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Highlights 

• Optimal control of plug-in hybrid electric vehicle (HEV) powertrains. 

• Smooth HEV driving constraints: thermal engine activations, gear shifts. 

• Extension of a rapid near-optimal HEV control approach to plug-in HEVs. 

• Benchmark with dynamic programming on real-world long-distance driving. 

Abstract 

Advanced computer-aided engineering tools are urgently needed to foster the development of electrified road vehicles that 

would enable abating fuel consumption and pollutant emissions of the transport sector. Concerning plug-in hybrid electric 

vehicles (HEVs), implementing an energy management strategy that can rapidly estimate near-optimal powertrain control 

trajectories while effectively dealing with broaded battery state-of-charge (SOC) window utilization and smooth HEV driving 

requirements still requires extensive development. To overcome the highlighted drawback, this paper introduces a formulation 

of the slope-weighted energy-based rapid control analysis (SERCA) algorithm which can rapidly identify near-optimal plug-in 

HEV control trajectories while complying with SOC boundaries and limiting the number of thermal engine activations and gear 

shifts. The HEV numerical model is introduced first, followed by formulating the optimal plug-in HEV control problem with 

smooth driving constraints and describing the dedicated SERCA based control approach. A performed case study demonstrates 

——— 
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that SERCA can identify smooth driving constrained near-optimal HEV control approaches for a 1.5 hour-long real-world 

driving mission within two minutes on a desktop computer, while a global optimal control approach such as dynamic 

programming (DP) is found to require more than 10 hours to perform the same task. On the other hand, compared with the 

global optimal reference provided by DP, the increase in estimated plug-in HEV operative cost in terms of fuel and electrical 

energy consumption associated to SERCA is always contained within few percentage points. The proposed methodology can 

accelerate HEV powertrain design and on-board supervisory controller development procedures.  

© 2021 Elsevier Science. All rights reserved 

Keywords:  drivability, electrified powertrain, fuel economy evaluation, hybrid electric vehicle (HEV), optimal control, plug-in HEV, rapid 

control, real-world driving

1. Introduction 

In recent years, transportation electrification has 

established as paradigm shift both in industry, 

academia, and society towards a sustainable transport 

system [1][2]. Indeed, several recent research studies 

have suggested how transportation electrification 

might lead to considerable environmental benefits in 

various geographical regions worldwide [3][4]. 

Accelerating the pace of transportation 

electrification advancement might be achieved 

through developing effective and computationally 

efficient computer-aided engineering tools [5]. Design 

and validation activities for the various sub-systems of 

electrified road vehicles might be rapidly and 

exhaustively performed in this way [6][7]. 

Plug-in hybrid electric vehicles (HEVs) have 

recently aroused as a viable technology to exploit 

medium range pure electric propulsion (e.g. for daily 

commuting), to improve the internal combustion 

engine (ICE) efficiency [8], to recover electrical 

energy while braking and to simultaneously avoid 

charge anxiety typically associated with pure electric 

vehicles [9]. Widespread adoption of plug-in HEVs 

could thus enable decarbonizing the transportation 

sector [10][11]. Nevertheless, additional complexity 

arises in a plug-in HEV when managing the power 

flow between ICE on one side and electric 

motor/generator (MG) on the other side which is 

linked to the high-voltage battery [12]. Indeed, the 

larger battery pack capacity compared to mild and full 

HEVs increases the priority and importance of 

activating the ICE in the right time instants within a 

given driving mission and of appropriately managing 

the power flow. Improperly splitting the propelling 

power between ICE and MG might indeed remarkably 

worsen the HEV performance even to the point where 

plug-in vehicle hybridization might be 

disadvantageous and no longer beneficial from fuel 

consumption and tailpipe emission points of view 

[13][14]. 

When evaluating the fuel and electrical energy 

economy capability of an HEV, off-line energy 

management strategies are generally implemented that 

assume knowing of the overall vehicle speed profile 

over time before performing the simulation [15]. 

Smooth HEV driving conditions should be ensured in 

this framework, including as example limiting the 

number of activations of the ICE and the number of 

gear shifts over time. Considering smooth driving 

conditions allows preserving vehicle drivability for the 

evaluated control solution (e.g. by avoiding gear 

hunting phenomena and noise-vibration-harshness 

issues entailed by frequent ICE de/activations). 

Among other possible advantages, this helps avoiding 

accelerated wear of the mechanical components of the 

drivetrain (e.g. clutches and shafts) [16]. 

Among off-line HEV energy management 

approaches, dynamic programming (DP) is a well-

established algorithm capable of identifying the global 

optimal HEV control policy over an entire given 

driving mission [17][18]. Nevertheless, the main 

drawback of DP is notably associated with requiring a 

remarkable computational effort. This shortcoming 

becomes even more serious when considering plug-in 

HEVs due to the considerably higher number of 

discretized elements required for the state variable 

capturing the evolution of the high-voltage battery 

state-of-charge (SOC) over time [19]. Also, additional 

state variables are needed in DP to enable smooth 

HEV driving, which in turn further compromises the 

computational efficiency of the algorithm. In this  
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Nomenclature 

Acronyms 

AMT Automated manual transmission 

DP Dynamic programming 

ECMS Equivalent consumption minimization 

strategy 

HEV Hybrid electric vehicle 

ICE  Internal combustion engine 

MG Motor/generator 

PMP Pontryagin’s Minimum Principle 

SERCA Slope-weighted energy-based rapid control 

 analysis 

SOC State-of-charge 

WLTP Worldwide harmonized light-vehicle test 

procedure 

Symbols 

𝑎  Vehicle acceleration 

𝐴ℎ𝑝𝑎𝑐𝑘  Battery pack capacity 

𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒 Clutch state 

𝑐𝑒𝑙𝑒𝑐   Electricity cost 

𝑐𝑓𝑢𝑒𝑙   Fuel cost 

𝑐𝑜𝑠𝑡𝑡𝑟𝑖𝑝  Total operative cost of the driving 

  mission 

Δ𝑡  Simulaton time step 

𝐸𝑏𝑎𝑡𝑡  Net consumable battery energy 

𝐹𝑎𝑒𝑟𝑜  Vehicle aerodynamic drag 

𝐹𝑔𝑟𝑎𝑑  Grading resistance 

𝐹𝑚𝑖𝑠𝑐   Miscellaneous vehicle resistance 

𝐹𝑟𝑒𝑠  Total vehicle resistive force 

𝐹𝑟𝑜𝑙𝑙   Vehicle rolling resistance 

𝜂𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒  Driveline efficiency 

ϑ  Road slope 

𝑔  Gravity acceleration 

𝐼𝑝𝑎𝑐𝑘   Battery pack current 

𝐽𝐷𝑃  DP cumulated cost function 

𝑙𝑜𝑠𝑠𝑀𝐺   Electrical loss of MG 

𝑀𝑓𝑢𝑒𝑙   Overall fuel consumption 

𝑚𝑣𝑒ℎ  Vehicle mass 

�̇�𝑓𝑢𝑒𝑙   Rate of fuel consumption 

𝜇𝑔𝑒𝑎𝑟   Penalization factor for gear shifting 

𝜇𝐼𝐶𝐸   Penalization factor for ICE 

  cranking  

𝑛𝑔𝑒𝑎𝑟   Gear number 

𝑛𝑔𝑒𝑎𝑟,𝑀𝐴𝑋 Number of gears in the AMT 

𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 Number of ICE activations 

  allowed 

𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋 Number of gear shifts allowed 

