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Summary

General anaesthesia is a challenging medical procedure inducing a reversible
state of unconsciousness in patients during surgery to facilitate operations. The
sedation is achieved by infusion of a perfectly balanced cocktail of pharmacological
compounds. The delivery rate of this cocktail has to be continuously monitored to
achieve and maintain the desired level of sedation to avoid complications and side
effects related to over-dosage or under-dosage. Today, PharmacoKinetics and Phar-
macoDynamics (PK/PD) models regulate, via Target Controlled Infusion (TCI)
pumps, the delivery of anaesthetics, and the patient is continuously monitored via
BiSpectral (BiS)-index, a weighted sum of ElectroEncephaloGraphic (EEG) fea-
tures. This approach comes with some limitations since PK/PD models are only
statistically accurate since they are experimentally derived from observation on a
population of individuals, and EEG suffers from measurement artifacts.

To overcome these limitations, we propose to close the loop between anaes-
thesiologist and patient with Therapeutic Drug Monitoring (TDM). Continuous
monitoring of anaesthetics infusion helps anaesthesiologists to define personalized
dose towards safer surgery. This thesis presents a newly required different part of
the system to keep under control the concentration of anaesthetics in the body of
the patient, which it was missing up today: the smart electronic pen for continuous
monitoring of anaesthetics. Namely, the pen includes in a single device a unique
electrochemical sensor, leveraging on new measurement methods, in a custom em-
bedded device. The sensor built is a needle-shaped electrochemical cell fully char-
acterized for direct detection of anaesthetics (propofol) in undiluted human serum.
Several methods are specially developed in this thesis, including Sampling Rate
Optimization (SRO), Total Charge Detection in Cyclic-voltammetry (TCDC), and
Propofol Fouling Machine-learning (PFM) smart processing. The proposed device
is a battery-operated single Printed Circuit Board (PCB) with wireless communi-
cation. It includes a novel quasi-digital potentiostat in a pen-shaped case for easy
use in the surgery room.

The proposed smart electronic pen achieves the four primary goals as required
towards a closed-loop system for TDM of anaesthetics: portability, real-time de-
tection, automatic smart processing, and continuous monitoring. The developed
technology is low-power, wireless, and small size compared to the state-of-the-art
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to facilitate mobility into the surgery room. The system provides real-time detec-
tion with the first needle-shaped propofol sensor. Moreover, and for the first time in
this work, machine learning approaches successfully compensated non-linearities of
the electrochemical sensor, allowing smart processing. Finally, the sensor, methods,
and electronics introduced in this thesis allow continuous monitoring of anaesthet-
ics.
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Chapter 1

Introduction

In healthcare industries, personalised medicine is taking great relevance. Per-
sonalised medicine aims to revolutionary transform the medical practices with a
patient’s personalization of therapies since the variability in response to drugs is
determined by numerous personal factor [1], providing the correct drug with dose
and timing tailored to the patient [2]. In this framework, general anaesthesia is a
necessary surgery medical procedure that requires the administration of a perfectly
balanced cocktail of drugs: hypnotic, analgesic, and muscle relaxant [3]. The usage
of prediction models to estimate the proper dosage presents today high errors due
to the patient’s diversity. Differently, the Therapeutic Drug Monitoring (TDM)
aims to measure the actual drug concentration in the patient’s body to meet the
personal requirements with a dynamic adjustment of the anaesthetics infusion [4].
The need for TDM of anaesthetics opens the demand for systems for direct, contin-
uous, in-situ measurement of the concentration of anaesthetics [5]. Electrochemical
investigation can be adopted to measure the typical therapeutic compounds (e.g.,
Propofol, Midazolam, and Paracetamol), and electrochemical techniques showed
excellent capability in biomedical devices for direct determination of drugs. In this
thesis, a complete and entirely novel system based on electrochemical techniques for
the continuous monitoring of anaesthetics in TDM practices towards safer anaes-
thesia is developed and detailed.

Chapter 1 introduces the TDM techniques (Section 1.1), properties and advan-
tages, and links it to the general anaesthesia (Section 1.2) and its current practice
and limitation. Section 1.3 depicts a general overview around biosensors and elec-
trochemical sensors as best candidates as a set of sensors and methods for detecting
anaesthetics. The full outline and the main research contribution are underlined in
Section 1.4.
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1.1 Therapeutic Drug Monitoring
PharmacoKinetics (PK) is the study of the interaction of a drug with a living or-

ganism in pharmaceutics. The metabolism of a patient processes the substance way
before it reaches the target site since phenomena of absorption, distribution, molec-
ular catalysis, and excretion occur [6]. Figure 1.1a represents a graphical example
of the PK model. It is essential to define the Minimum Effective Concentration
(MEC) and the Maximum Tolerated Concentration (MTC) in pharmacokinetics.
The drug concentration should always remain between these two values to consider
beneficial the drug’s effect in the so-called therapeutic range. Under the MEC, the
drug efficacy is not beneficial, while over MTC, the drug is toxic [7].

PK expresses the relation between the quantity of drug injected in a given
patient’s body (the dose) and the quantity of drug reaching the pharmacological
target. On the other hand, PharmacoDynamics (PD) describes the relationship be-
tween the drug concentration and the out-coming effects once the substance reached
the target, as presented in Figure 1.1b. Under stationary pharmacokinetic condi-
tions, the pharmacodynamics may describe with low uncertainty the drug’s effect
on patients. The most common mathematical PD models are, for example, linear
model, long-linear model, fixed effect model, Emax-model, and sigmoid Emax-
model [8]. In most cases, the PK conditions are not stationary, and more complex
models are required to consider the dissociation between dose-concentration and
observed effect.

The combination of pharmacokinetics and pharmacodynamics is the PK/PD
model, which is generally a set of mathematical equations describing the pharma-
cological effect of a single drug administered dose in time, as shown by Figure 1.1c.
The PK/PD model establishes the dose-concentration/drug-response relationships
in the attempt of predicting the behaviour in time of the drug dose, indicating the
time-course of a drug and its real benefit [9]. PK/PD-modelling is essential during
the drug development process. Moreover, PK/PD may be used to predict, adjust,
and optimise patients’ treatments in pharmacotherapy [8].

TDM, in general, is the measurement of a chemical or physical parameter that
is directly related to the clinical effect of a specific prescribed drug in a patient
under cure [4]. TDM is in strict relation with PK, PD, and PK/PD models. The
primary scope is the efficacy assessment and the safety of drugs in clinical settings
to provide patients with optimal therapies. The TDM introduced in the seventies a
mathematical approach to link pharmacokinetics and patient outcome [10]. In the
beginning, the drug monitoring practices were encouraged by increasing awareness
in the relation between drug concentration and its effect that corresponds to the
mapping of drug pharmacokinetic characteristics [11]. Nowadays, the TDM is still
encouraged by the massive growth in computing performances that had been seen
in recent years [12]. Finally, the advent of point-of-care, easy to use and cheap
biosensing technology will bring TDM towards the next stage of clinical practice in
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Figure 1.1: PK model (a) and PD model (b), may be combined to obtain the
PK/PD model (c).

the future [13].
Since the generality of the definition of TDM, this approach refers to several

different techniques to relate the therapeutic effects of drug monitoring. TDM
was be exploited in monitoring the long-time effects of drugs, measuring so the
outcome of drugs on a weekly or monthly basis for long-time treatments. For
example, TDM is seen as a tool for clinical consultations helped patients with
juvenile myoclonus epilepsy treated with antiepileptic drugs [14], and [15] reported
the case of a patient affected by cerebral aspergillosis safely TDM-based treated
with high-dose voriconazole for over one year.
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Another aspect of TDM is referred to for the sake of this thesis. In fact, TDM
also refers to the personalisation of the drug dose by continually maintaining the
blood drug concentrations inside the therapeutic window. With this approach, it
is possible to develop an automatic system that can continuously control the feed-
back loop of the dosage of drugs. Worth noting that, as previously mentioned with
the introduction of PK and PD models, the quantity of drug inserted in the vein
of patients (by syringe or similar instruments) is not the actual dose concentra-
tion reaching the target site. The relation between the effect and dose may vary
in time according to several physiological phenomena. The direct control of drug
concentration in-situ (for example, in the bloodstream) may provide an efficient
application of TDM systems for personalised medicine [16]. For example, in cancer
therapies, new TDM algorithms of patients’ dose adjustment to reduce side-effect
and optimise primary effects were investigated for several cytotoxic cancer drugs
like methotrexate, busulfan, and 5-flurouracil [17]. Critically ill patients were cure
through TDM-guided continuous infusion of piperacillin/tazobactam to cure sepsis
with early antibiotics treatments [18]. Real-time monitoring of sedative drug con-
centrations (such as midazolam and sufentanil) was proved to be beneficial to avoid
inadequate sedation and its complications in intensive care units for mechanically
ventilated patients [19].

1.2 General Anaesthesia
The word anaesthesia can be translated by ancient Greek to loss of sensation.

Anaesthesia refers to a temporary and reversible state of unconsciousness induced
by drugs to patients to avoid their response to external stimuli or pain. Three dif-
ferent types of anaesthesia exist, which are local anaesthesia, sedation, and general
anaesthesia.

• Local anaesthesia inhibits just part of the body of the patient. The goal is
to avoid pain in the target area without losing consciousness. It is generally
applied in all cases when it is possible to reach the nerves by sprays, drops,
ointments, or injections. Regional anaesthesia refers to local anaesthetics
injected near the nerves that supply a larger or deeper body area. Spinal and
epidural injections can be used for operations on the lower body.

• Sedation is a weak suppression of the nervous system. A small amount of
anaesthetics makes the patient mentally and physically relaxed, in a sleep-
like state, without consciousness loss.

• General Anaesthesia (GA) is a state of controlled unconsciousness. The pa-
tient is not able to feel or remember what is surrounding him. The anaesthetic
drugs are injected into a vein, or anaesthetic gases are administered by inhala-
tion. The GA is essential for a huge variety of operations, and it is the most
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Figure 1.2: Team of surgeons performing operations on anaesthetised patient.
Designed by wavebreakmedia_micro/Freepik. Reprinted with permission.

challenging type of anaesthesia since it is not possible to receive feedback
from the patient.

In GA, two different types of sedation exist; inhalation anaesthesia and Total
IntaVenous Anesthesia (TIVA). In TIVA, the GA is induced with a combination
of anaesthetic agents administered through intravenous injection. It was firstly re-
ported to have been practice by G. von Wahrendorff in 1642, injecting opium in the
veins of a dog, and in the 1660s, J. D. Major and J. S. Elsholtz tested it for the first
time on a human [20]. These experimental injections were not successful, and only
in the 1800s the injection of anaesthetics starts to been used successfully. During
twenty century the inhalation anaesthesia has been preferred against TIVA since
the respiratory route of administration allows rapid and convenient adjustment [21].
Nevertheless, over the last thirty years, this situation had been changed thanks o
the advent of new technologies. Those changes have transformed TIVA into an
attractive alternative to more traditional inhalation anaesthesia methods [22], the
reason why this thesis focuses only on TIVA GA.

The sedation is obtained by a precise and controlled mix of drugs. While many
drugs can be used intravenously to produce anaesthesia or sedation, the most com-
mon are barbiturates, benzodiazepines, and propofol. The concentrations of these
compounds must be accurately maintained in the patient’s body avoiding side ef-
fects [23]. Barbiturates, like thiamylal, thiopental, presents ultra-short-acting and
are rarely used in anaesthesia. In GA, the preferable benzodiazepine is midazo-
lam. Etomide and ketamine are used as anaesthetics only in emergency settings
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and with sick patients because it produces fewer adverse physiological effects while
presenting unpleasant experience for the patient, with vivid dreaming and illusions
on top [24]. Propofol (2,6-diisopropylphenol) is a highly lipophilic hypnotic agent
commonly administered to induce and maintain anaesthesia, which ensures fast and
predictable time of effect [25]. It produces its hypnotic action by an augmentation
of the inhibitory function of the synaptic transmission binding with the receptors
of the gamma-amino-butyric acid, which are typically involved in the regulation
of anxiety, vigilance, memory, and muscle tension and are the most abundant fast
inhibitory neurotransmitter receptors [26]. Propofol is today the golden standard
in anaesthesiology, it is a widely adopted anaesthetic [27], and it is considered the
preferable solution with respect to inhalations drugs in general anaesthesia [28].

Propofol, barbiturates, and benzodiazepines do not present any pain-relieving
properties, and it is required to mix them with analgesics [24]. While opioids can
produce unconsciousness, they do so unreliably. With significant side effects [29],
they are so frequently used in combination with anaesthetics to relieve the pain
of patients before, during, or after surgery. Fentanyl is the most commonly used
opioid in GA. Acetaminophen, also known as paracetamol (APAP) (N-acetyl-p-
amino-phenol), is a largely used analgesic and antipyretic drug. It can increase the
pain threshold, inhibiting the cyclooxygenase isoforms, which are involved in the
synthesis of the prostaglandins [30]. It is highly recommended ad analgesics due to
its light side effects. Paracetamol is often administered in place of opioids to alle-
viate the so-called pain of propofol injection that still affects 90 % of patients [31].

The last component of the anaesthetic cocktail is the muscle relaxant, a neu-
romuscular blocking drug used after a patient is rendered unconscious to facilitate
intubation or surgery by paralysing skeletal muscles [32]. Those practice is starting
to be limited since recent studies had shown that the use of neuromuscular block-
ers during general anaesthesia is associated with an increased risk of postoperative
pulmonary complications [33]. The most common cocktail of drugs in anaesthesia
is so composed of:

• Anaesthetic: propofol.

• Analgesic: paracetamol.

• Muscle relaxant: midazolam.

Worth noting that propofol and paracetamol are used in combination, and
propofol is the most dangerous compound in this cocktail, leading to Michael Jack-
son’s death in 2009 [34], among many other cases. For those reasons, this thesis
mainly focuses on paracetamol, propofol, and their interaction.
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1.2.1 Risks of Anaesthesia
Anaesthesia, especially GA, presents temporary and less severe side effects like

confusion and memory loss. However, this is more common in the elderly, dizziness,
difficulty in urination, bruising or soreness, nausea and vomiting, shivering, and
feeling cold. The side effects are related to possible unbalance in the composition
of drugs infused in the patient’s body. Figure 1.3 shows the most common side-
effects associated with errors in the determination of the cocktail of drugs.

Most of the patients experience at least one of these side effects [38], but those
phenomena tend to occur straight after the anaesthesia. Otherwise, a study anal-
ysed the case of claims reported in the US, highlighting that most frequent in-
juries claimed after anaesthesia were death (18.3 %), pain (10.9 %), organ damage
(12.7 %), nerve damage (13.5 %), teeth damage (20.8 %) [39].

Unintended intraoperative awareness is a rare state of awareness during surgery,
with an incidence of 0.02 % [40]. In those cases, patients are conscious of the en-
vironment, and in some cases, they are feeling pain, and due to the effects of the
muscle relaxants, they cannot signal their state of consciousness. This traumatic

Analgesic
(e.g. paracetamol)

Anaesthetic
(e.g. propofol)

Balanced
Anaesthesia

Muscle
Relaxant

(e.g. midazolam)

Too little anaestesia Too much anaestesia

80%

Nausea [35]

.001%

Death [36]

2%

Awareness [37]

15%

Pain [37]

10%

Brain damages [37]

Figure 1.3: The anaesthesia is based upon a perfect balance of drugs and the most
common side-effects are directly related to over/under dosage estimation. Data
from [35, 36, 37].
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event sometimes leads to psychological or psychiatric consequences, such as post-
traumatic stress disorders [41]. The general sense of pain is a less severe undesired
effect related to under-dosage of anaesthetic compounds and has been reported
to occur quite frequently, in around 15 % [37]. While unintended intraoperative
awareness and pain are related to under-dosage, overdosing must also be prevented
to avoid serious GA complications. These effects range from postoperative nausea,
which is the most common effect of anaesthesia, to critical ones like brain damage
and death, which are, luckily, extremely rare. Vomiting, or at least experiencing
nausea, is extremely common after GA. Namely, it has been reported by 80 % of the
patients [35]. The death rate is hardly evaluated due to the difficulties of forensic
pathology to distinguish between deaths related or unrelated to anaesthetics [42].
Recent studies had been reported that the risk of death for anaesthesiology mal-
practices is approximately 0.001 % in patients with moderate systemic diseases [36].

1.2.2 Current Practices and their Limitation
Nowadays, the increase in popularity of TIVA is related partially to the improve-

ment of PK/PD models for the drugs used in GA. Meanwhile, the real driving force
of this change is the technological advance in infusion pumps. Target Controlled
Infusion (TCI) pumps incorporate hardware and software to control the anesthesia
automatically. TCI follows a mathematical model to approximate and predict the
concentration of drugs in the plasma. The software elaborates an advanced algo-
rithm based on the PK model of the target drug, allowing dynamic drug-dosage
adjustments to achieve and maintain a certain level of sedation in the patient [43].
A loading bolus dose is given first to achieve a desired drug concentration at the
target site. The infusion rate helps in maintaining a steady-state plasma concentra-
tion of the drug [44]. The TCI system estimates the initial bolus dose and calculates
the duration of subsequent infusion to maintain the desired concentration [45]. TCI
pumps for propofol leverage on two mathematical models to estimate the drug evo-
lution: the Marsh model and Schnider models. Both models contain numerous
parameters; some considered fixed, other variables according to the patient’s age,
patient’s total weight, lean body mass, and height [45].

Today, prediction models represent the golden standard to estimate the proper
dosage of anaesthetics, but they still show high errors due to the patient’s hetero-
geneity [46]. Even if TCI systems are commercially available and widely used to
administer anaesthesia, they still present some limitations. In fact, all TCI pumps
implement PK/PD models, which are experimentally derived from observation of
drug effects on a population of individuals being so only statistically accurate.
They cannot reproduce all the interaction presents in the body of any individual.
Therefore there will always be patients with a metabolism unpredicted by the TCI
pump [47].
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Figure 1.4: BIS index system monitoring a patient under anaesthesia. Reprinted
with permission from [49]. “Hybrid intelligent system to perform fault detection
on bis sensor during surgeries” from J.-L. Casteleiro-Roca et al. is licensed under
CC BY 4.0.

The Depth Of Anaesthesia (DOA) is the metric to express the patient’s anes-
thesia. One of the main challenges in TIVA practices is DOA evaluation and its
monitoring. According to the individual response, the accurate assessment of DOA
may improve anaesthesiology practice, helping to calibrate the delivery of anaes-
thetics. ElectroEncephaloGram (EEG) signal has been investigated as an indicator
of DOA since most common anaesthetics have an inhibitory effect on brain recep-
tors leading to a progressive diminution of the EEG activity with increasing drug
concentrations [48]

One of the most widely used indices for DOA monitoring in Europe is the so-
called BiSpectral index (BIS), introduced in 1994 by Aspect Medical Systems [50].
The BIS index is a weighted sum of several EEG parameters. Namely, BIS is
evaluated statistically, combining the contribution of key EEG signal features (bis-
pectral analysis and others) recorded every 15 s or 30 s [51]. The BIS index ranges
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between zero and one hundred, where one hundred means the patient is awake,
while zero represents that the EEG signal is iso-electric. The sedation is performed
maintaining the BIS over a value of seventy, while to ensure hypnosis in GA, the
BIS is maintained between forty-five and sixty [52]. Even though BIS monitoring
is a widely used DOA monitoring tool, which helps the anaesthesiologist regulate
the anaesthesia dosage in induction, maintenance, and emergence phases, the BIS
index still presents some limitations. Indeed, the relation between DOA and BIS is
not uniform in patients, artefacts highly influence the evaluation of BIS with EEG,
and the measuring introduces a high latency [53].

1.3 Biosensors and Electrochemical Sensors
Biosensor refers to a variety of devices able to detect or measure biological com-

pounds for monitoring concentrations of biomolecules, typically for applications in
medicine [54], environment monitoring [55], or in production-control or quality-
control in industry [56], water quality measurements, prosthetic devices, and drug
discoveries [57]. The term biosensor defines a device that combines a biological
component with a physicochemical system for the detection of a chemical sub-
stance [58]. Namely, the biosensor outputs the presence and the quantity of the
target molecule [59].

