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Abstract

In this paper, we focus on the application of ML tools to resource management

in a portion of a Radio Access Network (RAN) and, in particular, to Base Sta-

tion (BS) activation and deactivation, aiming at reducing energy consumption

while providing enough capacity to satisfy the variable traffic demand gener-

ated by end users. In order to properly decide on BS (de)activation, traffic

predictions are needed, and Artificial Neural Networks (ANN) are used for this

purpose. Since critical BS (de)activation decisions are not taken in proxim-

ity of minima and maxima of the traffic patterns, high accuracy in the traffic

estimation is not required at those times, but only close to the times when a

decision is taken. This calls for careful processing of the ANN traffic predic-

tions to increase the probability of correct decision. Numerical performance

results in terms of energy saving and traffic lost due to incorrect BS deactiva-

tions are obtained by simulating algorithms for traffic predictions processing,

using real traffic as input. Results suggest that good performance trade-offs can

be achieved even in presence of non-negligible traffic prediction errors, if these

forecasts are properly processed. The impact of forecast processing for dynamic

resource allocation on the BS failure rate is also investigated. Results reveal

that conservative approaches better prevent BSs from hardware failure. Never-

theless, the deployment of newer devices, designed for fast dynamic networks,
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allows the adoption of approaches which frequently activate and deactivate BSs,

thus achieving higher energy saving.

Keywords: Radio access network; base station; energy efficiency; traffic

prediction; neural network; base station lifetime

1. Introduction

The growth of computational power, the availability of data, the improve-

ment of learning algorithms are the boosts behind the pervasiveness of new

Artificial Intelligence (AI)- and Machine Learning (ML)-based mechanisms to

respond to the new challenges of today’s networks, which are often too complex5

to be properly understood, modelled, and managed with traditional approaches.

This is the case of decision making for network management and configuration

in presence of a huge set of parameters and fast changing scenarios, but also of

catching the effect of complex interactions among multitudes of heterogeneous

users and network elements (such as macro and small cells in heterogeneous10

networks), as well as understanding the hidden correlations among systems.

While these approaches are attractive because they are, by their nature, suited

to handle problems with very large state spaces and complexity, in practice, ef-

fectively exploiting the potential of ML technologies is not easy. A deep domain

knowledge is needed, as well as a careful processing of the outputs of ML tools.15

In this paper, we experiment this in Radio Access Network (RAN) manage-

ment. We consider a portion of a RAN in which Base Stations (BSs) of macro

and small cells can be activated and deactivated based on traffic load, so as

to reduce energy consumption while guaranteeing that enough capacity is pro-

vided to satisfy the demand. BS activation and deactivation decisions are taken20

based on traffic predictions that are performed through Artificial Neural Net-

works (ANN). In order to properly operate the network so as not to deteriorate

Quality of Service (QoS), the outputs of the ANNs have to undergo a number of

processing steps that, driven by a deep domain knowledge, are carefully tailored

for the scope.25
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Solutions for RAN management and resource on demand provisioning have been

formulated in several contexts and with a multitude of different objectives: the

trade-off between the opposite needs to on the one hand reduce energy consump-

tion, and on the other provide QoS, is a timely objective, motivated by concerns

on sustainability, climate change, and network operational cost increase. The30

deployment of BS management mechanisms, in its turn, is easier today due to

the flexibility of new network architectures and it is effective for energy con-

sumption reduction due to the typical traffic demand profiles at the edge of

the network. Traffic demand profiles are characterised by (often short) peaks,

followed by (often long - especially during night) valleys, and this makes the35

installed RAN equipment under-utilised for long periods of time. During these

under-utilisation periods, some of the RAN equipment can be put in low power

consuming sleep modes. Moreover, in some areas and in some periods (typ-

ically right after technology upgrades), the RAN capacity is over-provisioned

even with respect to traffic peaks, and this makes BS management even more40

attractive for energy saving purposes.

As mentioned above, BS activation and deactivation decisions are taken based

on traffic predictions. When the traffic is predicted to be small enough, some

small cell BSs can be deactivated, and traffic is carried by the small and macro

BSs that remain active. Conversely, when traffic grows and additional capacity45

is needed, some BSs in sleep mode are re-activated. Operating BSs, by acti-

vating and deactivating them, has an impact on BS failure rate: on the one

side, switching is harmful to BS failure rate; on the other side, the time spent

in sleep mode saves the BS from deterioration. The balance between these two

phenomena depends on the hardware (HW) components of the BS, and on the50

RAN management strategy. The deterioration of the failure rate of the BS di-

rectly impacts its maintenance and its operation and maintenance cost for the

operator. According to [1], this cost accounts for 3 k¤ and 1 k¤, per year,

for each macro and micro cell BS, respectively. Up to 4 billions of BSs were

counted worldwide back in 2012, as described in [2], and this number is bound55

to remarkably increase because of the RAN densification, planned with the 5G
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RAN deployment [3, 4]. Thus, in addition to energy saving and QoS, these RAN

management strategies have to be designed taking into consideration the impact

on the BS failure rate, in order to avoid the explosion of the RAN Operational

(OPEX) cost.60

In [5], the performance of this BS management strategy was tested using sev-

eral different ANNs for traffic predictions, performed over an hourly time scale.

The results showed a limited sensitivity to the type of ANN. Indeed, critical BS

(de)activation decisions are taken in correspondence of specific traffic values,

and high accuracy in the estimations is not required in general, but only close65

to the times when decisions are taken. Hence, to significantly improve perfor-

mance, traffic predictions need to be carefully processed and the overall pattern

understood. In [6], we show that performing traffic predictions through ANN,

over a shorter time scale, and their processing is fundamental for improving

performance. In this paper, we introduce the BS failure rate as a new variable70

in the design space of RAN management. Results reveal that energy saving

strategies based on conservative processing of the traffic demand forecasts reach

significant energy consumption reduction, preserving QoS, as well as the BSs

failure rate, also in case the BS HW has not been designed for dynamic switch-

ing. When the processing of the traffic demand predictions results in a dynamic75

BSs activation and deactivation, energy saving is further slightly improved, at

the expense of a small loss in QoS and in the BS failure rate, suggesting that

these approaches are suitable only in case the BS HW design is optimised for

BS switching.

