
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors /
Damljanovic, Aleksa; Ruospo, Annachiara; Sanchez, Ernesto; Squillero, Giovanni. - In: APPLIED SOFT COMPUTING. -
ISSN 1568-4946. - ELETTRONICO. - 116:(2022), pp. 1-16. [10.1016/j.asoc.2021.108068]

Original

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined
Microprocessors

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.asoc.2021.108068

Terms of use:

Publisher copyright

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.asoc.2021.108068

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2941732 since: 2021-12-02T08:49:14Z

Elsevier

Machine Learning for Hardware Security:
Classifier-based Identification of Trojans in Pipelined

Microprocessors

Aleksa Damljanovic, Annachiara Ruospo, Ernesto Sanchez,
Giovanni Squillero∗

Politecnico di Torino, Italy

Abstract

During the last decade, the Integrated Circuit industry has paid special at-
tention to the security of products. Hardware-based vulnerabilities, in partic-
ular Hardware Trojans, are becoming a serious threat, pushing the research
community to provide highly sophisticated techniques to detect them. De-
spite the considerable effort that has been invested in this area, the growing
complexity of modern devices always calls for sharper detection methodolo-
gies. This paper illustrates a pre-silicon simulation-based technique to detect
hardware trojans. The technique exploits well-established machine learning
algorithms. The paper introduces all the background concepts and presents
the methodology. The validity of the approach has been demonstrated on the
AutoSoC CPU, an industrial-grade, safety-oriented, automotive benchmark
suite. Experimental results demonstrate the applicability and effectiveness
of the approach: the proposed technique is highly accurate in pinpointing
suspicious code sections. None of the hardware trojans from the set has been
left undetected.
Keywords: Hardware Security, Machine Learning, Hardware Trojans,
AutoSoC, Microprocessor Cores

∗Corresponding author
Email addresses: aleksa.damljanovic@polito.it (Aleksa Damljanovic),

annachiara.ruospo@polito.it (Annachiara Ruospo), ernesto.sanchez@polito.it
(Ernesto Sanchez), giovanni.squillero@polito.it (Giovanni Squillero)

Authors are listed in alphabetical order.

Preprint submitted to Applied Soft Computing (Elsevier) December 1, 2021

D
es

ig
n

 In
te

gr
at

io
n

R
TL

 N
et

lis
t

Lo
gi

c
Sy

n
th

es
is

R
TL

 V
er

if
ic

at
io

n

P
h

ys
ic

al
 S

yn
th

es
is

La
yo

u
t

V
er

if
ic

at
io

n

Te
st

Pa
ck

ag
e

&

A
ss

em
b

ly

In-house
design

Integration
team

3PIPs
Foundry

RTL Netlist
IC

Gate-level
Netlist Layout(GDSII) Wafer

Figure 1: IC production flow

1. Introduction

The evergrowing complexity of modern devices and the fabrication costs
led the Integrated Circuit (IC) industry to pursue a new global business
model. In that regard, more companies around the world are deeply involved
in all phases of the IC supply chain (Fig. 1). The outsourcing of part of the
process to untrusted third-party entities raises increasing concerns about the
hardware security of the products. The situation is becoming both critical
and challenging and requires a careful regard.

Specific measures need to be taken for detecting, avoiding, and mitigat-
ing potential threats based on a component’s importance. Since the security
needs are driven by the evolving types of attacks, i.e., new adversary models,
types, and intended use of the device, there is no solution that is able to pro-
vide complete protection. A common stance both in academia and industry
is that the best approach is a set of flexible, technologically-driven solutions
that are to be applied during the whole life-cycle of the device: development,
deployment and operation.

Apart from detecting and localizing accidental bugs as a part of the design
and production flow, it is necessary to identify intentionally placed malicious
circuits. Different reports warn about such threats from both malicious and
negligent actors and vulnerabilities they are able to exploit. Particularly,
the so-called Hardware Trojans (HTs) continue to gain worldwide attention
not only from industry (military) and academia, but also from government
bodies [1].

A Hardware Trojan is defined as a malicious and intended alteration of a
circuit, that endangers the trustworthiness and the security of the hardware,
leading to unexpected behaviour. For instance, it may leak secret informa-
tion, change the circuit functionality, or degrade the performance. A typical
HT (trigger activated) is composed of a trigger and a payload circuit (Fig. 2).

2

Trigger Payload

O r i g i n a l c i r c u i t

H a r d w a r e T r o j a n

M a l i c i o u s l y m o d i f i e d c i r c u i t s

H a r d w a r e T r o j a n

Circuit

inputs

Circuit

output

Trigger

inputs

Payload

output

Circuit

inputs

Circuit

output

Trigger Payload

Figure 2: Hardware Trojan structure

The trigger usually monitors specific signals or series of events under some
internal or external conditions. When the trigger condition is met, it informs
the payload circuit, which executes the malicious function. The trigger is
usually hidden under rare conditions, so the HT is dormant for most of the
time and the payload inactive. In that case, the circuit acts as a Trojan-free
circuit. If the activation does not depend on the trigger circuit, the Trojan be-
longs to another category, denoted as always-on. Such Trojan gets activated
as soon as its host design is powered-on. Techniques to deal with the latter
exist on different levels of abstraction in IC design: from logic-level search
for sequentially-deep states to unexpected patterns of power consumption.

