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EXACT RESPONSE THEORY AND KURAMOTO DYNAMICS

DEBORA AMADORI, MATTEO COLANGELI, ASTRID CORREA, AND LAMBERTO RONDONI

Abstract. The dynamics of Kuramoto oscillators is investigated in terms of the ex-

act response theory based on the Dissipation Function, which has been introduced

in the field of nonequilibrium molecular dynamics. While linear response theory is a

cornerstone of nonequilibrium statistical mechanics, it does not apply, in general, to

systems undergoing phase transitions. Indeed, even a small perturbation may in that

case result in a large modification of the state. An exact theory is instead expected

to handle such situations. The Kuramoto dynamics, which undergoes synchronization

transitions, is thus investigated analytically and numerically as a testbed for the exact

theory mentioned above. A comparison between the two approaches shows how the

linear theory fails, while the exact theory yields the correct response.

1. Introduction

The response of a system with many degrees of freedom to an external stimulus is

a central topic in nonequilibrium statistical mechanics. Its investigation has greatly

progressed with the works of Callen, Green, Kubo, and Onsager, in particular, who con-

tributed to the development of linear response theory [32, 36]. In the ’90s, the derivation

of the Fluctuation Relations [19, 21, 26] provided the framework for a more general

response theory, applicable to both Hamiltonian as well as dissipative deterministic par-

ticle systems [8, 10, 12, 13, 14, 24, 36, 40]. The study of response in stochastic processes,

with a special focus on diffusion and Markov jump processes, has also been inspired by

fluctuation relations, and has been studied e.g. in [2, 4, 7, 11, 15]. Moreover, the role

of causality, expressed by the Kramers-Kronig relations, in nonlinear extensions of the

linear response theory has been discussed in [35].

The introduction of the Dissipation Function, first made explicit in [22], and developed

as the observable of interest in Fluctuation Relations [23, 41], paved the way to an exact

response theory. A theory expected to hold in presence of arbitrarily large perturbations

and modifications of states, which allows the study of the relaxation of particle systems

to equilibrium or non-equilibrium steady states.

In this work we present and apply the Dissipation Function formalism to the Kuramoto

model [33, 34], which is considered a prototype of many particle systems exhibiting

synchronization, a phenomenon familiar in many physical and biological contexts [25,

27, 31, 37, 42, 43]. Furthermore, the Kuramoto model provides the stage for a large
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2 AMADORI, COLANGELI, CORREA, AND RONDONI

research endeavor, in applied mathematics, control theory and statistical physics [1, 3,

5, 18, 28, 39, 43]. See [29, 16] for recent reviews on the subject.

In this paper, our aim is two-fold. On the one hand, we probe the exact response

theory on a dissipative system with many degrees of freedom undergoing nonequilibrium

phase transitions, which is in fact a challenging open problem. On the other hand,

while a vast mathematical literature exists on the Kuramoto model, it is interesting to

analyze it from a new statistical mechanical perspective, in which some known results

are reinterpreted, cf. e.g. Refs.[6, 17].

Our conclusion is that, while the linear response theory cannot characterize the Ku-

ramoto synchronization process, the exact theory does. In particular, we obtain syn-

chronization within the formalism of the Dissipation Function, thus showing how such

a behaviour is captured by the exact response theory, while it is not evidenced by the

linear theory. Synchronization corresponds indeed to the maximum value of the Dissi-

pation Function, which we prove is attained in time. When the number of oscillators N

is large, this maximum value is proportional to the oscillators coupling constant K.

This paper is organized as follows. In Sec. 2 we review some basic properties of the

Kuramoto dynamics. In Sec. 3 we illustrate the main ingredients of the Dissipation

Function response theory. In Sec. 4 we study the response theory for the Kuramoto

dynamics of identical oscillators. In Sec. 5 we review the linear response theory, and we

compare it, analytically and numerically, with the exact response formalism. We draw

our conclusions in Sec. 6.

2. The Kuramoto system

The Kuramoto dynamics is defined on the N -dimensional torus, T N = (R/(2πZ))N ,

with N ≥ 1, by the following set of coupled first order ODEs, for the phases θi(t):

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) i = 1, . . . , N (2.1)

where K > 0 is a constant, and the natural frequencies ωi ∈ R are drawn from some

given distribution g(ω).

The N oscillators are represented by points rotating on the unit circle centered at the

origin of the complex plane, more precisely by eiθj with j = 1, . . . , N . By introducing

the polar coordinates of the barycenter,

ReiΦ =
1

N

N∑
j=1

eiθj (2.2)

with R ∈ [0, 1] and Φ ∈ R (defined if R > 0), one can rewrite Eq.(2.1) as follows:

θ̇i = ωi +KR sin(Φ− θi) , i = 1, . . . , N (2.3)

where R = R(θ(t)) is the order parameter and Φ = Φ(θ(t)) the collective phase, with

θ = (θ1, ..., θN ) ∈ M = T N , and M the phase space. It is to be remarked that the
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Kuramoto dynamics (2.3) can be written as a gradient flow:

θ̇ = −∇f(θ) (2.4)

with potential

f(θ) = −
N∑
i=1

ωiθi +
K

2N

N∑
i,j=1

(
1− cos(θj − θi)

)
(2.5)

that is analytic in θ.

A complete frequency synchronization occurs when the differences θi(t) − θj(t) tend

to a constant for all i and j, and R(θ(t)) tends to a given R∞ ∈ (0, 1], as t → +∞. In

case R∞ = 1, all the N terms of the sum in (2.2) coincide, hence the Kuramoto system

undergoes phase synchronization.

Identities for the order parameter. We remark that equation (2.2) leads to the

following identities,

R =
1

N

N∑
i=1

cos(Φ− θi) , (2.6)

0 =
1

N

N∑
i=1

sin(Φ− θi) , (2.7)

R sin(Φ− θi) =
1

N

N∑
j=1

sin(θj − θi) , i = 1, . . . , N (2.8)

R cos(Φ− θi) =
1

N

N∑
j=1

cos(θj − θi) , i = 1, . . . , N . (2.9)

From the identities (2.6) and (2.9), we find that:

R2 =
1

N2

N∑
i,j=1

cos(θj − θi) . (2.10)

For θ ∈M, we can rewrite Eq.(2.3) as:

θ̇ = W + V (θ) = VK(θ) (2.11)

where W = (ω1, . . . , ωN ) is interpreted as an equilibrium vector field made of N natural

frequencies, while V represents a nonequilibrium perturbation with components:

Vi(θ) =
K

N

N∑
j=1

sin(θj − θi) = KR sin(Φ− θi) , i = 1, . . . , N . (2.12)

For later use, we prove the following identity.