The paper is organised as follows. After the related work discussed in Section 2,80

in Section 3 we present the scenario and the methodology of our study. The

proposed approach models each BS as defined in Section 4 and is based on

traffic predictions, obtained with the tools that are presented in Section 5, and

on the prediction processing algorithms that are reported in Section 6. After

presenting performance indicators in Section 7, results are discussed in Section85

8. Section 9 summarises our findings and Section 10 concludes our work.
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2. Related work

In the green networking literature, many RAN management solutions have

been proposed, based on Resource on Demand (RoD) approaches. An overview

of the RoD strategies to dynamically adapt the set of active radio resources90

to the current traffic demand is presented in [7, 8, 9]. With the purpose of

reducing energy demand and limiting the RAN operational cost, the authors of

[10] exploit RoD strategies to adapt energy consumption to the actual traffic

load. In [11], a framework is proposed to efficiently allocate spectrum resources

to users, switching off unneeded BSs, in order to minimise power consumption.95

A time-varied probabilistic ON/OFF switching algorithm for cellular networks is

presented in [12]. In [13, 14], RoD strategies are applied in a green mobile access

network, with the objective of improving the interaction with the smart grid in

a demand-response scenario, thus reducing the electricity bill and providing

ancillary services. Recently, the effects of BS switching on the lifetime of the100

BSs have been investigated. The authors of [15] showed that putting a BS in

sleep mode, besides reducing its energy consumption, increases its lifetime, since

the BS operating temperature is reduced. This reduction depends on its HW

components, i.e., on the materials used to build the device, and on the time

spent in sleep mode. However, the same paper highlights also that power states105

transitions, which imply transition in the HW operating temperature, negatively

affect the BS lifetime. For this reason, the works presented in [16, 17], formalise

the optimal BS switching to maximise the RAN lifetime; the problem is solved

through an heuristic, which allows to save up to 40% of energy during night,

without decreasing the network survival duration. The effects of network device110

switching are also analysed in optical backbone networks, in [18, 19].

Many of these works, which focus on BSs switching, aim at dynamically allo-

cating resources, under the assumption that the future traffic demand is exactly

known. This means that predictions of the amount of traffic demand are nec-

essary in order to make the proposed approaches viable. This aspect is very115

critical, since errors in the traffic estimation can significantly affect the perfor-
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mance of these strategies. If the traffic demand is overestimated, waste of energy

occurs; in case of traffic underestimation, incorrect BS deactivations may dete-

riorate QoS. To overcome the issue related to QoS deterioration due to traffic

underestimation, [20] uses deep learning neural network based predictions, em-120

ploying a customised loss function, to predict the needed network capacity. In

particular, in case of underestimation, such function gives higher penalty than

when the needed capacity is overestimated.

In the recent literature, many works focus on traffic estimation. In [21], an Auto-

Regressive Integrated Moving Average (ARIMA) is used for the prediction of125

mobile data traffic and a Seasonal ARIMA (SA) model is used in [22]. These

works demonstrate that these two methods provide high accuracy, but require

slow training and forecasting, which make them impractical for on-line forecast-

ing. The work presented in [23], uses Markovian models, while [22], [24], [25],

[26], [27], [28], [29] employ ML approaches. According to [22] and [24], ANNs130

provide promising results in forecasting the hourly amount of traffic in TCP/IP

networks. In [25], very good performance is reached in the forecast of the mo-

bile traffic of an LTE BS, using a Recurrent Neural Network (RNN) and 1 ms

resolution data. High accuracy in traffic predictions is achieved with the same

approach, in [26]. An hybrid scheme, structured in an ANN and a RNN is dis-135

cussed in [27]. Moreover, [28] and [29] predict traffic demand with Least Squares

Support Vector Machines and a Linear Regression based approach, respectively.

Differently from the previous literature, in this paper, traffic predictions are

based on different ANN structures, and RoD strategies are applied based on traf-

fic predictions, after processing, with the objective of reducing the RAN energy140

consumption without (or with minimal) QoS deterioration. This means that, in

our work, high accuracy traffic forecasts are not the primary objective. Predic-

tions are a necessary tool to achieve the proper resource allocation, which allows

energy saving without compromising QoS. In particular, since traffic maxima

and minima do not trigger BS switch-on/off, we are not interested in careful145

estimations of such values. Rather, we try to carefully identify the instants

when to activate or deactivate BSs. To achieve this goal, we apply processing
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techniques on the traffic forecasts, and we show that a careful selection of these

techniques can be more impactful on the achieved RAN energy efficiency than

the careful selection of the traffic predictor.150

3. Scenario

A portion of an heterogeneous LTE RAN is considered, comprising one macro

cell BS, and a few small cell BSs, whose coverage overlaps with the macro cell.

This is a typical scenario considered for 5G and beyond RAN architectures, that

leverage small cell BSs exploiting high frequency bands (tipycally millimeter155

wave). Small cell BSs are deployed to provide additional capacity during high

traffic demand periods. A centralised Management and Orchestration System

(MANO) decides the activation of resources (i.e., small cell BSs), according

to predictions of the future traffic demand. These predictions are performed

on a temporal horizon of 15 minutes (which is the time granularity chosen160

by the operator whose data we used in this work, and is thus taken as the

time slot). Small cell BSs can be switched on and off to reduce the RAN

energy consumption, with attention to QoS. This means that, when not all

the capacity is needed to satisfy the predicted traffic demand, some small cell

BSs are put in sleep mode. On the contrary, all BSs are activated in those165

periods when all the capacity is required for the traffic demand satisfaction.

The activation/deactivation of a BS cannot occur at intervals shorter than one

hour, to avoid too frequent switches.

Traffic predictions are performed through ANNs, and are processed before reach-

ing a decision about BS activation and deactivation. The BS management works170

in two phases.

1. Training phase. This phase is performed only once, as a preliminary

step of our online management system. In this step, the ML algorithm

used to predict the traffic demand is trained using historical data.

2. Run-time phase. The traffic is predicted using the previously trained175

ANN, and BS activations or deactivations are decided. During this phase,
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the following two steps are performed at every time slot, i.e., every 15

minutes:

(a) Prediction. The traffic demand is forecast for the following 4 time

slots.180

(b) Prediction processing and decision. The four predictions are

processed by the MANO, which decides which small cell BS must be

active in the next hour.

4. Modelling the BS

The input power, in watt, required for the operation of a BS at time slot

t, denoted as Pin(t), is derived according to the linear model proposed in [30],

which has a fixed component, corresponding to the amount of power needed to

keep the BS active, and a load-dependent component. It can be expressed as

follows:

Pin(t) = Ntrx · [P0 + ∆pPmaxρ(t)], 0 ≤ ρ ≤ 1 (1)

where Ntrx is the number of transceivers, P0 represents the power consumption

in watt when the radio frequency output power is null, ∆p is the slope of the

load dependent power consumption, ρ(t) is the traffic load at time slot t, defined

as the traffic carried by the BS in b/s and the BS capacity in b/s. Pmax is the

maximum radio frequency output power in watt at maximum load. Table 1

summarises the value of the parameters for macro and small cell BSs [30]. The

consumption of the BS in sleep mode is considered negligible.

We adopt the model of the BS failure rate presented in [17] and [31]. The

model treats the BS as a whole, i.e. as a single entity, rather than using a

model for each single component of the BS, even if this assumption results in

a less detailed model, which does not specify the dependencies among the BS

components. The failure rate of a BS, and in general, of an arbitrary device,

is given by the Arrhenius law [32] and is strictly dependent on the operating

temperature. As derived in [17, 31, 32], putting a BS in sleep mode positively

impacts its lifetime and failure rate, since its operating temperature is reduced.
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Nevertheless, the power state change negatively affects the failure rate, increas-

ing it, since, as explained in [33], the metal is sensitive to temperature variations

and, in particular, to state cycling. As a result, the failure rate of a BS, and,

in general, of an arbitrary device, expressed in failure/h, is given by two contri-

butions: i) the failure rate in active and sleep modes, weighted by the time the

device is in those states, and ii) the frequency of the device’s operational state

changes. In [16, 17, 31], a failure is every HW event which causes interruption

of the BS operation, both when its repair needs some HW substitution or not.

