48

distinct interest of this investigation, i.e., estimation of QoT-E of LP before its actual deployment,49

few very effective ML-based approaches, for instance, the cognitive case-based reasoning (CBR)50

method, is presented in.13 The experimental results related to13 obtained with real field data are51

described in.14 In,15 ML based approach is presented to control OLS in an open environment. An52

approach based on Random forests (RF) is presented to utilize the already accumulated database53

in16 to decrease unreliability in design margins and network parameters. A neural network (NN)54

model is trained to measure the Q-factor for multicast communication scenario in.17–19 Numer-55

ous ML based approaches are proposed in20, 21 for QoT-estimation of LP . In,22 a binary classifier56

based on RF is proposed to estimate the bit-error-ratio (BER) of LPs before their establishment.57

Authors in23 trained three classifiers, i.e., RF, support vector machine (SVM) and K-nearest neigh-58

bor (KNN) for QoT estimation. The performance of all these approaches is evaluated in terms59

of accuracy. Furthermore, the investigation presented in,23 concluded that the SVM shows good60

accuracy but performs worst in terms of computational time. The authors in24 used NN to char-61

acterize the integrated circuits consequently used for their full and accurate softwarization. In,25
62

the authors evaluated the performance of two DA approaches for ML assisted QoT-E of an opti-63

cal LP for a fixed/variable number of available training samples from the source/target domain.64

The authors studied two networks characterized by different topologies but utilizing identical fiber65
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type and communication devices and assessed the performance of two DA approaches depending66

on the number of available train realizations from the target domain. The results in25 stated that67

the DA-based approach worked better than standard ML techniques. The authors in,26 not only68

proposed ML for QoT-E but also reported the statistical closed-form approach to the QoT margin69

setting. In,27 CNN based QoT estimator is proposed for unestablished LPs for DA scenario. Fi-70

nally, the authors in28 analyzed the QoT-E accuracy delivered by a few Active Learning (AL) and71

DA methods on two different network topologies. The results presented in28 announced significant72

improvements using an AL approach with some extra samples acquired from the target domain.73

The notable difference between the past literature and the present work is that we proposed74

several ML techniques considering the DA approach for the system margin minimization of the T75

network using the mimicked data of GSNRs response to specific traffic configurations of LPs of76

the S network in an open environment. We also evaluate and compare ML models’ performance77

by using cross-feature training and relevant features training approaches for GSNR prediction.78

The generation of the dataset is achieved synthetically by perturbing the nominal working point of79

network components. In the present practice, the synthetic dataset is created against two different80

networks characterized by different topologies utilizing the identical fiber type and communication81

devices but are different in terms of the most delicate parameters of amplifiers, i.e., noise figure,82

amplifier ripple gain and fiber insertion losses. Regarding these two companion networks, the first83

one is supposed as S network, a type of network where the operator has a complete description of84

network elements’ operational parameters. The other network is considered as T network, which85

is intrinsically a type of network where the operator has only a basic description of the operational86

parameters of network elements.87

The rest of the paper is organized as follows: Section 2, briefly explains the physical layer’s88

abstraction to efficiently implement a multi-layer optimization, simultaneously with the argument89

that an accurate QoT-E has a fundamental role in minimizing the system margin. Moreover, we90

also pitched several potential methods to obtain information about OLS attributes, each providing91

a diverse decline of the GSNR uncertainty. Section 3, explains the background of ML techniques92

used for QoT estimation of un-established LP. In Section 4, the simulation conducted to model an93

open OLS composed of cascaded amplifiers and fibers is described. The data generation and the94

technique used for refining the dataset before applying to ML models are reported. The dataset95

is generated synthetically against two different networks using the open-source GNPy simulator.96