A malicious alteration can be performed during any phase of the pro-
duction cycle. One category of Hardware Trojans are those inserted at the
manufacturing stage. In such a scenario, an adversary could access the mask
and modify it to add malicious logic. It may be supposed that such logic is in-
serted in an intelligent manner, difficult to activate with manufacturing tests
given the combination of rare internal signal values that are used to trigger
it. However, more interesting are HTs inserted earlier in the design cycle, at
the Register Transfer Level (RTL) or into the gate-level netlist. Apart from
superfluous complex reverse engineering from the attacker’s point of view,
HTs inserted early in the design process can potentially remain implanted
even in the next generations of the device [2].

Researchers have faced the hardware-based security problems from several
angles. The state-of-the-art detection techniques can be classified according

3

to different factors: the Trojan typology, insertion time, abstraction level,
location, activation mechanism, effects, physical characteristics, the need for
a golden model, etc.

As a result, providing a review of the work done on the subject is a rather
challenging task. An interesting overview is provided in [1], where the au-
thors summarize what has been covered and suggest a road-map for future
research in this field. Interestingly, many methodologies utilizing Machine
Learning (ML) for HT defence have emerged [3]. Among the existing ML-
based techniques, Artificial Neural Networks (ANN) are commonly used for
predictive analysis. Another commonly used ML approach for the problem
of binary classification is Support Vector Machine (SVM). The success and
popularity of ML methodologies in various research domains has motivated
both industrial and academic communities to explore the potential of ap-
plying it to the hardware security field. In particular, the main progress
in ML-based techniques has been achieved in three widely used detection
methodologies: reverse engineering [4, 5], circuit feature analysis [6, 7], and
side-channel analysis [8, 9].

We selected two different, yet well-known and widely adopted ML tech-
niques for HT detection. The market size for Artificial Neural Networks is
booming worldwide, with reports and successful stories from different do-
mains; any approach claiming to exploit modern artificial intelligence needs
to consider it. On the other hand, Support Vector Machine is a rock-solid
supervised, learning algorithm — it has been defined the best “off-the-shelf”
supervised learning algorithm [10] by Andrew Ng in his Stanford Lectures
on Machine Learning. The former is best suited when a big amount of data
is available, while the latter could be a better choice to cope with limited
training sets.

Our proposed methodology is applied during the pre-silicon phase of the
supply chain and is based on a deep learning analysis of the dynamic and
static properties extracted from the design RTL model. The former prop-
erties are gathered by exciting the model, i.e., executing software code; the
latter uniquely depends on the structure of the model and on the code/data
dependency. As it will be explained in depth in Section 4, these two proper-
ties are jointly used to feed the ML model which then performs classification,
i.e., calculates the probability of input samples belonging to the malicious
insertion.

In brief, the main new contributions of our work are as follows:

4

• We propose a novel technique for detecting HTs in a pipelined micro-
processor design at the RTL.

• Unlike the common approaches, this one combines both static and dy-
namic properties for building a comprehensive detection methodology
at the pre-silicon stage, resorting to robust ML algorithms.

• We run experiments on a new set of benchmarks that prove the tech-
nique’s efficacy and showing that this technique could be used with
complex industrial designs, in an automatized manner, reducing both
effort and time.

• The whole flow has been built and is adjustable for other commercial
tools that can simulate the design and generate a code coverage report.
Additional features can be introduced, while the format of inputs for
the classification stage can also be modified.

The rest of the paper is structured in the following order. Section (Section 2)
provides an insight into the field of hardware security. Furthermore, it of-
fers an overview of the state-of-the-art regarding HT design and detection
techniques. The third section 3 introduces HT benchmarks and ML method-
ologies that are used for the classification. Section 4 presents the technique
for detecting RTL HTs relying on a machine learning-based approach. As
stated previously, the approach is based on a set of features extracted from
the design in both static and dynamic analysis. Section 5 reports on experi-
mental results and demonstrate the efficacy of the technique. Finally, Section
6 draws some conclusions and highlights the future work directions.

2. Related Works

Understanding the SoC supply chain (Fig. 1) is the first necessary step
for delineating the possible attack scenarios. In [1], the authors provide
an interesting overview of the SoC development flow and all the entities
involved. They identify three main phases: the Intellectual Property (IP)
Development, the SoC Integration and the Foundry. The first one involves
all the IPs providers. An SoC is typically comprised of more than one IP
unit. To reduce research and development costs, some of them are built
in-house, others bought from third-party IP vendors. Once all the IPs are
available, they are joined to build an SoC. This phase is known as SoC

5

Integration. Both SoC designers and IP providers rely on EDA tools for
facilitating the design process. At this point, all the side structures are
already integrated into the SoC, for example, Design-For-Testability modules,
Debug Units, and Built-In Self-Test blocks are typically entrusted to third-
party specialized vendors. Once the SoC post-layout phase is done, it is sent
to the foundry for the IC fabrication. The fabrication process is usually the
most costly stage of the flow, thus is usually granted to external foundries.
A malicious actor present in any stage can insert a HT at various levels of
abstraction. The key issue lies in understanding which of these entities are
trusted and which are not. Once it has been established, a threat model
can be drawn. In [11] and [1], the authors provide a comprehensive list
of adversarial models showing exactly when, where, and how a Trojan can
be placed into an IC. The field of hardware security given the practically
unlimited number and type of the attacks is quite vast. [12] systematizes
the classification of threat models, state-of-the-art defenses, and evaluation
metrics for important hardware-based attacks.

