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PLANNING THE VELOCITY OF A PARALLEL HYBRID ELECTRIC 

IN VEHICLE-TO-VEHICLE AUTONOMOUS DRIVING: AN 

OPTIMIZATION-BASED APPROACH 
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1Department of Mechanical and Aerospace Engineering (DIMEAS) 

Politecnico di Torino, Torino, Italy (E-mail: pier.anselma@polito.it) 
2Center for Automotive Research and Sustainable Mobility (CARS) 
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ABSTRACT: Improved numerical tools are required to foster flexible and effective advancement of innovative electrified 

and highly automated road vehicles. This paper proposes an optimization-based approach to off-line plan the longitudinal 

velocity of a hybrid electric vehicle (HEV) when travelling as Ego vehicle in a vehicle-to-vehicle (V2V) autonomous driving 

scenario. A parallel P2 hybrid powertrain layout is retained along with the corresponding on-board supervisory controller. A 

mathematical formulation for the optimal V2V autonomous driving control problem is provided and consequently solved 

with an optimization method based on dynamic programming (DP). The implemented DP formulation particularly exploits 

information about the overall longitudinal speed profile of a Lead vehicle in a predefined driving mission to determine the 

velocity profile of the Ego vehicle. Optimization constraints involve maintaining the inter-vehicular distance value within 

allowed limits while aiming at minimizing both the magnitude of Ego vehicle acceleration events and the overall Ego 

vehicle fuel consumption as predicted according to the on-board hybrid supervisory control logic. Simulation results for 

different driving missions demonstrate that, using the proposed DP formulation, the Ego vehicle can achieve both smoother 

speed profiles and improved fuel economy by some percentage points in V2V autonomous driving compared to the retained 

Lead vehicle embedding the same HEV powertrain layout. 

KEY WORDS: autonomous driving, electrified powertrain, hybrid electric vehicle (HEV), optimal control, vehicle-to-

vehicle, velocity planning 

1. Introduction 

Automation and electrification currently represent well-

established development trends in the automotive field. Improved 

numerical tools are required to foster flexible and effective 

advancement of these innovative electrified and highly automated 

road vehicles [1]. However, research activities concerning vehicle 

automation are usually decoupled from their counterparts 

involving vehicle electrification due to both the increased level of 

complexity and the partitioned organization of automotive OEMs. 

In this framework, implementing vehicle development approaches 

involving simultaneously electrification and automation would 

result beneficial both in facilitating the overall vehicle design 

procedure and in exploiting most advantage from both the 

development topics. Focusing on fuel economy, a related example 

would concern planning the longitudinal speed trajectory for an 

automated vehicle while minimizing the overall fuel consumption 

according to the specific propulsion system layout embedded on-

board [2].  

Concerning vehicle automation, a short-term effective solution 

can be identified in developing automated driving strategies based 

on vehicle-to-vehicle (V2V) communication. When compared to 

other vehicular technologies such as vehicle-to-infrastructure 

communication (V2I), vehicle-to-grid communication (V2G) or 

vehicle-to-pedestrian communication (V2P), the relative ease of 

implementation of V2V communication represents a major drive 

in this framework [3][4]. As example, Toyota and Lexus recently 

announced the implementation of Dedicated Short-Range 

Communications (DSRC) systems for V2V interaction on 

vehicles sold in the United States starting in 2021 [5]. Figure 1 

illustrates a sketch of a V2V autonomous driving scenario 

involving two vehicles, where the preceding and the following 

vehicles are named as ‘Lead vehicle’ and ‘Ego vehicle’ 

respectively. The Lead vehicle can be either human-operated or 

automated, while the Ego vehicle is controlled by automated 

driving. The Ego vehicle follows the Lead vehicle and the inter-

vehicular distance (IVD) between them varies over time. The Ego 

vehicle receives information from the Lead vehicle regarding its 

position (𝑥𝑙𝑒𝑎𝑑), its longitudinal speed (�̇�𝑙𝑒𝑎𝑑) and its longitudinal 

acceleration (�̈�𝑙𝑒𝑎𝑑) as example. 

As regards powertrain electrification, current limits in economical 

availability of large on-board electrical energy storage and in 

rapid charging infrastructure restrain the widespread adoption of 

 
Figure 1. V2V autonomous driving scenario. 
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pure electric vehicles [6]. Contrarily, hybrid electric vehicles 

(HEVs) represent an ongoing promising technology to reduce fuel 

consumption and tailpipe emissions while avoiding wide 

dependence on electrical charging infrastructure [7]. In this 

framework, a compelling need can be identified in implementing 

research and development tools to foster HEVs that efficiently 

operate in V2V autonomous driving mode. Recent research 

efforts have demonstrated the capability of improving fuel 

economy by exploiting information coming from the Lead vehicle 

in a V2V communication scenario. As example, neural networks 

have been used in 2017 to predict the velocity of the ego vehicle 

and adjust the equivalence factor for the usage of battery energy 

in a HEV [8]. In 2018, an on-board real-time HEV controller 

based on off-line optimization of the Ego vehicle speed profile 

while detecting physical constraints through V2V and V2I 

communication was proposed for a P0-P4 parallel HEV 

powertrain [9]. A recent study claimed that up to 6 % 

improvement of fuel economy would be possible for a power-split 

HEV powertrain by predicting the upcoming 120 seconds of the 

ego vehicle speed profile by means of V2V communication [10].  