𝑂𝐶𝑉𝑝𝑎𝑐𝑘  Open-circuit voltage of  

  battery pack 

𝑃𝑎𝑢𝑥  Electrical power of auxiliaries 

𝑃𝑏𝑎𝑡𝑡  Battery power 

𝑅𝑝𝑎𝑐𝑘  Internal  resistance of battery 

  pack 

𝑅𝐿𝐴  Road load coefficient A 

𝑅𝐿𝐵  Road load coefficient B 

𝑅𝐿𝐶  Road load coefficient C 

𝜌𝑓𝑢𝑒𝑙  Fuel density 

𝑟𝑤ℎ𝑒𝑒𝑙   Wheel dynamic radius 

𝑆𝑂𝐶  Battery SOC 

𝑆𝑂𝐶𝑒𝑛𝑑−𝑆𝐸𝑅𝐶𝐴 Final battery SOC predicted 

  by SERCA 

𝑆𝑂𝐶𝑚𝑖𝑛   Minimum battery SOC 

𝑆𝑂𝐶𝑀𝐴𝑋  Maximum battery SOC 

𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  Target battery SOC 

𝑆𝑂𝐶̇   Battery SOC rate 

𝑇𝐼𝐶𝐸   Torque of ICE 

𝑇𝐼𝐶𝐸 𝑚𝑖𝑛
  Minimum torque of ICE 

𝑇𝐼𝐶𝐸 𝑀𝐴𝑋
  Maximum torque of ICE 

𝑇𝑀𝐺   Torque of MG 

𝑇𝑀𝐺 𝑚𝑖𝑛
  Minimum torque of MG 

𝑇𝑀𝐺 𝑀𝐴𝑋
  Maximum torque of MG 

𝑇𝑤ℎ𝑒𝑒𝑙𝑠  Torque at the wheels 

𝑡  Current time instant 

𝑡𝑒𝑛𝑑  Final time instant 

𝜏𝑑𝑖𝑓𝑓   Differential gear ratio 

𝜏𝑔𝑒𝑎𝑟   Transmission gear ratio 

𝑣  Vehicle speed 

𝑉𝑂𝐶   Battery open-circuit voltage 

𝜔𝐼𝐶𝐸   Rotational speed of ICE 

𝜔𝐼𝐶𝐸 𝑀𝐴𝑋
  Maximum rotational speed of 

  ICE 

𝜔𝑖𝑑𝑙𝑒   Engine idle speed 

𝜔𝑀𝐺   Rotational speed of MG 

𝜔𝑀𝐺 𝑀𝐴𝑋
  Maximum rotational speed of 

  MG 
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framework, the Pontryagin’s Minimum Principle 

(PMP) is a solid alternative to DP as HEV control 

algorithm that can reduce the computational cost while 

identifying a near-optimal energy economy solution 

[20][21]. Nevertheless, each state variable in PMP 

involves considering a dedicated co-state parameter 

which needs tuning [22]. Each additional co-state 

parameter, introduced as example to reduce the 

number of ICE activations or gear shifts, exponentially 

increases the complexity of the overall calibration 

procedure for PMP, which mainly involves the 

shooting algorithm for tuning the values of co-state 

parameters [23]. Both the near optimality of the HEV 

control solution identified by PMP and the 

computational efficiency of the algorithm might be 

compromised in this way [24]. 

To overcome the drawbacks of both DP and PMP 

and to enable the rapid assessment of the HEV fuel and 

electrical energy economy capability while 

considering additional vehicle states, the author of this 

paper has recently introduced a heuristic near-optimal 

off-line HEV energy management approach named 

slope-weighted energy-based rapid control analysis 

(SERCA). The key idea behind the SERCA algorithm 

is to achieve the desired final value of battery SOC by 

means of an iterative procedure considering the net 

battery energy consumption of the HEV in the entire 

driving mission. Along with SERCA, few other HEV 

control approaches presented in the literature share 

this energy-based control approach which has been 

demonstrated computationally efficient. Related 

examples include the power weighted efficiency 

analysis for rapid sizing (PEARS) [25][26] and the 

efficiency evaluation real-time control strategy 

(EERCS) [27]. Compared with PEARS and EERCS, 

the enhanced flexibility, near-optimality and 

computational efficiency of the SERCA algorithm 

have been proved for various HEV powertrain 

architectures including parallel and series-parallel [28] 

and power-split [29]. Nevertheless, the effectiveness 

of SERCA has been demonstrated so far only when 

applied to HEV charge-sustaining operation, in which 

battery operation is controlled to limit the overall 

battery SOC variation throughout the driving mission. 

When simulating charge-depleting plug-in HEV 

operation, the energy management strategy needs to 

deal with broaden battery SOC window utilization. 

Appropriate care should therefore be taken in 

complying with the physical limitations for the battery 

SOC value over time, which is not covered in the 

current formulation of SERCA. This concern 

especially holds when simulating long-distance real-

world driving missions (e.g. longer than 50 

kilometres).  

Compared with the HEV off-line control 

approaches reviewed from the literature, the main 

advantages of SERCA involve significantly enhancing 

computational efficiency while flexibly handling 

additional control constraints, for example in terms of 

smooth driving conditions [28]. However, the 

formulation of the SERCA algorithm currently 

considers HEV charge-sustaining operation only, i.e. 

without contribution of external battery electrical 

energy coming from the grid. To overcome the 

highlighted research gap, this paper introduces an 

improved formulation of the SERCA algorithm which 

allows simulating charge-depleting operation of plug-

in HEVs. Among the key novelties brought by this 

paper, battery SOC physical limitations are accounted 

for when identifying the plug-in HEV control solution 

with SERCA for medium-distance and long-distance 

driving missions. Moreover, the introduced 

methodology ensures near optimality of the fuel 

economy and electrical energy economy of the plug-in 

HEV, remarkable computational efficiency and 

smooth HEV driving in terms of limited number of 

gear shifts and ICE activations. Rapidly assessing fuel 

and electrical energy economy capability as 

introduced by this paper is a fundamental milestone to 

enable: 1) the efficient and thorough exploration of the 

large design space for plug-in electrified powertrains 

to identify the best design and sizing candidates, 2) the 

rapid generation of off-line optimized control 

trajectories that allow training and benchmarking real-

time capable plug-in HEV energy management 

systems. The rest of this paper is organized as follows: 

the parallel P2 plug-in HEV architecture is modelled 

first. The optimal plug-in HEV control problem with 

smooth driving constraints is then discussed, and DP 

is recalled as common approach to find the global 

optimal control solution. The following section aims 

at illustrating the extension of the SERCA algorithm 

to plug-in HEVs. A case study then involves 

simulating the plug-in HEV both in a standard drive 

cycle and in a long-distance driving mission to 

demonstrate the effectiveness of SERCA by 
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benchmarking with DP in terms of fuel and electrical 

energy economy capability and computational 

efficiency. Conclusions are finally drawn. 

2. Plug-in HEV model 

The numerical model implemented in this work for 

simulating a plug-in HEV finds discussion in this 

section. A parallel P2 hybrid electric powertrain 

architecture has been selected which finds illustration 

in Fig. 1. This choice stems from efficiency and 

technological potential for the parallel P2 HEV layout 

[30]. Moreover, the current formulation of SERCA for 

parallel HEVs in charge-sustaining operation was 

demonstrated for a P2 powertrain architecture as well 

[28]. In a P2 HEV powertrain, torques of the ICE and 

of the MG are additive, and their respective 

contributions are summed upstream the automated 

manual transmission (AMT) [31]. For this reason, P2 

electrified powertrains are also known as pre-

transmission parallel HEVs.  In the follow-up of this 

section, fundamentals for modeling the HEV 

propulsion sub-systems according to the commonly 

adopted backward quasi-static approach will be 

recalled [32]. 

2.1. Vehicle body and road load 

The total vehicle resistive force 𝐹𝑟𝑒𝑠 can be easily 

computed from the vehicle free body diagram using 

(1): 

𝐹𝑟𝑒𝑠 = 𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑚𝑖𝑠𝑐 + 𝐹𝑔𝑟𝑎𝑑 (1) 

where 𝐹𝑎𝑒𝑟𝑜 is the aerodynamic drag, 𝐹𝑟𝑜𝑙𝑙  stands 

for the rolling resistance, 𝐹𝑚𝑖𝑠𝑐  incorporates some 

miscellaneous terms whereas 𝐹𝑔𝑟𝑎𝑑is the grading 

resistance related to road slope angle ϑ. Specifically, 

the aforesaid resistive terms have been evaluated as 

follows:  

𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑚𝑖𝑠𝑐 = 𝑅𝐿𝐴 ∙ 𝑠𝑖𝑔𝑛(𝑣) + 𝑅𝐿𝐵 ∙ 𝑣 +

𝑅𝐿𝐶 ∙ 𝑣2  (2) 

𝐹𝑔𝑟𝑎𝑑 = 𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ 𝑠𝑖𝑛𝜗  (3) 

where 𝑅𝐿𝐴, 𝑅𝐿𝐵 and 𝑅𝐿𝐶 are the vehicle road load 

coefficients, v is the longitudinal speed of the vehicle, 

g stands for the gravitational acceleration, and 𝑚𝑣𝑒ℎ is 

the total mass of the vehicle in kilograms. Then, the 

torque requested at the wheels 𝑇𝑤ℎ𝑒𝑒𝑙𝑠 to either propel 

or brake the vehicle can be computed according to (4): 

𝑇𝑤ℎ𝑒𝑒𝑙𝑠 =  (𝐹𝑟𝑒𝑠 + 𝑚𝑣𝑒ℎ ∙ 𝑎) ∙ 𝑟𝑤ℎ𝑒𝑒𝑙   (4) 

where a indicates the longitudinal acceleration of 

the vehicle, while 𝑟𝑤ℎ𝑒𝑒𝑙  is the wheel dynamic radius.  