According to [16, 17], the failure rate of a BS b can be expressed as:

γb = (1− τsleep)γon + τsleepγsleep +
ftr
NF

(2)

where τsleep is the fraction of time the device spends in sleep mode, γon and

γsleep, in failure/h, are the failure rates when the BS is active and in sleep

mode, respectively, computed with the Arrhenius law [32]. The parameter ftr,

in cycle/h, is the frequency of the sleep mode cycle and NF , in cycle/failure, is

the number of cycles supported by the device before a failure occurs. Usually, to

measure the impact of the device switching on its lifetime, the Accelerator Factor

(AF) is estimated. This indicator provides the mean lifetime increase/decrease

with respect to the always on condition, as the ratio between the resulting failure

rate and the failure rate of the always on scenario. A value of AF larger than

1 means that the failure rate increases, while a value smaller than 1 indicates

that the failure rate decreases. Similar to (2), the resulting AF is given by two

contributions: the time spent in sleep mode, which decreases the BS failure rate

(and AF), and the frequency of the operating state changes, which deteriorates

the BS failure rate (and increases AF). For each BS b, the AF can be computed

over a period of duration θ, as follows:

AFb,θ =
γb
γonb

= 1− (1−AFsleep)τsleep︸ ︷︷ ︸
Lifetime Increase

+ χftr︸︷︷︸
Lifetime Decrease

(3)

where AFsleep is the AF, computed assuming that the device is always kept185

in sleep mode. According to [32], it is always lower than 1, otherwise putting

the device in sleep mode would mean increasing the failure rate of the device.
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Table 1: Values of the parameters of the consumption model for macro and small cell BSs.

BS type Ntrx Pmax (W) P0 (W) ∆p

Macro 6 20 84 2.8

Small 2 6.3 56 2.6

Then, τsleep is the fraction of time the BS has spent in sleep mode in the period

of duration t. The parameter ftr, in cycle/h, is the frequency of the switching

cycle which is measured over t and χ, in h/cycle, is defined as 1
γon
b NF

and acts190

as weight of the frequency ftr. As a result, the drop of the BS failure rate is

achieved when χftr < (1 − AFsleep)τsleep. Notice that the parameters χ and

AFsleep depend on the HW component used to build the BS, while τsleep and

ftr depend on the switching strategy.

5. Traffic predictions195

In this section, we present the traffic prediction tools used during the BS

run-time as a preliminary step to the BS management decision. An ANN-based

approach is used for this purpose. This is because, as mentioned, in the litera-

ture, the potentiality of ANN has been widely demonstrated [22] [24]. Moreover,

[5] shows that the performance of the BS activation/deactivation are not signif-200

icantly affected by the ML approach used for the traffic predictions. Thus, the

usage of a simple ANN represents a good trade-off between performance and

complexity.

5.1. Input Data

Data provided by a large Italian mobile network operator are used in this205

study. They report the traffic demand volume, in bit, of 1420 BSs located in

the city of Milan (Italy) and in a wide area around it, for two months in 2015,

with granularity of 15 minutes. This time periods includes typical weeks, as

well as Easter week, when a brief vacation occurs. During typical weeks, people
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Figure 1: Considered traffic areas: train station (purple), Rho Fiere (brown), Duomo di

Milano (orange), Politecnico di Milano (light green), San Siro (grey), a business area (dark

green), a residential area (yellow), an industrial area (magenta).

follow their usual working and activities routine. As a result, the considered210

period provides a good representation of the traffic demand volume dynamics.

The traffic traces are normalised; hence, the peak of each traffic pattern is

equal to the maximum capacity of each BS. Note that this is a pessimistic

assumption with respect to energy saving possibilities, since the capacity of the

network is usually overdimensioned. For our work, eight portions of the city are215

selected, which are shown in Fig. 1. These areas were selected as samples of quite

different scenarios, and, hence, traffic patterns. All together, the selected areas

are representative of the various zones that coexist in a urban environment. The

train station area (purple square in Fig. 1) is characterised by intense activity

levels, especially at the beginning and at the end of the working hours. The220

Rho Fiere district (brown in the figure) is an area that hosts big events, fairs

and exhibitions, that last for a few days. The Duomo di Milano area (orange

square) is a touristic area, with high activity during several hours of the day.

The Politecnico di Milano area (light green) hosts a large campus with many

students. The San Siro neighbourhood includes a large soccer stadium (grey),225

and the activity here is quite bursty and variable depending on the scheduled

matches and concerts1. A part of a business neighbourhood (dark green) and

some residential streets (yellow) are also considered: the traffic in these areas

1In the considered time period, soccer matches were held over weekends.
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Figure 2: Spatial cross-correlation among cells with lag= 15 minutes.

follows the typical behaviour of people in their daily life. In the business area,

traffic peaks are observed during the central hours of the day, whereas in the230

residential area a traffic rise is observed in the evening. Finally, the industrial

zone (magenta) is a particular case of a business area. In each of these portions

of the RAN, we assume that one macro BS and 6 small cell BSs are present, so

that the service area is covered by one macro cell which overlaps with 6 small

cells. To do this, for each area, we selected 7 traffic patterns recorded in that235

area. The trace which presents the highest traffic demand is chosen as the macro

cell BS, while the remaining six as micro cell BSs.

5.2. Selection of the ANN input features

In order to predict traffic demand, the ANN must be fed with carefully

selected input features. The investigation of the best choice for the ANN input240

features was made accounting for the temporal and spatial correlations of traffic.

In particular, we exploit the traffic temporal periodicity (which we observed to

be present in most traffic patterns) due to the periodicity of human activities,

and we investigated the possibility of also using the spatial correlation which is

expected to be present among adjacent cells. In Fig. 2, the cross-correlation245

obtained between the traffic at one BS in the city centre, indicated in red, and

all others is plotted, choosing as time lag one time slot, i.e., 15 minutes. We
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Figure 3: Scheme of the three proposed prediction techniques: (a) 1 ANN-4 outputs, (b) 1

ANN-1 output, (c) 4 ANNs-1 output

can see that correlation only mildly depends on the spatial closeness to the

considered BS (darker colours correspond to higher correlation values). Indeed,

high correlation values are present even among cells that are very far from each250

other. For this reason, in this paper we focus only on input features based on

the temporal periodicity of traffic patterns.

Let us define by Tb,i the traffic demand at BS b and time slot i. For simplicity

of notation, in what follows we drop the index b if there is no ambiguity. At

the beginning of each time slot t, the traffic demand at time slot t (the time255

slot that is just beginning), t+1 (the following time slot), t+2 and t+3 are
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predicted; predictions are denoted by T ′t , T
′
t+1, T ′t+2, T ′t+3, respectively.