Biosensors provide low-cost, efficient, and easy-to-use devices for fast measure
and monitoring of patients [60, 61]. According to the definition, the world of biosen-
sors is an extensive collection of devices intimately integrating a biological system
(e.g., a protein) with a physical substrate typically required by the sensing used
technique, which exploits different working principles depending on the different
target molecules [62, 63]. Just to list some examples, biosensors could leverage on
electrochemistry [64], acoustic techniques [65], surface plasmon resonance [66], or
luminescent principles [67]. Much work has been done on metabolites sensing, and
it was possible to identify human pathogen through real-time in vitro metabolites
detection [68]. For example, a composite modified glassy carbon electrode was
proposed to determine the presence of an amino acid essential in neuroregulation
(Tryptophan) [69]. Electrochemical methods allow the detection of beta-amyloid
peptides and aggregates [70], and peptides were used to functionalise the sensor
surfaces to detect antibodies [71]. In Microelectromechanical Systems (MEMS)
technologies, assay system based sensor helps in rapid analysis of C-reactive pro-
teins [72]. MEMS are indeed a significant breakthrough because they enable fast
detection of several biomarkers [73, 74]. MicroRNAs gained consideration due to
their importance in early-stage diagnosis [75]. This section is adapted with permis-
sion from Springer Nature Customer Service Centre GmbH: [76] © 2020 Springer
Science Business Media.
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This thesis focuses on sensing technologies for drugs, in particular electrochem-
ical sensors and amperometric techniques. Recent years had shown a grown in the
interest in this type of sensors, which are easier to cope with standard electronics
and low-cost electronic devices. Glucose sensors are one of the most popular an-
alytes in the scientific literature, and today glucose sensors are occupying around
85% of the biosensor market [77]. In those decades, the efforts done on glucose
detection brought significant scientific and technological innovations in the contin-
uous monitoring of diabetes [78]. Today, the technology is pushing towards the
limits to develop drinkable technology sub-millilitre size [79]. These efforts and
the results of this application encourage the researcher to develop new technology
based on this innovation for helping and contributing to the monitoring of other
diseases and medical procedures.

In pharmaceutical applications, several electrochemical sensors have been pre-
sented for the detection of pharmacological compounds and drugs. Bioelectrodes
nanostructured with multi-walled carbon nanotube and gold nanoparticle presented
high sensitivity and limit detection in measuring electroactive etoposide anti-cancer
drug [80]. Another anti-cancer drug, 5-fluorouracil, has been detected with a sil-
ver nanocomposite-based electrochemical sensor [81]. Recently, a nanostructured
silver doped electrode was presented as a sensor for the detection of cetirizine
anti-inflammatory drug [82]. Anti-anginal drugs have been detected with a sensor
coated with graphene nanocomposite material [83]. Also, antibiotics, in particu-
lar Ofloxacin drug, have been detected in urine samples [84]. Again multi-walled
carbon nanotubes electrochemical sensor has also been used to detect anti-malarial
drug [85]. Section 2.1 presents detailed state-of-the-art sensors designed for the
detection and measurement of anaesthetics.

1.3.1 Electrochemical Techniques
The electrochemical reaction occurs in the electrochemical cell, consisting of

electronic conductors (electrodes) immersed in an ionic conductor (electrolyte).
The most common configurations of the electrochemical cells are with two electrodes
(Figure 1.5a) and with three electrodes (Figure 1.5b). In the two-electrode config-
uration, the electrochemical cell comprises one Working Electrode (WE) and one
Reference Electrode (RE). It is possible to add the auxiliary electrode or Counter
Electrode (CE), creating the three-electrode configuration.

The electrochemical reaction may exhibit a current flowing due to an applied
potential, and it is composed of two components, non-Faradaic and Faradaic. The
non-Faradaic current is related to a displacement of charge, while the Faradaic
current takes place from oxidisation or reduction of solution species. The over-
all chemical reaction in the cell is based on two half-reactions happening at the
interface between electrode and electrolyte, as a consequence of the potential dif-
ference. The WE is the electrode at which half of the reaction occurs, while the
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Figure 1.5: The electrochemical cell, with two electrodes (a) and three electrodes
(b); the addition of Counter Electrode (CE) is required to detect current while
driving the voltage across Reference Electrode (RE) and Working Electrode (WE).

RE maintains a fixed and known potential to standardise the other half of the cell.
Controlling the potential across WE and RE and driving it to negative potentials,
the energy of electrons increases up to a higher level where it will be transferred
from the electrode to the electrolyte. In this case, a reduction current from the
electrode to the solution occurs. On the other hand, if the energy of electrons is
decreased by imposing a more positive potential, the electrons of the electrolyte
will be energetically facilitated to flow from the solution to the electrode creating
an oxidation current. In the two-electrode configuration, the RE acts both as an
electron supplier and as a reference. For this reason, the addition of CE in the
three-electrode configuration enables the current flows between the WE and the
CE, avoiding any resistive current emerging from the potential applied between
WE and RE [64]. Most importantly, eliminating the current on the RE electrode
establishes better control on the potential supplied by WE.

The high stability of RE potential may be reached by creating a redox system
with buffered or saturated concentrations. Commonly adopted aqueous reference
electrodes are hydrogen-based, saturated calomel, copper-copper, and silver chlo-
ride [86]. A silver chloride electrode (Ag/AgCl) is a type of reference electrode
commonly used in electrochemical analysis and measurements. This electrode has
a smaller temperature coefficient of potential, it can be built compactly, and it has
widely replaced the saturated calomel electrode for environmental reasons. The
electrode functions as a redox electrode, and the equilibrium is between the sil-
ver metal (Ag) and its salt—silver chloride (AgCl). This aqueous electrode needs a
glass chamber to contain the KCl solution. Ag/Ag+ RE might be preferred to avoid
leakages. For limiting contamination in the test solution, bare metal wires (typi-
cally silver or platinum) as a pseudo-reference electrode are also widely adopted.
The potential of Ag or Pt wires, although being not indeed known (for each RE),
will not drift in time [64].

The CE is often fabricated from electrochemically inert materials. Moreover, to
enhance current flow and avoid current density displacement, the counter electrode
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needs to present a low resistivity. It has to be designed with an active area more
extensive than the WE. This size difference ensures that the reaction takes place on
the WE and the flow of electrons is facilitate passing through the CE, avoiding any
accumulation of charge or potential inversion related to limited diffusion. Carbon,
platinum, or gold best suited to be used as CE due to low resistivity and being
inert materials. The WE is where all the game takes place. For this reason, the
composition of the working surface may be diversified; it may present an infinite
number of modified, coated, pretreated or enhanced types of material surfaces that
this thesis would not be able to cover.

The potential of the cell, which corresponds to the potential difference between
WE and RE can be expressed by the Nernst equation:

E = E0 + RT

nF
ln

[︄
CRed

COx

]︄
(1.1)

where E0 is the standard RedOx potential, R is the gas constant, T the absolute
temperature, n the number of electrons exchanged in the RedOx reaction, F the
Faraday constant, and CRed, COx are the concentration of the reduced and oxidised
species, respectively. The RedOx equilibrium, which corresponds to the potential
E, is achieved when the concentration of reduced species is equal to the concen-
tration of oxidised species in open potential conditions (i.e., the potential E is not
eternally driven). The concentration of the species CRed, COx may form a gradient
due to a driving diffusion force transporting the analyte towards the electrode sur-
face or the bulk solution. The Nernst equation describes the concentration gradient
established between the solution near the electrode surface and the bulk solution
depending on the applied potential. If a system follows the Nernst equation, the
electrode reaction is often said to be thermodynamically or electrochemically re-
versible (or Nernstian) [87]

It is possible to combine Faraday’s law of electrolysis (Equation 1.2) with Fick’s
first law of diffusion (Equation 1.3) and Fick’s second law of diffusion (Equation 1.4)
to briefly explain the phenomena happening at the electrode/electrolyte interface.
Faraday’s law of electrolysis describes the mass m according to the charge Q, the
molar mass M , the Faraday’s constant F , and the valence number z. Meanwhile,
the first Fick’s law expresses the flux J in relation to a gradient of concentration C
in space and the coefficient of diffusion D of media. The second Fick’s law predicts
how diffusion causes the concentration to change with respect to time.

m = QM

Fz
(1.2)

J = −D
∂C(x, t)

∂x
(1.3)

∂C(x, t)
∂t

= ∂2C(x, t)
∂x2 (1.4)
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Figure 1.6: Example of cyclic voltammogram, the x-axis displays the voltage, while
the y-axis the current. The voltammogram may presents a duck-shaped with oxi-
dation and reduction peak, with iOx

p and iRed
p current at EOx

p and ERed
p equilibrium

potential, respectively.

Combining Faraday’s (Equation 1.2) and both Fick’s laws (Equation 1.3, Equa-
tion 1.4), it is possible to express the current i flowing through the electrochemical
cell proportionally to the initial analyte concentration C0 according to the Cotrell
equation [88]:

i = nFAC0
√

D√
πt

(1.5)

where n is the number of electrons involved in the reduction/oxidisation of the
target molecule, F is the Faraday’s constant, A is the active area of WE, D is the
diffusion coefficient, and t the time.

The so-called voltammogram is produced by applying a scan in the potential to
the electrochemical cell. The voltammogram is one of the most popular visual rep-
resentations of redox. It describes the electrochemical cell’s behavior, depicting on
the x-axis the input voltage and the y-axis the output current (Figure 1.6). Cyclic
Voltammetry (CV) is a powerful electrochemical technique exploited to analyse
oxidation and reduction processes [89]. The CV presents duck-shape and current
peaks. The peak position is related to the equilibrium described by the Nernst equa-
tion (Equation 1.1). The Scan Rate (SR) describes how fast the applied potential is
scanned. Higher currents are observed with higher SR due to a decrease in the size
of the diffusion layer [89]. For electrochemically reversible electron transfer pro-
cesses involving freely diffusing redox species, The Randles-Ševčík equation [90, 91]
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expresses the peak current ipeak relating it to the concentration C of the analyte:

ip = 0.4463 · nFAC

√︄
nFvD

RT
(1.6)

As previously, n is the number of electrons involved, F is the Faraday’s constant,
A is the active area of WE, v is the SR, D is the diffusion coefficient, R is the gas
constant, and T the temperature.

1.3.2 Electronics for Electrochemical Sensors
This thesis focus on amperometric sensing techniques. In this case, the poten-

tiostat is the most important electronic component, which is the set of a circuit
designed to drive the voltage between WE and RE and read the current flowing
in the electrochemical cell (see Section 1.3.1). Figure 1.7 reports the two possi-
ble circuit implementations of a potentiostat for amperometric measurement on
a three-electrode electrochemical cell. Namely, the grounded-WE (Figure 1.7a),
grounded-CE (Figure 1.7b) topologies place the actual ground of the system con-
nected to the WE, CE, respectively. All the different circuit implementation recall
Figure 1.5b, moving the actual position of the electrical reference (the ground) only.
In all the cases, the applied supply voltage V is forced between WE and RE nodes,
and in all the cases, the target CE current i is measured detecting the flow of elec-
trons between WE and CE. In both cases, the current on the node RE is forced to
zero. The two different circuit implementations can be implemented using standard
amplifiers or with more complex circuitry. The grounded-WE has been the most
popular and most frequently used due to its simplicity of implementation through
standard operational amplifiers. In contrast, grounded-CE has been primarily used
in multi-electrode systems. The configuration with the ground connected to the
counter electrode is the least implemented [92].

There are two types of potentiostat in practice: the first one is the potentiostat
intended as a lab instrument and used as an analysis tool in a laboratory envi-
ronment by a researcher. Meanwhile, the second one is the potentiostat designed
as a circuit integrated into a sensor for direct detection. Figure 1.8 reports the
basic circuit diagram of a standard commercial lab potentiostat, which drives and
reads the cell taking into consideration the ideal electrochemical cell. As can be
seen in Figure 1.8 (which is taken directly by the instrument data sheet [93]), the
CE is connected to a control amplifier (CA) which forces current to flow through
the cell. The current value is measured using a Current Follower (LowCF) or a
shunt Current Reader (HighCR), depending on its level, low or high current, re-
spectively. The potential difference is measured through a Differential Amplifier
(Diffamp) between RE and S, usually shorted to WE. The four-electrode cell setup
is rarely used in applications where it is required to measure the resistive potential
difference between RE and S in well-defined interfaces. The signal is fed into the
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Figure 1.7: The two possible equivalent circuit implementation of a potentiostat:
Grounded-WE (a), Grounded-CE (b).Namely, the only difference is the actual po-
sition of the electrical reference (ground).

Figure 1.8: Basic circuit diagram of a commercial lab potentiostat/galvanostat from
Methrom [93].

Summation Point (Σ), which, together with the waveform set (Ein), will be used
as an input for the control amplifier [93].

Figure 1.9 reports the most common circuit implementation of a potentiostat
for amperometric measurements to be integrated in an electronic device. In this
case, only two operational amplifier may be used in the grounded-WE configuration
(Figure 1.7a). The first operational amplifier (A1) acts as voltage follower and drives
the potential across the nodes WE and RE, forcing Vin on RE. The second amplifier
(A2) is the transimpedance amplifier. A2 converts the current i to the voltage Vout

according the equation:

Vout = i · Rf (1.7)
The target current (i) is the current exiting the CE in the electrochemical cell,
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Figure 1.9: Basic circuit implementation of potentiostat integrated in a sensor for
direct detection. A1 drives the voltage Vin, while A2 converts the current i into
Vout.

and the circuit reproduces the one shown in Figure 1.7a. The voltage Vout may
be easily sampled by an Analog to Digital Converter (ADC) to provide a fast
read of the Faradaic current flowing in the electrochemical cell. The integrated
configuration (Figure 1.9) requires a complete optimisation related to the properties
of the electrochemical cell and the target analyte. Specifically, the circuit must be
fully aware of the range of values of both the potential Vin and the current i.

1.3.3 Metrics and Design Goals
The design and the development of a sensor depend mainly on the requirements

of the final application. Several metrics may be taken into account during the
design. Selectivity, specificity, sensitivity, and Limit of Detection (LOD) are the
most important, and they are taken into account in this thesis.

Selectivity and specificity Both selectivity and specificity are related to the
ability of the sensor to distinguish the target analyte, among others. Selectivity
covers more broadly the ability to determine one analyte among others selectively.
Meanwhile, specificity is related to the unequivocal detection of a target in the
presence of other expected components [94]. The most common assessment method
of selectivity and specificity includes clinical trials and interference studies. The
interference studies may be performed by testing the sensor with samples in which
the most common interference analytes have been synthetically introduced [95].

Sensitivity Biosensor is composed of a transducer, which is the part of the sensor
translating the input information (quantity of analyte) into an electrical signal [96].
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The sensitivity express this relation. Most of the sensor presents a linear relation-
ship between the concentration of the target molecule and the output electrical
signal. In those cases, the sensitivity is represented numerically as the angular
coefficient (slope) in the relation between concentration and electrical signal. The
sensitivity must be taken into account during the design of the electronics of the
sensor. If the sensitivity is too low, it may be hard to discriminate low concentra-
tions of the analyte. For this reason, the sensitivity is strictly related to the limit
of detection.

Limit of Detection The LOD is the minimum quantity of target analyte that
a sensor can detect. Several methods to determine and characterise this value are
available in the literature. In this thesis, according to the International Union of
Pure and Applied Chemistry (IUPAC) standard, LOD is defined as:

LOD = 3σblank

S
(1.8)

where σblank is the standard deviation from the signal obtained from the blank.
Factor three maintains the required confidence level of 99.7 % between the observed
signal and the blank response [97]. The blank is the solution in the absence of the
target analyte.

The thesis uses those metrics to define and prove results. Many other figures of
merit may be used to determine the capability of an electrochemical sensor, such
as Limit of Quantisation (LOQ), linearity, and dynamic range. The focus on those
features is low since partially related to the others. In the case of linearity, this
thesis proves that not all the sensors must present a linear response in order to
work correctly (see Section 3.4).

1.4 Thesis Outline and Research Contribution
Figure 1.10 presents the outline of this thesis. A completely novel piece of tech-

nology is required to close the loop between patient and anaesthesiology with TDM.
In Chapter 2, the thesis describes the composition, design, and characterisation of
new electrochemical sensors to detect drugs. These sensors are required to reli-
ably detect and discover the concentration of anaesthetics present in the patient’s
body and act as a transducer converting the unknown concentration of drug into
an electrical signal. Knowing and having developed the sensor, the next step is
developing, optimizing, and validating measurement methods. These methods are
discussed in Chapter 3, and they are necessary to understand how to transform a
sensor for the detection of anaesthetics into a measurement device. Chapter 4, fi-
nally, describes and detail the design, hardware and software implementation of the
proposed smart electronic pen and the embedded device, which copes with the new
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Figure 1.10: Thesis outline and research contribution. With a new electrochemical
sensor (Chapter 2) and novel measurement methods (Chapter 3), an the smart elec-
tronic pen (Chapter 4) ready for monitoring of anaesthetics is developed. Designed
by jcomp/Freepik and by prostooleh/Freepik. Reprinted with permission.

sensor and leverage on the novel methods. In all its part, the device is developed
to enter a full system for continuous monitoring of anaesthetics.

In this thesis, several novelties are introduced and validated with respect to the
state-of-the-art. Namely, the following goals are achieved in this thesis:

• Portability: the developed technology is low-power, wireless, and small size,
in comparison with respect to the previously proposed electronics in the lit-
erature. Those improvements contribute to easy mobility into the surgery
room, the proposed system’s target environment.

• Real-time monitoring: in this thesis, the first needle-shaped sensor for
detection of propofol in situ is presented for online monitoring of anaesthetics.

• Continuous monitoring: the sensors, the methods, and the electronics
introduced, obtain together with the most important goal of this research:
the capability of continuous monitoring. Readers will discover in this thesis
the original device for continuous detection of anaesthetics, which provides
stability in time the information requested to implement a TDM system for
anaesthesiology practice.

19



Introduction

Table 1.1: Table of correspondence between section of this thesis and published
works.

Section Reference
1.3 Biosensors and Electrochemical Sensors [59, 76]

2.3 Needle-shaped Electrochemical Sensor [98]

3.2 Sample Rate Optimisation [99]
3.3 Total Charge Detection in Cyclic Voltammetry [100]
3.4 Propofol Fouling Machine learning [101]

4.2 Quasi Digital Potentiostat [102, 103, 104]
4.3 Embedded Device [105].

• Smart and Automatic: novel methods for intelligent and automatic detec-
tion of drugs are implemented in this thesis. For the first time, machine learn-
ing approaches resulted successfully in the compensation of non-linearities of
the electrochemical sensor. Moreover, the intelligent classifier helps anaesthe-
siologist follow up with eyesight the infusion of anaesthetics.

All the claims of this thesis are proved and detailed by a series of academic
publications. Table 1.1 presents the correspondence between published manuscripts
and the content of the thesis. In detail, this thesis shows the following novelty that
designed and implemented to achieve the goal of developing a complete system for
direct and continuous detection of anaesthetics:

1. Needle-shaped sensor: to target the direct detection of anaesthetics direct
in human serum.

2. Sample Rate Optimization (SRO) method: definition of a method for
optimizing the sample rate in voltammetry towards reducing power consump-
tion.

3. Total Charge Detection in Cyclic Voltammetry (TCDC) method:
the invention of a technique to avoid oversampling in voltammetry detection
of the analyte.

4. Propofol Fouling Machine-learning (PFM) method: development of
the first ML-based algorithm for the compensation of non-linearities in an
electrochemical sensor.
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5. Quasi Digital (QD) potentiostat: design and implementation of an event-
based, low power, and low noise novel electronic topology for amperometric
integrated potentiostat.

6. Embedded device: fully integrated, battery-operated, Bluetooth®, an em-
bedded device for continuous and autonomous measurement of anaesthetics.
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Chapter 2

Electrochemical Sensors

The smart electronic pen for continuous monitoring of anaesthetics is based on
an electrochemical sensor as the main sensor. As previously detailed, an electro-
chemical sensor is a physicochemical transducer capable of transforming the input
information (concentration of analyte under measure) into an electrical signal. In
general, the characterisation of a sensor is the collection and verification of all
the sensor characteristics, which are mainly sensibility, linearity, working range,
precision, accuracy, resolution, repeatability, reproducibility, hysteresis, and satu-
ration [106]. The sensor characterisation is necessary to ensure a guaranteed level
of readout accuracy over various operating conditions. Generally, this procedure
may require considering a transducer and the whole sensing equipment and the de-
tection methods. In some specific cases, it is possible to take for granted the ability
and the performance of the sensing equipment. To use an analogy, in Resistance
Temperature Detector (RTD), the characterisation of the performance of the sen-
sor is made with a commercial impedance meter considering only the variation of
resistance according to temperature. This will provide designers with sufficient in-
formation to develop their sensing equipment upon that given sensor. This is valid
also for electrochemical sensors since numerous formal method already exists. In
this section, the electrochemical sensor is characterised formally with a commercial
instrument called potentiostat using voltammetry analytical methods [64]. Namely,
no measurement methods and electronic circuits had been introduced or taken into
consideration, but only the physicochemical transducer and its electrochemical be-
haviour.