2.2. Driveline 

Moving to the HEV driveline, the torque balance 

equation at the input shaft of the AMT can be written 

as: 

𝑇𝐼𝐶𝐸 ∙ 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒 + 𝑇𝑀𝐺 =

𝑇𝑤ℎ𝑒𝑒𝑙𝑠

𝜏𝑑𝑖𝑓𝑓∙𝜏𝑔𝑒𝑎𝑟(𝑛𝑔𝑒𝑎𝑟)∙𝜂
𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒

𝑠𝑖𝑔𝑛(𝑇𝑤ℎ𝑒𝑒𝑙𝑠)
  (5) 

where 𝑇𝐼𝐶𝐸  and 𝑇𝑀𝐺  are the torques of the ICE and 

the MG, respectively. 𝜏𝑑𝑖𝑓𝑓  and 𝜏𝑔𝑒𝑎𝑟(𝑛𝑔𝑒𝑎𝑟) stand for 

the differential gear ratio and the gear ratio related to 

the given gear number engaged 𝑛𝑔𝑒𝑎𝑟 . 𝜂𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒  is the 

driveline efficiency, which is powered by the sign of 

𝑇𝑤ℎ𝑒𝑒𝑙𝑠 to account for both propelling and braking 

events. Finally, 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒 is a binary variable which 

is equal to 0 or 1 when the clutch in Fig. 1 is 

disengaged or engaged, respectively. 

As far the speeds of power components are 

concerned, these can be calculated as follows: 

𝜔𝑀𝐺 =
𝑣∙𝜏𝑑𝑖𝑓𝑓∙𝜏𝑔𝑒𝑎𝑟(𝑛𝑔𝑒𝑎𝑟)

𝑟𝑤ℎ𝑒𝑒𝑙
  (6) 

𝜔𝐼𝐶𝐸 = 𝜔𝑀𝐺 ∙ 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒  (7) 

Where 𝜔𝑀𝐺  and 𝜔𝐼𝐶𝐸  are the rotational speeds of 

MG and ICE, respectively.  
 

Fig.  1. Schematic diagram of the HEV powertrain architecture 
considered in this work. 
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2.3. High-voltage battery 

When it comes to the high-voltage battery, the 

electrical power 𝑃𝑏𝑎𝑡𝑡 that it is required to either 

deliver or absorb can be expressed as: 

𝑃𝑏𝑎𝑡𝑡 = 𝜔𝑀𝐺 ∙ 𝑇𝑀𝐺 + 𝑙𝑜𝑠𝑠𝑀𝐺(𝜔𝑀𝐺 , 𝑇𝑀𝐺 ) + 𝑃𝑎𝑢𝑥   (8) 

Where 𝑙𝑜𝑠𝑠𝑀𝐺  is the electrical power loss of the 

MG which can be evaluated at each time instant by 

interpolating in a two-dimensional lookup table with 

speed and torque of the MG as independent variables. 

Finally, 𝑃𝑎𝑢𝑥 stands for the electrical power of the 

auxiliaries (e.g. lubrication, lighting) and it is assumed 

here being constant over time. 

Then, the current of the high-voltage battery pack 

𝐼𝑝𝑎𝑐𝑘  can be evaluated by considering an equivalent 

circuit approach as expressed in (9). 

𝐼𝑝𝑎𝑐𝑘 =
𝑂𝐶𝑉𝑝𝑎𝑐𝑘(𝑆𝑂𝐶)−√𝑂𝐶𝑉𝑝𝑎𝑐𝑘

2 (𝑆𝑂𝐶)−4∙𝑃𝑏𝑎𝑡𝑡∙𝑅𝑝𝑎𝑐𝑘(𝑆𝑂𝐶)

2∙𝑅𝑝𝑎𝑐𝑘(𝑆𝑂𝐶)

 (9) 

𝑂𝐶𝑉𝑝𝑎𝑐𝑘 and 𝑅𝑝𝑎𝑐𝑘 are the open-circuit voltage and 

the internal resistance of the high-voltage battery pack, 

which are interpolated in a one-dimensional lookup 

table with SOC as independent variable.  

Finally, the SOC of the high-voltage battery pack 

can be evaluated by considering the vector of the 

discrete 𝑡𝑒𝑛𝑑 time instants for the retained driving 

mission using (10): 

𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) = 𝑆𝑂𝐶(0) − ∑ 𝑆𝑂𝐶̇ (𝑡)
𝑡𝑒𝑛𝑑
𝑡=1 ∙ Δ𝑡 =

𝑆𝑂𝐶(0) − ∑
𝐼𝑝𝑎𝑐𝑘(𝑡)

𝐴ℎ𝑝𝑎𝑐𝑘∙3600

𝑡𝑒𝑛𝑑
𝑡=1 ∙ Δ𝑡  (10) 

where 𝑡𝑒𝑛𝑑  stands for the final time instant of the 

driving mission as well. 𝑆𝑂𝐶̇  is the instantaneous 

variation of battery SOC. 𝑆𝑂𝐶(0) and 𝐴ℎ𝑝𝑎𝑐𝑘 stands 

for the battery SOC at the beginning of the driving 

mission and the capacity of the high-voltage battery 

pack in ampere-hours, respectively. Δ𝑡 is the 

simulation time step, which is set to 1 second here. 

2.4. ICE 

The ICE fuel consumption 𝑀𝑓𝑢𝑒𝑙  in the overall 

driving mission under analysis can be written as: 

𝑀𝑓𝑢𝑒𝑙 =

∑ �̇�𝑓𝑢𝑒𝑙[𝜔𝐼𝐶𝐸(𝑡), 𝑇𝐼𝐶𝐸(𝑡), 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡) ] ∙ Δ𝑡 
𝑡𝑒𝑛𝑑
𝑡=1  

 (11) 

where �̇�𝑓𝑢𝑒𝑙 is the instantaneous fuel consumption 

rate in grams/second which can be evaluated by 

interpolating in a steady-state two-dimensional lookup 

table as function of ICE rotational speed and torque 

request. It should be noted that �̇�𝑓𝑢𝑒𝑙 is set to 0 in 

those time instants in which 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒 is equal to 0, 

denoting ICE at rest. 

3. Optimal plug-in HEV control with smooth 

driving constrains 

In this section, the optimal control of the parallel P2 

plug-in HEV powertrain architecture finds discussion. 

The retained formulation of the optimal HEV control 

problem with smooth driving constraint is detailed 

first. Then, DP is recalled as a common approach to 

find the global optimal solution for the introduced 

control problem. 

3.1. Optimal HEV control problem 

The retained formulation of the optimal control 

problem considering a parallel P2 plug-in HEV 

powertrain layout and smooth driving constraints can 

be expressed as in (12). 

arg min {𝑐𝑜𝑠𝑡𝑡𝑟𝑖𝑝 =  ∑ [𝑐𝑓𝑢𝑒𝑙 ∙
�̇�𝑓𝑢𝑒𝑙(𝑡)

𝜌
𝑓𝑢𝑒𝑙

 ∙ Δ𝑡 + 𝑐𝑒𝑙𝑒𝑐

𝑡𝑒𝑛𝑑

𝑡=1

∙ (
𝑂𝐶𝑉𝑝𝑎𝑐𝑘(𝑡) ∙ 𝐼𝑝𝑎𝑐𝑘(𝑡) ∙ Δ𝑡

3.6𝑒6
) ] } 

subject to:  

Mechanical constraints: 

1 ≤ 𝑛𝑔𝑒𝑎𝑟(𝑡) ≤ 𝑛𝑔𝑒𝑎𝑟,𝑀𝐴𝑋 

𝜔𝑖𝑑𝑙𝑒 ≤ 𝜔𝐼𝐶𝐸[𝑡, 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡) = 1 ] ≤ 𝜔𝐼𝐶𝐸𝑀𝐴𝑋 

0 ≤ 𝜔𝑀𝐺(𝑡) ≤ 𝜔𝑀𝐺𝑀𝐴𝑋 

𝑇𝐼𝐶𝐸[𝑡, 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡) = 0 ] = 0 

𝑇𝐼𝐶𝐸𝑚𝑖𝑛[𝜔𝐼𝐶𝐸(𝑡))] ≤ 𝑇𝐼𝐶𝐸[𝑡, 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡) = 1 ]

≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋[𝜔𝐼𝐶𝐸(𝑡)] 

 

 

 

 

 

 

 

 

(12) 
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𝑇𝑀𝐺𝑚𝑖𝑛[𝜔𝑀𝐺(𝑡)] ≤ 𝑇𝑀𝐺(𝑡) ≤ 𝑇𝑀𝐺𝑀𝐴𝑋[𝜔𝑀𝐺(𝑡)] 

SOC constraints: 

 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) ≥ 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 

𝑆𝑂𝐶̇ (𝑡) = 𝑓[𝑆𝑂𝐶(𝑡), 𝜔𝑀𝐺(𝑡), 𝑇𝑀𝐺(𝑡)] 