The two mimicked datasets are perturbed by varying EDFA noise figure, ripple gain and insertion97

losses. In Section 5, we reported the configuration parameters for the proposed ML techniques,98

which are used in the context of the DA approach by exploiting the dataset of the already well-99

deployed S network. The proposed ML techniques predict the GSNRs of LPs of the T network100

before its actual deployment with significant accuracy. Moreover, we also define the characteriza-101

tion of features and labels of the proposed ML models and the metric used to evaluate them. Later,102

in Section 6, we produced detailed results. Finally, the conclusion and future research work are103

illustrated in Section 7.104

2 Overview of Optical Transport Network105

Generally, an optical network consists of Optical Network Elements (ONE) connected through106

bidirectionally fiber links, where traffic demand is added/dropped or routed, as shown in Fig. 1a.107

The amplifiers are placed after a specific span length using the Erbium-Doped Fiber Amplifiers108
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Fig 1: (a), Architecture of Optical Network (b), Optical Transport Network

(EDFAs) technique/Raman amplification or optionally used in combination. In the present state-109

of-the-art optical network, ONE connected through fibers are generally expressed as an OLS and110

a particular controller with the specific characteristic feature to configure the operating point of111

every amplifier traversing through the link, and the spectral load is provided at the input of every112

fiber span. Further to this, the transport layer adding/dropping or routing services is delivered using113

Reconfigurable Optical Add/Drop Multiplexers (ROADM). The DWDM, spectral usage technol-114

ogy according to the ITU-T recommendations,29 can exploit either the fixed or flexible spectral115

grid that characterizes the spectral slots for both grid architectures.30, 31 Utilizing either grid archi-116

tecture, LPs are deployed, where LPs are the logical abstraction of feasible links between node-to-117

node given the traffic demands. Furthermore, against every deployed LP, a Polarization-Division-118

Multiplexing (PDM) is exploit to propagate from particular source to its specific destination. Along119

with the transmission, LP suffers different propagation impairments like amplifier noise added as120

an ASE, fiber propagation, and filtering penalties applied by ROADM. Also, the fiber propagation121

has been extensively demonstrated that the fiber propagation on an uncompensated optical coher-122

ent transmission system impairs the QoT of deployed LPs by introducing amplitude and phase123

noise.4, 32–34 This introduced phase noise is efficiently counterbalanced by the receiver’s DSP mod-124

ule, using a carrier phase estimator algorithm. This particular set of noise can only be considered125

for very high symbol rate communication designed for short distance.34 In opposite to this, the126

amplitude noise, typically described as the NLI, always impairs the performance. It is a Gaussian127

disturbance that accumulates with the receiver’s ASE noise. Finally, the ROADMs filtering penalty128

also decreases the QoT level, which is generally estimated as an extra loss.129

2.1 QoT-Estimation Metric130

The QoT-E metric for a particular LP routed by definite OLSs from source node to destination
node is given by the well-acknowledged GSNR measurement, which combines both the aggregated
effect of ASE noise and NLI disturbance. Generally, GSNR is defined as:

GSNR =
PRx

PASE + PNLI

=
(
OSNR−1 + SNR−1NL

)−1 (1)

where OSNR = PRx/PASE, SNRNL = PRx/PNLI, PRx is the signal power of the particular channel
at the receiver, PASE is the power of the ASE noise and PNLI is the power of the NLI. Analyzing
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the transceiver’s back-to-back characterization, the GSNR accurately provides the BER, as BER
has been extensively stated in different vendor demonstrations with the use of industrial products.6

The non-linear effects, while fiber propagation generates PNLI, which relies on the spectral-load
and the power of the distinct channel.4 In these circumstances, it is pretty much clear that there
is an optimal spectral load for each specific OLS that maximizes the GSNR.5 Examining the LP
propagation effects against a specific pair of source and destination, we provide an abstract view
of the operation as a combined impact of every single ONE that adds up the QoT impairments.
Simultaneously, given a specific pair of source and destination encounters the cumulative impair-
ments of previously traversed OLSs along with ROADM effects. Each crossed OLS adds a specific
amount of NLI and ASE noise. For the purpose of QoT, the abstraction of OLS can be achieved
by a single parameter known as SNR degradation which generally depends upon the frequency
(GSNRi(f)), if the OLS controllers can retain the OLS running at the ideal operation point. There-
fore, an optical network can be generally abstracted as a weighted graph (W), where W = (vertices
(V),edges (E)) corresponds to the specific networking topology. The V represent ROADM network
nodes, while the E represent OLSs having GSNRi(f) as weights on the consequent edges, shown
in Fig. 1b. Specifically, for a given LP from the source node I to destination node F that passes
through intermediary nodes B, the QoT is:

GSNR−1IF (f) = GSNR−1IB (f) + GSNR−1BF(f) . (2)

Following network level abstraction, LPs deployment can be feasible for a specific source node to131

destination node with the reduced margin, which relies on the GSNR of a particular source to the132

destination path.133

2.2 Methods for QoT Estimation134

This section describes the various possible approaches for acquiring knowledge about the charac-135

teristics of an OLS, with each allowing the distinct GSNR measurement. In the initial approach, the136

data obtained from ONE, for example, static description of elements (e.g., connector loss, noise137

figure amplifier gain, etc.), is utilized to achieve precise QoT-E vendor-specific systems. Con-138

cerning this specific method, several analytical approaches are available to assess the GSNR and139

characterize the OLS elements. Nevertheless, this strategy based on static data may not be reliable140

as the ONE experiences continuous performance degradation owing to the aging effect, heading to141

gradually un-reliable QoT-E after a specific period.142

The next method is utilizing the telemetry data to examine the network status instantly. Assum-143

ing an agnostic operating of OLS in an open environment; the controller of OLS largely rely on144

the telemetry data achieving from the EDFAs and the Optical Channel Monitor (OCM). This spe-145

cific technique is feasible for an accurate QoT prediction by utilizing the network’s current state’s146

telemetry. In opposite to the former method, this technique does not depend on the static param-147

eters of ONE. Thus, it eliminates the unreliability in the QoT-E precision introduced because of148

device aging factor as discussed in the earlier technique. However, this unique technique dilemma149

is that the response of GSNR, particularly the OSNR part, significantly relying on the configuration150

of spectral-load, leading to substantial unreliability in the QoT margin.15
151

The final method examines the dataset that obtains the QoT responses against arbitrary spectral-152

loads of S network. As mentioned earlier, the generation of dataset is performed during the oper-153

ating period of the S network by estimating the OLS response with regard to GSNR for numerous154
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spectral-load arrangements. This specific case comes up with a perfect playing field to employ155

ML. An ML technique utilizing a dataset comprised of spectral-load samples of an S network for156

training and complies a correct QoT-E for every generated spectral-load section of T network. In157

distinction to the former method, where just telemetry data is explored, this procedure employs the158

QoT-E centered on the GSNR reaction to particular spectral-load arrangements of S network, used159

for an accurate GSNR prediction of T network. Additionally, this arrangement does not require160

any information about physical parameters of the OLS as compared to the first technique. There-161

fore, this approach gives an excellent playground to utilize the ML-DA method. In this activity, we162

focus on the third procedure, which is based upon the ML method. This approach uses the GSNR163

related to the individual spectral-load configurations of the previously established S network for its164

training and predicts the QoT of T network.165

3 Background on Machine Learning Models166

This section briefly explains the ML techniques we have applied for QoT estimation of un-established167

LP. Generally, ML has a wide range of applications in optical communications and networking.35
168

ML model learns from previous knowledge of the network and then uses that learned knowledge169

to make predictions. Recently, QoT prediction of an unestablished LP with ML models has gained170

a lot of attention1215.16 In this work, six ML models are employed to estimate the QoT of an un-171

established LP, and also domain adaptation (DA) capability of these models is assessed. In the172

following, we briefly present a short overview of these employed ML models.173

3.1 Decision Trees174

We propose using the Decision Tree (DT) model to assess the feasibility of un-established LP in
the DA scenario, i.e., transferring the source data distribution learned from a known network to
another related target network with a different distribution. DT constructs a tree based on the deci-
sions made by exploring dataset features in different aspects. It has three essential parameters; the
maximum number of splits, minimum leaf-size, and minimum parent-size. We applied a greedy
approach to data to minimize the cost function and obtained the optimum values for these parame-
ters. A standard regression cost function representing the mean absolute error is used, which is as
follows:

E =
1

N

N∑
i=1

(y − y′) (3)

Here y, denotes the ground truth (actual value) while y′ represents the predictive value i.e., GSNR175

in our case. N represents the total number of samples. We sum overall the samples in our dataset176

to get the total error, then we keep on splitting the tree until an optimal value is reached.177

3.2 K-Nearest Neighbours178

K-nearest neighbors (KNN) is a type of supervised non-parametric ML model. KNN attempts to179

classify the data sample into a particular category by utilizing training dataset. We applied this180

model to make predictions based on feature similarity by calculating the distance between new181

data point and training data points. The hyper-parameters required for KNN are:182

• Number of nearest neighbors (K)183
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• Distance metric184

In our simulation environment, we kept K = 5 and used Euclidean distance to calculate the185

distance between the test point and training samples.186

3.3 Random Forest187

It is a type of ML model that uses ensemble learning which is based on the bagging tree technique.188

In this technique, each tree runs independently, and at the end, the results of all the trees (without189

giving importance to anyone specific tree) are averaged to give the final output. In Random Forest,190

each tree has a random set of training observations and a random subset of features used to form a191

tree. If we only rely on the decision of a single tree, the scope of the output information is limited .192

However, if we construct multiple such trees and average their output, our net information from the193

output is much greater. We applied the Bagging technique where n different ensembles are created194

to give different profound knowledge about the dataset because their outputs are not correlated.195

When we average these ensembles, it effectively brings in the insights from each of them, and we196

are left with a better generalization of the output. We also applied this technique to figure out the197

important set of features to predict our label better.198

3.4 Linear Support Vector Regression199

Linear Support Vector Regression (SVR) is a type of supervised ML model that works on the200

same idea as Support Vector Machines (SVM). SVR is used to cater regression problems where201

continuous output is predicted. The following essential parameters are used to configure SVR:202

• Kernel: It is used to map data from lower dimension to higher dimension at lower compu-203

tation cost. It is beneficial in finding the best hyper-plane. We applied linear Kernel to our204

problem.205

• Hyper Plane: It is a line used to predict the continuous output.206

• Decision Boundary: Two parallel lines are drawn with ε distance from the hyper-plane to207

define a margin.208

In SVR, we are trying to fit the maximum allowable error within a the tolerable range that is defined
by the ε value. The goal is to find a function f(x) that deviates by a value not greater than ε for each
training point from the output prediction. The best fit line is the one with the maximum number of
data points.

f(x) = xw + b (4)

For the linear hyper plane, the equation that satisfies our support vector regressor to predict QoT
of LP is given below:

ε ≤ y − xw − b ≤ −ε (5)

To fit the maximum allowable error within a tolerable range, we define the value of ε=3 in our209

simulation environment.210
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(a) European Network (b) USA Network
Fig 2: Networks Topologies

3.5 Neural Networks211

NN is an ML model inspired by the human nervous system to process information. It comprises212

the input layer, hidden layers, and output layer, where the layers are sets of neurons. NN typically213

learns with a feedback process where the predicted output is compared with the actual output. The214

difference between them is then calculated. The error gradient is computed for every preceding215

layer using a back propagation algorithm to adjust the weights using a stochastic gradient descent216

algorithm. For QoT estimation, we applied the NN model with several tuned parameters to get an217

efficient model providing high accuracy.218

3.6 Linear Regression219

Linear Regression Model is a parametric ML model which uses a statistical technique to find
the linear relationship between the input feature (x) and the output label (y). The mathematical
representation for the Linear regression model is as follows:

y = B0 +B1x (6)

where y is the output variable, B0 is the intercept, B1 is the co-efficient of each variable and x220

is the set of input features. The model estimates the values of intercept (B0) and the co-efficient221