Chapter 2 describes the state-of-the-art (Section 2.1) of such sensors and it
figures out limitations and solutions. Commercial electrodes which are commonly
adopted in literature are tested (Section 2.2). Later, the non-linearities introduced
by passivation and secondary phenomena (called fouling) are considered and anal-
ysed. Finally, Section 2.3 presents the first-ever proposed needle-shaped sensor for
detection of propofol in human serum, specifically developed for the smart electronic
pen for continuous monitoring of anaesthetics.
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2.1 State-of-the-Art
Several options have been presented in literature for the detection and quan-

tification of pharmacological compounds in human samples. The most common
practice is the modification of commercially available electrochemical cells. Nev-
ertheless, the possibilities are endless. Focusing on the targeted cocktail of drugs,
composed of paracetamol (analgesic), midazolam (muscle relaxant), and propofol
(anaesthetic), the field may be narrowed.

As an example, Screen Printed Electrode (SPE), modified by casting a metal-
organic nanostructure on its surface, has been developed to detect fentanyl, a dan-
gerous analgesic narcotics [107]. The paracetamol, usually administered as a pain
lever in the cocktail of anaesthetics, is studied in numerous cases reported in lit-
erature. Determination of paracetamol concentration may achieved by several dif-
ferent techniques, as an example, mass spectrometry [108], chromatographic meth-
ods [109, 110], near-infrared calibration models [111], and Raman spectroscopy
[112]. Moreover, electrochemical study and flow injection analysis of paraceta-
mol in pharmaceutical formulations based on SPE and carbon nanotubes [113],
Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for
determination of acetaminophen [114]. Meanwhile, great results in the detection of
paracetamol have been achieved using simple and bare SPE electrodes [115].

The muscle relaxant included in the cocktail of anaesthetics under analysis, the
midazolam, may be determined by its voltammetric behaviour on glassy carbon
electrode [116]. At the same time, both Pencil Graphite Electrode (PGE) and bare
SPE may be used to detect it [3].

Propofol drug is a widely adopted anaesthetic, and it is considered the prefer-
able solution with respect to inhalations drugs in general anaesthesia [28]. Due to
its extensive usage, the direct monitoring of propofol will improve success in the
anaesthesia procedure, and it is, in fact, the main focus of this thesis. There is
a growing interest in using blood spot sampling for Therapeutic Drug Monitoring
(TDM), usually obtained from finger pricks, which allows simple and cost-effective
logistics [117]. However, it is not suitable for constant and continuous monitoring
in the surgery room by definition. The detection and quantification of propofol
are exploited using chromatographic methods, for example, liquid chromatogra-
phy [118] and mass spectrometry [119]. As for most of the drug, those methods
grants high precision on propofol quantification as well. Despite the advantages of
these techniques, the instrumentation is costly, requiring large quantities of expen-
sive organics, not portable, and requires experienced technicians [120, 121]. Today,
the practice of detecting propofol through breath analysis is commonly present
in literature as non-invasive methods. As example, the determination of propofol
concentration in breath can be done using mass spectrometry [122], gas chromatog-
raphy [123, 124], ion mobility spectrometry [125], and virtual surface acoustic wave
techniques [126]. Unfortunately, there is still no evidence of a strict correlation
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between propofol concentrations in blood and breath, a key point for real appli-
cation. Therefore, detection of anaesthetics directly in serum samples is preferred
for TDM [127]. For this reason, previous work in literature focused on detection
in serum with either boron-doped diamond tips [3], polymeric membrane-coated
carbon SPEs [128], or PGE [129].

2.2 Commercial Sensors
In this thesis, some examples of commercial electrochemical sensors are tested

to detect anaesthetics to determine detection limits and possible solutions. Those
sensors showed good results in previously presented works. In detail, SPE are suit-
able for measuring paracetamol [115] and PGE for propofol [129]. In particular,
SPEs offers a low-cost, disposable device specially designed to work with micro-
volumes of samples. SPEs are ideal for quality control or research purposes and
also for teaching electrochemistry. For those reasons, SPEs are widely proposed
in literature to develop new detection methods upon electrochemical techniques.
PGEs are also commonly implemented as electrochemical sensors due to their hy-
bridised carbon, which shows high sensitivity, good adsorption, smaller background
current, and conductivity. Moreover, PGEs are easy to be prepared, and the surface
may be easily modified [130]. Compared to other electrodes such as glassy carbon
electrode, the renewal of surface plays an important role for subsequent analysis
because electrochemical reactions of the molecule may cause a change in surface
properties of the electrode [131]. The propofol is an electroactive molecule so that
it can be oxidised and, in principle, quantified through voltammetry techniques as
shown in Section 2.2.2. Unfortunately, the problem of electrode fouling limits still
today the development of a system for continuous monitoring of anaesthetics as
pointed out by Section 2.2.3.

2.2.1 Detection with Screen Printed Electrodes
In this thesis, the characterisation of drug detection with SPE sensors is done

using as a benchmark drug paracetamol (APAP). The compound is electroactive
and can be easily detected employing Cyclic Voltammetry (CV) or Differential
Pulse Voltammetry (DPV). APAP powder from Sigma Aldrich® (Acetaminophen
BioXtra, ≥ 99 %) is dissolved on the day of use in a background electrolyte, namely,
Phosphate Buffer Saline (PBS) solution at pH 7.4. The buffer is purchased from
Sigma Aldrich® as well, and it is composed of 10 mM phosphate buffer, 2.7 mM
potassium chloride, and 137 mM sodium chloride. The sensing equipment is pro-
vided by a commercial potentiostat, namely the Metrohm Autolab PGSTAT 302N,
driven by the software Nova 1.11. The instrument is interfaced to DropSens DRP-
110 SPE composed of carbon Working Electrode (WE) with 4 mm diameter, carbon
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WE

RE

CE

Figure 2.1: DropSens DRP-110, Screen-Printed Electrode (SPE) composed of car-
bon WE with 4 mm diameter, carbon CE, and silver (pseudo-)RE [132].

Counter Electrode (CE), and silver pseudo-Reference Electrode (RE) [132] for the
drug-detection (see Figure 2.1). A full seven-point calibration procedure in the
therapeutic range between 50 µM and 300 µM is performed. Subsequent increasing
concentration steps of 50 µM of APAP are measured. To consider the inter-electrode
variability and to avoid artefacts, the measurement is repeated three times with a
new electrode for each condition. The collected data are processed in Matlab® (v.
R2017b). After subtracting the background-current obtained by the blank mea-
surement, the peaks are detected and analysed with the findpeaks built-in function
to return the height of the oxidation-current peak and its position. The calibra-
tion curve, the sensitivity and the coefficient of determination (r2) are derived by
regression built-in function. All these parameters are detailed in Section 1.3.3.

The CV is performed with a Scan Rate (SR) of 0.1 V / s, in the range between
– 0.1 V and 1.1 V, starting from 0 V, with a voltage step of 6 mV, and a time step
of 60 ms. The total number of sampled points is 406. The voltammogram re-
sulting from a CV seven-point calibration procedure on APAP in its therapeutic
range is presented in Figure 2.2a. The Faradaic oxidation peak appears around
500 mV, while the reduction peak is visible below 100 mV. The oxidation peak in-
creases linearly with respect to the concentration of the analyte, as suggested by the
Randles-Ševčík equation [133], as shown by the extracted calibration curve (Fig-
ure 2.2b). The variation of the current peak varying the SR is considered at fixed
300 µM of APAP, and keeping fixed all the other parameters. the current increases
as shown in Figure 2.3a varying the SR from 10 mV / s up to 1 V / s. Figure 2.3b
shows that the current peak increase quadratically with respect to the SR, which
means the electrochemical reactions is completely reversible [133].
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Figure 2.2: CV response of APAP with SPE in the therapeutic range 50 : 300 µM
at a SR of 0.1 V s. Full CV (a), and extracted calibration curve from peak eight
(b).
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Figure 2.3: SR variation in detection of APAP with SPE in CV, full voltammogram
varying SR at fixed 300 µM of APAP (a), and ratio between square root of SR and
current peak (b).
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Figure 2.4: DPV response of APAP with SPE in the therapeutic range 50 : 300 µM
at a SR of 0.1 V s. Full CV (a), and extracted calibration curve from peak eight
(b).

The DPV is performed with an SR of 0.1 V / s, in the range between – 0.1 V and
1.1 V, starting from – 0.1 V, with a voltage step of 6 mV, and a time step of 60 ms.
The pulse amplitude is 60 mV and the pulse length is 20 ms, with a duty cycle of
33 %. The total number of sampled points is 210.

Figure 2.4a presents the voltammogram obtained by the seven-point calibra-
tion procedure. The oxidation peak is visible in the centre of the graph and in-
creases linearly with the increase of APAP concentration, as shown by the extracted
calibration curve (Figure 2.4b). DPV method presents a higher sensitivity than
CV [133]. The variation of the current peak varying the pulse amplitude and the
pulse width are considered at fixed 300 µM of APAP, and fixed all the other pa-
rameters. Figure 2.5 presents the variation of DPV response changing the pulse
amplitude between 6 mV and 120 mV. The voltammogram presented in Figure 2.5a
demonstrates that the increase of the pulse potential enhances the oxidation peak,
while the background current increases too. Figure 2.5b shows that the peak cur-
rent increases linearly with the square root of the pulse amplitude. The effect of
varying the duty cycle of the DPV stimuli wave (i.e. the pulse width) between
20 % and 70 % is presented in Figure 2.6. Figure 2.6a highlights that the DPV
shapes does not change varying the pulse width, and Figure 2.6b shows how the
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Figure 2.5: Pulse amplitude variation in detection of APAP with SPE in DVP, full
voltammogram varying pulse amplitude at fixed 300 µM of APAP (a), and ratio
between the square root of pulse amplitude and current peak (b).
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Figure 2.6: Pulse width (duty cycle) variation in detection of APAP with SPE in
DVP, full voltammogram varying pulse amplitude at fixed 300 µM of APAP (a),
and ratio between pulse amplitude and current peak (b).

peak decrease decrementing the pulse duty cycle.
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2.2.2 Detection with Pencil Graphite Electrodes
Taking advantage of the results of [129], in this thesis, PGE is used to detect

the propofol anaesthetic. In particular, a stock solution of 5.4 mM propofol is
prepared on the day of use with 2,6-Diisopropylphenol (propofol) purchased from
Tokyo Chemical Industry Co., Ltd. and dissolved in 0.1 M NaOH. The samples are
prepared with seven concentrations of propofol, equally spaced in its therapeutic
range: 1, 12.8, 24.6, 36.4, 48.2, and 60 µM. The samples are prepared in PBS,
10 mM, pH 7.4 from Sigma Aldrich®. The electrochemical cell is composed by
a PGE WE, while for CE a platinum wire of 0.3 mm diameter is used, and the
RE is a K0265 Ag/AgCl electrode from Ametek Scientific Instruments as shown
in Figure 2.7a. Two different PGE are selected, namely the tip of a 2H pencil
(Figure 2.7b) and a 3H mechanical pencil lead (Figure 2.7c). The 2H pencil is
a commercially-available Staedtler® Noris 120, 2 mm diameter, exposed by 1 mm
to the sample, with an active area of around 9.4 mm2. The 3H mechanical pencil
lead is a Staedtler® lead for mechanical pencil Mars Micro 3H, 0.5 mm of diameter,
exposed by 3 mm to the sample, with an active area around 4.9 mm2.

Figure 2.8 shows the resulting voltammogram of propofol detection in the given
sample, according to the seven-point calibration, considering as WE the 2H pencil
(Figure 2.8a) and the 3H mechanical pencil lead (Figure 2.8b). Both present clear
and clean oxidation peaks. Worth to be noted that 2H pencil also presents a
secondary peak. Figure 2.9 shows the extracted calibration curves. 2H pencil and

(a) (b) (c)

Figure 2.7: Setup for detection of propofol with PGE, full setup (a) with PGE
WE, platinum wire CE and Ag/AgCl RE. The two PGE under analysis are the
commonly available 2H pencil (b) and a 3H mechanical pencil lead (c).
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Figure 2.8: CV of detection of propofol with PGE. Considering a 2H pencil (a),
and 3H mechanical pencil lead (b).
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Figure 2.9: Calibration of detection of propofol with PGE. Considering a 2H pencil
tip and 3H mechanical pencil lead.
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3H mechanical pencil lead exhibit a sensitivity of 1.13 µA / µM and 0.4753 µA / µM,
respectively, coherently with the expected different consequent areas of the WEs.
The Limit of Detection (LOD, the minimum concentration detectable by the sensor)
is 2.43 µM and 3.86 µM. The linearity (as the coefficient of determination r2) is
99.94 % and 99.86 %. The PGE presents such a good capability to detect propofol
with highly linear behaviour, high sensitivity, and low LOD.

2.2.3 The Propofol Fouling
When a voltage between RE and WE is applied to allow the direct oxidation of

the propofol monomer, the reaction takes place, and a propofol free radical is gen-
erated [134]. The latter can react with O2 or undergo free-radical polymerisation
adding up to a propofol monomer or pre-existing polymer, thus leading to the for-
mation of a polymeric film [135, 136]. This polymeric thin film covers the electrodes
and therefore degrades the sensor signal. This behaviour is called fouling, and it is
characterised in other phenolic compounds too [137]. Generally, the term electrode-
fouling describes the passivation of the surface by a fouling agent, which forms a
permanent layer on the interface between electrode and solution. In phenol, the film
is tough, thermally stable, and chemically inert itself with low permeability. Being
composed of high molecular weight species, it adheres tightly to the electrode. The
resulting fouling layer is not uniform and consists of successive blocking films made
by compounds with lower molecular weights in the upper region, furthest from the
electrode. The subsequent hypothesis by Yang et al. was that charge transfer does
not consist in tunnelling through the whole fouling film (10 : 100 nm thick) but only
through the lower region, populated by high molar weight compounds [137]. This
could be extended to propofol, and it suggests that propofol oxidation may become
a charge-transfer limited phenomenon in the presence of a reasonably thick fouling
layer.

Several methods had been proposed to minimise the effect of fouling in elec-
trochemistry. First of all, the selection of electrode material is crucial in limiting
the fouling. Modified electrodes, using for example metallic nanoparticles [138],
graphene [139], nanodiamonds [140], or carbon nanotubes [141], shows better an-
tifouling properties since generally standard carbon and metallic electrodes are
affected by fouling. Coating the surface of the electrode could reduce the passiva-
tion of the interface, and polymers like Nafion are adopted to this application [142].
Special electrochemical analysis techniques such as DPV and Multiple Pulsed Am-
perometry (MPA) also mitigates the fouling [143]. The addition of surfactans [144]
increases the solubility of reaction products lowering surface passivation.

Considering the continuous monitoring of propofol, which is the target appli-
cation of the sensor, the literature presents a few attempts at solving the fouling
problem. To the best of our knowledge, good results are achieved by coating the
electrode [145], with cleaning procedures [136], and with optimised PGE [129]. [145]
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(a) (b)

Figure 2.10: SEM images of PGE, bare electrode after five cycles of CV in clean
PBS sample (a), and after one propofol calibration (b). Reprinted with permission
from [3].

covered the surface of the electrode with polyvinyl chloride (PVC) membrane. How-
ever, its low mechanical resistance brings Stradolini et al. to propose a cleaning
solution to ensure the long-term performances [136]. The introduction of PBS or
NaOH cleaning steps limits the final application since human intervention is still
frequently required to extract the electrode from the sample and keep it in the
cleaning solution. To achieve better fouling-resistance, [129] evaluated PGE elec-
trodes. The results demonstrated that commercial pencils are suitable for propofol
detection. Their composition can balance the fouling effect; namely, the graphite
content of the pencil helps sensitivity and the clay content the fouling resistance.
A trade-off can be done balancing the pencil composition, but this result is highly
specific to the exact conformation of the sensor. Any small changes in geometry,
size, and composition result in a drastic unbalance of performance. Figure 2.10
shows through a Scanning Electron Microscope (SEM) the effect of the propofol
fouling on PGE electrodes. Namely, Figure 2.10b shows how the propofol reduction
is smothering out, and it passivates the surface of the PGE tip, with respect to a
clean one (Figure 2.10a).

The lead for mechanical pencil 3H is tested on fouling since [129] proposed the
3H PGE composition as the best candidate for the detection of propofol. Figure 2.11
presents the phenomena on fouling on the 3H mechanical pencil lead. The graphs
present the blank signal, with a new electrode (1st measure), with an electrode
after a first run of calibration (2nd measure) and after a second one (3rd measure).
Figure 2.11a shows the fouling in the absence of any cleaning process. The propofol
sticks to the surface as expected by the theory. This can be seen because the
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(a) (b)

Figure 2.11: Propofol fouling effect on pencil lead 3H electrodes, blank signal after
3 measurement, withouth cleaning step (a) and with cleaning step (b). 1st measure.
2nd measure 3rd measure

propofol is still detected in the blank sample after each new measurement. The
cleaning suggested by [136] does not help sufficiently in improving the situation
when using the 3H mechanical pencil lead (Figure 2.11b). In this case, a completely
new approach based on machine learning algorithms is the solution proposed in
Section 3.4.

2.3 Needle-shaped Electrochemical Sensor
In literature, numerous sensors have been proposed for detecting and measuring

propofol, achieving LOD of 0.5 µM (0.1 µg / ml) in only 25 s [146], Unfortunately,
most sensors that achieve good detection performance are based on blood-spot
sampling with disposable sensors. In particular, they employ single-use sensors [62],
which cannot be implemented in an automatic TDM closed-loop system. Also, the
commercially available sensors discussed and tested in Section 2.2 lack of capability
to measure directly in-situ the concentration of anaesthetics. Devices built on top of
commercial solutions must leverage on external fluidic chambers [147] or commercial
SPE for Dried Blood Spot sampling (DBS) [102], which both hardly cope with the
usage during surgery. This thesis proposes a needle-shaped electrochemical sensor
for measuring propofol directly in the patient’s vein to overcome these limitations.
PGEs are suitable for drug monitoring [59] and propofol monitoring. PGEs are
also the best candidate for compensating the fouling phenomena [129] with the
help of machine learning techniques, as previously mentioned, and fully detailed
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in Section 3.4. A novel low-cost and disposable electrode is developed with PGE
mechanical pencil lead electrodes of sub-millimetre size in a needle shape. This
section presents and details the full process of assembly of the proposed needle-
shaped sensor. Finally, the proposed electrode is tested in undiluted human serum
at 37 ◦C to show its performances in the human body. The performance assessment
is done in the therapeutic range of propofol, between 30 µM and 240 µM, considering
propofol therapeutic concentration can reach up to 40 mg / l (224 µM) [148]. This
section is adapted with permission from [98] © 2020 IEEE.

2.3.1 Design and Assembling
The proposed sensor is a three-electrode electrochemical cell in a needle shape

to target drug monitoring in-vein directly. Figure 2.12 shows the complete sensor,
with the electrochemical cell on the bottom, the case in the middle, the audio
jack connector for disposable use on top. As detailed in Figure 2.13, the sensor
is composed of two PGE, which are 0.5 mm diameter HB mechanical pencil lead

Figure 2.12: The novel disposable and low-cost needle-shaped electrochemical sen-
sor. Reprinted with permission from [98]. © 2020 IEEE.
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Figure 2.13: Needle-shaped sensor illustration, two PGE electrodes are WE
(shorter) and CE (longer), while Pt wire is RE, joint together in a needle-shape.
Reprinted with permission from [98]. © 2020 IEEE.

from Papeteria Migros, and one 0.3 mm diameter platinum wire. This composition
(HB) has been chosen since it is the most commonly available. Similar to what
presented in [136], the WE is the first lead, with a length of 10 mm and an active
area of 15.9 mm2. The second lead is the CE, with a length of 15 mm to maintain
a ratio between the area of WE and CE smaller than one. The RE is the Pt wire,
with a length of 8 mm. The different length of wires ensures the correct active area
ratio among the different electrodes, which is required for best design practice in
electrochemical sensors [87].

Figure 2.14 displays the whole assembly process of the proposed sensor. In step
(a), the two mechanical pencil leads and the platinum wire are interfaced to a solid
22 AWG black soldering wire, and the connections are stabilised through polyolefin
2 mm diameter red heat-shrink tubes. In step (b), the three electrodes are joined
together with a polyolefin 6 mm diameter white heat-shrink tube. In step (c), the
three cable-ends are soldered to the three pins of a male audio jack 3.5 mm stereo
connector. The sensor is completed in step (d) after closing the cover of the audio
jack connector and cutting the three electrodes to length. The electrode tip is
cleaned with ethanol first, distilled water second. The sensor is then immersed in
PBS, pH 7.4, and ten CV cycles at SR of 0.5 V / s in the voltage window between
– 0.6 V and 0.7 V are performed to ensure uniformity on the electrode surface and
check connection faults. The sensor is then cleaned with distilled water, let dry,
and stored in a dry cabinet.