Apart from malicious insertions, side channel analysis and IC counter-
feiting are another concern. In this context, a growing interest is given to
Physical Unclonable Functions (PUFs) [13, 14]. PUF is a physical function
that maps manufacturing variations of the circuit that occur in almost all
physical systems to digital outputs. Though such variations can cause many
different issues that can affect the function of the circuit, its lifetime, etc.,
they can also be used for security purposes. This is possible due to unique
‘fingerprint’ that cannot be intentionally reproduced in another circuit. In
[15], authors propose a novel robust and low-overhead physical unclonable
function (PUF) authentication and key exchange protocols that are resilient
against reverse-engineering attacks. PUFs can be used for hardware obfus-
cation, prevention of reverse engineering and HT embedding, HW and SW
IP protection [16]. As an example, in [17] authors propose a PUF construc-
tion method, named delay chains array PUF (DAPUF), to extract the unique
power-up state for each chip which is corresponding to a unique key sequence.
By introducing confusions between delay chains, they prevent the adversary
from understanding the real functionalities of the circuit, thus making it
difficult for the adversary to insert hard-to-detect Trojans.

As for the HT detection, related methodologies are developed both for
pre-silicon and post-silicon phases and this can be considered as a principle
classification. Post-silicon methods mainly rely on a side-channel analysis
to measure circuit parameters such as current, operating frequency, power,

6

temperature, and radiation. However, if the modified, i.e., inserted circuit
is small, the effects on the side-channel parameters could be negligible and
the HT could escape detection. In [18], authors suggest generation of test
patterns and combination of logic tests with side-channel analysis. It is
worth adding that ML has been successfully applied for this purpose. In
[8, 9], authors use ML as a side-channel detection methodology. Another
non-destructive or noninvasive type of detection approaches is logic testing.
Logic testing methods look for test vectors to activate the HT and then prop-
agate triggered Trojans effect to some observable nodes [19]. On the other
hand, most of the reverse engineering approaches are destructive (irreversibly
change the physical properties of the device) and include scanning of exposed
layers with scanning electron microscope (SEM) [4, 20, 21].

As for the pre-silicon detection approaches, two main classes can be iden-
tified here. Techniques in the first one exploit formal methods to prove the
existence of malicious hardware, such as in [22]. The second class adopts
simulation, structural analysis and functional tests generation to excite sus-
picious parts of the circuit where HTs can be hidden, e.g., [23, 24] and circuit
feature analysis [6].

The proposed work describes a ML-based, pre-silicon methodology to
detect HTs applicable at the RTL. Note that exploiting ML-based techniques
is likely to imply the creation of models from the set of historical data that
will later on be used for prediction [3]. Two different learning tasks can
be identified: supervised learning and unsupervised learning. The former
exploits labeled data to perform model training, while the latter focuses on
relations between data when labels are unavailable. To better position this
work, the following subsections introduce most relevant state-of-the-art HT
design methodologies and detection techniques at the RTL.

2.1. HT Design
Some works have focused on design possibilities and proposed certain

methodologies to create new types of HTs. In [25], authors discuss design and
implementation of RTL HTs to be hard to trigger and able to evade hardware
trust verification based on unused circuit identification (UCI). They rely on
a specific coding style and trigger input selection. Additionally, signal con-
trollability is examined from the attacker’s perspective. In [26], different
implementations of HTs were explored with different combinations of trig-
gers, payloads, as well as unique sections of the architecture that each HT

7

attacks. They were all designed with a varying level of sophistication, al-
lowing the attacker to trade-off design time, ability to evade detection, and
payload. The authors concluded that RTL designs can be quite vulnerable
to hardware attacks given the vast insertion space and functional testing can
often be useless in detecting them. Apart from introducing a metric for quan-
tifying HT activation and effect, [27] introduces a vulnerability analysis flow
for determining hard-to-detect areas and provides public trust benchmarks.
Some works proposed automatic techniques (malicious CAD tool) for HT
insertion. To generate HTs using a highly configurable generation platform,
authors in [28] use transition probability to identify rarely activated internal
nodes to target for HT insertion, rather than functional simulation as in exist-
ing platforms. The platform has been tested to generate HT-infected circuits
and then evaluated by the ML detection technique [29] — the Controllability
and Observability for HT Detection (COTD).

2.2. Detection Techniques
Methodologies for detecting triggered-type HTs at the RTL can be broadly

classified as dynamic and static. The former considers the adoption of verifi-
cation test patterns and dynamic type of analysis based on, for instance, code
coverage metrics. On the other hand, static techniques rely exclusively on
static proprieties of the target RTL model, without applying any stimuli. As
regards the first class (dynamic), one of the first approaches dates to 2010,
when Hicks et al. [30] presented BlueChip, a hybrid design time/runtime
system for detecting and neutralizing malicious circuits at RTL. BlueChip is
based on the assumption that a part of the circuit is dormant during design
verification and could therefore hide a HT. The UCI technique is able to flag
a part of the circuit as suspicious and deactivate it by raising an exception
when it becomes active. Its weakness has been demonstrated in [31], showing
a class of HTs that evade detection. Although UCI technique may be able
to discover many of the HTs shown in literature, it is sensitive to the actual
coding style. From another perspective, authors in [32] describe a framework
for generating directed test cases to activate HTs. It mixes concrete simu-
lation and symbolic execution. The results are compared with EBMC1, a
state-of-the-art formal model checker, and demonstrate good scalability on
large designs. A similar approach is presented in [33], where authors pro-

1http://www.cprover.org/ebmc/

8

posed an automated test generation technique for activating multiple targets
in RTL models by the means of concolic testing.