Despite the presence of the studies reviewed above, in the 

author’s opinion, the advancement of energy management 

strategies for HEV powertrains through the exploitation of 

information coming from V2V communication still needs 

exhaustive exploration and represents an open research question. 

This paper therefore aims at introducing an off-line optimal 

algorithm for planning the velocity profile of an ego HEV in a 

V2V autonomous driving scenario for the overall driving mission 

with the aim of improving on-board energy flows. The proposed 

algorithm is based on dynamic programming (DP), a popular 

approach based on the concept of global optimality, and exploits 

information coming from both the embedded on-board HEV 

control strategy and the Lead vehicle in V2V autonomous driving 

to evaluate the optimal longitudinal speed trajectory of the Ego 

vehicle. Other than improving on-board HEV energy management 

and fuel economy, the proposed approach is suggested improving 

passenger comfort for the Ego vehicle by reducing the magnitude 

of longitudinal acceleration and deceleration events. The rest of 

this paper is organized as follows: the retained HEV powertrain 

layout is firstly presented and modeled and its on-board 

supervisory controller is outlined. The subsequent section then 

describes the proposed workflow for optimally deriving the speed 

profile for the HEV as ego vehicle in an off-line V2V autonomous 

driving scenario. Simulation results are then presented, and 

conclusions are drawn. 

2. Retained HEV 

This section illustrates the retained HEV and its numerical model, 

then the corresponding hybrid supervisory controller is outlined. 

2.1. Parallel P2 HEV 

In this study, a parallel P2 HEV powertrain configuration has 

been retained. Among the different architectures, parallel HEVs 

have been selected by many car manufacturers as their first step 

into vehicle electrification. In a parallel HEV, the tractive power 

is combined: both the internal combustion engine (ICE) and the 

electric motor/generator (MG) can contribute to the vehicle 

propulsion, i.e. their corresponding torques are additive. When the 

MG is large enough, it can drive the HEV by itself or 

simultaneously with the ICE. The MG, by motoring or generating, 

can also be used to shift the ICE to higher-efficiency operating 

points. The parallel P2 HEV architecture retained in this paper is 

illustrated in Figure 2. One MG is placed between the ICE and the 

gearbox input, while a clutch connection allows the ICE 

crankshaft to be disengaged from the MG and the rest of the 

vehicle drivetrain. Among the parallel HEV powertrain 

configurations, P2 has indeed been demonstrated promising in 

terms of energetic efficiency over a wide range of different 

driving scenarios [11]. Parameters for the HEV under study have 

been reported in Table 1. In general, chassis and power 

components data (e.g. ICE, MG, battery) for a full hybrid electric 

compact vehicle have been generated using the corresponding 

numerical tools available in Amesim® software [12]-[15]. A 5-

speed automated manual transmission (AMT) is embedded in the 

considered HEV. In general, the presented HEV numerical model 

and supervisory controller find implementation in MATLAB® 

software. 

Table 1. HEV parameters 

Component Parameter Value 

Vehicle 

𝑚𝑣𝑒ℎ 1360 kg 

𝑟𝑑𝑦𝑛 0.298 m 

𝜇𝑟 𝑙𝑙  0.025 

𝜇𝑚𝑖𝑠𝑐 1 N/(m/s) 

𝜌𝑎𝑖𝑟 1.2 kg/m3 

𝑐𝑥 0.29 

𝐴𝑓𝑟 2.24 m2 

ICE 

Capacity 2.0 l 

Type 4-cylinders in-line, spark-

ignition, naturally aspired 

Maximum power  89 kW @ 5000 rpm 

Maximum torque 174 Nm @ 4500 rpm 

Peak efficiency 30.5 % 

Transmission 
Gear ratios [3.45; 1.85; 1.36; 1.07; 0.8] 

Final drive ratio 4.83 

MG 
Maximum power 43 kW 

Maximum torque 208 Nm 

Battery pack 

Pack configuration 240S 1P 

Nominal capacity  6.5 Ah 

Nominal voltage 310 V 

 

 
Figure 2. Parallel P2 HEV powertrain. 
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2.2. Numerical modeling 

A backward quasi-static approach is retained here when modeling 

the HEV powertrain. The quasi-static approach considers constant 

time intervals and works back-ward deriving the value of needed 

propelling torque from vehicle speed values in adjacent time 

points [16]. Particularly, the value of required torque at the input 

shaft of the differential 𝑇𝐼𝑁 can be determined at each time instant 

of the driving mission as:  

𝑇𝐼𝑁 =
(𝜇𝑟𝑜𝑙𝑙 ∙𝑚𝑣𝑒ℎ∙ +𝜇𝑚𝑖𝑠𝑐∙�̇�+0.5∙𝜌𝑎𝑖𝑟∙𝑐𝑥∙𝐴𝑓𝑟∙�̇�

2+𝑚𝑣𝑒ℎ∙�̈�)∙𝑟𝑑𝑦𝑛

𝑖𝐹𝐷
   (1) 

where 𝑚𝑣𝑒ℎ, �̇�,  �̈�, 𝑟𝑑𝑦𝑛 and 𝑖𝐹𝐷 respectively represent the vehicle 

mass, the vehicle speed, the vehicle acceleration (as evaluated 

from values of vehicle speed in adjacent time instants), the wheel 

dynamic radius and the final drive ratio. 𝜇𝑟 𝑙𝑙  and 𝑔  are the 

rolling resistance coefficient and the gravity acceleration, 

respectively. 𝜇𝑚𝑖𝑠𝑐  represents the vehicle coefficient of viscous 

friction, and it considers miscellaneous terms (e.g. side forces, 

transmission losses) which linearly depend on the value of vehicle 

speed.  𝜌𝑎𝑖𝑟  is the air density, while 𝑐𝑥  and 𝐴𝑓𝑟  stand for the 

vehicle aerodynamic drag coefficient and frontal area, 

respectively. 