The design of the presented sensor is the result of a study performed through
potassium ferrocyanide to define the best geometry for a disposable and minia-
turised sensor. It is worth noticing that the platinum pseudo reference electrode
proposed in this thesis did not show any visible difference of stability when com-
pared against silver pseudo reference electrodes present on commercial SPE. The
audio jack connector provides a low-cost, disposable, and robust electrical interface
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(a) (b)

(c) (d)

Figure 2.14: Needle-shaped sensor assembly process: mechanical pencil leads and
Pt wire connected to soldering wire through heat-shrink tubes (a), joint together
(b), soldered to audio jack connector (c), closed and cut to length to form the
complete sensor with integrated audio jack connector for point-of-care applications
(d). Reprinted with permission from [98]. © 2020 IEEE.

to systems and electronics, being audio jack a robust and widely adopted standard.

2.3.2 Validation and Performance
The solution of 5.4 mM propofol is dissolved in undiluted human serum, heat-

inactivated from human male AB plasma, from Sigma-Aldrich as background. The
samples are prepared with subsequent dilutions of propofol stock solution in human
serum in a 10 ml beaker to obtain eight different concentrations, equally spaced
in the range of interest: 30 µM, 60 µM, 90 µM, 120 µM, 150 µM, 180 µM, 210 µM,
and 240 µM. The samples are continuously kept at 37 ◦C and continuously stirred
by a hot plate stirrer from VWR®. The needle-shaped sensor is immersed in
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Figure 2.15: Voltammograms acquired by analysis of propofol sample in human
serum showing oxidation peaks after signal filtering and baseline subtraction, con-
sidering one sensor. Reprinted with permission from [98]. © 2020 IEEE.

the sample solution, and it is connected to a commercial potentiostat (Metrohm
Autolab PGSTAT 302N), driven by the software Nova 1.11. The CV is performed at
SR of 0.1 V / s, in the voltage windows between – 0.6 V and 0.7 V, with a step voltage
of 5 mV, and a step time of 30 ms. All the measurements are repeated three times
with three different assembled sensors to validate repeatability and reproducibility.
The data are elaborated by Matlab® (v. R2020a). The voltammogram curves are
filtered with a low-pass filter at the cut-off frequency of 2 Hz to remove electrical
noise. The background current obtained by the blank measurement is subtracted
to remove chemical noise.

The proposed sensor had been tested for propofol monitoring in undiluted hu-
man serum at body temperature (37◦C) in the therapeutic range. Figure 2.15
shows the results of the experimental setup. Namely, Figure 2.15 displays the
voltammogram curves acquired by the lab instrument connected to the proposed
sensor. The Faradaic peaks related to the propofol oxidation are visible between
0.4 V and 0.5 V. The peaks are highlighted, filtering the signal with a low-pass fil-
ter at 2 Hz and removing the baseline. Figure 2.16 shows the resulting calibration
point with their confidence interval (derived as three times the standard deviation)
and the calibration curve of the proposed sensor. The curve is obtained linearly in-
terpolating the values of the oxidation current-peaks. The calibration displays the
performance of the proposed sensor considering repeatability and reproducibility
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Figure 2.16: Inter-electrodes calibration curve of proposed needle-shaped sensor
measuring propofol in human serum. The sensor shows good linearity and low
uncertain. Reprinted with permission from [98]. © 2020 IEEE.

Table 2.1: Inter-electrodes performance results of needle-shaped sensor, in terms
of sensitivity, LOD, and peak position. Reprinted with permission from [98].
© 2020 IEEE.

Sensitivity 9.4 ± 3.9 nA/µM
Coefficient of Determination (r2) 0.99
LOD 7.2 ± 3.0 µM
Peak position 462 ± 37 mV

since an inter-electrode analysis obtains it. As summarised by Table 2.1, the sen-
sor Sensitivity (S, the calibration coefficient) is 9.4 ± 3.9 nA/µM. The coefficient of
determination of linear regression (r2) is higher than 99 %, indicating a good fit of
the linear regressor to the calibration. The LOD, which is the minimum concentra-
tion of propofol detectable by the sensor, is 7.2 ± 3.0 µM, lower than the minimum
concentration of interest for the application. The peak position is stable around
462 ± 37 mV, over-time and inter-electrodes, proving the performance and stability
of the platinum wire pseudo-reference electrode. The repetition assures the repro-
ducibility of the measurement on three different items of the proposed sensor. All
these results confirm the effectiveness of the sensor for the target application.
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2.4 Summary and Main Original Contributions
In this chapter, the design, development, and validation of a fully custom elec-

trochemical sensor are exposed. Commercially available solutions are analysed,
taking advantage of comparing to previous publications. Commercial SPEs are
fully characterised in the detection of APAP using both CV and DVP electrochem-
ical analysis techniques. Later, propofol electrochemical behaviour is exploited with
PGE, using 2H pencils and 3H 0.5 mm diameter mechanical pencil leads. In Sec-
tion 2.2.3, it is reported that electrochemical sensor suffers from propofol fouling
phenomena, and that, there is not a reasonable solution at the level of electrochem-
ical interfaces despite all the efforts presented in literature. Section 3.4 proposes
a solution with a novel technique based on ML approaches. Finally, a new PGE
needle-shaped electrochemical sensor for direct monitoring of anesthesiology prac-
tices can improve anesthesiology practices. The sensor is disposable and low-cost,
composed of the most common mechanical pencil leads (HB composition) and plat-
inum wire, with the help of an audio jack connector. The proposed sensor featured
99 % linearity and a limit of detection of 7.2 ± 3.0 µM in human serum between
30 µM and 240 µM of propofol at 37 ◦C, proving optimal performance for the target
application.
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Chapter 3

Measurement Methods

The proposed pen for continuous anaesthetics monitoring features three en-
tirely novel detection methods: the Sampling Rate Optimization (SRO), the Total
Charge Detection in Cyclic voltammetry (TCDC), and the Propofol Fouling Ma-
chine learning (PFM). In general, the measurement/detection methods are collec-
tions of procedures, equations, and routines, formalised to obtain a measure such
as an unknown quantity. Despite being the electrochemical cell well established
and formalised in literature, it can be used, modified, and optimised in infinite
ways. In the specific case of electrochemical sensors, the aim is to translate the un-
known concentration of target molecules in an electrical signal, and from this, with
a specific method, estimate the concentration numerically. In this, a definition of
sampling strategies of the electrical quantity, mathematical/physical relations, and
estimation models must be included. Different methods may primarily influence
the electronics for the electrochemical sensor in terms of resources.

This thesis also focuses on the relation between sensors and electronics em-
ploying detection methods, pointing out the effects on measurement performances.
Targeting the final application of the continuous monitoring anaesthetics, which
presents novel and significant challenges, three new measurement and detection
methods are fully devolved, formalised, implemented, and validated. The methods
are designed to target a specific application, but the formalization makes them suit-
able for a set of possible different applications. For the first time, the SRO method
(Section 3.2) defines a simple yet effective way to quantify the optimal sample rate
in voltammetry-based sensing techniques. In Section 3.3, the innovative TCDC
method proposes a different way of directly determine the concentration of analyte
in generic electrochemical voltammograms presenting completely reversible oxida-
tion. Finally, the recent explosion of machine learning technologies inspired the
PFM method (Section 3.4), which allows solving the well-known problem of the
fouling that usually prevents a correct estimation of the concentration. This thesis
demonstrates that Machine Learning (ML) based algorithm can be used in the di-
rect estimation of drug concentration, especially to compensate non-linearities that
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are commonly present in the outputs from a lot of different electrochemical sensors.

3.1 State-of-the-Art
Biosensors are playing a relevant role in numerous fields of application, including

healthcare, environment, and food industries [149] and may be used for point-of-
care diagnostics [150]. The real-time point-of-need biochemical sensing provides the
possibility of direct non-invasive monitoring of patients, giving continuously valu-
able insights into their health and well-being. Electro-analytical measurements can
be directly exploited in-situ and without sample purification. This brings the ben-
efit of a point-of-care detection of several different analytes and drugs on wearable,
portable, and IoT systems [151].

In doing that, Potentiometric and amperometric techniques, for example, Open-
Circuit Potential (OCP) [152] and Chrono-Amperometry (CA) [153], are usually
exploited in wearable devices for electrochemical sensing thanks to their capability
of carrying out the bio-sensing information through a low-complexity electrical-
converter. In those cases, the sampled information (concentration of analyte) is
directly related to an electrical quantity, a voltage, or a current. The number of
samples is equal to the number of information detected: one single sample of volt-
age/current directly gives one information on the concentration. In information
theory, when the ratio between the number of samples and the number of informa-
tion detected is one, it is possible to say that the information throughput is equal
to one (i.e., one electronic sample to get one detected concentration). Neverthe-
less, OCP and CA are not suitable for the detection of all the possible analytes
due to the higher variability and the poor stability over time of micro reference
electrodes [154].

The voltammetry-based electro-analytical tools are primarily used in electro-
chemistry to obtain quantitative information on RedOx processes in a laboratory
environment [155]. The voltammogram has a peculiar shape that depends, for
example, on the drug present in the solution with current peaks corresponding to
RedOx phenomena. Thanks to the recent advancement in electronics, voltammetry-
based techniques appear on the scene as methods for direct sensing at the point-of-
need [156, 157, 158]. Voltammetry techniques, like Cyclic Voltammetry (CV) and
Differential Pulse Voltammetry (DPV), are amperometric sensing methods widely
adopted to determine the concentration of several drugs [159, 160]. CV and DPV
are required to compensate for poor stability and high variability over time of ref-
erence electrodes and reference potentials. The voltammogram is automatically
analysed by software/firmware to evaluate the concentration of the drug [133]. The
indirect method of measuring through peak-determination in voltammetry intro-
duces complexity and increases the data bandwidth (w.r.t. OCP and CA). The
information throughput, in this case, is no more one: to sense one concentration,
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the current must be sampled much more than one time. However, the higher
complexity of the method increases specificity and sensitivity [133] and provides
simultaneous determination of different compounds [115].

Soft modelling techniques based on machine learning are commonly integrated
into bio-sensor schemes as tools for solving complex mathematical models related
to the biochemical processes implied at the level of the sensors [161, 162]. Applica-
tions such as peak deconvolution, pH, temperature, and fouling compensation are
successfully applied to e-tongues and e-noses cyclic voltammograms with the aid
of ML techniques such as support vector machines and Artificial Neural Networks
(ANNs) [162, 163, 164, 165]. Different feature extraction schemes may be inte-
grated into the ML methods such as principal component analysis and Fourier or
Wavelet transforms [166, 167] to comply with the limited computational resources
that are associated with the bio-sensor. The fouling phenomenon common for all
phenolic compounds is characterised by a solid non-linear response in the cyclic
voltammograms, being to date without any well-established mathematical model.

Chemometric techniques based on ML are successfully applied in the past to
compensate for the lack of a theoretical model by dynamically compensating the
fouling process along with other non-linear phenomena [168, 169, 170, 171, 172, 173,
174]. In general, the non-linearity of phenolic compounds can be approximated by
two linear intervals, usually situated on the extremities of the curve, thus the usage
of the already proven ML techniques being very suitable. Due to its phenolic group,
propofol may benefit from the extensive studies that have already been conducted
on serotonin and dopamine, which are two phenolic compounds related to neuro-
logical activity. P. Puthongkham et al. conducted an extensive analysis of methods
based on ML techniques used to compensate the non-linearity associated with these
neurological compounds measurements achieved by cyclic voltammetry [175]. They
highlighted that the most widely used ML technique is based on ANNs. In addition
to these neurotransmitters, there is an excellent selection of phenolic compounds
recently investigated for their non-linear responses. Catechol was successfully de-
tected in water samples with a limit of detection of 32 nM and almost undetectable
interferences caused by other water phenolic compounds for up to fifteen indepen-
dent experiments using a calibration method based on ANNs [172]. Polyphenolic
compounds from olive oil samples are quantified in the micromolar range by using
an e-tongue system combined with soft independent modelling of class Analogies
algorithm that could replicate the results of spectrophotometer technique [170].
However, to the best of my knowledge, there has never been proposed an ML algo-
rithm specifically designed to compensate the fouling of propofol.
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3.2 Sample Rate Optimisation
Drugs can be detected either through CV or DPV with simple devices for con-

tinuous monitoring. Figure 3.1 details those methods relating to their most relevant
parameters. The CV (Figure 3.1a) procedure requires the application of a driving
voltage ramp between Working Electrode (WE) and Reference Electrode (RE), that
usually is generated through a staircase of voltage step, defined by a voltage height
(Vstep) and a time length (tstep). The voltage scan ranges in an interval related
to the RedOx process under analysis. The ratio between Vstep and tstep is the SR
(Scan Rate). Every sampling time interval tsample, a current sample is acquired
from the Counter Electrode (CE). According to the Randles-Ševčík equation [133],
is possible to derive the analyte concentration by processing the voltammogram to
detect the height of the current peak [155]. As already detailed in Section 2.2, the
DPV (Figure 3.1b) adds to the staircase a pulse wave signal and introduces as main
advantages the reduction of non-Faradic current related to double layer effect, the
enhancement of the current peak, and the reduction of noise [176]. Typically, CV
is applied to detect both oxidation and reduction peaks, while DPV only for one
kind of reaction; for this reason, the voltage-scan ranges can be different in the two
methods. From electrochemical determination, it is possible to derive the calibra-
tion curve (Figure 3.1c), which is the relation between the concentration of analyte
and the current (in voltammetry, the height of the current-peak). The calibration
curve forms a straight line in the region of interest, and the sensitivity represents
the slope of this curve.

The voltammetry approach requires the sampling of a well-defined voltammo-
gram to be effective. Despite the massive literature, an actual definition of the
optimal sampling rate does not exist to the best of our knowledge. This value is
usually set by empirical methods, for example, considering how many data points
form the complete voltammogram graph. Considering this new scenario, portable
devices strongly constraint the maximum power consumption of the system. The
reduction of the sampling rate of the sensing node is one possible approach to en-
large the battery life-time [177], leading to a reduction of data density and signal
bandwidth. In fact, the key components of the power consumption in the device
are related to the power spent by signal elaboration and data transmission, which
are both directly influenced by the sampling rate. Therefore, as already suggested
by [178, 179, 180], there is the need for novel and effective methods for reducing and
optimising the sampling rate in voltammetry. In doing this, [178, 179, 180] consider
the Fast Scan Cyclic Voltammetry (FSCV) for neurotransmitters, a specific case
where the sample rate is limited by communication bandwidth. Differently, to the
best of our knowledge, CV and DPV methods for drug monitoring have never been
investigated with dealing with sampling-rate issues. Hence, Sample Rate Optimi-
sation (SRO) in the voltammetry method is developed in this thesis to define and
derive the best sampling rate for CV detection of any drug. This method may
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(a)

(b)

(c)

Figure 3.1: Example of voltammetry methods: In CV (a) the electrochemical cell is
driven by the a staircase of potential while in DPV (b) by a differential pulse. Sam-
pling the output voltammogram it is possible to extract in both cases a calibration
curve, similar to (c). Reprinted with permission from [99]. © 2019 IEEE.

be introduced in every sensor’s design path, aiming to use CV or DPV sensing
techniques. This section is adapted with permission from [99] © 2019 IEEE.

3.2.1 SRO Method
Considering the main parameters of CV and DPV methods as the Scan Rate

(SR), the total number of samples per scan (NS), and the extension in voltage of
scan window (Vscan), the sampling frequency (FS) is defined as:

FS = SR · NS

Vscan

(3.1)
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Equation 3.1 provides three degrees of freedom which can be used to reduce the
sampling rate FS. However, the voltage scan interval is determined by the reaction
under analysis, and also, the SR is a variable that should be primarily optimised
considering the diffusion of the reaction [87]. For this reason, if the analyte and
the electrochemical sensor are fixed, the SR and the voltage window (Vscan) are
fixed by the specific detection method. Only the remaining free parameter, which
is the number of samples NS, may reduce FS. Worth noticing that the Nyquist
theorem is hardly applicable in the definition of the best sampling frequency. The
cyclic voltammogram behaves as a triangular wave, where oxidation species meet
reduction species. The triangular wave does not exist in reality since it presents
an infinite, completely flat spectrum. Similarly, the voltammogram presents a
spectrum that looks like a dinosaur tale, without poles and zeros. It is really hard
to define any metrics and any band of interest to apply the Nyquist theorem in
this situation. For this reason, the SRO is a procedure to derive the best sampling
frequency given an electrochemical sensor experimentally.

The sensing of paracetamol drag (APAP) using Phosphate Buffer Saline (PBS)
solution as background electrolyte is considered to define the SRO method. The
sensing equipment is composed of a commercial potentiostat (Metrohm Autolab
PGSTAT 302N) and interfaced to a standard DropSens DRP-110 Screen Printed
Electrode (SPE). Chemicals and details are presented in Section 2.2.1. A para-
metric analysis is performed in CV considering a different number of samples per
voltammogram, equivalently varying the sampling frequency (FS) to reduce the
sample rate in SRO. The SR is set to 0.2 V / s, the driving voltage ranges between
– 0.1 V and 1.1 V, while the step voltage height ranges between 1 mV and 24 mV,
and the step time length ranges in between 5 ms and 120 ms.

Figure 3.2 graphically presents the results. In Figure 3.2a, the y-axis shows
the peak-current error, which is defined as the numerical difference between the
best possible estimation of the peak (i.e., sampling the current with the maximum
sampling frequency granted by the instrument [181]) and a given approximation
of the estimated peak (i.e., sampling the current with a given frequency, x-axis).
The error quasi-linearly depends on the sampling period. This effect is due to the
lower resolution in the peak measurement, but it is also highly influenced by the
increase of voltage step height [182]. Figure 3.2b analyses the Signal to Noise Ratio
(SNR, y-axis) versus the sampling frequency. Two different values are taken into
account: the SNR of the full voltammogram, and the SNR of the detected output,
i.e., the CV peak value. The SNR is defined considering the signal (S) as the full
voltammogram or the detected peak at the maximum possible sampling rate. At
the same time, the noise (N) is the difference between the signal (S) and the output
voltammogram or peak at the given sampling frequency. The noise introduced by
the reduction of sampling frequency is visibly lower considering the CV-peak with
respect to the noise present in the full voltammogram. This happens because the
peak detection is not a linear function but a feature-extractor function, acting to
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Figure 3.2: Analysis of CV output varying sampling rate: peak error percentage
w.r.t the maximum (a), and SNR ratio (b) w.r.t. the maximum of full voltammo-
gram (CV-voltammogram) and detected peaks (CV-peak). Reprinted with permis-
sion from [99]. © 2019 IEEE.

some extent as a filter. The output on which to develop the electrochemical sensor
is primarily the peak height. The SRO method proves that it is feasible to reduce
the sampling rate over what is usually considered the limit. The noise introduced
in the voltammogram does not reflect linearly to the increase of noise in the output
measure.

3.2.2 Validation and Performance
A complete seven-point calibration procedure on paracetamol, in its therapeutic

range (i.e., between 50 µM and 300 µM of APAP) is performed for the validation
of the SRO method. In detail, the CV is performed with an SR of 0.2 V / s, with
a driving voltage ranging between – 0.1 V and 1.1 V, with a step voltage height of
6 mV, and a step time length of 30 ms. The DPV is performed at 0.1 V / s, in the
range between 0 V and 1 V, with a step height of 6 mV, an step length of 60 ms, the
pulse amplitude is set to 60 mV, and the pulse time length to 30 ms.

The analysis is exploited on the data collected with the seven-points calibra-
tion halving the sampling frequency progressively from 33 Hz down to 0.1 Hz. The
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Figure 3.3: Resulting voltammograms in CV (a) and DPV (b), varying the sample-
rate. Reprinted with permission from [99]. © 2019 IEEE.

frequency under test span in a range obtained by instrument (Autolab) indica-
tions [181]. The output current is re-sampled with an increasingly higher sampling
interval (tsample in Figure 3.1a). The shape of the input driving voltage is left
unvaried to limit any effect related to the increase of the voltage step (Vstep in
Figure 3.1a). The down-sampling procedure visibly reduces the quantity of infor-
mation in the voltammogram. Figure 3.3 presents some points of the analysis for
demonstration purposes. Figure 3.4 graphically shows the results of this analysis
from 33 Hz down to 0.6 Hz. Below this frequency, it is not possible to retrieve any
useful information from the voltammogram. The results between 0.1 Hz and 0.6 Hz
are not considered. The sensitivity (3.4a), the Limit of Detection (LOD) (3.4b), the
current peak position (3.4c), and the linearity of the calibration curves (3.4d) are
the parameters under investigation. The measurement errors are evaluated from
the experimental data, considering the standard deviation on each computed pa-
rameter three times. The measurement error increases visibly with the reduction of
the sampling rate in all the cases. The DPV method compensates for the sensing
errors by applying a differential detection and consequently enhances the LOD. The
peak position remains stable, varying its resolution, proving the selectivity. The
linearity shows a drop in the DPV method below 2.2 Hz, defining a clear limit in
the proposed experimental setup.