(B1). Linear regression has a different kind of optimization strategy. In our work to estimate QoT,222

we applied the ordinary least square method that takes more than one input feature and requires no223

weighting function.224

The hyperparameters for our employed ML models are given in Table 3.225

4 Simulation Model and Synthetic Data Generation226

This section describes the simulation model and the considered network topologies, the library227

used for physical layer abstraction and data generation, and the technique used for refining the228

dataset before applying it to ML models.229

The proposed work simulates an open OLS composed of cascaded amplifiers and fibers. In the230

simulation setup, the grid size of 50GHz is considered to have 76 channels on the C-band. Due231

to computational resources limitation, only 76 channels are considered over the total bandwidth of232
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approximately 4 THz. The transmitter generates signals at 32 GBaud, shaped with a root-raised-233

cosine filter. The signal’s launch power is set to 0 dBm, which is kept constant by EDFA, operating234

at a constant output power mode of 0 dBm per channel. The noise figure of EDFA is varied uni-235

formly, in the range of 4.5 dB to 6 dB with a ripple gain variation uniformly with 1 dB variation.236

All the links are operated using a Standard Single-Mode Fiber (SSMF) having a typical span length237

of approximately 80 km. To these fiber impairments such as fiber attenuation (α) = 0.2 dB/km and238

dispersion (D) = 16 ps/nm/km are also considered. To create the simulation model realistic, the239

statistics of insertion losses are determined by an exponential distribution with λ = 4, as described240

in the study.36, 37 The paths are computed using the Dijkstra algorithm, with the metrics used is241

the shortest distance path. For the computation of GSNR, the ASE noise is modeled as Additive242

White Gaussian Noise (AWGN) with bilateral Power Spectral Density (PSD), including both po-243

larization. The nonlinear impairments are modeled by the analytical perturbation model, such as244

Generalized Gaussian Noise (GGN) model.38

Table 1: Source-Destination pairs and Number of Spans of European Network
Source Destination Number of Spans

Amsterdam Berlin 8
Brussels Bucharest 30
Frankfurt Istanbul 34
Vienna Warsaw 7
Paris Rome 34

245

Table 2: Source-Destination pairs and Number of Spans of USA Network
Source Destination Number of Spans

Kansas City Las Vegas 30
Milwaukee Minneapolis 6

The dataset is generated synthetically mimicking the receiver’s signal power,NLI generation
during the signal propagation against two different networks, and ASE-noise accumulation using
the GNPy simulator. The GNPy is an open-source optimization library that is spectrally resolved
and is formulated on GGN model.7, 38This simulator has been developed by Open Optical & Packet
Transport–Physical Simulation Environment (OOPT–PSE) working group within the Telecom In-
fra Project (TIP). In,38 GNPy is validated on a real network for QoT estimation of the LPs. It
exhibits outstanding accuracy for GSNR prediction. It provides an end-to-end simulation environ-
ment to develop the network model on physical layer. This library defines route planning in mesh
optical networks and can include customized network elements in the network. The synthetic
dataset is generated against two different network topologies; European (EU) network and USA
network shown in Fig. 2a and Fig. 2b respectively. The EU Network is considered well-deployed
and represents the S network while USA Network represents the T network. The two considered
networks are the same in terms of fiber and ONE. However, they are different concerning the am-
plifier’s delicate parameters (noise figure and amplifier ripples gain) and fiber insertion losses. The
dataset used in this work consists of 6 source-to-destination (s→ d) pairs of EU network and 11
s→ d pairs of USA network shown in Table 1 and Table 2. The spectral load realization against
each simulated link of a dataset is a subset of 276. In the considered spectral load realization for
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Table 3: Hyperparameters of ML Models