After 𝑇𝐼𝑁 is known, determining the torque acting on each power 

component becomes possible by means of the torque balance 

relationship illustrated in equation (2) for the parallel P2 HEV: 

𝑇𝐼𝐶𝐸 + 𝑇𝑀𝐺 =
𝑇𝐼𝑁

𝑖𝑔𝑒𝑎𝑟(𝑗)
      (2) 

where 𝑇𝐼𝐶𝐸 and 𝑇𝑀𝐺 correspond to the torque values provided by 

the ICE and the MG, respectively. 𝑖 𝑒𝑎𝑟 represents the gear ratio 

related to the gear number engaged at the generic time instant j. 

As concerns the electrical energy path, the amount of power that 

the battery is requested to either deliver or absorb (𝑃𝑏𝑎𝑡𝑡) can be 

determined as: 

𝑃𝑏𝑎𝑡𝑡 =
𝑃𝑀𝐺

[𝜂𝑀𝐺(𝜔𝑀𝐺 𝑇𝑀𝐺 )]
𝑠𝑖𝑔𝑛(𝑃𝑀𝐺)

      (3) 

where 𝑃𝑀𝐺 and 𝜂𝑀𝐺  respectively represent the mechanical power 

and the overall efficiency of the MG, which is evaluated by means 

of an empirical lookup table with speed and torque as independent 

variables. Retaining the sign of 𝑃𝑀𝐺  as exponent in the 

denominator allows capturing both depleting and charging battery 

conditions within this formula. The rate of battery state-of-charge 

(SOC) can then be evaluated by considering an equivalent open 

circuit model as in equation (4): 

𝑆𝑂𝐶̇ =
𝑉𝑂𝐶(𝑆𝑂𝐶)−√[𝑉𝑂𝐶(𝑆𝑂𝐶)]

2−4∙𝑅𝐼𝑁(𝑆𝑂𝐶)∙𝑃𝑏𝑎𝑡𝑡

2∙𝑅𝐼𝑁(𝑆𝑂𝐶)∙𝑄𝑏𝑎𝑡𝑡
       (4) 

where 𝑉𝑂𝐶  and 𝑅𝐼𝑁  are the open-circuit voltage and the internal 

resistance of the battery pack, as obtained by interpolating in 1D 

lookup tables with SOC ad independent variable. 𝑄𝑏𝑎𝑡𝑡 represents 

the battery pack capacity in ampere-seconds. 

Concerning the ICE, the instantaneous rate of fuel consumption 

can be evaluated using an empirical steady-state lookup table with 

torque and speed as independent input variables. 

2.3. Hybrid supervisory controller 

Energy management systems, also known as hybrid supervisory 

controllers, represent a crucial aspect of HEVs. These controllers 

perform vehicle-level management tasks involving the repartition 

of requested power from the driver among components of the 

hybrid electric powertrain. Moreover, they aim at effectively 

supervise some fundamental vehicle states such as the battery 

SOC, the overall fuel consumption and the emission of pollutants. 

When controlling a parallel P2 HEV, three levels of decisions 

need to be made at each time instant by the hybrid supervisory 

controller [17]: 

1. Which gear is to be engaged in the gearbox;  

2. Whether to propel the HEV in pure electric mode (MG 

only) or in hybrid operation (both ICE and MG 

operating);  

3. In case the hybrid mode is selected, how is the required 

torque split between the ICE and MG.  

Currently, the most popular control method implemented as on-

board hybrid supervisory controllers in HEVs relates to heuristic 

approaches [18]. In this work, a map-based heuristic method is 

retained as hybrid supervisory controller for the HEV under 

analysis. The considered hybrid supervisory controller is 

particularly inherited from Amesim® software, where a 

calibration procedure has already been performed for the parallel 

P2 HEV layout under study [19]. At each time instant, the gear to 

be engaged in the gearbox is decided upon the current value of 

vehicle speed. Then, current values for battery SOC, vehicle 

speed �̇� and requested input power at the gearbox input shaft 𝑃𝐼𝑁 

are considered for determining pure electric or hybrid electric 

operation. The workflow illustrated in Figure 3 finds 

implementation in this framework. In particular The ICE is set to 

be in operation at the given drive cycle time instant if at least one 

 
Figure 3. Algorithm for selecting pure electric or 

hybrid operation at each time instant. 