Concerning the static approaches, in [34], authors exploited a subgraph
isomorphism algorithm for HT detection inside an RTL model. Resorting
to a static predefined library of known HTs, the algorithm searches for the
occurrence of similar structures inside the Control Flow Graph (CFG) of the
device under verification. A CFG is a representation in the form of a graph of
all the paths in the RTL model that might be traversed during the execution.
However, this approach produces a considerable number of false positives.
To overcome this limitation, in [35] the authors combined it with a classifier
based on a Probabilistic Neural Network, i.e., a feed-forward neural network
usually used for classification tasks [36]. Even though the number of false
positives has been greatly reduced, the main drawback is still the difficulty
of finding the HTs that were not included in the pre-defined library.

3. Preliminaries

The following section introduces four important concepts that underlie
the proposed work. First, the HT benchmarks that have been used for vali-
dating the approach are described in Section 3.1. Then, fundamental charac-
teristics of digital design verification are introduced (Section 3.2); this back-
ground knowledge is useful for describing the dynamic analysis used in our
detection methodology. However, it may be superfluous for the readers that
possess some basic knowledge on this topic. Next, an overview of Artificial
Neural Networks is provided in Section 3.3 and finally, the Support Vector
Machine technique is presented in Section 3.4. Readers that already have a
basic understanding of ML may safely skip the aforementioned subsections.

3.1. HT Benchmarks
The set of benchmarks that is used for validating the proposed approach

was first introduced in [37]. A total of 28 benchmarks are available2, also
referred to as RTL trojan models.

The proposed benchmarks are HTs conceived for a pipelined Central Pro-
cessing Unit (CPU). Such Trojans are implanted into an individual Intellec-
tual Property (IP) core of the System-on-Chip (SoC) and can affect only the

2https://github.com/ale-dam/HT-uP

9

specific IP in which they are embedded [3]. The benchmarks comply with
the taxonomy and the classification scheme used by the research commu-
nity [1, 27, 11]. Furthermore, the following attributes are outlined for each
benchmark: abstraction level, insertion phase, location, activation mecha-
nism, trigger, payload, and effect. For the sake of completeness, the inser-
tion phase of the HTs is the design phase, while the abstraction level is the
RTL for all introduced benchmarks. Concerning the effects, the benchmarks
might prove to be disastrous or introduce minor damage. Three different
payload categories can be identified:

1. Degrade Performance (DP): The availability of the system under
attack might not be affected, remaining fully operational. However,
the HT might damage the performance of an IC and, in a worst-case,
cause it to fail.

2. Denial Of Service (DoS): The HT when activated stops all the ac-
tivities of the system.

3. Change the Functionality (CF): The HT alters the functionalities
of the system, causing it to perform malicious, unauthorized operations.
The CF might also lead to a DP or DoS.

The proposed RTL Hardware Trojans are implemented in the mor1kx
CPU, whose architecture and HTs’ respective faulty location are depicted in
Fig. 15. The mor1kx 3 is an open-source core provided by the OpenRISC
community; it is a configurable 32 or 64-bit load and store RISC architec-
ture, written in Verilog Hardware Description Language (HDL). Due to the
high design flexibility, it is possible to customize the core by choosing the
best trade-off between area and performance. The version selected in this
work (Cappuccino) has a pipeline with 4 stages, supports delay slot and is
tightly coupled with the caches. It also integrates a Programmable Interrupt
Controller (PIC), a Tick Timer (TT) and Debug units. In this work, HTs
are injected in the original HDL design, one at a time, by directly modifying
the RTL code.
On top of 8 primary HT designs, detailed in Table 1, we performed mod-
ifications concerning the complexity of trigger conditions and coding style
to expand our benchmark library and to obtain an additional set of 20 HT
designs. Table 1 reports all the essential details related to the benchmarks:
their name, location, trigger description, payload effect and payload category.

3https://github.com/openrisc/mor1kx

10

Table 1: Trojan Benchmarks Description

.

Name Location Trigger description Payload effect Payload
Category

OR1K-T100 Decode Unit Sequence of instruc-
tions

Periodically
forcing signal
values

DP

OR1K-T200 Control Unit Counters monitoring
read accesses to SPRs

Entering the su-
pervisor mode

DoS

OR1K-T300 PIC Unit Counters for mask and
status reg. write ac-
cess

Disabling exter-
nal interrupts

CF

OR1K-T400 Control Unit 3 counters for moni-
toring instructions

Disabling con-
trol flag bit

CF

OR1K-T500 Decode Unit A specific sequence of
instructions

Introducing
"bubbles" to
stall the pipeline

DP

OR1K-T600 Data Cache Counters monitoring
Data Cache Final
State Machine (FSM)
transitions

Invalidating
dcache content

DP

OR1K-T700 Load & Store
Unit

Instruction type, or-
der and number

Exception on the
data bus

DoS

OR1K-T800 Instr. Cache Counters monitoring
Instr. Cache FSM
transitions

Invalidating
icache content

DoS

To give an example, let us consider the HT T200. It is located in the
control unit of the processor. Counters are used to monitor read and write
access of special purpose registers (Fig. 3). With each access, a corresponding
counter is incremented. When all of the counters reach pre-defined values,
a trigger is activated (Fig. 4). The payload in this case is integrated into
the existing code by adding a single OR condition to go from user to super-
visor mode (Fig. 5). Such behaviour is typical when an exception occurs.
As a result, interrupts and timer exceptions are disabled, as well as Data
and Instruction MMU. Additionally, once the device is in supervisor mode,
access to some sensitive registers is enabled, which in some safety-critical

11

Figure 3: Trigger T200 counters

Figure 4: Trigger T200 condition

applications may have serious consequences.