𝑆𝑂𝐶𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑀𝐴𝑋 

Parallel P2 HEV powertrain constraints: 

𝜔𝑀𝐺(𝑡) =
𝑣(𝑡) ∙ 𝜏𝑑𝑖𝑓𝑓 ∙ 𝜏𝑔𝑒𝑎𝑟[𝑛𝑔𝑒𝑎𝑟(𝑡)]

 𝑟𝑤ℎ𝑒𝑒𝑙
 

𝜔𝐼𝐶𝐸(𝑡) = 𝜔𝑀𝐺(𝑡) ∙ 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡) 

𝑇𝑀𝐺(𝑡) = {   
𝑇𝑤ℎ𝑒𝑒𝑙𝑠(𝑡)

𝜏𝑑𝑖𝑓𝑓 ∙ 𝜏𝑔𝑒𝑎𝑟[𝑛𝑔𝑒𝑎𝑟(𝑡)] ∙ 𝜂
𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒

𝑠𝑖𝑔𝑛[𝑇𝑤ℎ𝑒𝑒𝑙𝑠(𝑡)]

− 𝑇𝐼𝐶𝐸(𝑡)} 

Smooth HEV driving constraints: 

𝑇𝐼𝐶𝐸[𝑡, 𝑇𝑤ℎ𝑒𝑒𝑙𝑠(𝑡) < 0] = 0 

∑[�̇�𝑓𝑢𝑒𝑙(𝑡) ≠ �̇�𝑓𝑢𝑒𝑙(𝑡 − 1)]

𝑡𝑒𝑛𝑑

𝑡=1

≤ 𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 

∑[𝑛𝑔𝑒𝑎𝑟(𝑡) ≠ 𝑛𝑔𝑒𝑎𝑟(𝑡 − 1)]

𝑡𝑒𝑛𝑑

𝑡=1

≤ 𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋 

The optimal plug-in HEV control problem aims at 

minimizing the overall fuel and electrical energy 

consumption while complying with various 

constraints. In this paper, specific costs are considered 

to weight fuel consumption and net electricity 

consumption. As consequence, the cost function to be 

minimized is represented by the overall economic cost 

of the trip 𝑐𝑜𝑠𝑡𝑡𝑟𝑖𝑝. 𝑐𝑓𝑢𝑒𝑙 and 𝑐𝑒𝑙𝑒𝑐 stand for the fuel and 

electricity prices per unit, respectively. Their values 

have been selected here respectively as 1.41 euros per 

liter and 0.22 euros per kilowatt-hour, which relate to 

average prices observed in Italy in the first half of 2020 

[33][34]. 𝜌𝑓𝑢𝑒𝑙 is the fuel density in grams per liter. 

The electrical energy consumption in kilowatt-hours 

can be evaluated in eq. (12) by multiplying the battery 

pack open-circuit voltage times current and dividing 

by 3.6e6. The total trip cost is representative of the 

plug-in HEV fuel and electrical energy consumption, 

and it can be evaluated as a function of the evolution 

of HEV control variables over time, including the gear 

engaged, the ICE torque and the clutch state. 

Mechanical constraints involve limiting the gear 

engaged within 𝑛𝑔𝑒𝑎𝑟,𝑀𝐴𝑋, i.e. the number of gears 

embedded in the AMT, and restricting the ICE and 

MG operating points within allowed physical regions. 

The evolution of battery SOC over time follows the 

numerical modeling approach reported in (8)-(10), 

while related constraints involve its value at the end of 

the driving mission being equal or above the set target 

𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡. Moreover, the instantaneous battery SOC 

should always be contained within allowed limits. 

Speed and torque of ICE and MG can be evaluated 

following parallel P2 HEV powertrain constraints as 

functions of values of control variables and external 

inputs (i.e. vehicle speed and torque request). Finally, 

retained smooth HEV driving constraints involve 

setting the ICE torque to 0 when the vehicle is 

decelerating (i.e. 𝑇𝑤ℎ𝑒𝑒𝑙𝑠 < 0). Indeed, the noise caused 

by the ICE delivering positive torque might 

considerably compromise the riding perception when 

the driver intends to slow down to vehicle [35]. 

Moreover, the number of ICE cranking and gear 

shifting events in the overall driving mission should be 

limited below the predefined scalar thresholds 

𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 and 𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋, respectively. An ICE 

cranking event and a gear shift can be detected in those 

time instants in which the fuel consumption switches 

from zero to a positive value and the selected gear 

number does not match with the gear selected at the 

previous time instant, respectively.  

Smooth driving constraints are set here to guide the 

control optimization algorithm to identify appropriate 

HEV control policies in terms of drivability and riding 

perception. Indeed, it is commonly known in the 

literature that HEV optimal control algorithms would 

operate frequent ICE activations and gear shifts when 

constraining the frequencies for these events is 

neglected [36][37]. 

3.2. Dynamic Programming 

Assuming complete a priori knowledge of future 

driving for the given cycle, the corresponding global 

optimal solution for the plug-in HEV control problem 

with smooth driving constrains can be identified 

according to the Bellman’s principle of optimality 

[38]. Deterministic DP can be used in this context as a 
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popular technique to find global optimal HEV control 

trajectories [39][40]. Fig. 2 illustrates the workflow of 

the DP algorithm implemented in this paper, which 

corresponds to the one embedded in the generic DP 

Matlab® toolbox made available by Sundstrom and 

Guzzella [41]. In general, the optimal HEV control 

solution is identified by DP by exhaustively sweeping 

all possible discretized control actions while solving 

an optimization problem backwardly form the final 

time instant to the initial one of the considered driving 

mission [42][43]. Input parameters to the DP 

algorithm include in this case the numerical model of 

the HEV powertrain, the specific driving mission 

under analysis, 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 and the battery SOC at the 

beginning of the driving mission. Details for the 

operating steps of the implemented DP algorithm are 

then provided as follows.  

Step A. DP variables including control variable set, 

state variable set, cost-to-go-function and others are 

set in this step. The control variable set U associated 

to the HEV powertrain architecture considered here is 

shown in Eq. (13) and includes the gear number 

selection, the controlled torque of the ICE, and the 

controlled clutch state. 

𝑈 = {

𝑛𝑔𝑒𝑎𝑟

𝑇𝐼𝐶𝐸

𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒

}   (13) 

Combining control variables included in U allows 

generating all the possible discretized HEV control 

actions that comply with the constraints introduced in 

eq. (12).  

DP requires the definition of the state variable set X 

as well that includes the variables that are monitored 

over time throughout the considered drive cycle in eq. 

(14) [44]. 

𝑋 = {

𝑆𝑂𝐶
𝑛𝑔𝑒𝑎𝑟

𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒

}   (14) 

X comprises in this case the battery SOC which is 

tracked in order to allow avoiding excessive charge-

depleting HEV operation, to comply with SOC 

constraints in eq. (12) and to properly evaluate SOC 

dependent battery parameters such as open-circuit 

voltage and internal resistance for example. The gear 

number 𝑛𝑔𝑒𝑎𝑟  and the clutch state 𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒 are 

included in X to detect gear-shifting and ICE 

de/activation events, respectively. Compliance with 

the introduced smooth HEV driving constraints is 

allowed in this way. Since the retained DP tool allows 

constraining final values of state variables, the battery 

SOC is set here to be within allowed limits at the end 

of each retained driving mission [44]. 

Finally, an instantaneous cost-to-go function 𝐽𝐷𝑃 is 

considered as shown in eq. (15): 

𝐽𝐷𝑃(𝑡) = [𝑐𝑓𝑢𝑒𝑙 ∙
�̇�𝑓𝑢𝑒𝑙(𝑡)

𝜌𝑓𝑢𝑒𝑙
] + {𝑐𝑒𝑙𝑒𝑐 ∙

[
𝑂𝐶𝑉𝑝𝑎𝑐𝑘(𝑡)∙𝐼𝑝𝑎𝑐𝑘(𝑡)

3.6𝑒6
]} + 𝜇𝐼𝐶𝐸[𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡) ≠

𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒(𝑡 − 1)] + 𝜇𝑔𝑒𝑎𝑟[𝑛𝑔𝑒𝑎𝑟(𝑡) ≠ 𝑛𝑔𝑒𝑎𝑟(𝑡 −

1)] (15) 

where the first two terms respectively relate to fuel 

consumption cost and electrical energy consumption 

cost, while the latter two terms allow accounting for 

smooth driving conditions. 𝜌𝑓𝑢𝑒𝑙  is the fuel density in 

grams per liter. 𝜇𝐼𝐶𝐸 and 𝜇𝑔𝑒𝑎𝑟 are constant 

penalization factors applied at each time instant in 

which gear shifting and ICE de/activation are 

 
Fig. 2 Workflow of the DP algorithm for solving the optimal plug-in 

HEV control problem. 
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• Driving mission
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• Cost-to-go function 

, 

Start

Stop

Step C. Forward HEV simulation based on the 

identified sequence of optimal control inputs

Optimal HEV control trajectory 

in driving mission



 P.G. Anselma, “Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth 

driving constraints” 

 

9 

triggered, respectively. Both  𝜇𝐼𝐶𝐸 and 𝜇𝑔𝑒𝑎𝑟 require 

calibration to ensure satisfaction of smooth driving 

constraints introduced in eq. (12) while avoiding 

excessive HEV fuel and electrical energy economy 

worsening. It should be noted that two further state 

variables could have been considered in DP to track 

over time the number of gear shifts and ICE 

de/activation events. Nevertheless, this approach 

would have remarkably further deteriorated the 

computational efficiency of the DP algorithm. 