ML Model Parameter Value
Max no of splits obs-1=5407
Min leaf size 4

Decision Tree Min parent size 10
Split criteria ′mse′

Purne ’on’
Purne criteria ′mse′

k 5
KNN Distance metric Euclidean

Method ′Bag′

Random Forest Min leaf size 4
No of cycles 50
No of Var to sample 1/3 of max splits

Linear SVR ε 0.3
kernal ′Linear′

No of hidden layers 3
No of units 3
Activation Function ′ReLU ′

Neural Network ′Linear′

Learning rate 0.01
No of epochs 1000

Linear Regression Equation Linear
Method Ordinary Least Squares

every s → d pair, we considered 3000 realizations of arbitrary traffic flow varying between 34%
to 100% of overall operational bandwidth. Thus for EU network topology, 18,000 realizations are
generated, and for the USA network topology, 33,000 realizations are generated. The considered
dataset is then normalized to scale the values. We investigated the different normalization methods
on the prediction performance of our machine learning models. Based on the value of the evalua-
tion metric (mean absolute error), we believe that z scale normalization seems to be a good choice
for our case. In the z score, the mean and standard deviation of against each input feature is used
to normalize the vector of each feature.39 It helps to reduce the effect of outliers from the data and
overcomes the problem of dominant features entirely.40 It is used as follows:

Z =
X − µ
σ

(7)

where µ and σ is the mean and standard deviation against each feature, the considered Z-score246

normalization is applied to both the train and the test data.247

5 Machine Learning Models Orchestration248

This section describes the characterized features and labels of ML models and the metric used249

to evaluate the ML models. Furthermore, the models, depicted in section 3, are simulated in this250
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section. The standardized dataset is divided into two sets: train and test set. The train set consists of251

four paths (12,000 samples) for the EU network, while the test set consists of the last one path (3000252

samples) of the EU network and two paths of the USA network (6000 samples). The parameters253

utilized to describe ML models’ features include ASE, NLI, received signal power, span length,254

total distance and channel frequency of 76 channels, shown in Fig. 3. All the proposed models255

are evaluated using the Mean Absolute Error (MAE) metric to quantify the GSNR predictions of256

the ML models by taking the mean absolute difference of all the predicted values with the actual257

values. Moreover, the models described in Section 3 are simulated using MATLAB® platform and258

are configured using the simulation parameters given in the Table 3.259

6 Results & Discussion260

In this section, the performance comparison of six ML models in the Same Domain (SA) and261

DA scenario is reported. In the SA scenario, we trained the ML models on the EU network and262

tested it on other EU network paths. In the DA scenario, ML models exploit the knowledge of263

the EU network to estimate the output label (i.e., GSNR of LP) of the USA network. Moreover,264

we also perform feature engineering to find out the importance of features for GSNR prediction.265

Furthermore, the evaluation and comparison of models are also performed using the cross, and266

relevant features model training approaches for the specific label (i.e., GSNR of LP in our case).267

6.1 ML models trained on cross features268

We first investigated the MAE using the SA approach, i.e., training an ML model on some paths269

of EU Network and then testing it on other paths. This section exploits all the available features270

of 76 channels to perform cross-feature training of ML models to estimate the GSNR of channel271

1. Using the paths reported in Table 1, the first four paths of the EU Network are used to train272

the ML models, and the last path is used for testing the models. The result of the test path, from273

Paris to Rome, is depicted in Fig. 4. It shows the results of all the proposed models, i.e., Actual274

and Predicted GSNR with mean (µ) and standard deviation (σ). Observing the statistics µ and σ275

in Fig. 4. it is depicted that the NN model trained on cross features shows excellent results in276

terms of GSNR prediction, whereas the KNN model is showing the worst prediction performance277
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Fig 4: EU network path Paris to Rome: Cross features training.
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Fig 5: USA network path Kanas to Las-Vegas: Cross features training.