3.2. Digital Design Verification
Digital systems are created by following a series of steps that comprise

several intermediate design phases. Clearly, the lower the abstraction level,
the higher the complexity of the resulting model. Identifying and removing

12

Figure 5: T200 payload

logic errors in a design is not a trivial task; in fact, nowadays, the develop-
ment resources devoted to these tasks amount about 50%-60% of the total
cost in the design process [38]. Actually, a series of verification processes
are required intending to guarantee that the design model meets the ex-
pected specifications [39]. Very different methodologies have been developed
to generate verification stimuli. The main possibilities range from manual
verification techniques to formal verification techniques, including random
and semi-random approaches. In particular, simulation-based methodologies
try to completely exercise the current model of the device to uncover design
errors. Briefly, a simulation-based verification process is composed of three
basic elements: input data (also called a set of stimuli), the model of the
device under evaluation (also called design or device under verification or
DUT); and the response checker, which generates the pass/fail information
regarding the current process by performing a comparison of the obtained

13

results against the expected ones. To qualify a set of stimuli, one of the most
used methodologies is based on collecting a series of measurements obtained
by computing the code coverage metrics during the simulation of the device
while running the stimuli set. These metrics identify which code structures
belonging to the circuit description are exercised by the set of stimuli, and
whether the control flow graph corresponding to the code description has
been thoroughly traversed. The structures exploited by code coverage met-
rics range from a single line of code to if-then-else constructs. Today CAD
tools are able to measure, among others, the statement coverage, branch cov-
erage, condition coverage, expression coverage, toggle coverage, and metrics
based on Finite State Machine models [40].

3.3. Artificial Neural Networks
The origin of Neural Networks dates to 1950s, when the basic building

block of modern neural networks, the perceptron, was first proposed [41].
Over the years, key theoretical discoveries and technological advances al-
lowed this concept to evolve into a brand new field. The original perceptron
contains a single input layer and an output node, as shown in Figure 6, and
may implement a linear binary classifier. The input layer does not perform
any computation and thus it is not included in the count of the number of
layers in a neural network. Therefore, in modern terminology, the perceptron
would be considered a single-layer network. It is worth underlying that mod-
ern neural networks are certainly built with more than one computational
layer.

y

x1

x2

xN

w1

w2

wN

...

bias

f

Activation
Function

Output

in
pu

ts

Neuron Body

Communication
Channels

Synaptic
Weights

Summation

Figure 6: The basic architecture of the perceptron.

In more detail, the input layer of a perceptron contains N nodes that
transmit the N features X = [x1 ... xN] with edges of weight W = [w1...wN]
to an output node y. The prediction of the perceptron is computed as follows:

14

y = f(
N∑
j=1

wjxj + b) (1)

In Eq. (1), xj are the inputs, wj the weights, b is the bias. The activation
function (f) defines how the weighted sum of the input is transferred to the
output node. The choice of f is considered a critical part of neural network
design since it has a large impact on the capability and performance of the
neural network. The interpretation of the perceptron as a computational unit
is useful, and it allows us to combine multiple units (i.e., multi-layer percep-
tron) to develop far more efficient models [42]. Broadly speaking, Artificial
Neural Networks are computing models composed of computing nodes, con-
nected to one another through communication links (Fig. 7). Nodes are
arranged in layers, at least one input layer, one intermediate (or hidden),
and one output layer.

Figure 7: Artificial Neural Network: a basic representation.

Nowadays, the conventional machine learning applications used for exam-
ple to identify objects in images or transcribe speech into text, make use of
techniques stemming from NN and labeled as “deep learning” [43]. Thanks to
the multiple levels of representation, quite complex functions can be learned;
nevertheless, in the building blocks of such structures it is still recognizable
the old idea of perceptron.

Over the years, many different neural network architectures have been
created depending on the layers and their organization, the activation func-
tions, and many other exploited features. Among the most common and
widespread types are: convolutional neural networks (CNNs) and residual
neural networks (ResNet) for image classification and object detection tasks;

15

recurrent neural networks (RNNs) for tasks that involve sequential inputs
such as speech and language. Recent studies have demonstrated that state-
of-the-art neural networks can surpass human-level performance: for exam-
ple, in [44] the authors achieved 4.94% top-5 test error on the ImageNet
classification dataset, and the human-level performance was 5.1%, according
to Russakovsky et al. [45]. The potential of this kind of deep and complex
neural networks (e.g., ResNet [46]) reflects the fact that biological neural
networks gain much of their power from depth.

3.4. Support Vector Machine
An SVM, close to its current form, was described in [47] as a training

algorithm that maximizes the margin between the training patterns and the
decision boundary. It has been developed from the Statistical Learning The-
ory in the 1960’s [48]. The goal of the SVM algorithm is to define an optimal
separating hyperplane for a two-class dataset. SVM tries to maximize the
width of margin between the so-called support vectors, that is, training sam-
ples that lie closest to the separating hyperplane (Figure 8).

�

Figure 8: Defining a border between classes using an SVM (support vectors are marked
with � and ◦)

Training input for the system can be represented as a set of r elements:
{(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xr, yr)}, where xi, i = 1, 2, . . . , r represents
a n-dimensional input sample vector with the corresponding response value
yi, i = 1, 2, . . . , r (2).