Furthermore, the automated calibration of 𝜇𝐼𝐶𝐸 and 

𝜇𝑔𝑒𝑎𝑟  is not considered in the illustrated DP workflow 

since the computational efficiency of the algorithm 

would further decay, but rather a manual calibration of 

these coefficients will be performed in Section 5, and 

only the computational time associated to a single 

execution of the DP workflow illustrated in Fig. 2 will 

be considered. On the other hand, the next section will 

highlight how effective and computationally efficient 

calibration of similar coefficients for smooth HEV 

driving conditions can be achieved in the version of 

SERCA introduced here. 

Step B. A backward analysis of the driving mission 

is performed from the last time instant to the initial 

one. At each time step, the discretized control 

variables that comply with the backward-reachable 

space are identified first. The backward-reachable 

space is a dynamic state constraint ensuring that the 

limitations imposed for the final values of state 

variables can be met. Then, the instantaneous cost-to-

go function is updated for the discretized values of 

control and state variables within the backward-

reachable space. The minimal value of the cumulated 

cost function up to the time instant under analysis is 

identified, and the corresponding control trajectory is 

selected as the optimal one. Finally, before moving to 

the previous time instant, the related backward-

reachable space is propagated. This procedure is 

iterated until the initial time instant of the driving 

mission is reached, and the optimal HEV control 

trajectory over time can finally be identified. The 

interested reader can consult [45] for more details 

regarding this methodology. 

Step C. A forward simulation of the plug-in HEV is 

performed by considering as input the optimal control 

trajectories previously computed. This allows 

evaluating both the time series of the HEV states, and 

the estimated fuel and electrical energy consumption 

in the overall driving mission. 

The main drawback of DP relates to its conspicuous 

computational cost, which exponentially increases 

when considering further state variables due to curse 

of dimensionality [46]. A compelling need might 

therefore relate to identify computationally efficient 

near-optimal control strategies for plug-in HEVs 

considering smooth driving constraints. In the next 

section, the formulation of the SERCA algorithm for 

plug-in HEVs will be introduced to overcome this 

drawback.  

4. SERCA formulation for plug-in HEVs 

considering smooth driving constraints 

As it has been described earlier, an appropriate 

energy management strategy needs implementation to 

rapidly predict the fuel and battery energy 

consumption of plug-in HEV design options in 

electrified powertrain design tools. As regards 

SERCA, its successful implementation has been 

discussed so far for HEVs operating in charge-

sustaining mode only, where the contribution of 

external battery electrical energy coming from the grid 

is not considered [28]. Nevertheless, when it comes to 

plug-in HEVs, numerical simulations are required to 

evaluate the operation of the electrified powertrain in 

charge-depleting mode as well, e.g. when the user 

starts the journey after charging the battery to the 

maximum allowed value of SOC. From a numerical 

point of view, this translates into considering different 

and broaden battery SOC intervals by retaining 

different constraints on the initial and final values of 

SOC. An adaptation of the previously introduced 

SERCA algorithm needs therefore development to 

account for these considerations. The workflow of the 

version of SERCA implemented for plug-in HEVs 

considering smooth driving constraints is illustrated in 

Fig. 3 and described in the follow-up of this section. 

Concerning parallel P2 HEVs, the baseline SERCA 

algorithm for HEV charge-sustaining operation retains 

as input the illustrated numerical model of the 

electrified powertrain design candidate and the driving 

mission that the design engineer intends to consider. 

These input data are retained as well in the version of 
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SERCA updated for plug-in HEVs, while further input 

parameters are required. These include (1) the level of 

battery SOC at the beginning of the retained driving 

mission 𝑆𝑂𝐶0 (as assumed by the vehicle designer); 

(2) the minimum level of battery SOC to be guaranteed 

at the end of the retained driving mission 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  

(as a criterion specified by the vehicle designer); (3) 

𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 denoting the maximum number of ICE 

activations operable for the entire driving mission (as 

a criterion specified by the vehicle designer); (4) 

𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋 denoting the maximum number of gear 

shifts operable for the entire driving mission (as a 

criterion specified by the vehicle designer). Then, the 

workflow of the SERCA algorithm for PHEVs can be 

described as follows in eight steps: 

Step A. Initial values are set for 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 which 

denote constant operating parameters of SERCA for 

tuning the number of ICE activations and the number 

of gear shifts, respectively. Both 𝜆𝐺𝑆 and 𝜆𝐼𝐶𝐸 are 

particularly set to 1 not to excessively penalize fuel 

and electrical energy consumption in the first iteration 

of the algorithm. A further parameter which initially 

needs definition in the version of the SERCA 

algorithm for plug-in HEVs is the number of sub-

cycles 𝑁𝑠𝑢𝑏−𝑐𝑦𝑐, i.e. the number of portions of the 

retained driving mission which will be optimized by 

SERCA separately. As it will be explained in step H in 

the algorithm, dividing the entire driving mission in 

more sub-cycles enhances the capability of the plug-in 

HEV powertrain controlled by SERCA of respecting 

allowed SOC limits. At the beginning, the number of 

sub-cycles might be set to 1, i.e. the overall driving 

mission is considered at once. 

Step B. The net consumable battery energy 

throughout the given driving mission in ampere-

seconds is computed according to the set values of 

initial SOC and final SOC following eq. (16):  

𝐸𝑏𝑎𝑡𝑡 = [𝑆𝑂𝐶(0) − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡] ∙ 𝐴ℎ𝑝𝑎𝑐𝑘 ∙ 3600   (16) 

Step C. The workflow of the traditional version of 

SERCA is performed for each sub-cycle of the 

retained driving mission, as reported in Algorithm 1 in 

[28]. The three main stages of SERCA are thus 

executed, namely the sub-problems exploration, the 

optimal operating points definition and the energy 

balance realization. As a general reminder, in SERCA 

optimal operating points at each time instant of the 

driving missions are the ones maximizing a slope 

parameter which is the ratio between charged battery 

energy and fuel consumed by the ICE. In the energy 

balance achievement step, the initial criterion of 

iterating the algorithm until the value of 𝐸𝐸𝑉 is greater 

than 0 is replaced by the recursive execution of the 

electric-to-hybrid replacement process until the value 

of 𝐸𝐸𝑉 is greater than 𝐸𝑏𝑎𝑡𝑡 in order to account for 

charge-depleting operation of plug-in HEVs. In this 

framework, the lower the values of 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆, the 

more priority will be given by SERCA to respectively 

reduce the number of ICE activations ad gear shifts at 

the expenses of worsening estimated fuel economy 

[28]. The aim of introducing 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 can be 

compared to the use of 𝜇𝐼𝐶𝐸 and 𝜇𝑔𝑒𝑎𝑟  in DP and to the 

use of co-states in the PMP for regulating changes in 

corresponding vehicle states over time. These 

coefficients need tuning to meet the retained smooth 

HEV driving constraints according to the driving 

mission and the starting SOC. To this end, the proved 

computational efficiency of SERCA is remarkably 

advantageous compared with DP. When multiple sub-

cycles are retained for the driving mission under 

analysis, the value of 𝐸𝑏𝑎𝑡𝑡 is updated at each sub-

cycle following eq. (16) and retaining the final value 

of SOC for the previous sub-cycle as 𝑆𝑂𝐶(0). 

Moreover, a check is conducted before considering 

each sub-cycle whether the plug-in HEV operation 

reached the charge-sustaining criterion during the 

previous sub-cycle. This corresponds to the final value 

of battery SOC for the previous sub-cycle being 

around 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡. In this case, since the contribution 

of the net battery energy coming externally from the 

grid has been depleted, the SERCA algorithm for the 

present sub-cycle is iterated until the value of 𝐸𝐸𝑉 is 

greater than 0 to account for charge-sustaining 

operation.  

Step D. During Step C, an assumption is typically 

made in SERCA that the battery parameters (i.e. 