Lemma 2.1. The divergence of the Kuramoto vector field VK of Eq.(2.11), i.e. the

associated phase space volumes variation rate Λ, satisfies:

Λ := divθV = K
(
1−NR2

)
. (2.13)
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Proof. By means of (2.12), for i = 1, . . . , N one has

∂θiVi =
K

N
∂θi

 N∑
i 6=j=1

sin(θj − θi)


= −K

N

 N∑
i 6=j=1

cos(θj − θi)

 = −K
N

 N∑
j=1

cos(θj − θi)− 1


= −KR cos(Φ− θi) +

K

N

where we used (2.9). Summing over i, and using (2.6) , Eq.(2.13) follows. �

Therefore, the Kuramoto dynamics do not preserve the phase space volumes, and Λ

actually varies in time, since R is a function of the dynamical variables θ(t).

3. Mathematical framework of Response theory

Let us summarize the mathematical framework of exact response theory, as described

in [8, 24, 30, 41]. The starting point is a flow St :M→M, with phase spaceM⊂ RN ,

N ≥ 1, that is usually determined by an ODE system

θ̇ = V (θ) , θ ∈M (3.1)

with V defined on M. Let Stθ denote the solution at time t ∈ R, with initial condition

θ, of such ODEs. The second ingredient is a probability measure dµ0(θ) = f0(θ)dθ on

M, with positive and continuously differentiable density f0. A time evolution is induced

on the simplex of probabilities on M, defining the probability at a time t ∈ R as:

µt(E) = µ0(S−tE)

for each measurable set E ⊂M. This amounts to consider probability in a phase space,

like the mass of a fluid in real space. The corresponding continuity equation for the

probability densities is the (generalized) Liouville equation:

∂f

∂t
+ divθ(fV ) = 0 (3.2)

Denoting by ft the solution of Eq.(3.2) with initial datum f0, we can write dµt = ftdθ.

Introducing the Dissipation Function Ωf,V [30, 41]:

Ωf,V (θ) := −Λ(θ)− V (θ) · ∇ log f(θ) (3.3)

with ∇ = (∂θ1 , . . . , ∂θN ) and

Λ = divθ V ,

the Euler version (3.2) of the Liouville equation may also be written as:

∂f

∂t
= f Ωf,V (3.4)
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Also, the equation (3.2) can be cast in the Lagrangian form

df

dt
= −f Λ , (3.5)

where d
dt = ∂

∂t + V · ∇θ is the total derivative along the flow (3.1).

Direct integration of Eq.(3.5) yields

fs+t(S
tθ) = exp

{
− Λ0,t(θ)

}
fs(θ) , ∀ t, s ≥ 0 (3.6)

where we used the notation

Os,t(θ) :=

∫ t

s
O(Sτθ)dτ (3.7)

for the phase functions, or observables, O : M → R, so that, in particular, Λ0,t(θ) =∫ t
0 Λ(Sτθ)dτ . In the following Proposition, this notation is used with the observable

O = Ωf,V (θ) given in (3.3), so that the time integral in (3.7) will correspondingly be

denoted by Ωf,V
s,t .

Proposition 3.1. For all t, s ∈ R, the following identity holds:

fs+t(θ) = exp
{

Ωfs,V
−t,0 (θ)

}
fs(θ) . (3.8)

Proof. We start by claiming that

Ωft,V
0,s (θ) = log

ft(θ)

ft(Ssθ)
− Λ0,s(θ) . (3.9)

Indeed, one has:

V (Suθ) · ∇ log ft(S
uθ) =

d

du
log ft(S

uθ) (3.10)

because t is fixed and ft does not depend explicitly on u, hence Eqs.(3.3) and (3.10)

imply:

Ωft,V
0,s (θ) = −

∫ s

0

[
Λ(Suθ) + V · ∇ log ft(S

uθ)
]
du

= −Λ0,s(θ)−
∫ s

0

d

du
log ft(S

uθ)dθ = −Λ0,s(θ)− log
ft(S

sθ)

ft(θ)

which leads to Eq.(3.9). Next, Eqs.(3.6) and Eq.(3.9) lead to

exp
{

Ωfs,V
s,s+t(θ)

}
fs(S

s+tθ) = exp
{
− Λs,s+t(θ)

}
fs(S

sθ) = fs+t(S
s+tθ) (3.11)

which yields (3.8). �

As a consequence of Proposition 3.1, a probability density f is invariant under the

dynamics if and only if Ωf,V identically vanishes:

Ωf,V (θ) = 0 , ∀ θ ∈M . (3.12)

In the sequel, we shall use the notation

〈O〉t :=

∫
M
O(θ)ft(θ)dθ (3.13)
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to denote the average of an observable with respect to the probability measure µt = ft dθ.

The response theory states that the average 〈O〉t can be expressed in terms of the initial

density f0, which is known. More precisely:

Lemma 3.1. (Exact response): Given {St}t∈R and an integrable observable O :M→
R, the following identity holds:

〈O〉t = 〈O〉0 +

∫ t

0
〈(O ◦ Sτ ) Ωf0

V 〉0 dτ . (3.14)

Proof. First of all, f0 is smooth as a function of θ by assumption, and evolves according

to the Liouville equation. Therefore, ft is also smooth with respect to θ and t for every

finite time t. In turn, Ωft,V (θ) is differentiable with respect to θ and t, if f0 (that

depends only on θ) is differentiable with respect to θ. These conditions are immediately

verified for differentiable f0, and smooth dynamics on a compact manifold. Therefore

two identities can be derived for integrable O:

O0,s(θ) =

∫ s

0
O(Suθ)du =

∫ s+τ

τ
O(Su−τθ)du =

∫ s+τ

τ
O(S−τSuθ)du

= Oτ,s+τ (S−τθ) ,

which is valid for every τ ∈ R, and

〈O〉t+s =

∫
O(θ)ft+s(θ)dθ =

∫
O(Ss(S−sθ))ft+s(S

s(S−sθ))

∣∣∣∣ ∂θ

∂(S−sθ)

∣∣∣∣ d(S−sθ)