in comparison with all proposed models. NN’s performance gets better each time we train it on278

training data because of the iterative learning approach, whereas in KNN, the training dataset is279

given once for it to work.280

To evaluate the performance of the proposed ML models using the DA approach, i.e., training281

on four paths of EU network and testing on two paths of USA network are reported in Table 2. The282

outcome of the DA approach is shown in Fig. 5 and Fig. 6. It shows the proposed ML models’283

prediction performance against the two paths, i.e., Kanas City to Las-Vegas and Milwaukee to284

Minneapolis, of the USA network. Observing the statistics of µ and σ, it is pretty clear that the285

predictions with the NN model seem to follow the same distribution as the actual values, and286

it outperforms all other proposed ML models, whereas KNN is again performing worst among287

all the proposed models. Based on the performance of our NN model, we make the following288

observations. NN model still performs better in case of DA for the USA network because of its289

ability to learn complex hidden patterns, leading to better generalization. NN continuously adjusts290

weights at each input to further optimize results.291
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Fig 6: USA network path Milwaukee to Minneapolis: Cross features training.
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6.2 ML models trained on relevant features292

This section analyzes the impact of relevant features in predicting the GSNR of channel-1, which293

is supposed to be Channel-Under-Test (CUT). Firstly, we applied the Random Forest model to294

determine the feature importance for GSNR prediction. The Random Forest model helps in finding295

the features that have more impact on the prediction of the target label (i.e., the GSNR in our case).296

It performs well due to its property of randomly sampling the features and the data points. Fig. 7297

depicts the importance of features to the label (GSNR). On the y-axis, various used features are298

shown, while on the x-axis importance score is plotted. The results shown in Fig. 7 represent that299

the distance between source and destination is the most important feature followed by the number300

of spans, ASE, NLI, and power of the LP in predicting the GSNR of LP. We trained the ML models301

on all of these relevant CUT features and evaluated CUT’s predictions against one test path of the302

SA (European) network and two DA (USA) network paths.First, we see the SA network results303

with a test path, i.e., Paris to Rome. The results of the actual and predicted distribution of the SA304

test path against all the proposed models are shown in Fig. 8. The statistics of µ and σ demonstrate305
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Fig 8: EU network path Paris to Rome: Relevant features training.
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Fig 9: USA network path Kanas to Las-Vegas : Relevant features training

NN’s excellent prediction performance against other models. Moreover, for the DA approach, the306

distribution of predicted vs. actual GSNR for the CUT on the two paths, i.e., Kanas to Las-Vegas307

and Milwaukee to Minneapolis is shown in Fig. 9 and Fig. 10. The results in both Fig. 9 and Fig.308

10 show that NN also performs best in the case of DA as compared to all the proposed models.309

6.3 Cross feature vs. Relevant feature training310

This section compares ML models based on MAE when trained on cross features and relevant311

features. Table.4 illustrates the MAE comparison of the EU and USA networks. For the given312

simulation scenario, Fig 4 demonstrates that the MAE of Decision Tree is reduced when trained313

on relevant features for both networks, but it does not perform well on USA network when trained314

on cross features due to its poor learning of underlying associations in the dataset. On the other315

hand, Random Forest leverages several decision trees for feature selection, hence its overall perfor-316

mance is better than the decision tree for both networks when trained on cross features and relevant317
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Fig 10: USA network path Milwaukee to Minneapolis :Relevant features training.

features. The performance of Linear SVR and Linear regression is almost similar and it gets bet-318

ter when relevant features are considered for training in both scenarios. On the other hand, the319

performance of NN for EU network is outstanding when trained on cross features and relevant fea-320

tures because of its cognitional ability to learn complex and hidden patterns very well. To further321

analyze the NN model’s performance trained with cross features and relevant features, we tested322

it on the USA network, including more test data. When NN is tested on the USA network path323

with relevant feature training, it generalizes very well and gives an excellent performance for both324

networks. For the given scenario, KNN performs well when trained on relevant features of CUT325

because of its good capability to work on feature similarity. In the case of KNN model, the per-326

formance is degraded when trained on cross features and it failed to fit the underlying relationship327

in the dataset and depicts the worst generalization on the USA network as compared to all other328

models. The MAE of the KNN model is increased when trained on cross features particularly for329

the USA network because it does not properly approximate the relation between input and output330

of a dataset. Observing these results, we conclude that NN-based models have the potential to331

generalize well on an unseen network with good performance when trained on relevant features of332