𝑂𝐶𝑉𝑝𝑎𝑐𝑘 and 𝑅𝑝𝑎𝑐𝑘) do not vary according to the 

instantaneous value of SOC. A globally optimal 

control solution could be achieved in the literature 

while considering this assumption in case of HEV 

charge-sustaining operation [47]. However, when 

dealing with charge-depleting operation of plug-in 

HEVs, the value of SOC throughout the same driving 

mission might span a wider range of values entailing 

higher variations in the values of battery internal 
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resistance and open-circuit voltage, thus potentially 

compromising the solidity of this hypothesis. Fig. 4 

illustrates a comparison between time series of battery 

SOC in the worldwide harmonised light-vehicle test 

procedure (WLTP) respectively evaluated according 

to an HEV forward model and to an HEV model with 

constant battery parameters such as the one considered 

in Step C of SERCA. The starting battery SOC is 95%, 

and the potential SOC estimation error is illustrated as 

well in Fig. 4. The estimation error is proved to 

cumulate over time throughout WLTP achieving a 

remarkable 90% peak. Partitioning the entire driving 

mission in more sub-cycles allows mitigating this 

issue. Moreover, an additional step is executed to 

 
Fig. 3 Workflow of the SERCA algorithm applied to plug-in HEVs considering smooth HEV driving constraints. 
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completely overcome this potential drawback: after 

the workflow of the traditional SERCA algorithm has 

been completed in Step C, a forward simulation is 

performed for each sub-cycle while considering the 

dependency of battery parameters (i.e. internal 

resistance and open-circuit voltage) from the 

instantaneous value of battery SOC. To this end, time 

series of control variables (i.e. 𝑛𝑔𝑒𝑎𝑟 , 𝑇𝐼𝐶𝐸  and 

𝑐𝑙𝑢𝑡𝑐ℎ𝑠𝑡𝑎𝑡𝑒) are fed as input into the HEV powertrain 

numerical model described in Section 2. This allows 

determining the battery energy consumption and the 

overall SOC trajectory over time (including its final 

value) more accurately for each sub-cycle. It should be 

reminded that the simulation of the entire driving 

mission is performed by iteratively executing Step C 

and Step D for each sub-cycle according to the 

described procedure before moving to Step E. 

Moreover, the values of 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 selected in Step 

A or in Step F are kept constant throughout the 

iterative analysis of each sub-cycle in Step C and Step 

D. 

Step E. Once all the sub-cycles of the retained 

driving mission have been analyzed and simulated 

according to SERCA, a check is conducted for both 

the number of ICE activations and gear shifts being 

less or equal than 𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 and 𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋, 

respectively. Step F is executed in negative case, while 

the algorithm skips directly to step G in positive case. 

The values of 𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 and 𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋 can be set 

arbitrarily by the HEV designer according to 

engineering experience or predefined HEV 

development targets imposed by given sub-

components of the electrified powertrain. As example, 

the AMT under development might not be able to 

perform a certain amount of gear shifts over time due 

to excessive and hazardous mechanical stress. 

Step F. In case either the number of ICE activations 

or the number of gear shifts exceed the limits set by 

the designer for the retained driving mission, 𝜆𝐼𝐶𝐸 or 

𝜆𝐺𝑆 are respectively decreased to allow the SERCA 

algorithm improving the drivability of the PHEV 

powertrain design candidate under analysis. Steps C, 

D, E and F are particularly iterated until the smooth 

HEV driving requirements reported in eq. (12) and 

imposed by the designer in terms of maximum number 

of ICE activations and gear shifts over time are 

fulfilled. 

Step G. A further two-stage check is performed 

concerning the battery SOC trajectory generated by 

the forward simulations performed at step D 

considering battery SOC dependent parameters. A first 

check is conducted on 𝑆𝑂𝐶𝑒𝑛𝑑−𝑆𝐸𝑅𝐶𝐴. i.e. the value of 

battery SOC achieved at the end of the considered 

driving mission according to SERCA. This should be 

particularly equal or higher than 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 as 

specified by the designer and reported in eq. (12). A 

second inquiry regards the overall SOC trajectory in 

the driving mission, whose value should never be 

 

 

Fig.  4. Time series of battery SOC in WLTP evaluated according to HEV forward model and to HEV model 

with constant battery parameters, along with time series of potential SOC estimation error in WLTP. 
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higher than the maximum SOC allowed by the battery 

nor lower than the minimum SOC allowed by the 

battery. If both conditions are satisfied, the SERCA 

algorithm for plug-in HEVs is concluded, otherwise 

step H is executed. 

Step H. In case an unsatisfactory value of SOC at 

the end of the retained driving mission 𝑆𝑂𝐶𝑒𝑛𝑑−𝑆𝐸𝑅𝐶𝐴 

is achieved due to the assumption of constant battery 

parameters (e.g. lower than 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡), an update is 

performed regarding the value of 𝐸𝑏𝑎𝑡𝑡. Assuming that 

the generic iteration j of SERCA has been performed 

for the given driving mission, the updated value of 

𝐸𝑏𝑎𝑡𝑡 in ampere-seconds at the following iteration j+1 

can be computed using eq. (17). 

𝐸𝑏𝑎𝑡𝑡𝑗+1 = 𝐸𝑏𝑎𝑡𝑡𝑗 + (𝑆𝑂𝐶𝑒𝑛𝑑−𝑆𝐸𝑅𝐶𝐴 − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡) ∙

𝐴ℎ𝑝𝑎𝑐𝑘 ∙ 3600  (17) 

This allows the SERCA algorithm achieving a 

value of SOC at the end of the driving mission closer 

to the target 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  in the following iteration j+1. 

In general, the SERCA algorithm enables complying 

with the allowed value of net battery energy 

consumption by fulfilling an energy balance regarding 

the overall driving mission under analysis. This allows 

preserving computational rapidness for performing the 

overall algorithm. However, the instantaneous SOC 

value throughout the considered driving mission is not 

strictly considered in the SERCA optimization 

process. Especially when analyzing driving missions 

with considerably long distance, it might happen that 

the punctual value of SOC resulting from the 

electrified powertrain operation set by SERCA 

exceeds the minimum or maximum allowed value. 

Increasing the number of considered sub-cycles 

𝑁𝑠𝑢𝑏−𝑐𝑦𝑐 for the given driving mission may allow 

overcoming this drawback. As example in charge-

sustaining operation, the battery SOC is required to 

converge to the target 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  at the end of each 

sub-cycle, thus increasing the overall restrictions 

imposed to the used SOC window. However, refining 

the division of the entire driving mission in more sub-

cycles might potentially compromise the fuel 

economy capability of the retained PHEV. For this 

reason, the entire driving mission is considered at once 

in the first iteration of SERCA, while the segmentation 

into progressively more sub-cycles is executed only in 

case the battery SOC constraints are not fulfilled. 

Steps B to H are thus repeated until all the smooth 

HEV driving criteria and battery SOC criteria are not 

satisfied at once by the plug-in HEV control solution 

identified by SERCA. 

Once the described workflow of SERCA is 

completed, obtained output parameters include time 

series of control variables (i.e. gear number, ICE 

torque and clutch state), time series of state variables 

(e.g. battery SOC), and estimated fuel and electrical 

energy consumption for the retained plug-in HEV 

performing the retained driving mission.  

5. Results – case study 

This section aims at presenting a case study that 

assesses the effectiveness of the proposed version of 

SERCA for plug-in HEVs. The parallel P2 PHEV data 

retained in this case are reported in Table 1, where the 

vehicle chassis data relate to an A-segment passenger 

car from the US EPA database [48]. The ICE data is 

for a 3 cylinder in-line naturally aspired spark-ignition 

engine, while the size of the interior permanent magnet 

MG has been determined in order to get a 

hybridization factor of around 35%. The operating 

map for the ICE has been generated by means of 

Amesim® software and is illustrated in Fig. 5 [49]. 

Similarly, a lookup table for the MG efficiency of an 

interior permanent magnet synchronous electric 

machines has been derived in Amesim® software 

according to the procedure reported in [50] and it is 

illustrated in Fig. 5. The battery pack has been 

modeled as consisting of quantity 400 A123 26650 

cells in 100S 4P configuration, thus achieving a 

nominal capacity of 3.04kWh. Values of pen-circuit 

voltage and internal resistance as function of battery 

SOC have been retained from [51] considering new 

cell conditions. Such limited capacity selected for the 

battery pack of the representative plug-in HEV can be 

justified first with the small size of the considered A-

segment passenger car. Indeed, embedding a larger 

battery pack, typical of current plug-in HEVs, might 

introduce packaging issues when trying to fit both the 

battery pack and the hybrid electric powertrain in the 

limited volume allowed by an A-segment passenger 

car. Moreover, downsizing the battery pack might 

evidently involve considerable benefits from the retail 
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price point of view. Finally, a downsized battery pack 

increases the probability of using hybrid electric mode 

more than only pure electric mode in everyday driving 

missions. This allows numerically testing more 

thoroughly and exhaustively the effectiveness of the 

HEV control algorithms retained in this case study. 