Table 2. Hybrid supervisory control parameters 

Variable Operating mode in 

previous time instant 
Parameter Value 

SOC 
EV 𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛  0.40 

HEV 𝑆𝑂𝐶𝐻𝐸𝑉𝑀𝐴𝑋  0.80 

Vehicle 

speed 

EV �̇�𝐸𝑉𝑀𝐴𝑋  45 km/h 

HEV �̇�𝐻𝐸𝑉𝑚𝑖𝑛  11 km/h 

Requested 

power 

EV 𝑃𝐸𝑉𝑀𝐴𝑋 40 kW 

HEV 𝑃𝐻𝐸𝑉𝑚𝑖𝑛  0 kW 

 

 

 

𝑆𝑂𝐶  𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛 ?

�̇�  �̇�𝐸𝑉𝑀𝐴𝑋 ?

𝑃𝐼𝑁  𝑃𝐸𝑉𝑀𝐴𝑋 ?

Mode operated in 

previous time step?

𝑆𝑂𝐶  𝑆𝑂𝐶𝐻𝐸𝑉𝑀𝐴𝑋?

�̇�  �̇�𝐻𝐸𝑉𝑚𝑖𝑛?

𝑃𝐼𝑁  𝑃𝐻𝐸𝑉𝑚𝑖𝑛 ?

Vehicle currently measure data:

𝑆𝑂𝐶, �̇�, 𝑃𝐼𝑁

Pure 

electric Hybrid

Turn ON the ICE and 

operate in hybrid mode

Keep operating 

in hybrid mode

Keep operating in 

pure electric mode

Turn OFF the ICE and 

operate in pure electric mode
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Yes

Yes

Yes
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No

No

No

No

No

Determine the torque split between ICE and MG 

according to battery SOC based on load levelling strategy
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of the following criteria is met: (1) the battery SOC is below a 

certain threshold (𝑆𝑂𝐶𝐸𝑉−𝑚𝑖𝑛  or 𝑆𝑂𝐶𝐻𝐸𝑉−𝑀𝐴𝑋 ), (2) the vehicle 

speed is greater than a given threshold (�̇�𝐸𝑉−𝑀𝐴𝑋 or �̇�𝐻𝐸𝑉−𝑚𝑖𝑛), or 

(3) the requested power is higher than a predefined value 

(𝑃𝐸𝑉−𝑀𝐴𝑋  or 𝑃𝐻𝐸𝑉−𝑚𝑖𝑛). Subscripts ‘EV’ or ‘HEV’ refer to the 

ICE being already activated or disactivated for the current time 

instant, respectively. Values of thresholds selected here for the 

hybrid supervisory controller parameters are reported in Table 2. 

As it can be noticed in Table 2, different threshold values are 

retained for SOC, vehicle speed and requested power depending 

on the operating mode at the previous drive cycle time instant. In 

particular, the following relationships hold to prevent too much 

frequent ICE de/activation events: 𝑆𝑂𝐶𝐸𝑉−𝑚𝑖𝑛  𝑆𝑂𝐶𝐻𝐸𝑉−𝑀𝐴𝑋 , 

�̇�𝐸𝑉−𝑀𝐴𝑋  �̇�𝐻𝐸𝑉−𝑚𝑖𝑛 and 𝑃𝐸𝑉−𝑀𝐴𝑋  𝑃𝐻𝐸𝑉−𝑚𝑖𝑛.  

As a backup condition, the ICE is set to be activated and to 

provide the required supplementary torque in case the MG is not 

capable of delivering the requested propelling torque alone in 

pure electric mode. In case the hybrid mode is selected to operate 

for the current time instant, the last step in Figure 3 involves 

determining the torque split between ICE and MG of the 

considered P2 full HEV. Here, a commonly heuristic approach is 

considered in determining the torque split according to the current 

value of battery SOC. The considered HEV is a full hybrid which 

does not involve charging the battery from the external electricity 

grid. The high-voltage battery is therefore controlled to overall 

operate in charge-sustaining mode. Considering a reference SOC 

value of 60%, higher values of torque can be set to be delivered 

by the ICE as the battery SOC value for the corresponding time 

instant becomes progressively lower than 60% [20]. Battery 

charge-sustenance can be ensured in this way on the drive cycle 

time horizon. 

3. Off-line optimal V2V autonomous driving  

Once the retained P2 HEV modeling approach and hybrid 

supervisory controller have been presented in the previous section, 

this section aims at introducing and solving the optimal V2V 

autonomous driving problem. 

3.1. Optimal V2V autonomous driving problem 

In the V2V autonomous driving scenario illustrated in Figure 1, 

the Ego vehicle receives at each time instant information from the 

Lead vehicle including its position 𝑥𝑙𝑒𝑎𝑑 , velocity �̇�𝑙𝑒𝑎𝑑 , and 

acceleration �̈�𝑙𝑒𝑎𝑑, respectively. The communication between the 

two vehicles is supposed ideal, and a given value of inter-

vehicular distance (IVD) results from the positions, speeds and 

accelerations of both Lead vehicle and Ego vehicle at each time 

instant. Two optimization targets are considered here for the Ego 

vehicle respectively related to the propelling energy minimization 

and the passenger comfort enhancement. The mathematical 

formulation corresponding to the optimal cooperative driving 

problem under analysis has been derived and it is reported in 

equation (5): 

min {𝐽𝑒  (�̈�𝑒  ) = ∫ [𝛼 ∙ 𝑃𝑡𝑟𝑎𝑐𝑡𝑖 𝑛−𝑐ℎ𝑒𝑚(�̈�𝑒   𝑡)
𝑡𝑒𝑛𝑑

𝑡0

+ (1 − 𝛼) ∙ �̈�𝑒  
2 (𝑡)] 𝑑𝑡} 

(5) 