16

yi =

{
1, if x ∈ A
−1, if x ∈ B

(2)

After the training process, the class of the new input data vector x will
depend on the decision function value, D (x), in such a way that it represents
a position below or under the hyperplane separating the two classes. This
function can be expressed as a linear combination of parameters (3),

D (x) =
n∑

j=1

wjxj + b = wx+ b (3)

where wj are coefficients, x is input vector and b is a bias coefficient. Con-
ditions for discrimination between input sample xi being on one (4) or the
other side (5) of the hyperplane, can be unified into a single condition (6).

wxi + b ≥ 1, yi = 1 (4)

wxi + b ≤ −1, yi = −1 (5)

yi (wxi + b) ≥ 1 (6)

wx+ + b = 1 (7)

wx− + b = −1 (8)

w (x+ − x−) = 2 (9)

M =
w

‖w‖
(x+ − x−) =

2

‖w‖
(10)

Margin M is defined using a difference (9) of two samples x+ (7) and x−
(8) lying on two boundaries. The objective of this algorithm is finding the
coefficient vector w in order to maximize the marginM (10). To summarize,
the goal is minimizing ‖w‖

2

2
with the condition of correctly classifying all the

points yi (wxi + b) ≥ 1.
In many applications, constructing a hyperplane is not possible and will

not result in successful classification of the input data. By applying the tech-
nique called "kernel trick", input space gets mapped into a higher dimen-
sional, linearly separable feature space Fig. 9. Most commonly used complex
kernels are polynomial, gaussian and sigmoid. Linear kernel is the simplest

17

one, corresponding to the dot-product between two vectors and is used for
linearly separable data to construct a hyperplane. A linear operation in the
feature space is equivalent to a nonlinear operation in the input space.

Feature spaceInput space

ϕ

Figure 9: Using non-linear kernel functions to map input space

K(x,y) = x · y

Kp(x,y) = (1 + x · y)p

Krbf (x,y) = exp

−‖x2 − y2‖
2σ2

Ks(x,y) = tanh(1 + x · y)p

xi

xj

εi

εj

Figure 10: To prevent overfitting, avoiding narrow margin is recommended. This can
sometimes be achieved by introducing a margin and allowing a certain degree of misclas-
sification.

Having a non-linearly separable classification problem, a deviation can
be introduced, using a parameter to adjust the desired error/margin. Such

18

parameter is usually referred to as probability threshold. Although we allow
for a certain misclassification, the boundary margin is still retained (Fig. 10).

When SVM algorithm is used for classification the decision which kernel
fits the best in practice is brought empirically; their performance is analyzed
observing ROC curves, confusion matrix results, and the performance metrics
associated with the confusion matrix [49]. This activity is commonly referred
to as hyper-parameter tuning, and several machine-learning toolkits support
it (e.g., the grid-search functionality in scikit-learn [50]).

Since the SVM is intrinsically a linear separator, when the classes are not
linearly separable the data can be transformed into a high dimensionality
space and with a high probability find a linear separation. This is stated by
the Cover’s theorem [51] and the RBF Kernel does exactly that: it projects
the data into infinite dimensions and then finds a linear separation. Further-
more, the linear kernel can be used when there are a lot of features because
it is likely that data are already linearly separable and an SVM will find the
best separating hyperplane. Linear kernels also work very well with sparse
data like text. On the other hand, when data are not linearly separable the
rule of thumb is trying an RBF kernel first. The practical way to decide
which kernel to use is by cross-validation.

4. Proposed Approach

The proposed methodology relies on a supervised learning scheme. It is
necessary to underline that, apart from [35], most ML-based techniques are
applied at the gate-level. However, more and more examples of HTs inserted
at RTL are available, due to the flexibility for implementing various mali-
cious functions. Hence, there is a pressing need for more RTL HT detection
techniques. To fill the above-mentioned gaps, this paper presents a ML-based
methodology for detecting triggered-type Hardware Trojans. It combines a
dynamic approach with a static analysis of the RTL model. Indeed, if a
static approach analyzes the structure of the model looking for a similarity
with the structure of a Trojan, a dynamic method considers the true activity
of the circuit. For this reason, the proposed work picks up the best of the
two methods to cover a greater set of HTs and thus, generalize the detection
approach.

The proposed flow is shown in Fig. 11. The input of the framework is
the design that is about to be processed; it is the behavioural RTL model
description. The output is a report indicating suspicious parts in the design,

19

i.e., the code fragments that should be checked more thoroughly for malicious
HTs insertion. The RTL design is processed in order to extract both dynamic
and static information. While the dynamic is derived from observing the
model behavior under different stimuli, the static is obtained without any
code execution and is related to the structure and control/data dependency
in the code. The data extracted from the RTL model are embedded in
CFGs. Static/Dynamic data are used as attributes to create input samples
out of node sets for the classification task. At the end, a ML-based binary
classification is used for distinguishing between input samples originating
from the CFGs. The proposed approach is based on the following steps:

• Control Flow Graph Extraction:

1. Static Attributes
2. Assign DataFlow Map
3. Dynamic Attributes

• Data Formatting

• Classification

In the following subsections, each of the steps is described in a more detailed
manner.