=

∫
O(Ss(S−sθ))ft+s(S

s(S−sθ)) exp
{

Λ−s,0(θ)
}
d(S−sθ)

=

∫
O(Ss(S−sθ))ft+s(S

s(S−sθ)) exp
{

Λ0,s(S
−sθ)

}
d(S−sθ)

=

∫
O(Ssθ)ft+s(S

sθ) exp
{

Λ0,s(θ)
}
dθ =

∫
O(Ssθ)ft(θ)dθ

= 〈O ◦ Ss〉t (3.15)

to obtain [30]:

d

ds
〈O〉s = 〈O (Ωfr,V ◦ Sr−s)〉s (3.16)

which holds ∀r ∈ R+. Note that in Eq. (3.15) we used the relation∣∣∣∣ ∂θ

∂(S−sθ)

∣∣∣∣ = exp
{

Λ−s,0(θ)
}
, (3.17)

which is discussed in Appendix B, see Eq. (B.3). Choosing r = 0 one finds

d

ds
〈O〉s = 〈O (Ωf0,V ◦ S−s)〉s = 〈(O ◦ Ss) Ωf0,V 〉0 (3.18)

where we used (3.15). Then, integrating over time from 0 to t, Eq.(3.18) yields (3.14). �
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It may be useful to endow the density f0 with physical meaning. To this aim, we

assume that, for t ∈ (−∞, 0), the dynamics is determined by a (non dissipative) vector

field V0,

θ̇ = V0(θ) (3.19)

and that it has reached an equilibrium state, described by the probability measure dµ0 =

f0 dθ, long before the time t = 0. In other words, we assume that µ0 is invariant under

the dynamics (3.19), which we call unperturbed or reference dynamics. At time t = 0,

the dynamics (3.19) is perturbed and the perturbation remains in place for t ≥ 0. In

general, the density f0 will not be invariant under the perturbed vector field V , Eq.(3.1)

say. Therefore, it will evolve as prescribed by Eq.(3.4) into a different density, ft, at

time t > 0. Nevertheless, Eq.(3.14) expresses the average 〈O〉t in terms of a correlation

function computed with respect to f0, the non-invariant density, which is only invariant

under the unperturbed dynamics.

The full range of applicability of this theory is still to be identified. However, it obvi-

ously applies to smooth dynamics on smooth compact manifolds, such as the Kuramoto

dynamics (2.1), which has M = T N . One advantage of using the Dissipation Function,

compared to other possible exact approaches to response, apart from molecular dynamics

efficiency, is that it corresponds to a physically measurable quantity, e.g. proportional to

a current, that is adapted to the initial state of the system of interest. Moreover, it pro-

vides necessary and sufficient conditions for relaxation of ensembles, as well as sufficient

conditions for the single system relaxation, known as T-mixing [30, 41].

Henceforth, we shall denote by Ωf,0 the Dissipation Function (3.3) defined in terms of

the unperturbed flow V0. The analysis of the response theory for a specific example of

the Kuramoto model is discussed in the next Section.

4. Response theory for identical oscillators

Let us focus on the case of identical oscillators, namely the Kuramoto dynamics in

which all the natural frequencies ωi in Eq.(2.1) equal the same constant ω ∈ R. In

particular, let the unperturbed dynamics be defined by the vector field V0(θ) = W =

(ω, . . . , ω), which corresponds toK = 0 in Eq.(2.1), i.e. to decoupled oscillators, equipped

with same natural frequency. Such dynamics are conservative, since divθV0 = 0. The

corresponding steady state can then be considered an equilibrium state. At time t = 0

the perturbation V is switched on, and we can write:

θ̇ =

{
W t < 0

W + V (θ) t > 0
(4.1)

The perturbed dynamics corresponds to the Kuramoto dynamics (2.1), which is not con-

servative, cf. Eq.(2.13). As an initial probability density, invariant under the unperturbed

dynamics, we may take the factorized density:

f0(θ) = (2π)−N (4.2)
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which, indeed, yields:

Ωf0
0 = − (divV0 + V0 · ∇ log f0) ≡ 0 , and

∂f

∂t
= 0 . (4.3)

After the perturbation, the Dissipation Function takes the form:

Ωf0
V = − (divθV + V · ∇ log f0) = K

(
NR2 − 1

)
=
K

N

N∑
i,j=1

cos(θj − θi)−K (4.4)

and the density evolves as:

ft(θ) =
1

(2π)N
exp

[
−K

(
t−NR2

−t,0(θ)
) ]

(4.5)

where R−t,0 denotes the integral of R from time −t to 0, cf. Eq.(3.7).

Remark 4.1. The Dissipation Function Eq.(4.4) is of class C∞.

Using the formula (3.14) to compute the response for the observable O = Ωf0
V , we obtain:

〈Ωf0
V 〉t = 〈Ωf0

V 〉0 +

∫ t

0
〈(Ωf0

V ◦ S
τ )Ωf0

V 〉0 dτ (4.6)

that is∫
M

Ωf0
V (θ)ft(θ)dθ =(2π)−N

∫
M

Ωf0
V (θ)dθ + (2π)−N

∫ t

0

∫
M

Ωf0
V (Sτ (θ))Ωf0

V (θ) dθdτ .

Moreover:

〈R2〉0 =
1

N
, hence 〈Ωf0

V 〉0 = K
(
N〈R2〉0 − 1

)
= 0 (4.7)

as expected.

Remark 4.2. Note that the scalar field Ωf0
0 is identically 0, while Ωf0

V is not, see (4.4).

However, the phase space average
〈

Ωf0
V

〉
0

vanishes.

Therefore, using Eqs.(3.14) and (4.4) we can write:〈
Ωf0
V

〉
t

=

∫ t

0

〈
(Ωf0

V ◦ S
τ )Ωf0

V

〉
0
dτ

= KN

∫ t

0

〈
Ωf0
V

[
R2 ◦ Sτ

]〉
0
dτ −K

∫ t

0

〈
Ωf0
V

〉
0
dτ

= KN

∫ t

0

〈
Ωf0
V

[
R2 ◦ Sτ

]〉
0
dτ

= K2N2

∫ t

0

〈
R2
[
R2 ◦ Sτ

]〉
0
dτ −K2N

∫ t

0

〈
R2 ◦ Sτ

〉
0
dτ
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For the second integral we have:∫ t

0

〈
R2 ◦ Sτ

〉
0
dτ =

1

(2π)N

∫ t

0

∫
M
R2(Sτθ)dθdτ

=
1

(2π)N

∫ t

0

∫
M
R2(Sτθ)

∣∣∣∣ ∂θ

∂Sτθ

∣∣∣∣ dSτθdτ
=

1

(2π)N

∫ t

0

∫
M
R2(Sτθ)eΛ0,τ (θ)dSτθ

Explicit calculations can be carried out for N = 2 and will be discussed in Sec. 4.1,

while the study of the general case with N > 2 is deferred to Sec. 4.2.