The prediction tool receives as inputs:

• Tt−1: the traffic at the time slot just past, i.e., t− 1;

• Tt−(24·4): the traffic one day before the current time slot (the factor 4260

comes from our time slots being 15 minutes long);

• Tt−1−(24·4): the traffic one day before the time slot just past;

• Tt−(48·4): the traffic two days before the current time slot;

• Tt−1−(48·4): the traffic two days before the time slot just past.

5.3. Traffic Forecast Approach265

Different ANN-based prediction approaches are tested.

5.3.1. 1 ANN-4 outputs

One ANN for each BS is used. At time t, the ANN outputs the traffic demand

samples at time slots t, t+1, t+2 and t+3 (see Fig. 3a).

5.3.2. 1 ANN-1 output270

One ANN for each BS is used. The ANN is trained to predict the traffic demand

at the current time slot, e.g. at time t, and it is used in cascade to predict also

the three future traffic samples, e.g. at time t + 1, t + 2, t + 3. This means

that the ANN produces the prediction of the traffic demand at time t, namely

T ′t , using in input the traffic at previous time slot, Tt−1, as well as the traffic275

of previous days. Once T ′t is computed, for predicting the traffic at time t+ 1,

the same ANN is used but it receives as input the predicted traffic T ′t instead

of Tt that is unknown. Similarly, for the prediction of traffic at times t+ 2 and

t + 3, predictions are used instead of traffic samples for the unknown values of

the input. The logical schema is reported in Fig. 3b.280
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5.3.3. 4 ANNs-1 output

Four ANNs are used for each BS. Each ANN is dedicated to the prediction of

the traffic demand at a given time lag. This means that the 4 future traffic

samples are separately predicted, using 4 different ANNs, but the inputs are as

in the previous case: predictions are used instead of missing samples whenever285

needed. The schema is reported in Fig. 3c.

As in [5], each ANN mentioned above is structured in 3 layers: the input layer

which has 8 nodes, one hidden layer with 17 nodes, and the output layer with

one node, if 1 ANN-1 output and 4 ANNs-1 output are employed, or 4 nodes in

case of 1 ANN-4 outputs usage. The number of layers, as well the number of290

nodes for each layer are among the hyper-parameters which need to be selected.

These have been chosen in order to achieve a good trade off between the accuracy

and the time needed to train the network. Each ANN is trained minimising the

Mean Squared Error (MSE) over the data of the first 47 days of the considered

time period.295

6. Processing traffic predictions

After the ANN has generated traffic predictions, they must be processed by

the MANO to decide about micro cell BS (de)activation, with the objective to

save energy, without compromising QoS. In this section, we propose strategies

for processing the predictions and deciding microcell activation and deactiva-300

tion.

6.1. Resource Allocation

Different algorithms can be used to combine traffic predictions in a BS man-

agement strategy, based on the approach in [10], which states that a micro cell

BS is switched off if its traffic demand is lower than a threshold ρ∗, provided305

that such amount of traffic can be carried by the macro cell BS. The threshold

depends on the energy consumption per carried bit: when the traffic is below

ρ∗, the energy needed to carry a unit of traffic in the micro cell is larger than in
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the macro, so that it is more convenient to switch off the small cell BS, if this is

possible in terms of total capacity. As demonstrated in [10], the optimal value310

of the threshold is 37% of the maximum load of the BS.

6.1.1. Max2Max

In this case, resources can be allocated only at the beginning of each hour:

at 00:00, 01:00, etc. At the beginning of each hour, T ′b,t, T
′
b,t+1, T ′b,t+2, T ′b,t+3,

the 4 traffic demands corresponding to that hour are predicted for each micro315

cell BS b, as well as for the macro cell B ; predictions in the macro are denoted

by T ′B,t, T
′
B,t+1, T ′B,t+2, T ′B,t+3. Among these 4 samples, the maximum, M ′b, for

each micro cell BS b and the maximum, M ′B , for the macro cell are computed:

M ′b = max
(
T ′b,t, T

′
b,t+1, T

′
b,t+2, T

′
b,t+3

)
(4)

M ′B = max
(
T ′B,t, T

′
B,t+1, T

′
B,t+2, T

′
B,t+3

)
(5)

A micro cell BS b is switched off if M ′b is lower than the threshold, and its traffic

can be carried by the macro, given that the macro is expected to be carrying

an amount of traffic M ′B :

if (M ′b < ρ) ∧ (M ′B +M ′b < C)→ switch off b (6)

where C is the capacity of the macro cell B. Basically, the decision is taken

based on the maximum of the predicted traffic samples. As the decision is320

taken, M ′B is updated accordingly, to account for the traffic load that will be

transferred from the considered BS.

6.1.2. Max2Max Continuous

This strategy is very similar to Max2Max, but, in this case, it is applied at

the beginning of each 15 minute time slot and not only at the beginning of an325

hour, as in the previous case. The decision to switch off a cell for 4 consecutive

time slots (1 hour) can be taken in any time slot.

6.1.3. I2I

When this strategy is used, the switch on/off is possible only at the begin-

ning of each hour. Given the four predicted traffic demands belonging to the330
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considered hour, for each micro cell BS b and for the macro cell BS B, a micro

cell BS b is switched off when, for every slot t + i with i = 0, 1, 2, 3, the esti-

mated traffic T ′b,t+i is lower than the threshold ρ∗ and there is enough available

capacity on the macro BS:

if ∀i = 0, · · · , 3 (T ′b,t+i < ρ) ∧ (T ′b,t+i + T ′B,t+i < C)

→ switch off b (7)

In this case, the decision to switch off is taken if the requested conditions are335

verified slot by slot.

6.1.4. I2I Continuous

When this strategy is used, I2I is applied at the beginning of each time slot.

As in Max2Max Continuous, each micro cell BS remains active or in sleep mode

for at least 1 hour (4 consecutive time slots), but a change of state can happen340

in any time slot.

6.1.5. I2I Flexible

This is a further variation of I2I Continuous. As before, at the beginning

of each time slot, I2I is applied. Nevertheless, when a micro cell BS has been

put in sleep mode for at least one hour, it remains sleeping if the necessary345

conditions are verified for one more time slot. This means that when we are at

time t, given that the micro cell BS has been deactivated since at least t-4, that

micro cell BS remains in sleep mode, if T ′b,t is lower than ρ∗, provided that T ′b,t

can be carried by the macro BS during the t-th time interval.

Each of the considered micro cell BSs is analysed for its possible deactivation350

as described above, starting from the least loaded to the most loaded, in the

following hour. Given that the load of a micro BS is lower than ρ∗, its energy

consumption per bit is larger, if its load is smaller. Thus, giving larger priority

to micro BSs in the deactivation procedure leads to minimum network energy

consumption [10]. The load during the following hour on each micro BS is given355

by summing the traffic demand during the 4 time slots belonging to that hour.
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6.2. Descending front detection

The presence of noise in traffic patterns may result in incorrect deactivation

of the small cell BSs, thus deteriorating QoS. For this reason, the concept of

Descending Front Detection (DFD) is introduced in the processing of traffic

predictions. In particular, the switching from active to sleep mode of a micro

cell BS is permitted only if a descending front is detected: if an active micro cell

BS is detected to be in a descending phase, the necessary conditions for the micro

cell switchoff are checked. Because of the noise inherent in traffic patterns, a

negative first derivative is not a sufficiently good indicator of a descending front.