With: 

𝑃𝑡𝑟𝑎𝑐𝑡𝑖 𝑛−𝑐ℎ𝑒𝑚(�̈�𝑒   𝑡)

= 𝐿𝐻𝑉𝑓𝑢𝑒𝑙
∙ [�̇�𝑓𝑢𝑒𝑙(�̈�𝑒   𝑡) + 𝑚𝑓𝑢𝑒𝑙−𝑐𝑟𝑎𝑛𝑘
∙ 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸(�̈�𝑒   𝑡)] − 𝑉𝑂𝐶 ∙ 𝑄𝑏𝑎𝑡𝑡
∙ 𝑆𝑂𝐶̇ (�̈�𝑒   𝑡) 

Subject to: 

[𝑥𝑙𝑒𝑎𝑑(𝑡) − 𝑥𝑒  (𝑡)] ≤ 𝐼𝑉𝐷𝑀𝐴𝑋(𝑡) 

[𝑥𝑙𝑒𝑎𝑑(𝑡) − 𝑥𝑒  (𝑡)] ≥ 𝐼𝑉𝐷𝑠𝑎𝑓𝑒𝑡𝑦(𝑡) 

�̈�𝑒  (𝑡) ≤ �̈�𝑒  −𝑀𝐴𝑋[�̇�𝑒  (𝑡)] 

where 𝐽𝑒   represents the cost function for the Ego vehicle V2V 

automated driving that depends on the controlled Ego vehicle 

acceleration. The value of 𝐽𝑒   that needs minimization represents 

an integration of the instantaneous cost terms throughout the 

entire drive cycle form the initial time instant 𝑡0 to the final time 

instant 𝑡𝑒𝑛𝑑 . 𝑃𝑡𝑟𝑎𝑐𝑡𝑖 𝑛−𝑐ℎ𝑒𝑚  is the chemical power used for 

propelling the Ego vehicle and it relates to both fuel and 

electricity. This term varies over time and it depends on the 

controlled Ego vehicle acceleration. 𝑃𝑡𝑟𝑎𝑐𝑡𝑖 𝑛−𝑐ℎ𝑒𝑚  can be 

evaluated by considering the hybrid supervisory controller 

previously detailed and embedding it within the optimization 

problem. Thanks to this approach, improving the Ego HEV on-

board energy management can be achieved when generating the 

corresponding longitudinal speed profile over time.  𝐿𝐻𝑉𝑓𝑢𝑒𝑙  is 

the lower heating value of the fuel and corresponds to 42700 

joules/grams. �̇�𝑓𝑢𝑒𝑙  represents the ICE fuel rate in grams/second 

obtained by interpolating in the steady-state fuel consumption 

lookup table as function of ICE speed and torque, while 

𝑚𝑓𝑢𝑒𝑙−𝑐𝑟𝑎𝑛𝑘 is the mass of fuel required to crank the engine in 

grams. 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸  is a binary flag detecting ICE activations, and its 

value is set to 1 in those time instants in which the fuel 

consumption exhibits positive values while it was 0 in previous 

time instants.  The term 𝑉𝑂𝐶 ∙ 𝑄𝑏𝑎𝑡𝑡 ∙ 𝑆𝑂𝐶̇  stands for the battery 

electrical power, while 𝛼  represents a coefficient for weighting 

the optimal control targets as discussed below. The reported cost 

function formulation allows expressing both the fuel chemical 

power term and the battery electrical power term in watts. Other 

than propelling energy reduction, enhancement of the comfort of 

the ride represents a crucial potential of autonomous driving. To 

foster this aspect, several motion, path, and velocity planners 

proposed in literature integrate as objective minimization of 

values of variables related to vehicle longitudinal acceleration, 

lateral acceleration and yaw rate as for example in [21]-[23]. 

Following a similar approach, reduction of the root mean square 

(RMS) of the Ego vehicle acceleration �̈�𝑒   over the entire 

simulated drive cycle is considered here as evaluation metric to 

enhance the passenger comfort [24]. Reducing the overall energy 

used for propulsion and improving the passenger comfort might 

eventually represent contrasting objectives. As example, in 

electrified vehicles several fluctuations can be observed in the 

longitudinal speed when optimizing for energy consumption 

solely [25]. A trade-off between the two optimization targets 

retained might thus be implied in this framework by properly 

tuning the weighting coefficient 𝛼.  
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Three additional requirements are involved in the constraints set 

for the optimization problem. First, the technological limitations 

in the V2V communication capability and the road utilization 

need consideration. Both these objectives are summarized here in 

imposing the IVD to always remain within the maximum allowed 

limit 𝐼𝑉𝐷𝑀𝐴𝑋 . A variable value depending on the road type is 

considered in this work for 𝐼𝑉𝐷𝑀𝐴𝑋. As a general consideration, 

the IVD might be limited in urban areas to ease traffic flow and to 

reduce general road occupancy. This correlates well with reduced 

values of vehicle speed generally associated with urban driving. 