4.1. The case with two oscillators. For N = 2 and ω ≥ 0, consider the system for

two oscillators: 
θ̇1 =

ω

2
+
K

2
sin(θ2 − θ1)

θ̇2 = −ω
2

+
K

2
sin(θ1 − θ2) .

(4.8)

For ω = 0 we say that the two oscillators are identical (in the sense that their natural

frequencies coincide). Setting ψ = θ1 − θ2, we obtain the following equation:

dψ

dt
= ω −K sin(ψ) . (4.9)

With a slight abuse of notation, in the following we denote by Stθ, Stψ the flows corre-

sponding to (4.8), (4.9) respectively, with initial data θ = (θ1, θ2).

The solution of (4.9) can be explicity expressed as ([9, Appendix D]) :

ψ(t) = ψ ◦ St = 2 arctan(g(ψ, t)) (4.10)

where

g(ψ, t) =



√
K2−ω2

ω

[
tanh

(
h1(ψ)− t

√
K2−ω2

2

)
+ K√

K2−ω2

]
if K > ω

√
ω2−K2

ω tan
(
t
√
ω2−K2

2 + h2(ψ)
)

+ K
ω if 0 ≤ K < ω

e−Kt tan(ψ2 ) if ω = 0

and the functions h1 and h2 are given by:

h1(ψ) = tanh−1

(
ω√

K2 − ω2
tan

(
ψ

2

)
− K√

K2 − ω2

)
,

h2(ψ) = arctan
ω tan

(
ψ
2

)
−K

√
ω2 −K2

.

Recalling Eq.(2.10), we find that (R2 ◦ St) can be written as

R2(Stθ) =
1

2

[
1 + cos(Stψ)

]
=

1

g2(Stψ) + 1
. (4.11)
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Restricting our analysis to the identical oscillator case, ω = 0, yields:

R2(Stθ) =

(
tan2

(
ψ

2

)
e−2Kt + 1

)−1

(4.12)

and

Stψ → 0 for t→ +∞ , if |ψ| 6= π

while

|Stψ| → π for t→ −∞ , if ψ 6= 0 .

In particular, for θ1 6= θ2 and θ1, θ2 ∈ [0, 2π), then t→ −∞ yields Stψ → −π if θ1 < π,

and Stψ → π if θ1 > π.

Then, the set

E∞ = {(θ1, θ2) ∈ T 2 : θ1 = θ2}
is invariant and attracting for the Kuramoto dynamics, while the set

E−∞ = {(θ1, θ2) ∈ T 2 : |θ1 − θ2| = π}

is invariant and repelling. This also implies that:

R2(Stθ)→ 0 , Ωf0
V → −K , for ψ 6= 0 , t→ −∞

while

R2(Stθ)→ 1 , Ωf0
V → K , for |ψ| 6= π , t→∞ .

Consequently, Eq.(4.5) shows that the probability piles up on the zero Lebesgue measure

sets E∞ and E−∞, respectively for t→∞ and t→ −∞.

For τ ≥ 0, the following relations also hold:〈
R2 ◦ Sτ

〉
0

=
1

(2π)2

∫
M

1

tan2( θ1−θ22 )e−2Kτ + 1
dθ =

1

e−Kτ + 1
(4.13)

and 〈
R2(R2 ◦ Sτ )

〉
0

=
1

8π2

∫
M

1 + cos(θ1 − θ2)

tan2( θ1−θ22 )e−2Kτ + 1
dθ =

2e−Kτ + 1

2(e−Kτ + 1)2

which then yields ∫ t

0

〈
R2 ◦ Sτ

〉
0
dτ = t+

ln
(
e−Kt + 1

)
K

− ln(2)

K

and ∫ t

0

〈
R2(R2 ◦ Sτ )

〉
0
dτ =

t

2
+

1

2K

[
3

2
+ ln

(
e−Kt + 1

2

)
− 2

eKt + 1
− 1

e−Kt + 1

]
.

Thus, we finally obtain the explicit expressions〈
Ωf0
V

〉
t

= K tanh

(
Kt

2

)
(4.14)

and 〈
(Ωf0

V ◦ S
t)Ωf0

V

〉
0

=
K2

1 + cosh(Kt)
. (4.15)
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Figure 1. Behavior of 〈Ωf0
V 〉t and 〈(Ωf0

V ◦ St)Ω
f0
V 〉0 as functions of time,

for N = 2, K = 1 and ω = 0. Disks and solid lines correspond to the

numerical and analytical results, respectively. The averages were taken

over a set of 5000 trajectories with initial data sampled from the uniform

distribution on [0, 2π).

In the limit t→ +∞, we thus find the asymptotic values〈
Ωf0
V

〉
t
→ K and

〈
(Ωf0

V ◦ S
t)Ωf0

V

〉
0
→ 0 (4.16)

In particular, the two-time autocorrelation of Ωf0
V is monotonic as also shown in the two

panels of Fig.1. Indeed, Eq.(4.15) yields:

d

dt

〈
(Ωf0

V ◦ S
t)Ωf0

V

〉
0

= −K2 sinhKt

(1 + coshKt)2

which is ≤ 0 for t ≥ 0.

4.2. The general case. In this Subsection we assume N ≥ 2 and ω = 0, considering

the following dynamics:

θ̇i =
K

N

N∑
j=1

sin(θj − θi) = KR sin(Φ− θi) , i = 1, . . . , N . (4.17)

where R and Φ are defined in Eq.(2.2). We are going to prove that the observable
〈

Ωf0
V

〉
t

is a monotonic function of time, and we can estimate the asymptotic value it attains in

the large time limit. We start by proving the following result.