Therefore, a moving average filter is used for this purpose. It smooths data by

replacing each traffic sample with the average of the neighbouring samples. This

operation practically acts as a low-pass filter on traffic patterns. In our case,

a triangular smoothing is applied twice. In particular, at time t, the following

expression is computed, for z = t-4, t-5, t-6:

S′b,z =
1

81

2∑
j=−2

(3− |j|)
2∑

i=−2
(3− |i|)Tb,z+j+i (8)

where Tb,z+j+i is the real traffic demand on BS b at time z+j+i. However,

notice that for z = t− 4 and for j = 2 and i = 2, Tb,z+j+i, is Tb,t, which is not

known. Thus, its prediction, T ′b,t is used in this case. The maximum z is chosen360

equal to t-4, in order to avoid using other predicted samples.

If S′b,t−4 < S′b,t−5 < S′b,t−6, we conclude that a descending front is detected.

If this is the case, the necessary micro cell BS switchoff conditions are checked.

If they are verified, as described in section 6.1, the considered micro cell BS can

be deactivated.365
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7. Key Performance Indicators

7.1. Average Relative Error

The ARE (Average Relative Error) measures the average relative error be-

tween the real and predicted traffic samples. It is computed as:

ARE =
1

NBS

NBS∑
b=1

REb (9)

where NBS is the number of the considered BSs and REb is the RE (Relative

Error) on BS b, derived as:

REb =
1

H

H∑
t=1

|Tb,t − T ′b,t|
Tb,t

(10)

where Tb,t is the real traffic demand at time t on BS b, T ′b,t is the forecast traffic

demand at time t on BS b, H is the duration of the testing period, in number

of time slots.370

7.1.1. Energy Consumption Reduction

When the resource allocation strategies presented in Section 6.1 are used,

in each time slot some BSs are active and consume energy, while some others

may be in sleep mode and thus consume no (or very little) energy. The energy

consumption of each BS is given by (1). In order to measure the effectiveness

of these strategies, the energy saving is computed. It is calculated with respect

to the always ON scenario: this is the case in which all BSs are always active

regardless the amount of traffic demand. It is computed as follows:

ECRed = 100 · ECon − EC
ECon

(11)

where ECon is the energy consumption in the always ON scenario; EC is the en-

ergy consumption with the considered strategy, computed as
∑H
t=0

∑NBS

b=1 ECt,b,

where ECt,b is computed as in (1) and NBS is the number of the considered

BSs.375
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7.2. Lost Traffic

In the always ON scenario, each BS is always active and able to carry its

traffic demand. In case resources are dynamically allocated according to the

strategies described above, the situation is different. The Lost Traffic is defined

as the percentage of the traffic demand that cannot be carried by the network,

accounting for the fact that in each time slot some BSs are active and can handle

their traffic demand, while some others may be off and thus cannot provide any

service. Let us define the traffic that overflows from the micro cell BS b to the

macro cell as:

Ob,t =

Tb,t if b is in sleep mode

0 if b is active

(12)

the lost traffic is given by:

L =

∑H
t=1 max(0, TB,t +

∑NBS

b=1 Ob,t − C)∑H
t=1

(
TB,t +

∑NBS

b=1 Tb,t

) · 100 (13)

where C is the capacity of a macro BS. The lost traffic is the percentage of

traffic that cannot be carried by the macro cell BS when traffic overflows from

deactivated small cell BSs.

7.3. Accelerator Factor for each micro cell BS380

For each BS b, we measure AFt,b and AFb which are, respectively, the AF

of that BS b, measured at time t and at the end of the considered operating

period, i.e. in steady state.

7.4. Accelerator Factor

For each considered portion of network, we measure AF which is the average

AF of that area at the end of the considered operating period, i.e. in steady

state:

AF =
1

BS

BS∑
b=1

AFb (14)

where BS is the number of micro cell BS in the considered portion of RAN and385

AFb is the AF, for each BS b in the considered area, computed as in (3).
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Table 2: Average relative error, ARE, with the different approaches at different time lags.

ARE
1 ANN-

4 outputs

1 ANN-

1 output

4 ANNs-

1 output

4 ANNs-

1 output

(spatial)

AREt 0.33 0.33 0.33 0.37

AREt+1 0.43 0.44 0.43 0.47

AREt+2 0.52 0.52 0.48 0.52

AREt+3 0.61 0.57 0.52 0.54

8. Performance evaluation

In this section, we discuss numerical results obtained by experimenting the

different prediction, processing and decision algorithms presented in the previous

sections on the considered RAN portions. Out of the 61 days for which we have390

real traffic data, the first 47 are used for the ANN training phase, while the

remaining 14 days are used for the run-time phase.

8.1. Choice of the ANN

As a first step, we analyse the effectiveness of the different ANN configura-

tions for traffic predictions, using the previously defined ARE (average relative395

error) as a performance metric. The results provided by the considered ANN

configurations, namely 1 ANN-4 outputs, 1 ANN-1 output and 4 ANNs-1 out-

put, for each time lag, are reported in Table 2, averaged over the eight considered

geographical areas. Observe that numerical results confirm what is intuitively

expected, and was quantitatively shown in [25]: the error increases with the time400

horizon of the predictions. Moreover, typically, the 1 ANN-4 outputs provides

the largest ARE. This is because, when the other 2 approaches are used, the

sample corresponding to the most recent traffic demand, even if only predicted,

is provided as an input feature. In Fig. 4, the percentage of the reduction of

ARE gained with 1 ANN-1 output and 4 ANNs-1 output, with respect to 1405
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Figure 4: Percentage of the reduction of absolute relative error, ARE, obtained by 1 ANN-1

output or 4 ANNs-1 output with respect to the 1 ANN-4 outputs, for different time lags.

ANN-4 outputs, are shown in blue and orange, respectively. The reduction of

the estimation error is the largest for 4 ANNs-1 output, especially when the

time horizon of the predictions is longer. This is because this ANN configura-

tion uses 4 ANNs: during the training phase, each ANN learns how to forecast

the desired output, managing the error which affects the input traffic sample410

derived from a prediction. For these reasons, in the rest of this study we will

use 4 ANNs-1 output for traffic forecast, unless otherwise specified.

In order to confirm the mild correlation among adjacent cells, we also report the

ARE which is obtained when we provide to 1 ANN-4 outputs an additional in-

put feature. In order to select this additional input feature, the cross-correlation415

between the traffic demand of the current BS and each of its adjacent ones, is

performed. Then, the argmax function is computed, in order to select the

BS bsMAX and the time lag lMAX which provide the largest value of cross-

correlation. Thus, when we are predicting the traffic demand at time t, the
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additional input feature is the traffic demand on bsMAX at time t-lMAX . Sim-420

ilarly, for the prediction of the traffic demand at t+1, t+2 and t+3, the traffic

demand on bsMAX at time t+1 -lMAX , t+2 -lMAX , t+3 -lMAX , respectively, are

given as additional input feature. From Table 2, it is possible to notice that the

presence of this feature deteriorates the precision of the forecast.