It is possible to obtain and evaluate the best trade-off just considering the data
reported in Figure 3.4 to minimise the sampling rate without affecting the detection
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Figure 3.4: Effect of down-sampling w.r.t. sampling frequency in CV and DPV
on the sensors metrics: sensitivity (a), LOD (b), voltage peak position (c), and
calibration curve linearity (d) . Reprinted with permission from [99]. © 2019 IEEE.

performance. Considering that 50 µM is the minimum therapeutic concentration of
paracetamol, it is possible to define that the LOD cannot exceed one-tenth of this
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Table 3.1: Comparison between empirical-defined sampling rate approach and the
proposed optimal sampling rate approach. Reprinted with permission from [99].
© 2019 IEEE.

Empirical approach Proposed approach
CV DPV CV DPV

Number of sample 404 338 51 22
Sampling frequency (Hz) 33.3 33.3 4.2 2.2
Sensitivity (nA / µM) 50.5 ± 3.6 59.0 ± 5.7 47.5 ± 3.5 57.8 ± 7.3
LOD (µM) 1.50 ± 0.11 0.45 ± 0.04 2.27 ± 0.16 1.15 ± 0.60
Peak position (mV) 406 ± 11 379 ± 18 405 ± 80 383 ± 40
Linearity * 0.999 0.995 0.999 0.988

* Coefficient of determination, r2

value (i.e., 5 µM is the minimum LOD requirement). Moreover, the drop in the
linearity of DPV and the maximum sensibility uncertainty has to be forced to be
lower than 10 %. Usually, in literature, the voltammetry experiments are conducted
with an empirical a priori defined sampling rate of more than some hundred samples
per voltammogram [181, 155, 156, 157, 158]. Table 3.1 shows a direct comparison
between the empirical approach and the SRO method. Due to the here presented
optimisation methodology, the LOD increases but remains in all cases under the
imposed maximum. Amazingly the sensitivity scales down to 94 % of the standard
with CV method, and 97 % with DPV. Meanwhile, the sampling frequency can
be reduced by eight times in the CV and sixteen times in the DPV. Considering
the DPV method and SRO approach, this reflects a remarkable reduction down to
6.6 % of the sampling frequency, with an increased LOD but still suitable for the
application, losing just 2 % in sensitivity.

3.3 Total Charge Detection in Cyclic Voltamme-
try

While voltammetry methods exploit online monitoring of patients [156, 102],
most of the point-of-care or wearable platforms present in literature usually cal-
culate the drug concentration offline, instead of leveraging on voltammetry tech-
niques for direct determination of concentration [183]. Indeed, the difficulty in
point-of-care and wearable systems is to automatically retrieve the final informa-
tion directly by the electronics limits the application of voltammetry. In fact, it
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is usually required to implement a custom digital architecture [184] to quantify
the drugs reliably, adopt an operating system-based processor [185], or process the
information offline [152]. Unfortunately, all of these techniques require power and
area demanding electronic architectures, with a suitable sampling rate [99]. The
usage of power and area demanding systems conflicts with the edge-computing
paradigm [186] needed for the connected point-of-care or wearable monitoring.

Total-Charge Detection in Cyclic-voltammetry (TCDC) is an innovative mea-
surement method. It is possible to avoid full-voltammogram analysis in drug de-
tection [100]. This approach scales down significantly the complexity at the edge-
computing in drug detection systems. The TCDC applies a charge measurement
on the top of a standard voltammetry-based procedure to detect, through coulome-
try, the concentration of the target biological compound. A complete circuit of the
TCDC method is fully designed and tested to prove that it is feasible to implement
it in consequent medical instrumentations. This section is adapted with permission
from [100] © 2020 IEEE.

3.3.1 TCDC Method
Amperometric electrochemical detection methods usually rely on the determi-

nation of compounds by measuring the faradaic current. Differently, the TCDC
measurement method presented here focuses on the total charge exchanged in the
electrochemical cell due to the faradic process. The coulometry method (the mea-
surement of the charge) has already been applied for the determination of biologi-
cal compounds [187]. However, to the best of our knowledge, the measurement of
charge has never been applied in the voltammetry method for continuous drug mon-
itoring since standard current sampling in CV is usually exploited [188]. Several
electro-active therapeutic drugs can be involved in an electrochemical reaction [159],
in which the total net charge exchanged Qtot is defined as the sum of the faradaic
process QF and the non-faradaic one QNF , as described in Equation 3.2.

Qtot = QF + QNF (3.2)

Approximating the Faradaic charge with the Faraday’s laws of electrolysis and
the non-faradaic charge to the double-layer capacitance effect on the interface [64],
then the total charge at the electrochemical interface is:

Qtot = nFN + CdV (3.3)

Where n is the number of electrons transferred in the reaction, F the Faraday
constant, N the number of moles involved in the reaction, Cd the equivalent ca-
pacitance of the double layer, and V the potential applied at the interface. From
Equation 3.3 it is possible to derive the calibration equation:

Qtot = Q0 + S · C (3.4)

50



Measurement Methods

Figure 3.5: In the TCDC measurement method, the total charge is acquired to
determine the drug concentration, avoiding computation and oversampling typically
needed by the usual peak detection method. Reprinted with permission from [100].
© 2020 IEEE.

which relates Qtot and the concentration of target analyte C. S is the sensitivity
defined as Coulomb per Molar (C / M), and Q0 is the total non-faradaic exchanged
charge. To a first approximation, Q0 does not depend on the analyte concentration,
and it can be extracted as a calibration constant.

Figure 3.5 schematically explains the proposed TCDC measurement compared
to the usual peak detection method. Both in the standard CV procedure and
TCDC, a voltage ramp is applied to the electrochemical cell. In CV, the system
samples the output current, although, in TCDC, the circuit accumulates the charge
to measure the total net charge exchanged during the whole electrochemical process.
Therefore, the TCDC does not require any more oversampling of the current to
extract a feature from its shape. The proposed measurement system gives the
concentration value directly in a voltage linearly proportional to the target drug
concentration. The TCDC methods present a drastic reduction in complexity,
eliminating both processing and oversampling in CV techniques, paving the road for
several applications where standard microcontroller-based systems are not suitable.
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3.3.2 Circuit Implementation
The implementation of the TCDC method requires the development of a sin-

gle component, which is a charge-to-voltage converter, to accumulate the total
charge produced in the electrochemical process. The output of the converter is
implemented to input an Analog to Digital Converter (ADC) to get a digital value
linearly proportional to the input concentration (as shown in Figure 3.5). The
design of the circuit is constraint by the time involving the electrochemical reac-
tion. For example, the time required to perform a CV-detection on paracetamol
is around 10 s at an SR of 0.2 V / s [99, 102, 156]. Even though a simple integra-
tor can perform the charge-to-voltage conversion, a standard inverting integrator is
not suitable for the TCDC since the long-time constant requires an area-demanding
component, usually avoided in any conventional CMOS implementation. Attenua-
tion techniques help to eliminate part of the input charge to reduce the capacitor
size [189]. In particular, the parasitic-insensitive Nagaraj integrator [190] exploits
the attenuation.

The proposed circuit is fully based on Switch Capacitors (SC), without resis-
tance components, planning a future CMOS implementation. Fig 3.6 shows the
implemented TCDC circuit: in the first stage, A1 operates as Nagaraj charge-
attenuator, while in the second stage, A2 operates as standard SC integrator. Due
to a long time of charge accumulation required by the electrochemical drug detec-
tion, the Nagaraj topology does not operate as an ideal integrator since the long
time constant suppresses its normal operating behaviour. Therefore, the proposed
circuit relies on a two-stage circuit with the novelty of taking advantage by [190] to
attenuate the input charge and achieve the specific purpose goal. The SCs are con-
trolled by a two not-overlapped phase of the same clock (Φ1 and Φ2). During Φ1,
the charge is transferred from C1 to C2, and sampled by C3. In Φ2, C1 withdraws
the charge stored in C2, while C1 redistributes its charge with C2.

The system is designed to fit a clock frequency of 32.768 kHz, the most widely
adopted resonator in low-cost systems [191], and the supply voltage is set to 1.8 V
matching the CMOS 180 nm technology for future developments. Considering the
first stage, C2 is equal to 20 fF, while C1 and C3 are 70 aF, value slightly above the
current size limit of CMOS 180 nm technology [192], minimising therefore the size
of the circuit until the technological limit. In the second stage, C4 is 3 fF, and C5 is
40 pF to have an equivalent resistance of 10 GΩ, which separates the two stages and
avoids leakages. Folded-cascode Operational Transconductance Amplifiers (OTA)
implement both operational amplifiers in the design. A process variation analysis
selects all the values mentioned above. During the simulation, tolerance values
obtained by literature [192] are considered to cover extreme cases and to guarantee
the compensation of process variation by clock frequency tuning. Mainly, this
analysis is performed on the value of C1 and C3 due to their small value. Both
capacitor values are tested in the range 70 ± 30 aF, Supposing a typical process
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Figure 3.6: TCDC analog read-out circuit implementation. The Nagaraj integrator
(A1) and the SC integrator (A2) accumulate and convert the total input charge into
the output voltage, during the two non-overlapped clock phase (Φ1, Φ2). Reprinted
with permission from [100]. © 2020 IEEE.

Figure 3.7: TCDC circuit behaviour from simulation. The Nagaraj integrator sup-
presses partially the input charge while the SC integrator output-voltage is propor-
tional to the total charge. Reprinted with permission from [100]. © 2020 IEEE.

variation of 50 %.
Figure 3.7 presents the behaviour of the proposed TCDC circuit. For the sake

53



Measurement Methods

of simplicity, the current produced by the sensor (top left) represents the input
charge. The Nagaraj integrator partially suppresses the input charge producing
an attenuated switching voltage signal (bottom). The SC integrator accumulates
the charge from the beginning of the CV procedure until its end. The maximum
voltage reached by the output can be held, sampled, and fed to an ADC as the
final detected value of the total charge. The voltage fits the ADC conversion range,
avoiding saturation, and can be adapted to a wide range of measures tuning either
statically by the component size or dynamically by the clock frequency.

3.3.3 Validation and Performance
Real data sets are collected experimentally in a lab environment to validate the

TCDC method and its related circuit implementation. The data are used for both
analytical comparisons as well as input for simulating the implemented measure-
ment circuit. The validation is performed using APAP as the selected benchmark,
using DropSens DRP-110 SPE and the Metrohm Autolab PGSTAT 302N as de-
tailed in Section 2.2.1. The circuit performs each time a full CV voltammogram at
an SR of 0.2 V / s in the voltage range between – 0.1 V and 1.1 V. Each measure is
repeated three times with a new electrode to consider the experimental variability.
The lab instrument samples the current produced by the sensor at a rate of around
33.3 sample / s (400 samples per CV) and stored.

In the simulation of the implemented circuit, the waveforms obtained by the lab
measurements are applied as input vectors. The same waveforms are also analyt-
ically processed to have a fair comparison with the usual offline methods of peak
estimation. The analytical processing of the data is performed in Matlab®, the
built-in function findpeaks returns the height of the oxidation peak shown by the
voltammogram. Meanwhile, the built-in function trapz mathematically estimates
the total charge considering the trapezoidal numerical integration. The electri-
cal simulations are performed with OrCAD® PSpice®, and the output voltage is
sampled after 12 s, namely, at the end of the CV excitation.

The data collected through the experiment are analysed to define better the
capability and limitation of the proposed TCDC method. The analysis also helps
to understand the performance of different possible ranges of charge accumulation in
the CV. After simulations, the sensing performances of the proposed measurement
circuit are compared with the analytical results obtained with the conventional
peak detection method.

According to the definition of TCDC provided in Section 3.3.1, the total charge
exchanged in the faradaic process expresses the concentration of the analyte. Fig-
ure 3.8 presents the current versus time acquired during the lab test at a concentra-
tion of 300 µM. Considering a standard CV, it is possible to define different intervals
of integration in time, which are related to different ranges of charge accumulation.
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Figure 3.8: Possible range of charge accumulation in applying TCDC. Positive
increasing only excitation waveform (A), positive only charge (A+B), natural total
charge (A+B–C), or cumulative total charge (A+B+C). Reprinted with permission
from [100]. © 2020 IEEE.

The range A is related to the first part of the voltammogram, where the positive-
increasing voltage drives the electrochemical cell. The range A+B consider the
total positive-only charge in all the voltammogram. Finally, the negative charges
highlighted in C can be considered discharge, obtaining the total natural charge
in CV (range A+B–C) or adding a rectifier as another additive charge, obtaining
the cumulative total charge (interval A+B+C). Circuit with few components may
implement all the interval, with an integrator and optionally the addition of current
mirror.

Table 3.2 compares the possible interval of charge accumulation considering the
sensitivity (as Coulumb per Molar, S, in the Equation 3.4), offset (Q0 in Equa-
tion 3.4), linearity, and LOD. The sensitivity increases, enlarging the range of
integration, presenting its maximum in the interval A+B+C. The regression co-
efficient of the obtained calibration curve evaluates the linearity, and the increase
in the accumulation time does not affect this parameter. The LOD represents the
minimum concentration of drug the system can detect. In this thesis, the LOD has
been evaluated as three times the standard deviation of the measure, divided by
the sensitivity. The results demonstrate that the application of the TCDC at the
interval A+B–C, which is the total charge exchanged during the CV, presents a
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Table 3.2: Comparison between possible range of charge accumulation in TCDC
measurement method. Reprinted with permission from [100]. © 2020 IEEE.

A A+B A+B–C A+B+C

Description
Increasing

positive only
CV

Positive-only
charge

Natural total
charge

Cumulative
total charge

Sensitivity
(nC/µM) 144.7 ± 1.3 207.8 ± 2.8 155.3 ± 6.5 260.7 ± 6.8

Offset (µC) 5.27 ± 1.52 5.59 ± 2.57 3.92 ± 2.45 7.26 ± 2.70
Linearity (r2) .99997 .99997 .99997 .99997
LOD (µM) 5.55 ± 0.08 5.30 ± 0.09 8.96 ± 0.38 5.34 ± 0.15

Table 3.3: Comparison between peak detection method and TCDC, both analytical
and simulation results. Reprinted with permission from [100]. © 2020 IEEE.

Peak detection* Total charge* TCDC circuit

Sensitivity 51.7 ± 9.2
nA/µM

207.8 ± 2.8
nC/µM

1.97 ± 0.03
mV / µM

Offset 0.15 ± 0.15 µA 5.59 ± 2.57 µC 66.4 ± 9.0 mV
Linearity (r2) 0.99970 0.99997 0.99994
LOD 1.93 ± 0.94 µM 5.30 ± 0.09 µM 6.09 ± 0.12 µM

* Matlab® analytical results.

considerable reduction of performance, showing a 69 % increase in the LOD. Mean-
while, the interval A+B, which is the accumulation of positive-only flowing charge,
presents the best performance. For this reason, all simulations and the following
considerations are then conducted considering the positive-only charge. Moreover,
this choice is fully compatible with the circuit implemented and described in Sec-
tion 3.3.2 since the A+B interval requires detecting a charge via a current flowing
in one direction only. The addition of a diode will allow canceling area C directly.
The circuit to implement accumulation of interval A requires the introduction of
a controller or a threshold comparator to stop the accumulation at the end of A.
Meanwhile, both interval A+B–C and A+B+C, requires a circuit for considering
a current flowing in the opposite direction. Namely, the interval A+B–C requires
subtracting the charge in area C; interval A+B+C requires the addition of a full
rectifier bridge to invert the charge in area C and continue to accumulate it.

Figure 3.9 displays a comparison in the calibration curves obtained by both
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Figure 3.9: Calibration curves obtained by extractionon of current peak (a), an-
alytical total charge (b), and TCDC circuit simulation (c). In (b) and (c), the
uncertain is really small and it is hard to recognise in the graph. Reprinted with
permission from [100]. © 2020 IEEE.

analytical processing and simulation. Namely, Figure 3.9a shows the resulting cal-
ibration obtained by measuring the paracetamol concentration with the extraction
of the current peak. In contrast, Figure 3.9b displays the analytical computation
of the total charge as integral of the current flowing in the electrochemical cell. In-
stead, Figure 3.9c presents the calibration curve obtained by performing the TCDC
circuit simulation. As clearly evident in Figure 3.9, all the method is suitable to
calibrate linearly with the sensor data.

Table 3.3 compares the detection performance in terms of sensitivity, offset,
linearity, and LOD. The sensitivity can not be compared in absolute terms due to
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different outputs obtained by the same transducer, and the same is valid for the
offset. On the other hand, linearity is the first indicator of the performance of the
TCDC method since it presents an increase from 0.99970 up to 0.99994, with respect
to the peak detection method. Applying the TCDC method, the LOD increases
due to the trade-off between the proposed dramatic reduction in complexity and
the quality of the measure. The LOD increases because TCDC collects all the
charge in the CV, therefore, acquiring a higher background noise related to the
non Faradaic phenomena [64]. Although, the increase of LOD can be kept under
control since it is limited approximately to 2.2 times with respect to peak detection
by conventional methods. The LOD always remains one order of magnitude lower
than the typical minimum pharmacological concentration. Therefore, the quality
of the measurements is not compromised in the case of the proposed application.
Moreover, the proposed method significantly reduces the error on the single drug
measure (defined as a statistical error, that is three times the standard deviation),
clearly visible directly in Figure 3.9. Namely, the presented approach scales the
measurement error down from 17.8 % to just 1.7 % because of the higher obtained
sensitivity, reflecting on a higher resolution.

3.4 Propofol Fouling Machine learning
For an ANN-based ML technique, some key components that may be extracted

from a cyclic voltammogram are peak position, height, and area, peak width half-
height, peak sum of derivatives together with the initial setup parameters. These
elements are successfully quantified in an ANN that is trained to detect the concen-
tration of Potassium Ferricyanide, which is marked by a solid non-linear response,
on graphite pencil electrodes [169].

This thesis proposes a novel Machine Learning (ML)-based calibration method
to compensate for the fouling effect described in Section 2.2.3, developing the new
Propofol Fouling Machine learning (PFM) classifier. The PFM is implemented to
identify the correct concentration of propofol in a given sample to contribute to
developing a system for closed-loop controlled infusion of anaesthetic. The PFM
classifier is designed, as well as its parameters are optimised using a large dataset of
480 samples acquired in PBS buffer. Later, the model is validated with a smaller,
still representative, dataset of 120 samples for direct monitoring of propofol in
undiluted human serum. The training of the classifier is performed with data
sourced from the corresponding dataset. This section is adapted with permission
from [101]. © 2020 Elsevier B.V. All rights reserved.
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Figure 3.10: Proposed ML-based approach for continuous monitoring of propofol:
from left to right, the sample is analysed through electrochemical sensors and CV
to extract relevant features to be fed an ML-based classifier that determines the
range of concentration of the propofol, compensating the fouling effect. Reprinted
with permission from [101]. © 2020 Elsevier B.V. All rights reserved.