Lemma 4.1. For every t > 0, the time derivative of the expectation of the Dissipation

Function obeys:

d

dt

(
Ωf0
V (Stθ)

)
≥ 0 and

d

dt

〈
Ωf0
V

〉
t

=
〈

(Ωf0
V ◦ S

t)Ωf0
V

〉
0
≥ 0 . (4.18)

Proof. First, we note that by setting O = Ωf0
V in Eq. (3.18), we find:

d

dt
〈Ωf0

V 〉t = 〈(Ωf0
V ◦ S

t) Ωf0
V 〉0 . (4.19)



12 AMADORI, COLANGELI, CORREA, AND RONDONI

Moreover, Eq. (3.15) with t = 0 and O = Ωf0
V yields:〈

Ωf0
V

〉
t

=
〈

Ωf0
V ◦ S

t
〉

0
. (4.20)

Therefore, we can write:

d

dt

〈
Ωf0
V ◦ S

t
〉

0
=

d

dt

∫
M

Ωf0
V (Stθ)f0(θ)dθ =

=

∫
M

d

dt

(
Ωf0
V (Stθ)

)
f0(θ)dθ =

〈
d

dt

(
Ωf0
V (Stθ)

)〉
0

. (4.21)

Then, using Eq.(2.5) in Ref.[6] we find:

d

dt
R2(Stθ) =

2K

N
R2(Stθ)

N∑
j=1

sin2
(
Stθj − Φ

(
Stθ
))

(4.22)

where Stθj denotes the j−th element of Stθ, and then

d

dt

(
Ωf0
V (Stθ)

)
= 2K2R2(Stθ)

 N∑
j=1

sin2
(
Stθj − Φ

(
Stθ
)) ≥ 0 (4.23)

for all θ ∈M. By integrating over M we obtain (4.18). This completes the proof. �

Remark 4.3. Unlike stationary current autocorrelations, that may fluctuate between

positive and negative values, the two times Ωf0
V autocorrelation, computed with respect to

the initial probability measure, is non-negative.

Theorem 2.4 of Ref.[6] shows that non stationary solutions of the system (4.17) con-

verge, as t→ +∞, either to a complete frequency synchronized state Θ∗, i.e. to a state

denoted by (N, 0), that takes the form:

Θ∗ = (ϕ∗, . . . , ϕ∗) (4.24)

in which all phases are equal; or to a state denoted by (N − 1, 1), that takes the form:

Θ† = (ϕ∗ + k1π, ϕ
∗ + k2π, ϕ

∗ + k3π, ϕ
∗ + k4π, . . . , ϕ

∗ + kNπ) (4.25)

where ki ∈ {−1,+1} for a single i ∈ {1, 2, ..., N}, and all kj = 0 with j 6= i. This can

be understood also in terms of the Dissipation Function. In the first place, without loss

of generality, let us consider a fixed point θ̄ of type (N − 1, 1) whose antipodal is in the

N -component, i.e.

θ̄ = (ϕ∗, . . . , ϕ∗, (ϕ∗ + π) mod 2π) (4.26)

for a ϕ∗ ∈ [0, 2π). Then, the following holds:

Proposition 4.1. The set of initial data such that the solution to (4.17) reaches a

stationary (N − 1, 1)-state for t→ +∞ has 0-measure.
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Proof. For V (θ) as in (2.11), the Jacobian matrix A(θ)=̇∇V (θ) is given by

Aij =


∂Vj
∂θi

= 1
N cos(θi − θj), i 6= j

∂Vj
∂θj

= − 1
N

∑N
k 6=j cos(θj − θk)

For the fixed point θ̄ set in (4.26) we obtain a symmetric matrix Ā = A(θ̄) whose entries

are

Āij =



1
N i 6= j and i, j 6= N

− 1
N i 6= j and i = N or j = N

−N−3
N i = j < N

N−1
N i = j = N

(4.27)

By the symmetry of Ā, the extremal representation of the eigenvalues {λk}Nk=1 of Ā are

given by the optimization problem:

max
1≤k≤N

λk = max
‖x‖=1

{x′∇Āx}, min
1≤k≤N

λk = min
‖x‖=1

{x′Āx}

Setting x to be the standard-basis vectors ei, where ei denotes the vector with a 1 in

the ith coordinate and 0’s elsewhere, we see that

min
1≤k≤N

λk ≤ min
1≤i≤N

{Ā}ii = −N − 3

N
< 0 , 0 <

N − 1

N
= max

1≤i≤N
{Ā}ii ≤ max

1≤k≤N
λk .

Therefore, there exists at least one positive eigenvalue and at least one negative eigen-

value. Indeed, the matrix Ā has the eigenvalues λ− = −(N − 2)/N with algebraic

multiplicity N − 2, λ2 = 0 and λ3 = 1 with algebraic multiplicity 1. This can be checked

considering the proposed subspaces of the center, stable and unstable subspace of the

linearized system at θ̄

Ec =





1

1
...

1
...

1




, Es =





−1

1

0
...

0

0


,



−1

0

1

0
...

0


, . . . ,



−1

0
...

0

1

0




and Eu =





−1

−1
...

−1

−1

N − 1




.

Then, the Center Manifold Theorem [38, p.116] yields the existence of an (N − 2)-

dimensional stable manifold W s(θ̄) tangent to the stable subspace Es, and the existence

of a 1-dimensional unstable manifold W u(θ̄), and 1-dimensional center manifold W c(θ̄)

tangents to the Eu and Ec subspaces respectively. Consequently, the dimension of the

center manifold conjoint with the stable manifold is smaller than N , which implies a null

Lebesgue measure in Rn. �

Moreover, we have:
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Figure 2. Behavior of 〈Ωf0
V 〉t (left panel) and 〈(Ωf0

V ◦ St)Ω
f0
V 〉0 (right

panel), both rescaled by (N − 1), as functions of time, for K = 1, ω = 0

and for different values of N . The curves on the right panel represent the

time derivative of those in the left panel. In particular, t = 0 in the right

panel represents K2/N , cf. Eq.(4.31).

Lemma 4.2. (Synchronization): Irrespective of the initial condition θ ∈ T , the Dis-

sipation Function obeys:

lim
t→∞

Ωf0
V (Stθ) =


K (N − 1) , for θ 6= Θ†

K (N − 1)
(
N−4
N

)
for θ = Θ†

(4.28)

where K(N − 1), the maximum of Ωf0
V in T N , corresponds to (N, 0) synchronization.