Transmission data reported in Table 1 correspond to a 

five-speed AMT. 

Two driving missions are particularly considered in 

this case study represented by the WLTP and a real-

world driving mission (RWC) for which time series 

for vehicle speed and road altitude are shown in Fig. 

6. RWC particularly refer to a journey around 72 

kilometres long that includes different driving 

Table 1 

Plug-in HEV data used for SERCA validation 

Component Parameter Value 

Vehicle Mass 1002 Kg 

 RLA 104.49 N/m 

 RLB 2.43 N/(m/s) 

 RLC 0.41 N/(m/s2) 

 
Wheel dynamic 

radius (𝑟𝑤ℎ𝑒𝑒𝑙) 
0.317 m 

ICE Capacity 1.0 L 

 Configuration 3 cylinders, in-line 

 Type 
Spark ignition, naturally 
aspired 

 Maximum power 51 kW @ 6000 rpm 

 Maximum torque 92 Nm @ 3500 rpm 

 𝜌𝑓𝑢𝑒𝑙  749.5 g/L 

Transmission Gear ratios 
[3.85 ; 2.27 ; 1.52 ;  

1 ; 0.81] 

 
Efficiency 

(𝜂𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒) 
0.90 

Final drive Gear ratio 3.70 

MG Maximum power 28 kW 

 Maximum torque 91 Nm 

Auxiliaries 
Electrical 

subsystem power 
500 W 

Battery pack Configuration 100S 4P 

 Nominal capacity  3.04 kWh 

 
Cell type and 

capacity 

A123 ANR26650M1-B, 

2.5Ah 

 

 

 

 

 
Fig.  5. Generated 1.0 L 3 cylinders in-line 51 kW engine 

efficiency map and interior permanent magnet 28 kW electric 

motor efficiency map. 

WOT curve

OOL (smoothed)

Maximum torque 

limit curve

Minimum torque 

limit curve

 

 
 

Fig.  6. Vehicle speed profile, road altitude profile and geographic 

map for the real-world driving mission (RWC) recorded through 
global positioning system. 
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conditions such as urban, extra-urban, highway, uphill 

and downhill. The duration for RWC is around 1.5 

hours and it has been recorded by means of global 

positioning system in Piedmont, northern Italy, as 

illustrated in Fig. 6. Road altitude has been recorded 

as well over time while performing RWC in Fig. 6. 

Compared with the WLTP, the simulation of RWC is 

thus more representative of real-world driving 

conditions. From a numerical modeling perspective, 

changes in road altitude over time allow evaluating the 

road slope angle ϑ, which was in turn used in eq. (3) to 

calculate the vehicle resistive force due to road slope. 

In order to thoroughly evaluate the plug-in HEV 

operation, simulations for both WLTP and RWC are 

performed considering different values of battery SOC 

when starting the driving mission, particularly 

corresponding to 95% (i.e. battery charged to the 

maximum allowed value), 80%, 60%, 40% and 25%. 

The value of 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  is set to 25% in this case. All 

the retained starting SOC cases are considered for the 

plug-in HEV performing the two driving missions and 

being controlled off-line by both SERCA and DP. This 

allows thoroughly validating the near optimality of 

SERCA when the net battery energy use over the 

driving mission change due to the different starting 

SOC. Moreover, the robustness of the calibration 

procedure of 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 in SERCA can be validated 

in this way for different values of starting SOC. As 

example, the ICE needs to be switched on more 

frequently and to be kept activated for longer as the 

value of starting SOC decreases. In this context, the 

value of 𝜆𝐼𝐶𝐸  needs to be fine-tuned for preserving 

both the compliance with smooth driving constraints 

and the near optimality of the fuel and electrical 

energy economy assessed. 

Minimum and maximum allowed values of battery 

SOC throughout the overall driving missions are 

assumed being 8% and 95%, respectively. The control 

variable related to 𝑇𝐼𝐶𝐸  is discretized with a step of 5 

Nm [39], while 1,000 points are retained for 

discretizing the SOC state variable in each DP 

simulation [29]. Values of 𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 and 

𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋 set here depend on the duration of the 

specific driving mission and are reasonably assumed 

being 15 and 135 per 30 minutes of driving, 

respectively. Setting limits for 𝑁𝑐𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑀𝐴𝑋 and 

𝑁𝑠ℎ𝑖𝑓𝑡𝑠,𝑀𝐴𝑋 challenges the HEV control algorithms to 

comply with additional smooth driving constraints. At 

present, iterated executions of the algorithms are 

therefore required to find the optimised HEV control 

solution in terms of fuel and electrical energy economy 

while complying with smooth driving constraints. 

Computational efficiency is a key feature to efficiently 

iterate the control algorithm and thus meet smooth 

driving constraints. As it will be illustrated below, 

SERCA remarkably outperforms DP in terms of 

computational efficiency.  

Simulations have been performed here in 

MATLAB® software and considering a desktop 

computer with Intel Core i7-8700 (3.2 GHz) and 32 

GB of RAM. Once the entire workflow of SERCA for 

plug-in HEVs illustrated in Fig. 3 is completed for a 

simulation case, the same simulation has been 

repeated considering DP as energy management 

strategy and manually tuning weighting factors for the 

number of ICE activations and gear shifts until HEV 

performance complying with imposed requirements 

and comparable with SERCA was achieved. On one 

hand, this procedure allows performing a 

straightforward comparison of obtained results 

between SERCA and DP under similar drivability 

constraints. On the other hand, it should be noted that 

presented results in terms of computational time for 

DP will consider only a single simulation, i.e. 

discarding the eventual previous attempts not fulfilling 

smooth driving criteria.  

Table 2 and Table 3 report obtained results in terms 

of predicted fuel consumption, electrical energy 

consumption, estimated plug-in HEV operative cost, 

number of ICE activations, number of gear shifts and 

computational time for both SERCA and DP in WLTP 

and RWC, respectively. Fuel consumption, electrical 

energy consumption, and estimated plug-in HEV 

operative cost have been particularly weighted over 

100 kilometers considering the spatial distance 

covered in the corresponding driving mission. 

Furthermore, time series for battery SOC, gear number 

and cumulated fuel consumption for all the considered 

starting SOC cases in the two retained driving 

missions are illustrated in Fig. 7 and in Fig. 8, 

respectively. Overall, obtained results suggest that the 

near-optimality of the fuel and electrical energy 

economy predicted by SERCA and weighted 

according to the specific costs might be preserved for 
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this version of the algorithm dedicated to plug-in 

HEVs. This relate to the increase in plug-in HEV 

operative cost estimated by SERCA being always less 

than 4.4% and 6.8% compared with DP for WLTP and 

a long-distance real-world driving mission such as 

RWC, respectively. A slight increase in the percentage 

deviation of fuel economy between SERCA and DP 

can be observed compared with the correlative results 

previously shown for a parallel P2 HEV in terms of 

fuel economy solely. This minor drawback might 

relate to the implemented approach for calibrating the 

values of 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 and in SERCA. While a brute 

force approach was adopted in [28] in exploring all the 

possible values for these coefficients, an iterative 

methodology is implemented in this paper that enables 

updating the values for these two coefficients only 

until the smooth drivability requirements are fulfilled 

in step E and step F of Fig. 3. On its behalf, the updated 

approach for calibrating 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 contributes to 

further increase savings in the computational time for 

SERCA: on average 0.3 minutes are required to 

simulate the parallel P2 plug-in HEV in WLTP using 

SERCA here, while around 2.4 minutes were required 

to perform the same task on the same computational 

Table 2 

Results for fuel consumption, number of ICE activations, number of gear shifts and computational time for the plug-in HEV controlled by 
SERCA and DP in WLTP 

Starting 
SOC [%] 

Algorithm 

Fuel 

consumption 

[L/100 km] 

Electrical energy 

consumption 

[kWh/100 km] 

Plug-in HEV 

operative cost 

[€/100 km] 

ICE 
activations 

Gear 
shifts 

Computational 
time [min] 

95 SERCA 1.51  9.03 4.12 (+0.9%) 4 89 0.3 (-99.9%) 

 DP 1.51 8.89 4.08 6 74 242.8 

80 SERCA 2.11 7.09 4.53 (+1.0%) 10 89 0.3 (-99.8%) 

 DP 2.09 6.96 4.48 5 76 202.5 

60 SERCA 2.94 4.48 5.13 (+1.6%) 10 89 0.3 (-99.9%) 

 DP 2.90 4.39 5.05 8 75 269.4 

40 SERCA 3.81 1.91 5.79 (+2.6%) 12 89 0.3 (-99.9%) 

 DP 3.71 1.86 5.64 11 80 214.0 

25 SERCA 4.51 -0.02 6.35 (+4.4%) 13 89 0.4 (-99.8%) 

 DP 4.32 -0.03 6.09 13 78 345.2 

 