Contrarily, larger road surface availability and generally higher 

values of vehicle speed might lead to allow a higher value of 

𝐼𝑉𝐷𝑀𝐴𝑋 in extra-urban and highway driving conditions. In light 

of these considerations, when extra-urban and highway driving 

conditions are encountered, the maximum achievable value of 

IVD is set here to 300 meters which refers to the current 

approximate range of V2V communication [26]. On the other 

hand, the value of 𝐼𝑉𝐷𝑀𝐴𝑋  is reduced to 40 meters in urban 

driving conditions in order to limit road occupancy [25].  

As regards the minimum safety IVD, its value is obtained by 

interpolating in a two-dimensional lookup table with Following 

vehicle speed and relative vehicle speed between Preceding 

vehicle and Following vehicle as independent variables. The 

lookup table considered here is shown in Figure 4 and it is derived 

from a time-headway numerical braking model proposed in [27]. 

The interested reader can consult [25] for further information 

regarding this procedure. 

Finally, the third optimization constraint involves limiting the Ego 

vehicle acceleration below the maximum limit given as a function 

of the maximum tractive power of the retained powertrain, which 

in turn depends on the maximum power capability of the 

embedded power components and on the current value of vehicle 

velocity.  

3.2. Optimization-based Ego vehicle velocity planner 

In this sub-section, a methodology to find the optimal control 

solution for the Ego vehicle V2V autonomous driving problem 

detailed above finds discussion. Dynamic programming (DP) is 

implemented in this context as a popular technique that can 

identify the optimal solution for multi-stage control and decision 

making problems [28][29]. To achieve this target, DP requires the 

knowledge of the Lead vehicle speed profile over time for the 

entire driving mission a priori before running the optimization 

process. The optimal control solution for the Ego vehicle V2V 

autonomous driving problem is then identified by DP by 

exhaustively sweeping all possible discretized control actions 

while solving an optimization problem backwardly form the final 

time instant 𝑡𝑒𝑛𝑑 to the initial one 𝑡0 of the considered drive cycle 

[30][31]. The optimal sequence of control actions is thus 

identified by minimizing the overall value of the predefined cost 

function. 

DP requires the definition of the control variable set U and the 

state variable set X. U includes all the control variables associated 

to the considered control problem, while X includes the variables 

whose evolution over time need to be monitored throughout the 

considered control horizon (i.e. the entire driving mission). 

Control variable set and state variable set for the considered 

optimal Ego vehicle V2V autonomous driving problem are 

reported in equation (6). 

   𝑈 = {�̈�𝑒  (𝑡)}  𝑋 = {

𝐼𝑉𝐷(𝑡)

�̇�𝑒  (𝑡)

𝐼𝐶𝐸𝑠𝑡𝑎𝑡𝑒(𝑡)

}                  (6) 

The Ego vehicle longitudinal acceleration needs to be controlled 

in this case, while the state space includes the IVD and the Ego 

vehicle speed �̇�𝑒  . The IVD is particularly considered to ensure 

the compliance over time with the corresponding optimization 

constraints, while the Ego vehicle longitudinal velocity is retained 

to evaluate its trajectory over time by integrating the controlled 

Ego vehicle longitudinal acceleration over time. Finally, the 

binary variable for the ICE state 𝐼𝐶𝐸𝑠𝑡𝑎𝑡𝑒  is retained that 

corresponds to hybrid or pure electric operation. Monitoring 

𝐼𝐶𝐸𝑠𝑡𝑎𝑡𝑒 is required to appropriately select pure electric or hybrid 

operation for the current time instant based on instantaneous 

values of vehicle speed, required output power and operating 

mode in the previous time instant as specified in the control 

workflow illustrated in Figure 3. It should be noted that 

monitoring the value of battery SOC for the Ego HEV would be 

required as well in order to evaluate battery SOC dependent 

parameters (e.g. internal resistance, open-circuit voltage) and to 

determine the torque split between ICE and MG. An additional 

state variable for the Ego vehicle battery SOC would be in turn 

required. However, this approach would lead to exponentially 

increase the associated computational effort, which currently 

represents a well-known drawback of the DP technique named 

curse of dimensionality. The capability of executing the 

developed DP tool for solving the V2V autonomous driving 

problem on a common desktop computer might consequently be 

compromised. To overcome this issue, a different approach is 

implemented here in forecasting the battery SOC profile over time 

for the Ego HEV based on the simulation of the Lead HEV 

previously performed. Details regarding this procedure will be 

provided in the next section. 

A generic DP Matlab® toolbox has been used in this work made 

available from Sundstrom and Guzzella [32]. The initial values of 

 

Figure 4. Minimum safety IVD as a function of the 

Ego vehicle speed and the relative vehicle speed 

between Lead vehicle and Ego vehicle. 
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state variables are set to 20m for the IVD and to 0m/s for the Ego 

vehicle longitudinal speed, while the value of the state variable 

associated to the IVD is limited within instantaneous allowed 

values as discussed in the previous sub-section. Since the retained 

DP tool allows constraining final values of state variables as well 

[33], the final IVD has been set here to be below 20m in order to 

guarantee that the Ego vehicle travels at least the same mileage as 

the Lead vehicle.   