Proof. Because of Theorem 2.4 in Ref.[6] and of the continuity of Ωf0
V , the long time limit

of Ωf0
V ◦ St in the case θ 6= Θ† is given by Ωf0

V (Θ∗). Then, Eq.(2.10) and Eq.(4.4), yield

the first line of Eq.(4.28). The case θ = Θ†, gives, instead:

R∗eiϕ
∗

=
1

N

(
(N − 1)eiϕ

∗
+ ei(ϕ

∗+π)
)

=
N − 2

N
eiϕ

∗
, (4.29)

Substituting in Eq.(4.4) we obtain the second line of (4.28). �

Remark 4.4. Equation (4.28) implies that

lim
N→∞

lim
t→∞

Ωf0
V (Stθ)

N
= K . (4.30)

In other words, the large t limit followed by the large N limit implies that the coupling

constant K, which drives the synchronization process in the Kuramoto dynamics (2.1),

equals the average Dissipation per oscillator. For fixed N , synchronization is also evident

from the fact that Eq.(4.23) must converge to 0, for Ωf0
V to become constant.

This also implies R2(Stθ) → 1, as t → ∞. It suffices to consider the definition (4.4)

of Ωf0
V . For different values of N , Fig. 2 illustrates the behavior of 〈Ωf0

V 〉t and of its

time derivative, which is 〈(Ωf0
V ◦ St)Ω

f0
V 〉0, as functions of time. The initial growth of
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the autocorrelation may look unusual, since autocorrelations are commonly found to de-

crease. However, unlike standard calculations that rely on an invariant distribution,1 our

autocorrelation is computed with respect to the transient probability measure µ0. The

figure portrays the result of numerical simulations. The right panel of Fig. 2, shows that

for sufficiently large N the autocorrelation function 〈(Ωf0
V ◦St)Ω

f0
V 〉0 reaches a maximum

before it decreases, as required for convergence to a steady state. An interesting result

is the following.

Lemma 4.3. For N ≥ 2, the derivative of the time dependent average of Ωf0
V , computed

at time t = 0 obeys:

d

dt

〈
Ωf0
V

〉
t

∣∣∣∣
t=0

=

〈(
Ωf0
V

)2
〉

0

= K2N − 1

N
. (4.31)

Note that the derivative of the mean Dissipation Function equals its autocorrelation

function, as expressed by Eq.(4.18). Therefore, Eq.(4.31) gives the value of this autocor-

relation function at t = 0, as shown in the right panel of Fig. 2.

Proof. Using (4.20), (4.21) and (4.23) we find that

d

dt

〈
Ωf0
V

〉
t

=
d

dt

〈
Ωf0
V ◦ S

t
〉

0
= 2K2

〈
R2(Stθ)

N∑
j=1

sin2
(
Stθj − Φ

(
Stθ
) )〉

0

. (4.32)

Thus, at t = 0, the integrand of (4.32) reads

R2(θ)
∑
j=1

sin2(Φ− θj) =
1

N2

N∑
j=1

(
N∑
l=1

sin(θl − θj)

)2

(4.33)

=
1

N2

N∑
j=1

 N∑
l=1

sin2(θj − θl) +
N∑
l=1

N∑
k=1
k 6=l

sin(θl − θj) sin(θk − θj)

 .
Furthermore, we have:

∫ 2π

0

∫ 2π

0
sin(θl − θj) sin(θk − θj)dθldθk

=

∫ 2π

0
sin(θl − θj)dθl

∫ 2π

0
sin(θk − θj)dθk = 0 . (4.34)

1In linear response the initial distribution is considered invariant to first order in the perturbation.
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Therefore, considering (4.33) and (4.34) over (4.32) at time t = 0 we have:

d

dt
〈Ωf0

V 〉t
∣∣∣∣
t=0

= 2K2

∫
M
R2(θ)

N∑
j=1

sin2(Φ− θj)f0(θ)dθ

= 2
K2

N2

1

(2π)N

∫
M

N∑
j=1

N∑
l=1

sin2(θj − θl)dθ

= 2
K2

(2π)2

N − 1

N

∫ 2π

0

∫ 2π

0
sin2(θ1 − θ2)dθ1dθ2

= K2N − 1

N
.

This completes the proof of (4.31). �

5. Comparison with linear response

In this Section we compare the foregoing exact response formalism with the standard

linear response [20]. Consider a perturbed vector field Vε, defined as

Vε(θ) = V0(θ) + εVp(θ) (5.1)

where the parameter ε expresses the strength of the perturbation. Following Section 4,

we identify ε with K, and define:

V0(θ) = ω (5.2)

Vp,j(θ) = R sin(Φ− θj) , j = 1, ..., N (5.3)

Correspondingly, we denote by Stε and St0 the perturbed and unperturbed flows, respec-

tively. From Eq. (3.3), we obtain:

Ωf0
ε = Ωf0

0 + εΩf0
p = εΩf0

p (5.4)

where Ωf0
0 and Ωf0

p denote the Dissipation Function (4.4) evaluated in terms of the vector

fields V0 and Vp, respectively. In particular, we have:

Ωf0
p =

1

N

N∑
i,j=1

cos (θj − θi)− 1 (5.5)

The last equality in Eq.(5.4) derives from the fact that Ωf0
0 ≡ 0 if, as assumed, f0 is

invariant under the unperturbed dynamics, cf. Eq.(4.3). We may then write the exact

response Eq.(3.14) as:

〈O〉t,ε = 〈O〉0 + ε

∫ t

0
〈(O ◦ Sτε ) Ωf0

p 〉0 dτ , (5.6)

where O ◦ Stε denotes the observable O composed with the perturbed flow. Because this

formula is exact, the parameter ε in it does not need to be small, and it appears both
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as a factor multiplying the integral and as a subscript indicating the perturbed flow Stε.