CUT. To take the confidence level into consideration along with prediction error, we executed the333

simulation 10 times with 1000 epochs and computed prediction error each time for both the train-334

ing and testing data in the same as well as in the domain adaptation scenario. These simulations are335

performed using our best performing model, the neural network model trained on relevant features336

whose results, including the mean and standard deviation of ∆GSNR distribution, are reported in337

Fig. 8 and Fig. 9. The average mean absolute error of the prediction error in the training and test-338

ing dataset about the EU network is around 0.00127 dB and 0.00132 dB, respectively. Similarly,339

the standard deviation (confidence level) in the respective training and the testing dataset is around340

0.0000114 dB and 0.000018 dB. Moreover, to check the robustness of the model in the domain341

adaptation scenario, we also tested the trained model on the different network topology (i.e., USA342

network). The mean absolute error in prediction on the USA network is around 0.0053 dB, while343

the standard deviation (confidence level) is found to be 0.00015 dB. Overall, what we analyzed is344

that when relevant features are considered for training ML models, the performance gets enhanced.345
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Our best performing NN model provides a viable solution for practical implementation into346

SDN-based optical networks for real-time QoT estimation of LPs. It is executed on a system347

with an Intel®Core™i7 8550U 1.80 GHz CPU workstation equipped with 8 GB of RAM. The348

model’s computation time is 0.2 ms when trained on relevant features. With the use of cross-349

features, we are taking the features of all the relevant channels to make an appropriate decision350

about the lightpath deployment. It can be considered an important component for online network351

operating tools for QoT estimation in real-time. It can improve network efficiency as on the arrival352

of a lightpath request; it can estimate the QoT of a lightpath in real-time. In contrast, the typical353

techniques require extensive computational effort when applied to real-time scenarios. Its other354

application is in the design of Elastic Optical Networks (EONs), where its output will be used355

by Routing and Spectrum Assignment (RSA) decision tools to make the final decision about the356

lightpath deployment357

Table 4: Comparison of MAE of EU and USA network
European Network USA Network

ML Model cross
feature

MAE(dB)

relevant
feature

MAE(dB)

cross
feature

MAE(dB)

relevant
feature

MAE(dB)
Decision Tree 0.0745 0.0471 0.2277 0.1874

Random Forest 0.0089 0.0089 0.0597 0.0477
Linear SVR 0.0777 0.0532 0.3481 0.3103

Neural
Network

0.0072 0.0013 0.008 0.0054

Linear
Regression

0.08919 0.0612 0.3912 0.3606

KNN 0.1653 0.0758 0.6759 0.3886

358

7 Conclusion359

We investigated different ML techniques to predict the QoT of LP of an unseen network before360

its deployment. The prior prediction of the QoT of LP in an un-seen network is an essential361

step for the optimal design of the network and reliable LP deployment with a low margin. The362

GSNR of LP is used as a QoT metric which comprises the effect of both NLI and ASE noise363

accumulation. Our simulation results show that NN performs best with an MAE of 0.001 dB for364

the European network and 0.005 dB for USA network when trained on relevant features and 0.007365

dB for European network and 0.008 dB for USA network when trained on cross features.366

We performed feature engineering and observed that when the models are trained only on367

relevant features, the prediction performance is improved. The presented results clearly show that368

ML-based techniques, especially NN, significantly reduce the provisioning GSNR margin in both369

SA and DA scenarios. For future perspective, additional work is required considering broad range370

of system configurations to prove the effectiveness of this approach for real world applications.371
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