4. Simulation results  

This section aims at illustrating simulation results obtained for the 

P2 HEV in different driving profiles travelling both as Lead 

vehicle (i.e. following the speed profile of the given drive cycle) 

and as Ego vehicle (i.e. following the speed profile generated by 

the introduced V2V autonomous driving optimal control 

approach). To this end, the workflow illustrated in Figure 5 is 

implemented to provide a dedicated evaluation framework.  

The drive cycle speed profile is retained first as input along with 

HEV data and related on-board control logics as illustrated in 

Section 2 in this paper. Step 1 in Figure 5 then involves 

simulating the operation of the Lead HEV driving through the 

retained cycle. Overall estimated fuel consumption and the battery 

SOC trajectory can be evaluated in this way for the Lead P2 HEV. 

As mentioned earlier, the battery SOC trajectory for the Lead 

HEV can then be used as forecasted SOC that represents input to 

the DP control optimization related to the Ego HEV automated 

V2V autonomous driving. This approach stems from two main 

assumptions: (1) Lead HEV and Ego HEV exhibit the same value 

of battery SOC at the beginning of the ride; (2) instantaneous 

values of battery SOC throughout the drive cycle might be 

comparable between Lead HEV and Ego HEV due to similarity in 

terms of vehicle, powertrain architecture, control logic and 

driving profile. During Step 2 in Figure 5, the longitudinal speed 

profile to be followed by the Ego vehicle in the entire driving 

mission is evaluated off-line by the DP approach discussed in 

Section 3.2 in this paper by solving the related optimal V2V 

autonomous driving problem illustrated in Section 3.1. The 

obtained vehicle speed profile can then be used as input to 

simulate the related P2 HEV travelling as automated Ego vehicle 

in V2V driving mode. Related Ego vehicle performance can thus 

be assessed in terms of estimated fuel consumption, battery SOC 

trajectory, vehicle longitudinal acceleration and other metrics. In 

this framework, the coefficient  𝛼 mentioned in equation (5) has 

been tuned by trial-and-error to achieve a fair trade-off between 

respective improvements in fuel economy and passenger comfort.  

Four drive cycles are considered in this work to demonstrate the 

effectiveness of the proposed optimal V2V autonomous driving 

approach for the Ego vehicle in different driving conditions. 

These include the urban dynamometer driving schedule (UDDS), 

the worldwide harmonized light-vehicle test procedure (WLTP), 

the highway federal test procedure (HWFET) and the US06 

supplemental procedure (US06). Obtained simulation results for 

all the retained drive cycles in terms of estimated fuel 

consumption, net battery energy consumption and RMS of the 

vehicle acceleration are reported in Table 3. In order to achieve a 

fair comparison for the fuel economy performance, the amount of 

fuel needed to recharge the battery up to the initial SOC value (i.e. 

60% in this case) needs to be calculated and added to the 

previously calculated fuel consumption. A method to evaluate this 

additional fuel consumption has been retained from literature and 

applied to the specific HEV architecture under analysis [34].  

The percentages of performance improvements for the Ego 

vehicle compared with the Lead vehicle are both reported in Table 

3 and illustrated in Figure 6. In general, the proposed optimal 

control approach for the Ego vehicle in V2V automated driving 

Table 3. Simulation results for Lead P2 HEV and Ego P2 HEV in different driving conditions 

 Lead vehicle Ego vehicle 

Drive 

cycle 

Fuel 
consumption 

[g] 

Battery energy 
consumption 

[kWh] 

Fuel economy (final 
SOC correction) 

[l/100km] 

RMS 

(�̈�) 

[m/s2] 

Fuel 
consumption 

[g] 

Battery energy 
consumption 

[kWh] 

Fuel economy (final 
SOC correction) 

[l/100km] 

RMS (�̈�) 

[m/s2] 

WLTP 1565.7 0.26 9.42 0.53 1523.9 0.28 
9.17 

(-2.6%) 

0.38 

(-28.6%) 

UDDS 605.1 0.26 7.48 0.63 588.2 0.31 
7.29 

(-2.6%) 

0.48 

(-23.8%) 

HWFET 1064.8 0.13 8.92 0.30 1053.5 0.13 
8.83 

(-1.1%) 

0.25 

(-17.0%) 

US06 1002.0 0.30 11.20 0.99 954.8 0.33 
10.70 

(-4.5%) 

0.75 

(-23.7%) 

 

 

Figure 5. Simulation workflow for evaluating the 

performance of both Lead vehicle and Ego 

vehicle 
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reveals its effectiveness in improving both fuel economy and 

passenger comfort for the retained HEV in all driving conditions 

considered. A peak of 4.5% energy economy improvement for the 

Ego vehicle can particularly be observed in aggressive driving 

conditions such as in US06. On the other hand, following the 

proposed approach, highway driving conditions (such as in 

HWFET) for the Lead vehicle reflect in limited improvement for 

the corresponding energy economy of the Ego vehicle that 

amounts to 1.1%. As far as the passenger comfort is concerned, 

the highest performance improvement for the Ego vehicle is 

estimated to be achieved in mixed conditions such as in WLTP. 