Next, using Eq. (3.8), we can write

ft(θ) = exp

{
ε

∫ 0

−t
Ωf0
p (Sτε θ) dτ

}
f0(θ) . (5.7)

which can be expanded about ε = 0, and truncated to first order, to obtain the linear

approximation of the evolving probability density:

f̄t(θ; ε) = f0(θ)

(
1 + ε

d

dε
exp

{
ε

∫ 0

−t
Ωf0
p (Sτε θ) dτ

}∣∣∣∣
ε=0

)
(5.8)

= f0(θ)

(
1 + ε

∫ 0

−t
Ωf0
p (Sτ0 θ) dτ

)
= f0(θ)

(
1 + ε

∫ t

0
Ωf0
p (S−τ0 θ) dτ

)
. (5.9)

Note that the expansion in the variable ε of the exponential in Eq.(5.7), requires comput-

ing the derivatives with respect to ε of the time integral in it. This, in turn, requires the

derivatives of the Dissipation Function Ωf0
p (Sτε θ), and of the evolved trajectory points

Sτε θ. Because both the Dissipation Function and the dynamics are smooth on a compact

manifold, their derivatives are bounded, and their integral up to any time t computed

at ε = 0 is also bounded. Multiplied by ε, this integral gives a vanishing contribution

to the first derivative of the exponential in Eq.(5.7). There only remain the exponential

and the integral computed at ε = 0, multiplied by the increment ε, which is the brackets

in Eq.(5.9). We then define:

〈O〉t,ε =

∫
M
O(θ)f̄t(θ; ε) dθ = 〈O〉0 + ε

∫ t

0

〈
O
(

Ωf0
p ◦ S−τ0

)〉
0
dτ (5.10)

which is the linear response result. At the same time, the invariance of the correla-

tion function under time translations of the unperturbed dynamics, which is proven in

Appendix B, yields:

〈O〉t,ε = 〈O〉0 + ε

∫ t

0

〈
(O ◦ Sτ0 ) Ωf0

p

〉
0
dτ (5.11)

It is interesting to note that, unlike the Green-Kubo formulae, which are obtained from

small Hamiltonian perturbations, here the perturbation is not Hamiltonian. Therefore,

we may call (5.11) a generalized GK formula. It is worth comparing it with the exact

response formula (5.6), as follows:

〈O〉t,ε − 〈O〉t,ε = ε

∫ t

0

〈[
(O ◦ Sτε )− (O ◦ Sτ0 )

]
Ωf0
p

〉
0
dτ (5.12)

which shows that the two formulae tend to be the same, in the small ε limit, as expected.

Thanks to the use of the Dissipation Function, their difference lies only in the use of the

perturbed rather than the unperturbed flow inside O.
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Let us dwell on the response of two relevant observables, in the case in which V0 =

ω = 0, hence St0 is the identity operator, Id. First, taking O = Ωf0
ε = εΩf0

p , we find

〈Ωf0
ε 〉t,ε − 〈Ω

f0
ε 〉t,ε =

∫ t

0

〈[(
Ωf0
ε ◦ Sτε

)
−
(

Ωf0
ε ◦ Sτ0

)]
Ωf0
ε

〉
0
dτ

=

∫ t

0

[〈(
Ωf0
ε ◦ Sτε

)
Ωf0
ε

〉
0
−
〈(

Ωf0
ε

)2
〉

0

]
dτ (5.13)

where we used the identity
(

Ωf0
ε ◦ Sτ0

)
= Ωf0

ε , which derives from the fact that St0 =Id,

and which yields, cf. Eq.(4.31): 〈(
Ωf0
ε

)2
〉

0

= ε2N − 1

N
(5.14)

For N = 2, we can also use the explicit expression (4.15) for the autocorrelation function:〈(
Ωf0
ε ◦ Sτε

)
Ωf0
ε

〉
0

=
ε2

1 + cosh (ετ)
(5.15)

which leads to:

〈Ωf0
ε 〉t,ε = ε tanh

(
εt

2

)
, and 〈Ωf0

ε 〉t,ε =
ε2t

2
(5.16)

so that

〈Ωf0
ε 〉t,ε = 〈Ωf0

ε 〉t,ε + o(ε2)t (5.17)

In other words, for any ε > 0, the difference of the two responses is small at small times,

but it diverges linearly as time passes.

As a second instance, let us take O = ψ = θ1 − θ2. From (4.4) and (4.11) we have:

Ωf0
ε = 2εR2(ψ)− ε =

2ε

tan2
(
ψ
2

)
+ 1
− ε = ε cos(ψ) (5.18)

Moreover, Eq.(4.10) yields:

(ψ ◦ Stε) = 2 arctan

[
tan

(
ψ

2

)
e−εt

]
(5.19)

and we can write:

〈ψ〉t,ε − 〈ψ〉t,ε =

∫ t

0

[〈
(ψ ◦ Sτε ) Ωf0

ε

〉
0
−
〈

(ψ ◦ Sτ0 ) Ωf0
ε

〉
0

]
dτ

=

∫ t

0

[〈
(ψ ◦ Sτε ) Ωf0

ε

〉
0
−
〈
ψ Ωf0

ε

〉
0

]
dτ (5.20)

where we used St0 =Id, which implies (ψ ◦ Sτ0 ) ≡ ψ. Therefore, using (5.18) and (5.19)

in (5.20), we obtain:

〈ψ〉t,ε − 〈ψ〉t,ε =
1

(2π)2

∫ t

0

∫
M

2 arctan

[
tan

(
θ1 − θ2

2

)
e−ετ

]
cos(θ1 − θ2)dθdτ

− 1

(2π)2

∫ t

0

∫
M

(θ1 − θ2) cos(θ1 − θ2)dθdτ = 0 (5.21)
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The last equality follows from the fact that the integrands in Eq. (5.21) are odd continu-

ous and periodic functions, that are integrated over a whole period, so thatone actually:

〈ψ〉t,ε = 〈ψ〉t,ε ≡ 0 , ∀ t > 0 . (5.22)

Clealry, there are observables for which the difference of responses is irrelevant, since

they do not evolve in time, and others for which the difference is substantial, even under

small perturbations. In any event, the exact response characterizes the synchronization

transition, while the linear response does not.

6. Concluding remarks

We investigated the Kuramoto dynamics for identical oscillators through the statistical

mechanics framework of response theory. As a reference (unperturbed) dynamics we

took a system of uncoupled oscillators, with statistical properties given by a factorized

N -body distribution with uniform marginal densities. Next, we interpreted the classical

Kuramoto mean-field dynamics as a perturbation of the reference one. For any finite

number N of oscillators, we then derived an exact response formula whose validity holds

for arbitrarily large perturbations, and we computed, both analytically and numerically,

the asymptotic value of the Dissipation Function. The latter is indeed the main ingredient

of the exact response theory. Explicit analytical results are given for N = 2. We also

investigated the autocorrelation function of the Dissipation Function, and highlighted

its non-monotonic behavior, for sufficiently large N . Finally, we compared the exact

response formalism with the linear response regime. We found that the two responses

differ substantially, even for very small perturbations, and that only the exact response

describes the transition to synchronized states.