Logic
simulation

Design RTL

Coverage
reports

toggle
block

CFG

Assign DataFlow Map

STATIC 0
1

Data
Labelling
(Training)

[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11]

ML

DYNAMIC

CFG EXTRACTION DATA FORMATTING ML CLASSIFICATION

Static Dynamic

Attribute List

node

Final
Report

Figure 11: Detailed framework flow including three main steps: CFG extraction, Data
formatting and ML classification

20

4.1. Control Flow Graphs Extraction
The RTL model of the design is described as a set of concurrent "pro-

cesses". Two main hardware description languages are VHDL [52] and Ver-
ilog [53]. At the initial stage, the RTL design is represented in the form of a
CFG, which incorporates key properties of the design: the static, dynamic,
and dataflow map. These are essential for the training of the NN which is
responsible for identifying malicious insertion in the code.

A CFG is a directed graph G = (V,E, in, out), where V is a set of vertices
(nodes) and E set of edges. For each process P in the RTL design D, a CFG
G can be extracted. A node v ∈ V of the graph G can be:

• a single non-blocking statement – allow scheduling assignments without
blocking the procedural flow;

• a conditional statement/loop (IF-ELSE, CASE, FOR, WHILE).

E is a finite subset of V ×V ; e is an edge between the nodes v1, v2 if and
only if v2 can be executed after v1 in the process P . in and out are the first
and the last node in a CFG, respectively, used to mark entering the process
and leaving the process. An example of the structure and its corresponding
CFG are shown in Fig. 12. Then, each node in the CFG holds an attribute
list, which will be created as described in the following.

If (condition1) begin
statement11;
statement12;
end

else if (condition2) begin
statement21;
statement22;

end
else if (condition3)

statement31;

condition1

condition2

condition3

statement11

statement21
statement12

statement31

T

T

T

F

F

F statement22

Figure 12: CFG with the corresponding code structure

21

4.1.1. Static Attributes
The static attributes have been extracted from the RTL design by pars-

ing the source code files. Given the complexity of modern designs, such task
requires an automated tool. Usually, such tools provide as an output an
abstract syntax tree (AST). AST is a convenient hierarchical tree-like rep-
resentation of the abstract syntactic structure of source code. Then, syntax
trees generated by the parser are traversed to perform the extraction of the
CFGs in accordance with the definition that was introduced previously. It is
worth noting that each of the source files may contain more than one process,
which are all elaborated sequentially. The algorithm extracts the list of input
signals, registers, wires, output signals, and parameters. A CFG node is iden-
tified by its unique name and a unique line number that get assigned inside
the processes while creating nodes and attaching them to the corresponding
graph. Since one node can represent either a conditional statement, i.e., a
loop, or a non-blocking statement, it is possible to extract static properties
from such constructs. These include the number of input signals, the number
of output signals, the number of logic operators, relational and equality op-
erators, arithmetic operators, and numbers (constants). Additionally, each
node has its depth in the CFG (level - the number of edges in the path from
the root to the node).

Algorithm 1 Generating Assign DataFlow Map
function generateAssignDataFlowMap(gen, len, i, d)

assignMap← []
while statementis assign do

L,R← statement
if L in assignMapkeys then

assignMap[L][0]← assignMap[L][0] +Rattributes

assignMap[L][1]← assignMap[L][1] ∪Rsignals

else
assignMap[L]← [[attributes(R), set(signals(R))]]

4.1.2. Assign DataFlow Map
To deal with the combinational logic (e.g., the assign statements in Ver-

ilog), the proposed flow introduces an auxiliary structure. Creating an Assign
DataFlow Map allows the information outside of the (sequential) processes
to be captured and incorporated later into the CFGs. Left part of the assign

22

assign signal1 = input11 & !(input12 | input13) &
(counter1 == 121346) ? 1 : 0;
assign signal2 = (input21>output21) &
(counter2 == 314431) ? 1 : 0;
assign signal3 = (counter3 == 122214) ? 1 : 0;
assign signal12 = signal1 & signal2;
assign signal123 = signal12 & signal3;

Figure 13: Assign statements

signal1: [3, 0, 0, 1, 4, 0, 0, 3], {counter1, input11, input12, input13}
{counter1, input11, input12, input13}
[3, 0, 4, 1, 0, 0, 0, 3]

signal2: [1, 1, 1, 2, 0, 0, 0, 3],{counter2, input21, output21}
{counter2, input21, output21}
[1, 1, 1, 2, 0, 0, 0, 3]

signal3: [0, 0, 0, 1, 0, 0, 0, 3],{counter3}
{counter3}
[0, 0, 0, 1, 0, 0, 0, 3]

signal12: [0, 0, 1, 0, 0, 0, 0, 0], {signal2, signal1}
{counter1, counter2, input11, input12, input13, input21,
output21}
[4, 1, 5, 3, 0, 0, 0, 6]

signal123: [0, 0, 1, 0, 0, 0, 0, 0],{signal12, signal3}
{counter1, counter2, counter3, input11, input12, input13,
input21, output21}
[4, 1, 5, 4, 0, 0, 0 9]

Figure 14: Assign DataFlow Map

statement is used as a key to identify an item in such structure, while the
corresponding value is in a form of a list. Its first element is an array of
properties that coincide with the ones for the statements inside the process
(static attributes). The second one is a list of used signals, either inputs
(input), registers of integers (reg, integer) or other wires (wire). The map is
searched recursively for all of its key elements, summing up the attributes for
a corresponding signal list. It stops when there are no more wire signals, i.e.,
if the remaining ones are a register, integer, input or output. For example,
in Fig. 14, for signal123, it adds the attributes of signal12 and signal3,
then it does the same for signal12, taking the attributes of signal1 and
signal2. On the other hand, signal1, signal2, and signal3 do not con-

23

tain in their signal set any keys from the map entries. While creating the
CFGs and extracting their nodes’ static attributes, the influence that a sig-
nal present in Assign DataFlow Map has on a statement inside the process
is taken into account by adding its attributes from the corresponding value
in the map entry.