This correlates with a 28.3% reduction in the RMS of the Ego 

vehicle acceleration compared with the RMS of the Lead vehicle 

acceleration. UDDS and US06 immediately follow WLTP in the 

ranking of driving conditions that offer potential of passenger 

comfort improvement through V2V autonomous driving 

according to the introduced Ego vehicle speed controller. Finally, 

HWFET is characterized by reduced opportunity also regarding 

passenger comfort improvement that is limited to around 17%. 

A breakdown of the different factors contributing to vehicle losses 

reduction for the Ego vehicle compared with the Lead vehicle is 

shown in Figure 7 in terms of road load, MG loss, battery loss and 

ICE chemical loss for all the retained driving missions. On the 

other hand, Figure 8 shows simulation results in terms of time 

series of IVD, gear number, vehicle speed, consumed fuel and 

battery SOC for both Lead vehicle and Ego vehicle in WLTP. The 

reduction in ICE chemical loss for the Ego vehicle compared with 

the Lead vehicle appears to be the predominant contribution to 

fuel economy improvement in all driving conditions in Figure 7. 

This term is evaluated by integrating the difference between fuel 

power and ICE mechanical power throughout the entire drive 

cycle. Thanks to automated driving for the Ego vehicle as 

controlled by the proposed DP approach, up to around 37Wh/km 

of ICE chemical loss reduction can be achieved in US06 

compared with the Lead vehicle following the corresponding 

drive cycle. This might relate both to the reduction in overall 

mechanical energy that needs to be provided by the ICE 

throughout the ride and to the increase in general ICE efficiency. 

The road load term in Figure 7 is affected by the rolling resistance, 

the aerodynamic drag, and other miscellaneous terms related to 

vehicle body and chassis, and it depends on the value of vehicle 

speed as reported in equation (1). The introduced DP based Ego 

vehicle controller generally entails smoothing time series and 

cutting peak values for the Ego vehicle speed compared with the 

Lead vehicle speed as shown as example in Figure 8 for UDDS. 

In Figure 7, around 3Wh/km reduction in vehicle loss due to road 

load can thus be achieved on average as consequence of the 

smoother driving conditions identified by DP for the Ego vehicle 

longitudinal speed compared with the corresponding drive cycle 

followed by the Lead vehicle. Lower and more constant values of 

vehicle speed over time for the Ego vehicle reflect as well in the 

reduction of MG loss and battery loss. Instantaneous MG loss can 

be calculated by interpolation in the corresponding lookup table 

as function of MG speed and torque, and corresponding reduction 

for the Ego vehicle compared with the Lead vehicle range from 

1.4Wh/km in HWFET to 7.0Wh/km in US06. On the other hand, 

 

Figure 7. Breakdown of vehicle losses reduction achieved 

by the Ego vehicle compared with the Lead vehicle  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Simulated time series of IVD, gear number, 

vehicle speed, consumed fuel and battery SOC for 

both Lead vehicle and Ego vehicle in WLTP 
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Figure 6. Improvements achieved by the Ego vehicle 

compared with the Lead vehicle in terms if energy 

economy and passenger comfort 
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instantaneous battery loss can be calculated by multiplying the 

internal resistance by the squared value of the battery current. The 

battery loss term is observed in Figure 7 impacting around 

0.6Wh/km to around 5.2Wh/km in the Ego vehicle loss reduction 

compared with the Lead vehicle. An overview regarding how 

different factors contribute to improving the on-board energy 

management of the Ego HEV is provided in this way. 

5. Conclusions  

This paper has presented a methodology that allows generating 

longitudinal velocity profiles for an Ego parallel P2 HEV 

travelling behind a Lead vehicle in V2V automated driving. The 

presented off-line controller for the Ego HEV longitudinal 

acceleration over time relies on the principle of global optimality 

achieved by DP. The DP control objectives for the Ego HEV 

include both the overall tractive energy and the RMS of the 

vehicle acceleration, which aim at respectively enhancing fuel 

economy and passenger comfort. The on-board hybrid 

supervisory control logic for the HEV is integrated in the DP 

optimization framework to allow improving energy management. 

The effectiveness of the proposed longitudinal velocity planner 

for the Ego vehicle has been demonstrated through simulations in 

different driving conditions. The HEV performance when 

travelling as Ego vehicle has been benchmarked with the 

corresponding performance when following the drive cycle as 

Lead vehicle. Mixed and aggressive driving conditions have been 

identified as the most promising ones both in terms of fuel 

economy enhancement and passenger comfort improvement by 

V2V automated driving according to the proposed approach. On 

the other hand, when the Lead vehicle encounters highway 

driving conditions, remarkable improvements might be achieved 

only in passenger comfort, while limited saving might be attained 

in terms of fuel consumption according to the described 

methodology. 

Different possible directions might be suggested here for related 

future work. First, adapting the hybrid supervisory controller 

when the HEV travels as Ego vehicle in V2V automated driving 

could be performed to further enhancing fuel economy 

improvement. A nested approach could particularly be 

implemented for the simultaneous optimization of Ego HEV 

velocity profile and energy management. Moreover, real-time 

velocity planners could be developed to be on-board implemented 

in the Ego HEV based on the off-line results provided here by DP. 

Finally, estimating the optimal fuel economy achievable in V2V 

autonomous driving according to the proposed methodology 

could be integrated as criterion for advanced powertrain design 

and sizing procedure for automated HEVs. 
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