3.4.1 PFM Method
Recent works suggested that monitoring controlled-delivery of anaesthetics may

be achieved with a 10 % accuracy around the target concentration, and with one
measurement every 30 s, continuously in time, while the therapeutic concentration
of propofol ranges between 0.25 mg / l and 10 mg / l (1 : 60 µM) [5]. The goal of
the ML-based approach is to develop a technique suitable for the continuous mea-
surement of propofol concentration every half a minute and able to discriminate
the concentration level lower than 12 µM. Figure 3.10 presents the proposed PFM
method. Through an electrochemical sensor and CV technique, the redox of propo-
fol is analysed. From the voltammogram, several peculiar features are extracted
and fed to the ML-based classifier. The classifier determines the concentration level
of propofol in the sample in classes, compensating fouling of propofol. According
to the requirements, the therapeutic range is subdivided into classes representing
concentration levels of 10 µM. The PFM provides the anesthesiologist with a tool
for the direct determination of propofol concentration in human serum. Compared
to a regressor, the classifier directly provides the information required to maintain
the constant dose in the range of interest.
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The lab instrument Metrohm Autolab PGSTAT 302N is interfaced to the propo-
fol PGE needle-shaped sensor described in Section 2.3 to develop the PFM and val-
idate its performance. With the chemicals and materials described in Section 2.2.2,
the samples are prepared with seven concentrations of propofol, equally spaced in
its therapeutic range: 10 µM, 20 µM, 30 µM, 40 µM, 50 µM, and 60 µM. The samples
for primary analysis, and the training and testing sets for the ML classifiers are
prepared in PBS at pH 7.4. It worth noting that the procedure is not formally cyclic
because the proposed method entails that the fouling is limited to its minimum.
Cycling the voltage scan more than one time per measure would catastrophically
reduce the lifespan of the sensor. The sensor can compensate fouling in real-time,
at a fixed concentration of the analyte in its therapeutic range. For this reason, all
the samples are measured twenty consecutive times, with an interval time of 30 s,
to be consistent with the continuous monitoring target of this thesis.

3.4.2 PFM Implementation
Non-linear classifiers are considered to develop the PFM in order to model the

non-linearities introduced by the fouling on the sensor. Kernelised-Support Vector
Machine (SVM) ML methods are suitable for non-linear classification problems
by constructing the optimal hyperplane in the features space induced by a kernel
function [193]. The SVM predicts the class concentration of propofol analysing the
unknown samples according to the mathematical distance of the samples to the
training instances. All processing stages and algorithms are implemented within a
Python 3.7.4 environment, using NumPy and scikit-learn libraries [194].

Let X = {xi}i=1,··· ,m, with xi ∈ Rn, denote the input tensor of m samples and
n features. Let y ∈ Rm denote the vector labelling the propofol concentration of
each measurement, where each target concentration (10 µM, 20 µM, 30 µM, 40 µM,
50 µM, and 60 µM) is encoded into a categorical class with values from zero to five.
The objective of the six-class classifier is to construct a predictor based on the
training set (Xtrain, ytrain) that can divide the input features space into a collection
of regions belonging to each class. The decision boundaries are refined in the
training process, for which the metric used is the classification accuracy:

accuracy = # correctly predicted test samples

# test samples
(3.5)

During inference, the predicted class indicates the range of concentration of propofol
in the sample.

In kernelised-SVMs the optimisation objective is:

min
α

1
2αT · M · α − eT · α

subject to yT · α = 0,

0 ≤ αi ≤ C, i = 1, · · · , m,

(3.6)
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where M is an m by m positive semi-definite matrix:

Mij = yi · yj · K(xi, xj) (3.7)

and
K(xi, xj) ≡ ϕ(xi)T · ϕ(xj) (3.8)

is the equation defining the SVM kernel, e is a vector of ones of length m, C is
a regularization hyperparameter tuning the tolerance of margin violations. Lin-
ear, polynomial, Gaussian Radial Basis Function (RBF), and sigmoid kernels are
investigated. The training instances are shuffled, and ten-splits cross-validation
is performed, where the metric used is the prediction accuracy based on decision
boundaries. The ten splits are stratified to preserve the number of samples per class
in each training and validation split (80 % / 20 %). An analysis is carried out to as-
sess how the type of kernel and the features to be considered in the dataset influence
SVM performance. Then, a cross-validation grid search on the kernelised-SVM hy-
perparameters is carried out to optimise the classifier. Finally, the classification
performance of the optimal SVM is evaluated on the test set. The LIBSVM li-
brary is used [195], where a one-versus-one scheme is adopted for the multi-class
classification.

The dataset consists of m = 480 samples acquired from four different sensors
in PBS and m = 120 samples obtained in human serum. The dataset in PBS is
extended with respect to the human serum analysis in order to improve the opti-
misation process of the ML-based algorithm and its parameters. The two datasets
are kept separated from each other; the training and validation are performed on
PBS on one side, on serum on the other side. Each recorded sample is a voltam-
mogram relating the current measured in function of the potential applied to the
electrochemical cell. The voltammograms acquired from propofol measurements
at known concentrations are analysed in order to extract three relevant features:
the peak current, the potential at peak current, and the total charge. The peak
Faradaic current ip is the current resulting from primary propofol oxidation, re-
moving the baseline charging current. Ep is the cell potential at which the peak
current is achieved. ip and Ep are the most relevant features for characterizing
the electrochemical measurements [133]. Moreover, the integral of the voltammo-
gram in the window between 0 V and 0.7 V is computed. The latter is the total
charge exchanged during primary propofol oxidation, denoted as Q, that is proved
to be relevant in the determination of drugs [100]. Lastly, the ordinal number of
measurements performed with the same sensor, nmeas, is added to the feature list.
The input features matrix X is first standardised by removing column mean and
scaled to unit variance. This is of paramount importance since the features have
different unit scales. The dataset is then split into a training and test set of ratio
80 % / 20 %.

Several experiments and analyses are carried out to implement the best PFM
classifier. Namely, the optimal kernel is selected, the best set of features is defined,
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Table 3.4: Selection of the appropriate kernel for PFM: comparison among differ-
ent kernelised-SVMs in ip and Ep features space with their default hyperparam-
eters. The best results are achieved with RBF-SVM. Reprinted with permission
from [101]. © 2020 Elsevier B.V. All rights reserved.

Kernel type Linear Polynomial RBF Sigmoid
Kernel
function
K(xi, xj)

xT
i · xj (γ ·xT

i ·xj +r)d exp (−γ∥xi − xj∥2) tanh(γ · xT
i ·

xj + r)

Kernel hyper-
parameters - γ = 1/m,

r = 0, d = 3 γ = 1/m γ = 1/m, r = 0

Soft-margin
penalty
parameter

C = 10 C = 10 C = 10 C = 10

Classification
accuracy 43.8 % 86.5 % 90.6 % 33.3 %

and the classifier’s parameters are optimised. The experiments for defining the best
type of ML network are performed with the dataset obtained from the 480 samples
in PBS buffer. Such a stable buffer may facilitate identifying the best ML model
for the compensation of propofol fouling.

Kernel selection The selection of the most appropriate kernel for the PFM is
exploited by implementing linear, polynomial, RBF, and sigmoid SVMs with their
default hyperparameters. The classifier’s decision boundaries are constructed from
the training set in the space built by the combination of standardised peak current
and standardised potential at peak current (ip and Ep space). The latter are the
main features to characterize propofol electrochemical measurements. The differ-
ent classifiers are trained with ten-splits cross-validation on the training set and
evaluated on the test set. The four different kernel functions, the kernel hyper-
parameters, and their classification performance are reported in Table 3.4. The
decision boundaries of each kernelised-SVM are visualised in Fig 3.11. Linear and
sigmoid kernels are not suitable for detection of propofol (see Table 3.4). Mean-
while, non-linear kernels enable computing the decision hyperplanes in the space
of higher dimension. Polynomial and RBF are the most accurate kernels, and the
decision boundaries are smoothly separating the classes. RBF kernel is chosen for
the subsequent experiments since it yields a higher classification accuracy of 90.6 %
on the test set.
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Figure 3.11: Kernelised-SVM implemented with: linear (a), polynomial (b), RBF
(c), and sigmoid kernel (d), represented by the features space peak current and
potential at peak current. The spaces are colour-mapped according to the class
predicted by the classifier, highlighting the decision boundaries and each sample is
colour-mapped to its target class in order to assess classification accuracy. It can
be seen that the samples cannot be linearly separated in the original features space.
The polynomial curves present on the graphs the best boundaries considering SVM
with different kernels. Reprinted with permission from [101]. © 2020 Elsevier B.V.
All rights reserved.

Features selection Different combinations of input features are evaluated on
the RBF-SVM. This optimisation helps to understand the effect of the different
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Figure 3.12: Cross-validation classification accuracy of RBF-SVM trained with four
combinations of input features. The box plots extend from lower to upper quartile
values of cross-validation accuracy, with median (dotted blue line) and average (red
line), and whiskers show the range of classification accuracy. The complete set of
feature {ip, Ep, nmeas, Q} shows visibly an higher accuracy, that cannot be reached
with less features. Reprinted with permission from [101]. © 2020 Elsevier B.V. All
rights reserved.

features extracted from the voltammograms on the classification accuracy of the
ML model. The possible combinations of features considered are {ip, Ep}, {ip, Ep,
nmeas}, {ip, Ep, Q}, and {ip, Ep, nmeas, Q}. All the different input sets are fed
to the classifier, and a ten-splits cross-validation is performed on the training set.
The cross-validation accuracies are presented in Figure 3.12 with a whisker plot. It
highlights that classification accuracy scales with the amount of features included
in the dataset. Indeed, it could be noticed from Figure 3.11 that samples belonging
to classes two and three are mis-classified in features space of ip and Ep, since the
samples are intermingled. Besides, for the set of features {ip, Ep, Q}, classification
accuracy is more dispersed, and it is lower than using nmeas instead of Q. There
is a high correlation between the charge exchanged during propofol oxidation and
the peak oxidation current. Significant improvement in cross-validation accuracy
is observed when the training set contains all four features, reaching 0.970 ± 0.020.

Hyperparameters optimisation RBF-SVM hyperparameters are tuned through
cross-validation grid-search in order to optimise the hyperparameters of proposed
ML model. The non-linear coefficient γ is swept from 10−9 to 103, while the soft

64



Measurement Methods

1e
-9

1e
-8

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1 1

1e
1

1e
2

1e
3

γ

1e-2

1e-1

1

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

1e9

1e10

C

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 3.13: Heatmap of cross-validation accuracy as function of RBF-SVM hy-
perparameters C and γ, highlighting the parameters space yielding the most ac-
curate classifiers (yellow regions), C = 100 and γ = 1. Reprinted with permission
from [101]. © 2020 Elsevier B.V. All rights reserved.

margin penalty parameter C is swept from 10−2 to 1010. Both sweeps are performed
on a logarithmic scale, training 169 SVM models. The training set (Xtrain, ytrain)
comprising the four features is shuffled, and ten-splits cross-validations are imple-
mented. The training and validation accuracies are computed for each split. Their
average value is retained for classifier comparison. Figure 3.13 displays the heatmap
of the cross-validation accuracy on hyperparameters, highlighting the hyperparam-
eter space yielding the most accurate classifier. It is observed that the support
vectors are not able to separate the samples for large values of γ. They influence
very few training instances. Conversely, a low value of γ over-constrains the clas-
sifier model, that ends up behaving like a linear classifier. The classifier does not
capture the complexity of the non-linear dataset. As for the soft-margin penalty
parameter C, a lower value is preferred to reduce over-fitting trading-off accuracy.
Larger values for C tend to generalize better, but maximum accuracy is reached for
C = 104, and it does not improve beyond. RBF-SVM models with C lower than
104, and yielding cross-validation accuracy above 97.5 % are evaluated on the test
set. RBF-SVM with parameters C = 100 and γ = 1 yields classification accuracy
of 98.9 %.
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3.4.3 Validation and Performance
The validation of PFM is implemented first, discussing the sensor’s performance

for propofol detection through standard metrics to show the limitation of a linear
model in the given application. Later, the performance of the proposed PFM
method is characterised on human serum, repeating the training on the serum
dataset too, to validate the method in the target application. The final testing is
done with accurate and undiluted human serum with propofol in the therapeutic
range at body temperature, which artificially mimics the infusion of anaesthetics
in the clinical environment. The samples for classification in human serum are
prepared in undiluted human serum, heat-inactivated from human male AB plasma,
from Sigma-Aldrich®, and they are continuously kept at 37 ◦C by a hot plate stirrer.

Figure 3.14 presents the resulting voltammogram obtained by repetitively ac-
quiring the Faradaic current in a sample of 60 µM of propofol, considering PBS
(Figure 3.14a), and human serum (Figure 3.14b) as background. Even though
both the sensor and the propofol concentration are not varying, the curves are
radically varying. Figure 3.14a illustrates fouling on the carbon surface of the elec-
trode in PBS. Namely, with every new measurement, the fouling layer increases
on the interface, reducing the primary oxidation peak (A) height and shifting the
peak itself to the right. Peak B and C are substantially changing in time, similarly
to A, presenting fouling as well. In this thesis, the analysis focuses on the pri-
mary peak A, which is the best candidate to determine propofol concentration due
to higher magnitude, which improves sensitivity, and higher distance from other
peaks, enhancing selectivity.

Figure 3.14b shows a detail of peak A in the undiluted human serum, obtained
by baseline subtraction and filtering. The human serum contains proteins com-
pletely absent in PBS, which embed and adsorb the propofol. For this reason,
the free propofol detectable in serum is lower than in PBS, resulting in reduced
Faradaic current, signal strength, and reduced sensitivity [147]. As expected, the
current peak is lower (one fifth), and the passivation due to fouling is again visible.

The full dataset acquired is elaborated to extract the sensor calibration accord-
ing to the linear model commonly used in electrochemical sensors [99] to evaluate
the limitation introduced by the fouling phenomenon. The calibration relates lin-
early the primary oxidation current peak and the propofol concentration recalling
the Randles-Ševčík equation [133]. The calibration is performed using 80 % of the
samples to be consistent with the ML-based method. The linear calibration proce-
dures resulted in a sensor with a sensitivity of 162.9 ± 10.3 nA / µM and a LOD of
2.4 ± 0.1 µM with PBS as samples medium. In human serum, the sensor presented
a sensitivity of 28.8 ± 7.7 nA / µM and LOD of 4.9 ± 1.3 µM. The sensitivity is cal-
culated as the coefficient of regression through linear regression fit. At the same
time, LOD is computed as three times the standard deviation of the blank signal
around the peak, over the sensitivity [129]. Both sensitivity and LOD variations are

66



Measurement Methods

(a)

(b)

Figure 3.14: Voltammogram from continuous propofol detection at fixed 60 µM in
PBS (a), and in human serum (b). In human serum, the peak is graphically high-
lighted by baseline subtraction, and filtering since the lower free concentration of
propofol reduces its visibility. The peak A lowers in current after each new mea-
surement due to the fouling phenomenon in both cases. Reprinted with permission
from [101]. © 2020 Elsevier B.V. All rights reserved.
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computed with the residual sum of squares of three times the standard deviation
of each observation.

Despite being promising, the two extracted linear calibrations present their
limits only when considering the measurements in time. Reporting the linear model
to a six-classes classifier, similarly to what the PFM does, the classification accuracy
tested on the remaining 20 % of the samples are 69.8 %, and 33.3 % in PBS and
human serum, respectively. This analysis proves that it is impossible to develop a
system for continuous monitoring of propofol concentration without compensating
the non-linear fouling effect with a non-linear model.

After selecting the best ML-based model for propofol fouling compensation in
PBS buffer, the proposed PFM is validated in undiluted human serum at the body
temperature (37 ◦C). The CV dataset from propofol measurement in human serum
is pre-processed as the dataset from PBS. The column mean-centring and standard-
ization to unit-variance are applied, and the dataset is split into training/test sets
of ratio (80 % / 20 %). All four features {ip, Ep, nmeas, Q} are sent to the classifier
and a cross-validation grid-search is carried out for the optimisation of the hyper-
parameters C and γ. The RBF-SVM models yielding cross-validation accuracy
superior to 94.0 % are selected and evaluated on the test set. The same RBF-SVM
which obtained the higher performance in PBS (with {C = 100, γ = 1}), yields the
best results also in human serum. The maximum classification accuracy achieved
by the PFM in human serum is 100 %, with a null generalization error. The lower
error and higher gain achieved by the PFM in serum with respect to the PBS is
justified by the smaller dataset, 120 samples for human serum and 480 samples for
PBS.

Figure 3.15 displays the results of the validation carried directly in undiluted
human serum, in the form of confusion matrices, which presents the prediction ac-
curacy graphically. As visible in Figure 3.15a, the standard linear model features a
classification accuracy of 33.3 %, leading to a wrong estimation of the concentration
in 66 % of the cases. Meanwhile, the proposed ML-based model with the RBF-SVM
classifier (Figure 3.15b) compensates the fouling resulting in an accuracy of 100 %.
This result proves that the sensor is suitable for continuous monitoring of propofol
for up to ten minutes, with one sample every 30 s, discriminating concentration
levels of 10 µM.

Previous works had proven that it is possible to detect propofol with small
LOD with inexpensive and disposable sensors [146]. At the same time, [5] opened
the need for sensors for continuous monitoring of anaesthetics for improved Thera-
peutic Drug Monitoring (TDM)-assisted anaesthesiology practice. [145], and [129]
faced the problems of fouling and electrode-passivation in continuous measurement
of propofol using new materials and new mechanical procedures. In this thesis, it is
instead demonstrated that the difficulties of using standard linear models in contin-
uous measuring of propofol while, on the other hand, a novel soft-modeling-based
solution to compensate via ML-based method the problem of fouling is proposed.
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(a) (b)

Figure 3.15: Results of validation in undiluted human serum: the confusion matri-
ces show the difference between real concentration (true class) and the concentration
estimated (predicted class). While the standard linear model (a) leads to wrong
estimation 33 % of the time, the proposed ML-based model (b) always outputs a
correct result. Reprinted with permission from [101]. © 2020 Elsevier B.V. All
rights reserved.

Table 3.5: Comparison of detection limit with respect to the state-of-the-art. The
proposed method trades off a slight increase in LOD with continuous measurement
capability. Reprinted with permission from [101]. © 2020 Elsevier B.V. All rights
reserved.

Reference LOD Continous measurement*

[134] 3.2 ± 0.1 µM no
[146] 0.1 µg / ml (≈ 0.5 µM) no
[136] 2.4 ± 0.5 µM no

This thesis 4.9 ± 1.3 µM yes
*Without human intervention.

The proposed sensor itself features LOD of 4.9 ± 1.3 µM in real, undiluted human
serum, which is ten times more than the LOD reached by [146] but still below
the minimum concentration of interest (10 µM). More comparisons on the LOD
with respect to the state-of-the-art are shown in Table 3.5. The kernelised-SVM
is proven to be optimal for compensating the problem of fouling since it reaches
100 % of accuracy in real, undiluted human serum at steady 37 ◦C in discriminating
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10 µM of propofol. Moreover, extensive experiment and optimisation demonstrated
that the best kernel for SVM in this application is RBF, with the best parameter
set to C = 100 and gamma = 1, considering as input feature the Faradaic primary
current peak (ip), the potential at the current peak (Ep), the total charge exchanged
during Faradaic process (Q), and the ordinal number of measurements performed
with a given sensor since it was new (nmeas).

3.5 Summary and Main Original Contributions
The results demonstrated how SRO (Sample Rate Optimization) methods could

balance the performance to appropriate sampling rate and power consumption in
voltammetry-based electrochemical sensing. Lowering the sampling rate, the de-
vice’s power consumption diminishes, helping the realization of optimised electronic
platforms able to provide non-invasive real-time point-of-care bio-sensing, target-
ing IoT and wearable applications. In particular, this work established that it is
possible to develop a method to reduce the sampling frequency maintaining all the
sensing performance in the range of the system requirements. A novel measurement
method for drug detection is introduced, called TCDC (Total Charge Detection in
Cyclic voltammetry). The novel TCDC method provides better calibration (higher
linearity and tenfold measurement error reduction) due to an edge-computing lower-
complexity method that removes both processing and oversampling, trading off a
slightly more than doubled LOD. Hence, the proposed method fits the requirement
for point-of-care and wearable real-time monitoring. Finally, the PFM (Propofol
Machine Learning) is developed: a novel ML-assisted method to compensate the
fouling effect of propofol on electrochemical sensors to improve the anaesthesiology
practices. Through extensive analysis, this thesis demonstrated that the proposed
model based on Gaussian RBF-SVM helps to obtain high classification accuracy
(higher than 98.9 %) both in PBS and in human serum. The new PFM method
discriminates 10 µM concentration with 100 % classification accuracy, directly in
undiluted human serum at body temperature, and continuously up to ten minutes
to meet the requirement for the development of a system for closed-loop controlled-
infusion of anaesthetics. Future work will include implementing the proposed model
in a portable electronic device for continuous monitoring of anaesthetics and its test
with clinical samples.
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Chapter 4

Smart Electronic Pen

In this thesis, the first complete electronic pen device for continuous real-time
detection of propofol concentration in human serum is developed to address the
request of a device for monitoring anaesthetics toward safer anaesthesiology prac-
tices. The system is fully characterized and tested for the classification of propofol
concentration in the therapeutic range between 10 µM and 60 µM in human serum
at 37 ◦C.