Table 3 

Results for fuel consumption, number of ICE activations, number of gear shifts and computational time for the plug-in HEV controlled by 

SERCA and DP in RWC 

Starting 

SOC [%] 
Algorithm 

Fuel 
consumption 

[L/100 km] 

Electrical energy 
consumption 

[kWh/100 km] 

Plug-in HEV 
operative cost 

[€/100 km] 

ICE 

activations 

Gear 

shifts 

Computational 

time [min] 

95 SERCA 2.95 2.95 4.81 (+5.8%) 36 327 1.1 (-99.9%) 

 DP 2.82 2.63 4.55 44 288 693.9 

80 SERCA 3.17 2.31 4.98 (+5.6%) 37 327 0.8 (-99.9%) 

 DP 3.01 2.12 4.71 37 322 643.7 

60 SERCA 3.45 1.46 5.19 (+6.5%) 36 327 0.8 (-99.9%) 

 DP 3.23 1.42 4.87 39 349 649.8 

40 SERCA 3.69 0.62 5.42 (+6.8%) 44 327 1.8 (-99.7%) 

 DP 3.51 0.61 5.08 41 384 618.3 

25 SERCA 3.90 -0.01 5.58 (+5.3%) 44 327 2.1 (-99.9%) 

 DP 3.76 -0.01 5.30 35 347 1475.4 
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device in [28]. This is a further advantage in 

computational light-weighting since, compared with 

DP, lower computational times by around 99.9% are 

required by SERCA to complete both WLTP and 

RWC. It should be reminded that the computational 

time reported for DP does not account for the tuning 

process of 𝜇𝐼𝐶𝐸 and 𝜇𝑔𝑒𝑎𝑟 . If the calibration of these 

two coefficients was considered, the overall 

computational time for DP would remarkably further 

increase. As it can be noticed in Table 2 and in Table 

3, smooth driving constraints imposed on the number 

of ICE activations and gear shifts can be satisfied 

thanks to the implemented plug-in HEV control 

approach. Moreover, as illustrated in Fig. 7 and in Fig. 

 
Fig. 7 Battery SOC, gear number and predicted fuel consumption for the plug-in HEV controlled by SERCA and DP in WLTP for different 

values of starting battery SOC. 

(a) = 95% (b) = 80% (c) = 60%

(d) = 40% (e) = 25%
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8, the final value of SOC never falls below the 

minimum allowed value 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 , thus 

corroborating the effectiveness of the proposed HEV 

control approach. Particularly for DP, the value of 

battery SOC at the end of the driving mission may 

exhibit slightly larger values compared with 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 

due to the interpolation within the discretized grid of 

the corresponding state variable.  

Table 4 reports obtained results for the automated 

calibration of 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 in SERCA based on the 

selected driving mission and the starting battery SOC 

value. Different values are obtained for both these 

coefficients in each simulation case, which motivates 

 
Fig. 8 Battery SOC, gear number and predicted fuel consumption for the plug-in HEV controlled by SERCA and DP in RWC for different 

values of starting battery SOC. 

 

(a) = 95% (b) = 80% (c) = 60%

(d) = 40% (e) = 25%
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the need for a calibration procedure in the SERCA 

algorithm for complying with the predefined smooth 

driving constraints depending on the driving mission 

and the starting battery SOC. 

Finally, Fig. 9 illustrates the trip costs related to fuel 

and electrical energy consumption as predicted by 

SERCA and DP for both WLTP and RWC as a 

function of the starting battery SOC. A graphical 

representation of the near optimality of the HEV 

control solution identified by SERCA in terms of 

economic costs entailed by fuel and electrical energy 

consumption is provided in this way. Moreover, the 

economic viability of the electrical energy coming 

from the grid and stored in the battery of the plug-in 

HEV is proved in Fig. 9 considering the costs of the 

propelling energy. Indeed, 13.8% and 14.2% cost 

savings can be achieved by the plug-in HEV 

respectively controlled by SERCA and DP when 

starting the RWC with the battery fully charged 

compared with the related 25% starting SOC case. 

Corresponding potential economic savings for the 

WLTP further increase up to 35.1% and 33.0% for 

SERCA and DP, respectively. This relates to the 

limited kilometrical distance covered in WLTP 

compared with the RWC, which leverages the 

economic savings entailed by the increased use of 

electrical energy coming from the grid.  

6. Conclusions 

This work introduces a computationally efficient 

energy management approach for plug-in HEVs. An 

adaptation of the SERCA algorithm introduced in [28] 

that can optimally control plug-in HEVs at various 

level of battery SOC at the beginning of each driving 

mission is particularly discussed. The performance of 

the SERCA algorithm is validated by benchmarking 

with the global optimal HEV control reference 

provided by DP in terms of estimated operative costs 

derived by fuel and electrical energy consumption and 

computational cost in both a standard drive cycle and 

in a real-world long-distance driving mission. Other 

than minimizing the estimated fuel and electrical 

energy consumption, both control approaches aim at 

generating smooth hybrid supervisory control patterns 

by appropriately limiting the number of ICE 

activations and gear shifts over time. The SERCA 

algorithm has been demonstrated capable of 

simulating the near-optimal smooth driving 

constrained operation of a plug-in HEV in a 1.5 hour-

long real-world driving mission in less than 2 minutes 

on a desktop computer. On the other hand, DP would 

require more than 10 hours to perform the same task 

without straightforwardly guaranteeing the 

satisfaction of smooth driving constraints retained. It 

Table 4 

Calibrated values of 𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 for the plug-in HEV 

controlled by SERCA in WLTP and in RWC as function of 

different values of starting battery SOC 

 

Starting 

SOC 

[%] 

𝜆𝐼𝐶𝐸 𝜆𝐺𝑆 

WTLP RWC WTLP RWC 

95 1.000 0.840 0.995 0.955 

80 1.000 0.860 0.990 0.960 

60 0.950 0.860 0.980 0.960 

40 0.900 0.860 0.970 0.960 

25 0.600 0.880 0.910 0.965 

 

 
Fig.  9. Predicted plug-in HEV trip cost in terms of fuel and 

electrical energy consumption for WLTP and RWC as predicted 

by SERCA and DP depending on the starting battery SOC. 
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should be admitted that implementing SERCA entails 

a slight increase in estimated fuel and electrical 

consumption compared with DP. However, this 

increment was proved being contained within few 

percentage points only. 

The computational rapidness of SERCA and its 

near optimality in terms of estimated fuel and 

electrical energy consumption as illustrated in this 

paper open new possibilities for plug-in HEV 

powertrain design and on-board control. Fig. 10 

outlines possible future developments of the SERCA 

algorithm for plug-in HEVs. Regarding HEV 

powertrain design, engineers could implement it to 

easily estimate the fuel and electrical energy economy 

capability of a given plug-in HEV powertrain layout. 

Computational efficiency can be enhanced in this way 

when exploring the large design space associated to 

plug-in HEV powertrain, while including for example 

the consideration of other vehicle states (e.g. battery 

state-of-health, battery temperature, after treatment 

system temperature) and the simulation of several 

long-distance real-world driving missions [52][53].  

Moreover, future work could consider 

implementing SERCA in on-board plug-in HEV 

energy management systems. Indeed, computational 

efficiency is a major drive to foster effectiveness and 

affordability of vehicle on-board control units. A first 

possibility shown in Fig. 10 in this case relates to 

generate a large database of optimized HEV control 

trajectories considering different real-world driving 

scenarios. This can be performed rapidly thanks to the 

use of SERCA. Then, an artificial intelligence agent 

could be trained off-line in supervised learning mode 

to learn the optimized HEV control behaviour 

provided by SERCA. The trained artificial intelligence 

agent could then be embedded in the on-board plug-in 

HEV energy management system. Alternatively, the 

generated database of HEV control trajectories 

optimized by SERCA could be used to develop and 

tune heuristic HEV controllers. Further options are 

possible and could be explored in this framework in 

Fig. 10. For example, SERCA could be combined with 

recent advances in intelligent transportation systems 

and future velocity predictors to rapidly generate near-

optimal plug-in HEV control trajectories based on the 

prediction provided in terms of vehicle speed and road 

altitude according to gathered look-ahead information 

[54][55]. The predicted control trajectories could then 

be applied by the on-board plug-in HEV energy 

management system that operates as a predictive 

controller. 
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