8.2. Dynamic resource allocation performance425

We now investigate the performance of the resource allocation strategies

presented in Section 6.1. Our solutions are compared against 3 benchmarks:

(i) the TNSM19 approach presented in [5], which allocates the resources of a

RAN according to the hourly traffic predictions obtained using an ANN, with

no processing of the ANN outputs; (ii) the PIMRC18 approach: in this case430

the traffic is predicted using the LSTM (Long Short Term Memory) network

proposed in [25] and resources are allocated based on I2I ; (iii) the 15 min

approach, similar to the TNSM19 case, but operated over 15 minutes time

slots. With this approach, each small cell BS can be switched to/from sleep

mode as soon as needed, with no constraint on the frequency of switching.435

8.2.1. Effect of traffic pattern shape and load distribution

For each strategy and zone, Fig. 5a reports the energy consumption reduction

computed with respect to the always ON scenario, and Fig. 5b reports the per-

centage of lost traffic. First, it is possible to confirm that, as expected, the

percentage energy saving directly depends on the shape of the traffic pattern440

(peak/off-peak ratio, duration of peaks, ...), which is characteristic of the con-

sidered area. If the traffic demand is low for many hours, the BS management

approach can be very effective: up to 40% of the energy consumed with respect

to the always ON approach can be saved, as we see in the San Siro and Rho

Fiere areas. When the traffic demand is larger than ρ∗ for longer periods, the445

small cell BSs can be switched off for shorter periods, and a lower amount of

energy is saved. This is the case of the PoliMi and Train Station areas, where

the energy saving is lower than 15%. In Fig. 6a, the traffic demand during 5
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Figure 5: Comparison of dynamic resources allocation strategy in the various areas: (a) Energy

consumption reduction and (b) lost traffic.

days of the simulation of a micro cell BS in the Train Station and San Siro ar-

eas is plotted, in dark and light grey, respectively. The former presents a traffic450

volume usually larger than the threshold, indicated by the black horizontal line,

while the latter almost always lower than ρ∗. As a consequence, their sleeping

time ratio τsleep is very different, as can be noticed in Fig. 6b, where τsleep

is plotted, for each dynamic resource allocation approach. In particular, τsleep

is never larger than 0.25 and lower than 0.9 for the micro cell BS located in455

the Train Station and San Siro areas, respectively. Nevertheless, the frequency

switching ftr, reported in Fig. 6c, assumes very close values for both cases,

since the micro cell BS located in the Train Station zone is usually ON and is

deactivated only during the night, while the one placed in the San Siro area is

usually in sleep mode and is active only during public events, when additional460

capacity is needed in order to satisfy the traffic demand. Fig. 6d reports the

traffic demand during 5 days of simulation of two micro cell BSs, BS A and BS

B, of the residential district. These two patterns, reported in dark and light

grey in the figure, are very similar in shape and volume and are lower than

the threshold for most of the time. However, their corresponding τsleep assume465

very different values. This is because micro cell BS A presents a lower traffic
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Figure 6: Comparison of dynamic resources allocation strategies with different traffic demand

pattern: (a) traffic demand, (b) τsleep and (c) ftr of a BS in San Siro and Train Station areas;

(a) traffic demand, (b) τsleep and (c) ftr of two different micro cell BSs in the Residential

areas.

demand than micro cell BS B. Therefore, it has priority to be put in sleep mode,

and is in sleep mode for more than 80% of the time, for each dynamic resource

allocation. Because of this, the macro cell BS carries also the amount of traffic

demand of micro cell BS A, making not possible the deactivation of micro cell470

BS B, to avoid macro cell BS overloading, even if its traffic demand is lower

than the threshold. This suggests that the switching of a single micro cell BS

and, consequently, its energy consumption, depends on its traffic demand, as

well as on the traffic demand of the other micro cell BSs, which belong to the

same hierarchical RAN cluster.475

8.2.2. Comparing resource allocation strategies

Focusing again on Fig. 5a, it is possible to notice that the reduction of en-

ergy consumption obtained with our proposals is slightly lower than with the

chosen benchmarks. Indeed, with our proposals the energy consumption in-

creases, at most, by 1.7%, 1.9% and 2.9%, with respect to the TNSM19, 15480

min and PIMRC18 benchmarks. This is because our approaches are slightly
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Figure 7: Comparison of dynamic resources allocation strategies in the various areas: (a)

Max2Max and I2I and (b) Cont version.

more conservative in energy saving, but better preserve QoS, measured as the

percentage of lost traffic. When TNSM19 is used, resources are allocated un-

der the unrealistic assumption that the traffic demand is uniformly distributed

within a whole hour. For this reason, the lost traffic results higher than with485

the other approaches. With PIMRC18, up to 4% of traffic is lost. Even if it

provides traffic predictions affected by lower ARE (0.29, 0.37, 0.42, 0.47, for the

forecast at time t, t+1, t+2 and t+3, respectively), it usually generates more

underestimated traffic samples that contribute to QoS deterioration.

The comparison with the 15 min case is also interesting. The 15 min case is490

based only on traffic predictions performed over a time horizon of 15 minutes for

which the error is lowest (see table 2). Nonetheless, in this case no processing

of the ANN outputs is performed; hence, despite the small error in predictions,

the lost traffic is quite large. This is a clear indication of the importance of the

processing of ANN outputs.495

Let us now focus on the proposed approaches. The lost traffic is lower in the

Max2Max case than in the I2I one, since its switching condition is stricter.

Fig. 7a shows the status of a micro cell BS of the Train Station area in orange

and blue, when I2I and Max2Max are used, respectively. The micro cell BS
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traffic demand is reported in grey and ρ∗ with the dashed grey curve. Even if500

these two approaches use the same prediction samples for resource allocation,

Max2Max makes the BS active sooner than I2I. At 7.00 a.m., predictions of

the traffic demand during the following hour are erroneously smaller than the

threshold. Nevertheless, Max2Max switches BSs if the maximum, among the

traffic demand samples belonging to that hour, is smaller than ρ∗ and can be505

carried by the macro cell, supposing that it is managing an amount of traffic

which is the maximum traffic demand among the 4 traffic demand samples of

that hour. Thus, the micro BS is activated, since its traffic demand cannot be

carried by the macro BS because of the capacity constraint.