In this section, the full electronic pen for the detection of anaesthetics is pre-
sented. The electronic is tailored to interface the needle-shaped sensor (Chapter 2)
and implement the measurement methods of Chapter 3. The pen must contain a
sensor, a voltage driver, a current reader, a sampling strategy, and a processing
tool [59] to detect and display the concentration of anaesthetics correctly. The po-
tentiostat (which implements the voltage driver and the current reader) is developed
by designing the first-ever proposed Quasi Digital (QD) potentiostat (Section 4.2),
which helps reducing power consumption of the system, with a novel and smart
event-based design. Section 4.3 displays the embedded device and its case, which is
the main piece of electronics of the pen. It features a Bluetooth® battery-operated
Printed Circuit Board (PCB), running a custom firmware, enclosed in a 3D printed
case. In Section 4.4, the complete system is presented, grouping and detailing all
the novel components developed in this thesis. Finally, a direct comparison between
the smart electronic pen with respect to the state-of-the-art is provided.
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4.1 State of the Art
A recent publication suggested that better control over propofol delivery is

achieved with one measurement every half a minute, in the therapeutic range, i.e.,
between 10 µM and 60 µM of propofol, and with 10 % accuracy around the target
concentration [5]. Although numerous sensors have been proposed in literature for
detecting and measuring propofol, achieving high sensing performance [146], they
are disposable sensors for single-use blood-spot sampling [62], and they are inef-
ficient in an automatic Therapeutic Drug Monitoring (TDM) closed-loop system.
Electrochemical determination of propofol suffers from the so-called fouling phe-
nomena, limiting stability over time of the sensor. The electrochemical oxidation
of propofol produces free radicals forming a polymeric film [135] that covers the
electrode and degrades the signal [137]. In the works described in [196, 129], so-
lutions to cope with the propofol fouling of electrodes with specific materials are
presented, without any sensor for in-situ detection. In addition to the sensor, a
system allowing the monitoring of anaesthetics must include a potentiostat, i.e.,
the set of electronic components required to drive and read the electrochemical
sensor [59]. Several circuits have been proposed for this purpose, but without con-
sidering long-time detection of propofol [115, 156]. The systems proposed in the
literature to monitor anaesthetics are usually bulky and power hungry [3], limiting
their application in the surgery room. Moreover, smart data processing and display
are generally missing.

Stradolini et al. proposed a complete system consisting of a fluidic chamber-
based device to detect anaesthetics on the sensing site. This is connected to a
custom electronic system driven by a Raspberry-Pi single-board computer. Fi-
nally, a novel Android-based IoT connected this system to the cloud to help the
anaesthesiologist to be constantly aware of the patient sedation [3]. This system
contains all the components for being a good candidate for a system for TDM of
anaesthetics. However, unfortunately, it is still bulky, power-consuming, and not
portable, all limitations that this thesis can solve. The main limitation is that it
contains a fluidic chamber [3] which is bulky and requires a consistent quantity
of blood (around 10 µl / s). In this work, the needle-shaped sensor avoids the ne-
cessity of a fluidic device which presents limitations also related to cloths. The
electronics in [3] is power-hungry and contains a wired connection to a single-board
computer (Raspberry-Pi). Meanwhile, the presented system contains an entire and
easy portable PCB without any wire while featuring low-power electronics.

4.2 Quasi Digital Potentiostat
The focus of this section is the design, development, and validation of a Com-

mercial-Off-the-Shelf (COTS) component-based potentiostat, whose size may fit in
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a pen-shaped portable device. This potentiostat needs to be low-cost, low-power,
and with good resolution. The primary design novelty of the proposed architec-
ture is the amperometric sensing through bio-inspired event-based techniques [104],
which is innovative with respect to the standard approach involving power-hungry
Digital to Analog Converter (DAC) and Analog to Digital Converter (ADC) in the
architecture [197, 198]. Indeed, the whole proposed potentiostat is a QD electronic
interface, which takes advantage of an event-based technology [104].

In the QD domain, the information is encoded in the temporal distance between
consecutive pulses of a digital signal, including both the properties of a digital and
an analog signal [199], to maximize the quality-energy trade-off [200]. This event-
based design avoids power-hungry DAC and ADC [197], with a compact and low-
power read-out circuit (even when a numerical output is needed [201]). Meanwhile,
the event-based approach yields accuracy increase and noise reduction [202], and it
provides advantages in terms of signal processing in the time domain [203]; further-
more, the same approach can be seamlessly applied to the (wireless) information
transmission as well [204, 205]. The literature presents numerous examples of appli-
cations based on bio-inspired and QD approaches [206, 207, 199]. However, to the
best of our knowledge, they have never been integrated for the scope of providing
on-line monitoring of anaesthesia. The proposed architecture is validated by com-
paring the measurement results with the ones achieved by a commercial laboratory
potentiostat. Acetaminophen (APAP) is the benchmark drug since it is usually
administered in anaesthesiology [208]. This section is adapted with permission
from [102]. © 2019 IEEE.

4.2.1 Design and Circuit Implementation
The proposed custom QD potentiostat relies on QD to analog conversion and

vice-versa. Figure 4.1 shows the proposed design, which contains a voltage driver
(PWMtoV) and a current read-out (ItoQDE). The Voltage Follower (VF) avoids
current flow on the Reference Electrode (RE). The grounded Working Electrode
(WE) is the selected topology for the potentiostat architecture since it minimises the
number of components required [133]. The WE is connected to half-supply (1⁄2 VDD)
to achieve both dual-voltage driving and dual-current sensing (i.e., driving and
measuring both positive and negative voltages/currents) without the introduction
in the system of a dual-voltage supply.

The driving of the electrochemical cell can be exploited, creating a voltage ramp.
In the actual design, the technique involved is the Variable Duty-Cycle Method
(VDCM) [133]. The method permits controlling the electrochemical cell driving
voltage using the Pulse Width Modulation (PWM), a type of QD signal. Namely,
the digital logic contained in the core can drive a constant or a slowly-changing
voltage, varying the Duty Cycle (DC) of a square wave. The implementation of
the PWMtoV converter is then based simply on the use of a low-pass filter, which
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Figure 4.1: Complete topology of the proposed QD potentiosta: the PWMtoV
converts the input PWM signal in the driving voltage, while the current read-out
(ItoQDE) translates the value of the target redox current into QDE. Both element
are event-based. Reprinted with permission from [102]. © 2019 IEEE.
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Figure 4.2: PWM to voltage converter schematic: the first operational amplifier
(A1) is an active second-order Sallen-Key low-pass filter, generating a voltage (V ,
on right) linearly dependent to the duty cycle of the input PWM signal (on left).

filters the square wave signal to create a constant analog voltage. This block is
a second-order active low-pass filter in the Sallen-Key configuration at the cut-off
frequency of 33 Hz and quality factor around 0.8 (Figure 4.2). The driving potential
applied between the Counter Electrode (CE) and the WE is directly proportional
to the DC of the PWM input signal. At convenience, the circuit can provide an
electrochemical cell with an increasing or decreasing voltage ramp, just modulating
the DC of the input. The pole is inserted at a frequency much lower than the PWM
signal modulating frequency in order to provide good quality in the conversion.
The voltage at the output of the low-pass filter is in the range from zero and VDD,
proportional to the value of the duty cycle of the PWM square wave. The output
voltage can be expressed as in Equation 4.1, where DC is the duty cycle and V the
driving voltage.
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Figure 4.3: Current to QD stream of event converter (ItoQDE): block diagram (a)
and full schematic (b). The redox current (i, right) is converted to QDE signal
(left). Adapted with permission from [102]. © 2019 IEEE.

V = DC · VDD (4.1)

The oxidation or reduction current (i) is read, converting it to a QD stream of
Event (QDE) by the ItoQDE block. Differently from what the literature proposed
in [206, 209, 210], a low-complexity one-input one-output read-out circuit able to
convert the dual-range current in an event stream, with a single-voltage supply
is shown here. The implemented conversion relies on the concept of QD signal:
the information is carried in the temporal distance between two edges of a digital,
event-stream signal. The signal is a Pulse Position Modulation (PPM). Figure. 4.3a
shows the block diagram of the current to QD converter, while Figure 4.3b presents
the proposed schematic. The ItoQDE module contains three amplifier blocks: a
Trans-Impedance Amplifier (TIA) (A1 and R1), an integrator (A2, R2, and C1) and
a comparator (A3, R4, and R5). The TIA converts the input current into voltage
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D T

QDE

VC2

Figure 4.4: ItoQD converter timing diagram. The timing (T ) between consecutive
edges of the QDE signal is proportional to the monitored current. Adapted with
permission from [102]. © 2019 IEEE.

as follow:
VA1out = −R1·i + 1/2VDD (4.2)

A2 integrates the voltage coming from the trans-impedance amplifier. A square
wave signal is generated through the comparator. The distance between two rising
edges of the QDE signal is proportional to the voltage on the output of the trans-
impedance amplifier and proportional to the input current.

Figure 4.4 presents the timing diagram of the current to frequency conversion.
The capacitor C1 is discharged according to the input current (adapted to the dy-
namic by the trans-impedance amplifier), the comparator notifies when VC1 over-
comes the lower threshold; this sets QDE. After that, a reference current rapidly
charges the capacitor again through the feedback MOSFET (M1 and R3), the sig-
nal QDE is reset, and the conversion can start again. According to Equation 4.4,
the sampled current i is proportional to the timing between two consecutive edges,
where i0 is the offset current and Vth is the comparator threshold. Equation 4.3
presents the conversion between the voltage VA1out and the period of the QD signal.

T = R2 · C1 · 1/2VDD

VA1out − 1/5VDD
when VA1out ∈ [1/5VDD, VDD] (4.3)

where T is the distance between two edges of the signal QDE, and it can be evalu-
ated in a digital logic architecture thanks to the use of a free-running counter. The
relation between current and the period of the QD signal can be described with
Equation 4.4.

i = −R2 · C1 · Vth

R1 · T
+ i0 (4.4)

where i0 is the steady offset current and can be measured directly from the system
in open-circuit to compensate variations. The minimum time spent in the high state
by the signal QDE Dmin must be in order to be lower than T while guarantying
glitch-free electronics (Equation 4.5).

Dmin = 2 · R3 · C1 (4.5)
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Figure 4.5: PCB implementation of QD potentiostat with COTS components; the
electrochemical cell connected on pin on the left, and power supply, PWM, and
QDE on the right. Adapted with permission from [102]. © 2019 IEEE

The current is linearly proportional to the frequency of the output signal, which
is one over the period of the signal QD (T ). The frequency spans in the range
related to the minimum and the maximum measurable current as described by
Equation 4.6.

∆f =
[︃
0 ; 1.5

R2 · C2

]︃
(4.6)

The central output frequency (f0), namely the value acquired when the input
current is zero, is:

f0 = 1
2 · R2 · C2

(4.7)

The proposed potentiostat is implemented on a single PCB using COTS com-
ponents as showed in Figure 4.5. The Figure 4.6 presents the input-output char-
acteristic of the QD potentiostat reader. The output event frequency (event rate)
is linearly proportional to the input current. In the implemented potentiostat, the
PCB size is 78 mm×10 mm. Tuning the component according to Equation 4.4,
the driving voltage range is set to be between – 1.2 V and 1.2 V, while the input
current range between – 60 µA and 60 µA. The system is designed to fit an input
PWM signal at the frequency of 20 kHz. In the current range, the event rate (i.e.,
frequency of the events) of the output QDE signal spans across 0.38 kevent/s and
34 kevent/s, with a resting event rate of 17 kevent/s. The PCB includes all the
components required to stabilize the power supply and furnish all the reference
voltages. This is achieved by a low drop-out power manager and one different volt-
age follower and resistor network for each voltage reference (1/2VDD and 1/5VDD).
Capacitors are also added to avoid any floating of the reference voltages due to
current drops. A closed feedback loop experiment is performed to verify the system
by inserting a resistor between shortened CE-RE and WE nodes. The experiments
highlighted that both PWM to voltage and current to QDE conversions are linear
with a maximum linearity error of 0.14 %. The WE input is left unconnected, and
the current is sampled at the operating frequency of the Cyclic Voltammetry (CV),
namely 60 Hz to quantify the noise level. The level of noise is 39 nA considering
the standard deviation of the sample. In the full scale (± 60 µA), the equivalent
number of bits is 11.6 bit, closer to the resolution of DAC, usually implemented
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Figure 4.6: QD potentiostat characteristic: simulation results (LTSpice®), on pro-
posed solution, considering an input raging in –150 µA and 150 µA. The output
event rate (y axis), varies almost linearly according the value of the input current
(x axis).

in a custom-built potentiostat for bio-sensing application (12 bit [115]). The mean
total power consumption of the board is 19.5 mW as measured during lab testing.

4.2.2 Validation and Performance
As visible in Figure 4.7, a full demo setup is carried on to validate the QD po-

tentiostat. The potentiostat described in Section 4.2.1 is interfaced to the electro-
chemical sensor for the detection of APAP. Namely, the commercial Screen Printed
Electrode (SPE) acting as a biosensor is immersed in 10 ml becher containing Phos-
phate Buffer Saline (PBS) and a known concentration of APAP. The PBC imple-
menting the QD potentiostat is inserted into a custom-built 3D case. A custom
digital interface deployed on a Field Programmable Gate Array (FPGA) board
transmits the data to a laptop via UART communication. The laptop displays the
results in real-time of the APAP detection through a Matlab® Graphical User In-
terface (GUI), highlighting the oxidation current peak and providing to the visitor
step by step the concentration monitored by the proposed system. The video of
this validation test is available at [211].

The measures are performed on subsequent increasing concentrations of APAP
in the therapeutic range (between 50 µM and 300 µM) accordingly to what detailed
in Section 2.2.1 to perform the tests. Two different electrochemical sensing methods
are taken into account: CV and Differential Pulse Voltammetry (DPV). The CV
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Figure 4.7: Validation setup for the QD potentiostat: GUI display interface (a),
FPGA control logic (b), proposed portable pen (c), APAP samples (d). Reprinted
with permission from [103]. © 2019 IEEE.

is performed with a Scan Rate (SR) of 0.2 V / s, in the range between – 0.1 V and
1.1 V, with a voltage step of 6 mV, and a time step of 30 ms. The DPV is performed
at 0.1 V / s, in the range between 0 V and 1 V, with a voltage step of 6 mV, a time
step of 60 ms, the modulation amplitude is set to 60 mV, and the modulation time
to 30 ms. A difference in SR between the two methods is introduced in order to
compensate for the higher sensitivity of the DPV method [133].

The custom digital interface is deployed on the FPGA board Xilinx® Artix-7TM,
which generates the PWM signal to drive the cell with the waveform required by
the voltammetry technique. The timing of the event received on the QDE line is
measured with a simple free-running counter; the current is constantly sampled
every voltage step. The data collected are sent out through a UART-USB port
and then stored. The sensing of APAP is also repeated using a lab instrument,
i.e., the Metrohm Autolab PGSTAT 302N driven by the software Nova 1.11 to
validate the novel QD potentiostat. The data received from the lab instrument
and the developed system are processed in Matlab® (v. R2017b), without any
further post-processing or filter. The peaks are detected with the findpeaks built-in
function after a blank-baseline rigid translation. The function returns prominence
of the current peak; this value is considered for the final estimation of the drug
concentration.
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Figure 4.8: Output voltammograms obtained by lab instrument (left) and by QD
potentiostat (right), considering CV (top) and DPV (bottom). Namely, lab instru-
ment CV (a), QD potentiostat CV (b), lab instrument DPV (c), QD potentiostat
DPV (d). Reprinted with permission from [102]. © 2019 IEEE.

Figure 4.8 displays a comparison in the output acquired by the two devices (QD
potentiostat and lab instrument) considering CV (4.8a, 4.8b) and DPV (4.8c, 4.8d).
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Figure 4.9: Calibration curves comparison between lab instrument and QD po-
tentiostat, for CV (a) and DPV (b), in both cases the graphs almost overlaps.
Reprinted with permission from [102]. © 2019 IEEE.

Table 4.1: Results comparison between lab instrument and QD potentiostat, con-
sidering CV and DPV in terms of sensitivity and LOD. The sensitivity shows small
differences among methods and systems. Otherwise, the LOD increases with QD
potentiostat but always remaining one-tenth of the therapeutic range. Reprinted
with permission from [102]. © 2019 IEEE.

CV DPV
Lab

instrument
QD

potentiostat
Lab

instrument
QD

potentiostat
Sensitivity
(nA / µM) 54.1 ± 7.1 47.5 ± 5.0 58.6 ± 5.9 57.6 ± 5.6

LOD (µM) 1.43 ± 0.18 5.43 ± 0.57 0.57 ± 0.06 5.08 ± 0.49

DPV is discussed for the sake of completeness, although the smart pen will em-
ploy CV only. The proposed solution introduces a certain level of white noise
(4.8b, 4.8d), despite this, in both methods the results are comparable. Figure 4.9
reports the calibration curves obtained by the analysis of the data. The imple-
mented system does not introduce a visible reduction in sensitivity; the two fitting
curves almost overlap with the DPV method while they are very close in CV. The
evaluated regression coefficient (r2, higher than 0.99) does not change; hence, the
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system does not introduce non-linearities. Table 4.1 presents a comparison be-
tween the two architectures. The sensitivity is similar (–12% with respect to the
lab instrument in CV), with a standard deviation reduced of 20% in the presented
solution with respect to the lab instrument in DPV. Even if the Limit of Detection
(LOD) has a higher value in QD potentiostat, due to lower noise rejection, the
value remains one order of magnitude lower than the minimum therapeutic concen-
tration of the APAP, hence, confirming its excellent performance. These findings
are highly promising, considering the reduction of three orders of magnitude of
hardware cost, the minimal size (two orders of magnitude smaller), allowing much-
improved portability between QD potentiostat with respect to the commercial in-
strumentation. The results prove that the presented approach does not require the
introduction of post-processing, analog/digital filter, and differential measurement
in QD potentiostat, methods all adopted by the lab instrument, to get comparable
performance.

4.3 Embedded Device
The core of the portable smart pen is a custom-built embedded device enclosed

in a 3D printed pen-shaped case. The embedded device consists of a single, double-
layer PCB of size 92 mm×17 mm. The case is a box-shaped container with rounded
corners of size 130 mm×30 mm×30 mm. The PCB is the mechanical support that
electrically connects electronic components using conductive paths. For the final
medical application, the main required features well match the PCB implementa-
tion. The device has to respect some indications. Namely, it has to be small with
a proper shape suitable for measuring the blood substance of the patient. For this
purpose, the realization of a board long and narrow, suitable sizes as for a medical
syringe, is suggested in order to facilitate the application; it has to be portable and,
for this purpose, the circuit, the components and, the firmware is selected in order
to reduce the power consumption.

4.3.1 PCB Implementation
The PCB (Figure 4.10) includes a Bluetooth® antenna for wireless communica-

tion, a MicroController Unit (MCU) for smart detection, the previously mentioned
QD potentiostat (driver and reader), and a power manager. The PCB is connected
to the disposable sensor with a jack connector. The design is carried on with Al-
tium Designer® 18.0, developed by Australian software company Altium Limited.
Figure 4.11 shows the 3D view of the implemented PCB, considering the top and
bottom view.

The MCU is the Nordic® Semiconductor nRF52840 built around the 32 bit
ARM® CortexTM-M4 processor, with a floating-point unit at 64 MHz. It features a
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Figure 4.10: The embedded board includes on a single PCB a Bluetooth® an-
tenna for communication, a MCU for processing, the QD potentiostat (driver and
reader), a power manager, and the jack connector to host the sensor. Reprinted
with permission from [105]. © 2021 IEEE.

Bluetooth Low Energy transceiver, four PWM channels, three Real-Time Counter
(RTC), and up to 32 General Purpose I/O (GPIO) pins with configurable output
drive strength [212]. This component provides sufficient processing power to guar-
antee future developments in a fully embedded framework, and it already showed
excellent capability in biomedical applications [213].

The QD potentiostat is implemented on top of the PCB with COTS components
to reduce cost and increase flexibility. The potentiostat is interfaced on one side to
the WE, CE, and RE of the electrochemical needle-shaped sensor (see Section 2.3)
through the female stereo audio jack connector. On the other side, PWM and QD
signals are connected to two MCU GPIO ports. For space reasons, the eight op-
amps needed to implement the driver and reader circuit are integrated into just two
components. Driver and reader of QD potentiostat are implemented with Surface
Mount Technology (SMD) resistor and capacitor. With three integrated circuits,
the LTC® 6085 and the Analog Devices AD863, both including four op-amps, and
the Nexperia 2N7002BKS, including two n-MOSFET transistors. The difference
between the two op-amp lies in performance and power consumption. The AD863
is chosen for its speed performance; indeed, that part of the circuit is addressed
to the PWM conversion in linear-sweep voltage for the sensor and the comparison
task to obtain the QD signal as output. On the other hand, all the stages that
do not need high performance are realized with LTC6085 to preserve power. Both
amplifiers are rail-to-rail devices to offer a wide dynamic and good linearity.