This indicates that the exact response theory, which by definition must be capable

of describing even systems undergoing non-equilibrium phase transitions, may actually

be used in practice. Synchronization phenomena, which are ubiquitous in Nature, are

indeed of that kind.
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Appendix A. Unstable fixed points for the identical case

In this section we show explicitly the existence of unstable points in any neighborhood

of a fixed point of (N − 1, 1) type.

Proposition A.1. Let θ̄ be the stationary type (N − 1, 1) solution set in (4.26) and

δ > 0. If θ = (θ1, . . . , θN ) satisfy

|θj − ϕ∗| ≤ δ2, j = [1, . . . , N − 1] (A.1)

θN = ϕ∗ + π + δ (A.2)
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then there exists a δ0 such that for any 0 < |δ| < δ0 one has:

R2(θ) >

(
N − 2

N

)2

(A.3)

and therefore R(Stθ)→ 1 as t→∞.

Proof. From the equation (2.10) we have that

R2(θ)−
(
N − 2

N

)2

=
1

N2

N∑
i,j=1

cos(θi − θj)−
N−1∑
i,j=1

1− 2

N−1∑
i=1

1 + 1

=
1

N2


N−1∑
i,j=1

[cos(θi − θj)− 1]︸ ︷︷ ︸
I1

+ 2
N−1∑
j=1

[cos(θN − θj) + 1]︸ ︷︷ ︸
I2


=

1

N2
(I1 + I2)

Next, we estimate the lower bounds of I1 and I2. We use the elementary inequality
x2

4 ≤ 1 − cos(x) ≤ x2

2 , which is valid for |x| ≤ x0 where x0 ∈ (0, 5π
6 ). Then, by using

(A.1), for I1 we get

I1 =

N−1∑
i,j=1

cos(θi − θj)− 1 ≥ −1

2

N−1∑
i,j=1

(θi − θj)2

= −1

2

N∑
i,j=1

[(θi − ϕ∗) + (ϕ∗ − θj)]2 ≥ −2δ4(N − 1)2

(A.4)

if 2δ2 ≤ x0. On the other hand, for I2 we first observe that for 1 ≤ j ≤ N − 1

|θN − π − θj | ≤ |θN − π − ϕ∗|+ |ϕ∗ − θj |

≤ δ2 + |δ|
≤ 2|δ|

if we take |δ| ≤ 1.

Then we can use the inequality (A.1) to obtain that

cos(θN − θj) + 1 = 1− cos(θN − π − θj)

≥ 1

4
(δ2 + |δ|)2 =

1

4
δ2(1 + |δ|)2

≥ δ2

4

where we consider that δ2 + |δ| ≤ 2|δ| ≤ x0. Therefore

I2 ≥ (N − 1)
δ2

2
(A.5)
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and it follows from the equations (A.4) and (A.5) that

R2(θ)−
(
N − 2

N

)2

≥ 1

N2

{
N − 1

2
δ2 − 2δ4(N − 1)2

}
= δ2N − 1

N2

[
1

2
− 2δ2(N − 1)

]
> 0

for δ2 < 1
2(N−1) . In summary, if we choose δ0 = min{1, x02 ,

1
2
√
N−1
}, then (A.3) holds.

Finally, to prove that R(Stθ)→ 1 as t→ +∞, we use the fact that t→ R(Stθ) is not

decreasing and converges to a value (N − 2k)/N > 0 for some integer k ≥ 0.

By (A.3) and the monotonicity we deduce that R(Stθ) > N−2k
N for all k ≥ 1 and all

t ≥ 0, and therefore we conclude that, necessarily, the limiting value has k = 0. The

proof is complete. �

Appendix B. Stationary correlation functions

Given a vector field V0, let f0 be an invariant probability density under the flow St0
generated by V0. With the notation set by Eq.(3.7), let Λ0

0,t be the time integral over a

trajectory segment, from time 0 to time t, of the phase space volume variation rate Λ,

which is the divergence of the vector field V0. Two-time correlation functions between

two generic observables A,B : M → R, evaluated with the density f0, are invariant

under the time translations determined by St0. This can be shown as follows. First we

note that, proceeding as in Eq. (3.9), one finds

Ωfs,0
−t,0 =

∫ 0

−t
Ωfs

0 (Sτ0 θ)dτ = −Λ0
−t,0 −

∫ 0

−t

d

dτ
(log fs(S

τ
0 θ)) dτ

= −Λ0
−t,0 − log

fs(θ)

fs(S
−t
0 θ)

(B.1)

Upon setting s = 0 in (B.1) and using Eq.(3.12), we find Ωf0,0
−t,0 ≡ 0, from which we

obtain the following useful relation

f0(θ) = exp
{
− Λ0

−t,0(θ)
}
f0(S−t0 θ) (B.2)

where the exponential term is related to the Jacobian determinant of the dynamics as

[30]: ∣∣∣∣∣∂
(
S−t0 θ

)
∂θ

∣∣∣∣∣ = exp
{
− Λ0

−t,0(θ)
}

(B.3)

Let us look, next, at time correlation functions of the form

〈
(
A ◦ Ss+τ0

) (
B ◦ St0

)
〉0 =

∫
M
A(Ss+τ0 θ) B(St0θ)f0(θ)dθ
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for any s, t, τ ∈ R. By a change of variables, one finds

〈
(
A ◦ Ss+τ0

) (
B ◦ St0

)
〉0 =

∫
M
A(Ss0θ) B(St−τ0 θ)f0(S−τ0 θ)d

(
S−τ0 θ

)
=

∫
M
A(Ss0θ) B(St−τ0 θ)f0(S−τ0 θ)

∣∣∣∣∣∂
(
S−τ0 θ

)
∂θ

∣∣∣∣∣ dθ
=

∫
M
A(Ss0θ) B(St−τ0 θ)e−Λ0

−τ,0f0(S−τ0 θ)dθ

=

∫
M
A(Ss0θ) B(St−τ0 θ)f0(θ)dθ

= 〈(A ◦ Ss0)
(
B ◦ St−τ0

)
〉0 (B.4)

where we used (B.3) and, in the last line, the formula (B.2).
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