The use of the cont variation provides benefits in terms of QoS in both510

strategies, Max2Max and I2I. When cont is used, the effect of higher errors,

which characterises traffic predictions over longer time lags, is further mitigated,

so that a more accurate resource allocation can be performed. As a result, the

achieved lost traffic is always less than 2%. Specifically, in the areas where the

resource allocation is more difficult due to the unpredictability of traffic demand,515

i.e., Rho Fiere and San Siro, 1.6% and 2% of the traffic is lost. In areas where

patterns are more regular, values are always lower than 1.4%. Similar results are

given by I2I Flex : the lost traffic is lower than the chosen benchmarks because

the BS switching can react to the traffic demand every 15 minutes, provided

that the last switching has occurred since at least 1 hour. This can be observed520

in Fig. 7b, where each curve corresponds to the status of a micro cell BS of

the Duomo area, obtained with each of the considered allocation approaches.

Also its traffic demand (in grey) and ρ∗ (grey dashed curve) are reported. The

cont variation and I2I Flex react as soon as the traffic demand increases (at

8.30). When I2I and Max2Max are used, resources are allocated at 8.00 a.m.,525

and the prediction with lag equal to 3 is used for that time slot. Because of

the large error which affects this forecast, this sample results lower than the

threshold, and the micro cell BS is not activated. Thus, from Figs. 7a and

7b, it is possible to notice that strategies behave similarly if the traffic demand

is far from the threshold. Indeed, in this case, the large error, which affects530
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Figure 8: Impact of descending front detection for two areas: (a) detection of fronts and (b)

switch off decisions with and without DFD.

typically deeper forecasts used by I2I and Max2Max, does not impact resource

allocation, correctly detecting the value of the traffic demand with respect to

the threshold. As soon as the traffic demand moves closer to the threshold, even

if based on the same predictions, the resources allocation is different. In case of

max, conditions for the deactivation are stricter; with cont based approaches,535

more accurate predictions can be used. This results in more likely activation of

micro BSs and, consequently, in lower lost traffic.

8.3. Impact of descending front detection

We now investigate the impact of the use of DFD in resource allocation.

When DFD is used, the deactivation of a micro cell BS is possible only if a540

descending front is detected, according to the conditions described in Sec. 6.1.

In Fig. 8a, blue triangles mark the detection of a descending front during one

day of the run-time phase of 2 micro cell BSs, belonging to the PoliMi and

Rho Fiere areas. As can be observed, descending fronts are mostly correctly

identified. Since the current predicted traffic demand has lower impact on DFD545

than past samples, see equation (8), it is possible that DFD is activated after a

local minimum.

Fig. 9 reports the energy consumption reduction, in bars, and the lost traffic,
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Figure 9: Energy consumption reduction and lost traffic in each area, with each dynamic

resource allocation with and without descending front detection, DFD.

indicated by the blue and red lines with circle markers. Blue markers refer to

no DFD, while red markers refer to DFD. The results of the chosen benchmarks550

are reported in grey. The figure reveals that the usage of DFD generates a

systematic drop in both energy efficiency, for a small amount, and lost traffic,

for more significant values. The energy consumption reduction remains between

10% and 39%, similar to the case of no DFD, when TNSM19, 15 min and

PIMRC18 are used, but QoS improves significantly: lost traffic is usually below555

1%. In the San Siro and Rho Fiere areas, because of the critical characteristics

of traffic patterns, this value is between 1% and 1.5%. The reductions of lost

traffic are due to the stricter conditions to switch off the micro cell BSs. This

can be seen in Fig. 8b, which illustrates an example of the traffic demand, in

black, of the 2 small cells BSs of Fig. 8a. In Fig. 8b, the orange and blue points560
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Figure 10: AFt,b for a micro cell BS of the Train Station area, with χ=0.5, varying AFsleep

indicate the time slot during which the considered micro cell BS is in sleep

mode when I2I cont and I2I cont with DFD are used, respectively. During

periods of almost constant but noisy traffic demand, if traffic values are close to

the threshold ρ∗, incorrect small cell BSs deactivations may occur. Indeed, for

those traffic values, even a small error in the traffic predictions can determine565

a wrong allocation of resources. This is the case reported in the figure: with

DFD, incorrect deactivation of the considered small cell BSs is avoided since

a descending front is not detected. Without DFD, with the I2I cont alone,

the estimation error (even if small) makes the predictions lower than ρ∗, and a

wrong switch off decision is taken. With DFD, the small cell BS is not switched570

off because the descending front is not detected. This behaviour explains the

slight increase of energy consumption when DFD is applied. However, in spite

of a very limited raise in energy consumption, the traffic loss can be reduced by

up to 74% with respect to the benchmarks.

8.4. Impact on the BS failure rate575

The impact of the proposed dynamic resource allocation schemes on the BS

failure rate is now discussed. Each curve in Fig. 10 represents the behaviour of

AFt,b versus time for a micro cell BS in the Train Station area, obtained with

a different value of AFsleep, when I2I is employed, with χ equal to 0.5, that is

the value measured in an LTE BS in [16]. At the beginning of each simulation,580

AFt,b is lower than 1, since the simulation starts at midnight and the micro

BS can be put in sleep mode, making AFt,b small. Then, at 7 a.m. it starts
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Figure 11: AFb for a micro cell BS of the Train Station area: (a) with I2I-based approaches

and (b) with Max2Max-based approaches.

growing, since the BS is activated due to increasing daily traffic demand. After

some fluctuations, due to BS activation and deactivation that follow the daily

traffic demand variations, AFt,b stabilises, since τsleep and ftr stabilise as well.585

When large values of the parameter AFsleep are considered, AFt,b is large due

to more significant BS deterioration in sleep mode.

Fig. 11 reports the value of AFb, on the z-axis for a BS in the Train Station

area; different values of AFsleep in the interval [0.1, 0.9] are considered on the

x-axis, and different values of χ in [0.1, 2.0], on the y-axis. Each plotted plane590

corresponds to a different dynamic resource allocation approach. In particular,

the I2I and Max2Max strategies are considered, with and without the cont

variant and the use of DFD. From these figures, we first notice that the growth

of AFsleep and χ implies a growth of AFb. If AFsleep is large, the time in sleep

mode is less beneficial to the BS failure rate; while large values of χ corresponds595

to the growth of the cost of the BS switching, see (3). When AFsleep and

χ are large enough, more conservative dynamic resource allocations provide
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lower values of AFb, than more dynamic ones. Indeed, the DFD variant, which

uses the strictest switching conditions, provides the lowest AFb, because of the

reduction of the switching frequency ftr, without significant reduction of the600

sleeping time ratio τsleep, see Figs. 6b, 6c, 6e and 6f. The largest values of AFb

are obtained when the cont variation is used, since, as mentioned in the previous

section, it promptly reacts to the low traffic demand. This increases ftr and, as

a consequence, AFb. For small values of AFsleep and χ (bottom left part of the

plots in Fig. 11), the situation is different. Indeed, with small values of χ and605

AFsleep the cost of a BS switching does not significantly impact the BS failure

rate, and spending time in sleep mode largely decreases it. Therefore, in this

interval of values, the approaches which put the micro cell BS in sleep mode for

longer time, provide lower values of AFb, as in the case of cont variants.