The system features Bluetooth® 5, IEEE 802.15.4-2006, 2.4 GHz transceiver to
allow Bluetooth® Low Energy (BLE) communication. The Bluetooth® antenna
is integrated on the PCB top layer as a copper trace antenna (Figure 4.12). The
geometrical design is a replica of the one proposes by the Nordic and developed
on the dongle device nRF52840 [212]. Together with the antenna copper trace, it
is fundamental to a matching circuit. In the project, the π network matching is
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(a)

(b)

Figure 4.11: 3D view of the implemented PCB: top (a) and bottom (b) view.
Reprinted with permission from [214]. CC BY 3.0 IT.

Figure 4.12: Bluetooth® Antenna layout on PCB. Left: antenna geometry trace;
Right: Antenna with matching network. Reprinted with permission from [214]. CC
BY 3.0 IT.

realized by an inductor connected on two capacitors.
A lithium-thionyl chloride AA 3.6 V battery with a capacity of 2700 mAh, placed

conveniently on the backside of the PCB, powers the device. A buck-boost DC-
DC voltage regulator, Texas InstrumentTM TPS63031, fixes the output voltage at
3.3 V [214].

4.3.2 Firmware Implementation
The MCU hosts a firmware for the automatic measurement of propofol. The

firmware is developed in SEGGER Embedded Studio for ARM®, a streamlined,
integrated development environment, compilation tools, and libraries for building,
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Figure 4.13: Flow chart of the firmware routine: after the configuration, the device
resides in idle-state; pressing the start button the device moves to the on-state,
perform the measurements, and send out via Bluetooth® the data. Reprinted with
permission from [214]. CC BY 3.0 IT.

testing, and deploying applications on ARM® and Cortex microcontrollers [215].
Figure 4.13 represents the flow chart of the state covered by the processor dur-

ing the operation. A mechanical switch controls the power-on of the board. At the
power-on, some configurations and setup operations are executed to make the sys-
tem ready to use. The configurations include the initialization of PWM and timer
drivers, the definitions of interrupts, and the BLE setup. After all the preliminary
steps have terminated, the micro-controller waits for the start command in the idle
state. Only the interrupt connected to the GPIO linked to the mechanical button
can wake up the system. The battery charge is preserved in this condition.

The idle-state is called every time the user decides, always employing the pres-
sure of the button to pause the operation and lie in stand-by. When the start is
asserted, the firmware proceeds with the main loop. The operation is repeated in
an infinite loop: the electrode cell is driven cyclically by the PWM signal. The
current response in terms of event quasi-digital signal is continuous monitoring and
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measurement. During the main state, the device is discoverable and connectable by
the central BLE receiver. Once the set of measures is ready, they are transmitted
through the BLE technology and protocol; this step concludes the loop cycle. The
only way to pause or stop the operations is to push again the same button (in this
case, it stands for stop command) or reset the device.

Once all the preliminary steps have been executed, the MCU also starts BLE
advertisement, and then the connection is established. The device acts as a Generic
Attribute Profile (GATT) BLE server, containing a set of GATT characteristics.
The custom service is accessible by an external GATT client, calling and reading
the measurement GATT characteristic. The MCU drives the electrochemical cell
with the CV pre-defined stimuli, modulating the PWM signal, and samples back
the Faradaic current through the QD signal. The sampling of QD is done by a
simple counter which measures the timing distance between consecutive pulses of
QD. The measurement is read directly by the client on the attribute “current” of
the GATT characteristic.

4.3.3 Case Design
A custom 3D printed case host the PCB and all the component of the smart

electronic pen for continuous monitoring of anaesthetics. The case is a box-shaped
container with rounded corners of size 130 mm×30 mm×30 mm and a thickness of
2.5 mm, composed of two shells. The case is designed with FreeCAD 0.18. The
case is printed with a Formlab Form 3 printer using clear wax.

Figure 4.14 shows the entire case inside the assembled embedded device and the
open compartment for battery replacement. The top shell (Figure 4.15a) contains
the custom PCB and the female audio jack connector for the needle-shaped sensor.
Meanwhile, the bottom shell (Figure 4.15b) closes the case. The case presents
numerous loopholes to ensure enough ventilation and avoid any possible heating
when the user holds it in his hand. On the top shell, the loophole takes the form of
the word MINES to acknowledge the Micro and Nano Electronic Systems (MiNES)
research group author of this thesis [216].

4.4 Complete System
The proposed complete system for anaesthetics monitoring is shown in Fig-

ure 4.16. The needle-shaped electrochemical sensor, designed specifically for direct
detection of propofol, is interfaced to the patient’s body under anaesthesia (on the
right). The sensor connects to the smart portable pen (in the middle). The pen
consists of a battery-operated embedded device packaged in a handy pen-shaped
case. The device includes a QD potentiostat as sensor front-end and communi-
cates via Bluetooth®. On a computer (on the left), Machine Learning (ML)-based
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Figure 4.14: Case of the smart electronic pen and open compartment for battery
replacement. The PCB is upside down.

(a) (b)

Figure 4.15: Isometric projection of the designed case for hosting the smart elec-
tronic pen: top shell (a) and bottom shell (b).

model classifies the concentration of anaesthetics. It informs the anaesthesiologist
continuously on the concentration of propofol present in the body of the patient.

4.4.1 The Implementation
The proposed sensor is the low-cost three-electrode electrochemical cell in a

needle shape to target detection of propofol in human serum [98]. The sensor is
detailed in Section 2.3 is composed of Pencil Graphite Electrode (PGE), which
reduces the propofol fouling of the surface [129]. The sensor features a male audio
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Figure 4.16: The anesthesiologist follows up the infusion of anaesthetics in the pa-
tient body through the portable pen. The system includes a needle-shaped electro-
chemical sensor for propofol detection, a QD potentiostat on an embedded device,
closed in a custom pen-shaped case, with Bluetooth® communication towards an
external PC running an ML-based classifier. Reprinted with permission from [105].
© 2021 IEEE.

jack 3.5 mm stereo connector, which provides a low-cost, disposable, and robust
electrical standard. The proposed potentiostat is based on the design presented
in [102]. The circuit relies on analog to QD conversion and vice-versa, as detailed
in Section 4.2. The core of the portable smart pen is a custom-built embedded
device enclosed in a 3D printed pen-shaped case as detailed in Section 4.3. The
embedded device consists of a single, double-layer PCB featuring an MCU hosting
the firmware for the automatic measurement of propofol. The custom service is
accessible by an external GATT client,

An external computer, running custom software and connected to a monitor,
processes the measurement to provide smart and easy-to-read information to the
anesthesiologist. This software contains a GUI and an SVM classifier, taking ad-
vantage of [103, 101]. The ML-assisted method is required for compensating non-
linearities introduced by the fouling effect of propofol on the electrochemical sensor
as detailed in Section 3.4. Moreover, the classifier is the most efficient tool to
directly provide the final user (the anaesthesiologist) with the preliminary informa-
tion necessary to keep the constant dose in the range of interest. The computer
resides the external GATT client, which reads via BLE the full vector of mea-
surement samples. This data is stored and processed by the software to obtain
a four-features list sent to the ML-based model. Three relevant features are ex-
tracted from the received CV: the peak current, the peak position, and the total
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charge. At the same time, the fourth feature is the ordinal number of measurements
performed with the same sensor. A digital low-pass filter at the cut-off frequency
of 2 Hz removes external electrical noise. The Faradaic current peak is detected
after baseline subtraction. The peak is determined by two features: the potential
(position of the peak) and the current (height of the peak). These two features
are the most relevant for characterizing the electrochemical reaction [133]. More-
over, the total charge exchanged in the Faradaic process is extracted from the CV
using the recently proposed TCDC method (Section 3.3). The SVM predicts the
class of propofol concentration according to the similarity or distance of the un-
known samples to the training instances. Later, a display outputs the results of
this classification to the anaesthesiologist.

4.4.2 Final Validation and Performance
All the proposed system components are tested and validated to assess the

performance of the complete system. The results cover the most challenging goals
achieved by the proposed smart pen to monitor anaesthetics; i.e., reproducibility,
portability, and smartness. The needle-shaped sensor is tested and characterized
for propofol monitoring in human serum; finally, the QD potentiostat is validated
in comparison with respect to a commercial lab instrument, then the performance
of the embedded device is evaluated in terms of power consumption and portability.

The needle-shaped sensor is tested to detect propofol in undiluted human serum
at body temperature (37 ◦C), between 10 µM and 60 µM, a range that corresponds
to the therapeutic range too. The analysis of the samples is performed in CV,
at a SR of 0.1 V / s (see Section 2.2.2 for further detail). The sensor’s perfor-
mance is evaluated through a seven-point calibration on three different items of
the needle-shaped sensor. Figure 4.17 displays the output voltammogram (current
upon voltage) obtained by a CV procedure on the sensor after data filtering and
baseline subtraction. The Faradaic redox peak increases linearly with respect to
the concentration of propofol present in the sample. The calibration curve (Fig-
ure 4.18) displays the performance of the proposed sensor considering repeatability
and reproducibility since it is obtained by an inter-electrode analysis. The sensi-
tivity is 12.29 ± 4.43 nA / µM. The linearity (r2) is higher than 94.9 %. The LOD is
3.80 ± 1.37 µM, below the minimum therapeutic concentration (10 µM). The posi-
tion of the redox peak is 452 ± 110 mV.

The QD potentiostat is tested to detect propofol with PGE electrodes in PBS
10 mM at pH 7.4. In this case, the CV is performed with an SR of 0.2 V / s, in the
range between — 0.1 V and 1.1 V, with a potential step of 6 mV, 30 ms long (see
Section 2.2.2 for further detail). The QD potentiostat is validated against the lab
instrument (Metrohm Autolab PGSTAT 302N). Figure 4.19 displays the results of
the comparison. The output voltammogram from the lab instrument (Figure 4.19a)
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Figure 4.17: Voltammograms acquired by analysis of propofol sample in human
serum showing oxidation peaks after signal filtering and baseline subtraction, con-
sidering one sensor. Reprinted with permission from [105]. © 2021 IEEE.
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Figure 4.18: Inter-electrodes calibration curve of proposed needle-shaped sensor
measuring propofol in human serum. The sensor shows good linearity and low
uncertain. Reprinted with permission from [105]. © 2021 IEEE.
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Table 4.2: Total power consumption of the embedded device, minimum (Min),
average (Avg), and maximum (Max) values, considering both idle-state and on-
state. Reprinted with permission from [105]. © 2021 IEEE.

Min Avg Max
Total idle-state current (mA) 8.2 10.1 11.9
Total on-state current (mA) 17.4 20.0 22.0
Total idle-state power (mW) 29.7 36.3 42.9
Total on-state power (mW) 62.7 72.0 79.2

is compared directly to the output voltammogram from the proposed QD poten-
tiostat (Figure 4.19b). No distortions are visible comparing the two curves. At the
same time, linear variation and stretch are present on both the x-axis and y-axis:
those linear differences are due to the usage of a different electronic system which
may introduce offset on both voltages and current. This trade-off was introduced
to get less bulky and power-consuming electronics, with few components to allow
portability. The real validator is the calibration curves shown in Figure 4.19c to
compare the two systems. The linearity (r2) is higher than 99.9 % in both cases,
which demonstrates that the QD potentiostat does not introduce non-linearities or
distortion in the measurement. The sensitivity is 565 nA / µM with the lab instru-
ment and 467 nA / µM with the proposed QD potentiostat.

The board’s power consumption is measured during lab testing, adding a digital
multimeter in series on the power supply of the device. Table 4.2 reports the power
consumption of the full embedded device both in idle-state and in on-state. The
on-state considers a series of ten full voltammograms, acquired with a pause time
of 30 s, without connecting the sensor. The average absorbed current during the
on-state is 20 mA, corresponding to the average power consumption of 72 mW. The
QD potentiostat consumes 19.5 mW [102]. The digital control and the Bluetooth
communication total average power is 52.5 mW.

The system features a 2.7 Ah battery, supporting a battery lifetime of 135 hours
always-on, limiting the necessity of charges and allowing continuous usage in more
than one surgery per charge. The BLE Received Signal Strength Indication (RSSI)
is estimated by the LightBlue® AndroidTM application to be – 95 dBm at 18 m and
– 51 dBm at 0 m, compliant with the BLE standard specifications.

Considering the comparison with respect to the state-of-the-art and the ex-
tent of our knowledge, the literature presents just a few examples of anaesthetics
monitoring systems including electronics and full devices with processing and dis-
play, such as using Raspberry Pi [156] or an IoT Cloud [3]. Table 4.2 present a
full comparison with respect to the state-of-the-art ([146, 196, 115, 156, 129, 3]).
The sensor features a LOD higher with respect to the state-of-the-art. However,

91



Smart Electronic Pen

0 0.5 1

−20

0

20

40

Driving voltage (V)

O
ut

pu
t

cu
rr

en
t

(µ
A

)

(a)

0 0.5 1

−20

0

20

40

Driving voltage (V)
O

ut
pu

t
cu

rr
en

t
(µ

A
)

(b)

10 20 30 40 50 600

10

20

30

40

Propofol concentration (µM)

Pe
ak

cu
rr

en
t

(µ
A

)

Lab instrument
QD potentionstat

(c)

Figure 4.19: Comparison between commercial lab instrument (a) and proposed
QD potentiostat (b) in detection of propofol in its therapeutic range. The cali-
bration curves (c) present few differences. Reprinted with permission from [105].
© 2021 IEEE.

it remains below the minimum concentration target of the reference application
(10 µM), therefore sufficient for the application. As published in [101], this thesis is
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Table 4.3: Comparison with respect to the state-of-the-art. Reprinted with per-
mission from [105]. © 2021 IEEE.

[146] [196] [129] [115] [156] [3] This
thesis

Propofol LOD (µM) 0.5 0.1 0.7 n.a. n.a. n.a. 3.8
Number of continuous
measure tested 1 12 25 1 n.a. n.a. 20

Size (cm2) n.a n.a n.a 96 567 n.a 39
Power consumption (mW) n.a n.a n.a n.a n.a 390 72

tested for continuous monitoring up to twenty consecutive measurements with the
same sensor, similar to what was achieved by the literature [196, 129]. The pro-
posed QD potentiostat is 59 % smaller (w.r.t. [115]) and consumes way less than
one fifth of the total power (w.r.t. [3]). Moreover, to the best of our knowledge,
the proposed system is the only one presenting a fully wireless device and includ-
ing ML-based smart processing. The latter one compensates non-linearities and
displays with 100 % classification accuracy the results [101].

4.5 Summary and Main Original Contributions
In this chapter, a novel smart pen for continuous monitoring of propofol anaes-

thetic drug is presented. The electronic device is the missing piece of technology
to close the loop between anaesthesiologist and patient with TDM towards safer
anaesthesiology practices.

A newly-designed potentiostat architecture based on the event-based approach,
namely QD potentiostat, is used as the main analog front end for the electrochem-
ical sensor. The results prove that the QD potentiostat provides a portable, small,
and low power circuit (respectively 92 % and 95 % reduction with respect to pre-
vious implementations), always maintaining comparable sensitivity with respect to
reference commercial lab instrumentations, and LOD one order of magnitude below
the requested minimum therapeutic concentration. The complete system is devel-
oped upon a single wireless battery-operated embedded device in a pen-shaped
case, 59 % smaller and 81 % less power consuming w.r.t. the state-of-the-art, allow-
ing complete portability and enhancing mobility thanks to the QD approach. The
sensor LOD (3.80 ± 1.37 µM) fits the medical application requirements, directly in
undiluted human serum at 37 ◦C, with 100 % accurate ML-based classifier.
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Chapter 5

Conclusion and Future Works

General anaesthesia is a medical procedure that requires the infusion of a per-
fectly balanced cocktail of drugs. The procedure of anaesthesia presents numerous
risks and side effects. Today, the anaesthesiology practices leverage on Pharma-
coKinetics and PharmacoDynamics (PK/PD) models with Target Controlled In-
fusion (TCI) pumps. The patient is later monitored via BiSpectral (BiS)-index, a
weighted sum of ElectroEncephaloGraphic (EEG) features. This approach comes
with some limitations since all TCI pumps implement PK/PD models experimen-
tally derived from observation of drug effects on a population of individuals, being
so only statistically accurate, meanwhile presenting a significant standard devia-
tion. Several closed-loop devices enter the clinical practice of general anaesthesia,
but they are based on ECG or blood pressure sensors, with poor performances due
to artefacts. In the meantime, the loop between anaesthesiologist and patient may
be closed with the Therapeutic Drug Monitoring (TDM). TDM allows a dynamic
adjustment based on the response of the individual. Propofol is the hypnotic agent
usually administered to induce and maintain sedation in anaesthesia since it ensures
a fast and predictable time of effect. Although numerous sensors have been pro-
posed for detecting and measuring propofol with high sensing performance, they
are inefficient in an automatic TDM closed-loop systems since usually based on
Dried Blood Spot sampling (DBS). Moreover, long time electrochemical determi-
nation of propofol suffers from the so-called fouling phenomenon, limiting stability
over time of the sensor. In addition to the sensor, a system allowing the monitoring
of anaesthetics must include a potentiostat, i.e., the set of electronic components
required to drive and read the electrochemical sensor. Several circuits have been
proposed for this purpose, which are usually bulky and power-hungry, limiting their
application in the surgery room, and they lack smart data processing and display.

This PhD thesis presents the first-ever realized smart electronic pen for contin-
uous monitoring of anaesthetics, which is the technology required to keep track of
the infusion of anaesthetics in real-time and with high accuracy to overcome all the
limitations mentioned above. In this thesis, the following goals are achieved:
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• Portability improves mobility into the surgery room, which is the target
environment of use for the proposed system. For this reason, the proposed
electronic pen features a wireless-Bluetooth® and battery-operated embedded
device in a pen-shape case of size 130 mm×30 mm×30 mm which consumes
one-fifth of the power consumption with respect to the state-of-the-art. This
is achieved by developing a novel Quasi Digital (QD) potentiostat circuit,
which reduced the power consumption of 95% and the size of 92% (w.r.t the
state-of-the-art) with the help of an event-based design approach. Moreover,
the Sample Rate Optimization (SRO) and Total Charge Detection in Cyclic
voltammetry (TCDC) method, first introduced in this thesis, enhanced the
system’s portability, optimizing the sample rate and reducing to its minimum
the data processing respectively.

• Real-time monitoring is necessary for continuous TDM. The first needle-
shaped sensor for detecting the propofol in situ is here presented for online
monitoring of propofol. This sensor features a Limit of Detection (LOD)
of 3.80 ± 1.37 µM directly in undiluted human serum at 37 ◦C, supporting
requirements of the medical application. Its audio jack connector makes it
directly ready to be connected with the here presented smart electronic pen.

• Continuous monitoring is required by the target medical application. The
capability of continuous monitoring is achieved in this thesis with the combi-
nation of the proposed sensor, novel measurement methods, and a dedicated
electronic device. In this thesis, for the first time, a machine learning algo-
rithm helps compensate the propofol fouling, which alters the sensor’s sensi-
tivity in time. In particular, the here introduced Propofol Fouling Machine-
learning (PFM) method discriminates 10 µM concentration of propofol with
100 % classification accuracy, directly in human serum at body temperature,
continuously up to ten minutes.

• Smart and Automatic operations reduce the effort of the medical staff
in the analysis of the results. In this thesis, SRO, TCDC, and PFM novel
methods enhance intelligent and automatic detection of drugs. The PFM
classifier, together with the smart electronic pen, makes it possible for the
anaesthesiologist to follow up with eyesight the infusion of anaesthetics.

Future works will include the beginning of clinical trials of the proposed tech-
nology. This will start with tests of the sensor performance in whole blood. Later,
clinical trials will enter the operation theatre monitoring aside the concentration of
propofol on patients under general anaesthesia. One major challenge is the study
of possible interference not taken into account until now, like uncommon drugs
and unique therapeutics. The first step towards the realization and the approval
of the technology will also be a detailed analysis related to the biocompatibility of
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the system and the sensor. A catheter-like needle may resolve the issue related to
the low biocompatibility of the material composing the sensor. Sterilization and
similar consideration may be avoided since the interchangeability of the sensor, and
its low-cost design will help the direct disposal of the whole sensor after each use.
Moreover, the system is suitable for continuous monitoring of anaesthetics in veteri-
nary applications, where few are the information that we have on the physiological
response to anaesthetics infusion.
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