Fig. 12 combines energy consumption and AF by representing each dynamic610

resource allocation algorithm in each area with a marker positioned so that

the y coordinate corresponds to the energy consumption reduction and the x

coordinate corresponds to the value of AF . Fig. 12a reports the AF values, with

AFsleep and χ equal to 0, which corresponds to the ideal case in which in sleep

mode the BS failure rate goes to 0, meaning that its lifetime goes to infinity,615

and the BS switching does not affect it. Results in Fig. 12b are provided for

AFsleep = 0.2 and χ = 0.5, as measured in [16] for an LTE BS. Finally, in

Fig. 12c, the parameters are set pessimistically to 0.9 and 1.9, meaning that

the sleep mode only slightly reduces the BS failure rate and the BS switching

is highly costly, significantly affecting the BS deterioration. As expected and620

discussed in section 8, results are clustered according to the geographical area,

because of the different achieved energy consumption reduction, which strictly

depends on the traffic pattern that is characteristic of each zone. When AFsleep

and χ are 0, AF is always lower than 0.7, meaning that the average failure

rate of the BS is decreased by 30%. In addition, we notice that AF is directly625

proportional to the energy consumption reduction, since AF is only affected by

the time spent in sleep and active mode, not by the BS switching. As a result,

the 15 min approach always provides the lowest AF, since it rapidly reacts to
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Figure 12: Energy Consumption Reduction and AF , obtained using different dynamic resource

allocation, in each area, with χ and AFsleep equal to (a) 0, (b) 0.2, 0.5 and (c) 1.9, 0.9.

the low traffic demand, immediately turning the micro cell BSs into sleep mode.

When AFsleep and χ increase, the dynamism of this resource allocation approach630

negatively impacts the AF, which results the largest among the ones provided by

our strategies, see Figs. 12b and 12c. Indeed, when the parameter χ grows, each

BS switching is very costly. Thus, when AFsleep and χ are 0.2 and 0.5, I2I and

Max2Max approaches provide the lowest value of AF , since the most suitable

balance between τsleep and ftr is achieved. This does not occur with the cont635

variant: the large values of τsleep are not sufficient to compensate for the large

values of ftr. Similarly, with the adoption of DFD, the small values of τsleep,
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Figure 13: Energy consumption reduction and lost traffic in each area, with each dynamic re-

source allocation with and without descending front detection, DFD, in San Siro and Business

areas, using 1 ANN-4 outputs and 4 ANNs-1 output.

because of the strict conditions for the BS deactivation, generate larger values of

AF than with I2I and Max2Max. If AFsleep and χ are 0.9 and 1.9, the situation

further worsens and AF is usually larger than 1, meaning that dynamic resource640

allocation increases the BS failure rate, because of the high cost of switching

and the low benefit of being in sleep mode. Only for the San Siro area, values of

AF lower than 1 are obtained because of the very long time the micro cell BSs

spend in sleep mode. In this scenario, I2I DFD and Max2Max DFD are needed

to reach the minimum AF values, since their strict deactivation requirements645

prevent frequent highly costly switching. Furthermore, under high values of

AFsleep and χ, the variable traffic patterns observed in the different zones can

make even more critical the selection of the proper resource allocation scheme,

whose impact on AF may result more significant. Indeed, whereas in the Train

Station area the worst performing prediction algorithm increases AF by about650

10% with respect to the lowest values obtained under I2I DFD and Max2Max

DFD, in other traffic zones, like the Residential area, the worst performing

scheme provide AF values that result up to almost 40% higher than the AF

value under the best approach, that is anyway larger than 1.

34



8.5. Impact of the traffic prediction technique655

Finally, let us consider the impact of the traffic prediction technique. Fig.

13 reports with the blue and the orange bars, the energy consumption reduc-

tion achieved with and without DFD, if the traffic demand is forecast with 4

ANNs-1 output, in San Siro and Business areas. The resulting lost traffic is

shown with the red and blue lines with triangle markers, if the DFD is used660

or not, respectively. Similarly, the green and red bars in Fig. 13 indicate the

energy consumption reduction obtained with and without DFD, when the traffic

demand is forecast with 1 ANN-4 outputs, which is the ANN that we identified

as the one performing worst in predicting traffic. The obtained lost traffic is

reported, respectively, with the red and blue lines with circle markers. In spite665

of the larger estimation error with respect to 4 ANNs-1 output (see Table 2),

performance is very similar: the values of lost traffic and energy consumption

are almost equal to the previous case. Indeed, lost traffic drops up to 1%,

while energy consumption is reduced between 9% and 40%. Similar results are

achieved in the other areas. This means that the choice of an effective processing670

algorithm can have more impact on performance than the choice of the ANN.

Only with a careful processing, the ANN prediction errors are mitigated, and a

good trade-off between energy consumption reduction and QoS is achieved.

9. Lesson Learnt

In this section we discuss the main aspects which have emerged in our work.675

First, allocation of heterogeneous hierarchical RAN resources according to the

traffic demand is promising, but the provided energy saving of each BS is strictly

related to its traffic demand pattern, as well as to the traffic patterns over the

whole considered area. Dynamic resource allocation requires the knowledge of

the actual traffic demand and, hence, machine learning approaches are needed680

to accurately predict it so as to enable network management mechanisms that

adapt to traffic variability. This is interesting in perspective, for the promising

possibilities offered toward the deployment of new networks that are easily and
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automatically reconfigurable. However, machine learning approaches become

particularly effective only if their outputs are integrated into decision processes685

that are driven by a deep domain knowledge, which cannot be eliminated if

the desired objectives are to be achieved. If the traffic predictions are carefully

processed, QoS deterioration is avoided, while significant energy saving can be

achieved. Prediction processing requires both the understanding of traffic pat-

terns over long time scales, so as to detect the overall trend of increasing or690

decreasing traffic, as well as strategies to combine predictions at different time

lags.

Finally, prediction processing and the consequent dynamic resource allocation

affect the BS failure rate in different ways. Switching a BS is harmful to its

failure rate while the time spent in sleep mode prevents its deterioration. The695

actual impact of the combination of these two phenomena depends on the HW

components of the BS, as well as on the RAN management strategy. In case

the switching of a BS is not costly, less strict switching conditions can be ap-

plied: the BS failure rate is not affected while larger energy saving is achieved.

Conversely, when the BS is sensitive to switching, more conservative resource700

allocations should be employed. For existing networks, not designed for highly

dynamic resource allocation, conservative approaches better prevent BSs from

HW failure; however, in perspective, with the deployment of new devices suited

for strongly dynamic networks, less conservative approaches, which frequently

activate and deactivate BSs, can be used, and higher energy saving is expected.705

10. Conclusions

In this paper, the traffic demand of BSs of a portion of a RAN is forecast

with the objective of enabling BS management strategies that aim at reducing

the RAN energy consumption. Results show that, in order to achieve good per-

formance trade-offs, measured in energy saving, QoS and impact on BS failure710

rate, the traffic predictions need to be carefully processed, understanding the

traffic patterns over long time scales, detecting the overall trend of increasing
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or decreasing traffic, as well as combining predictions at different time lags. As

next steps of our work, we will design dynamic RAN management strategies

that optimise both the energy consumption and the BSs lifetime.715
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