4.1.3. Dynamic Attributes
Logic simulations of the design under assessment are performed to collect

code coverage reports, based on standard metrics such as statement and tog-
gle coverage. The idea is to gather information from a set of programs that
thoroughly exercise the design under analysis. It is essential to outline that
such set of programs may have been written either as a part of pre-silicon or
post-silicon verification, validation, or even manufacturing tests etc., target-
ing different parts and different features of the system. For every instance
in the design, the uncovered sequential statements belonging to a process
are listed with their line number, source code, and type (if and case con-
ditional structures, for and while loops together with non-blocking assign
statements). The second type of reports focuses on toggle activity of the
signals that are being used outside of sequential processes as inputs/outputs,
to model combinational logic in assign statements. For each and every pro-
gram in the library, a statement-coverage report is generated, while only one
merged report for all runs regarding the signal toggling.

Hence, two additional fields have been created in the attribute list for such
purpose: one for execution probability and one for signal toggling activity.

Regarding the former, a category is decided for each node (statement)
based on the number of executions, i.e., how many times it was covered.
This technique is an important tool for preparing numerical data for ML and
is referred to as unsupervised discretization [54]. It consists of transforming
data from continuous to discrete, using e.g., equally wide intervals. Typical
use case is having many unique values to model effectively. In Eq. (11)
that shows the range for deciding a category, nexec is a number of times a
statement has been covered out of M runs. N is the number of intermediate
categories, set to 5. Consequently, apart from the two extreme categories
never (N) and always (A), there are other five: almost never (XS), rarely
(S), sometimes (M), often (L), and almost always (XL).

i
M

N
≤ cat(nexec) < (i+ 1)

M

N
, i ∈ {0, 1, 2, · · · , N} (11)

24

As for the latter, toggle reports from all of the runs are merged into a
unique report, showing if a wire signal has toggled in at least one run, fully
or partially (rise and fall). The algorithm embeds such information into a
node belonging to a process statement in the following manner: wire signals
are listed in such statement, if any, otherwise score 0 is set; based on their
total number t and the number of those that toggled d a ratio R = d

t
is

calculated; R falls into one of the ranges, 0, (0, 1
4
], (1

4
, 2
4
], (2

4
, 3
4
], (3

4
, 1), 1, and

gets assigned a value from 6 to 1.

4.2. Input Data Formatting
By capturing the structural and functional dependency between the nodes

in a CFG, the context and neighbourhood information is brought into the
predictions. To do so, a node with its closest neighbours is selected to form
a set, i.e., to obtain an input sample. Clearly, such sets may vary in size,
given the bound that is chosen for grouping the nodes. It is desirable not
to be too generic neither too specific, since this action will have an impact
on the learning capabilities. For this reason, we have considered a set of
4 nodes. Therefore, each node that has at least one parent and at least
one child is processed. For nodes with more than one parent P and more
than two children C, all the possible combinations are extracted P ·

(
C
2

)
.

A child having no siblings is included in the selection two times. For all
the CFGs, the algorithm implementing a set of above-mentioned rules ex-
tracts a set S of node selections ti = (pi, ni, c1i, c2i). Subsequently, by ex-
panding its nodes with their incorporated attributes gets transformed into
tai = (a(pi)[], a(ni)[], a(c1i)[], a(c2i)[]). For the training such input data
have to be labeled relying on the set of Trojan Benchmarks introduced in
[37]. If a central node ni for which we select its environment belongs to the
malicious insertion then, the set of 4 nodes is marked as positive. Otherwise,
it is marked as negative, i.e., non-suspicious.

4.3. Classification
Once the data have been extracted, the problem may be tackled as a

pure Machine Learning classification problem. The learning phase, i.e., the
training process, relies on the features obtained from the data formatting.
Here, we apply different paradigms to perform the classification and confront
their performance in the following subsections. The first one is using SVM
algorithm, while the second is based on a fully connected feed-forward neural
network.

25

4.3.1. Classification with Support Vector Machine
SVM algorithm is used with different kernels to choose the one that fits

best for the problem in question. Often the differences in the scales across
input variables may affect the training process and therefore the final result.
A model might become unstable, meaning that it would suffer from poor
performance in both learning and validation/test phases as a result of high
sensitivity to input data and higher generalization error. Therefore, using
pre-processing techniques such as scaling or normalizing input data is pre-
ferred when working with many ML algorithms. Normalization is a scaling of
the data from the original range so that all values are within the new range
between 0 and 1. It can be performed on each individual data sample (row-
wise) or across data features (column-wise). Standardization on the other
hand, includes transforming data to change its distribution of values: the
mean of the observed values becomes 0 and the standard deviation 1. For
this particular purpose, we perform scaling across the features: X =

X − µ
σ

.

4.3.2. Classification with an Artificial Neural Network
Given the number of attributes, the number of inputs for a fully con-

nected feed-forward neural network is set to 60, after expanding some of the
features with one-hot-encoding. Following the common experience of ma-
chine learning experts, having too many layers when dealing with a limited
number of training data (an order of magnitude of 1000 samples) may re-
sult in underfitting. Furthermore, the number of NN inputs is a limiting
factor when defining the number of nodes in layers. Given the previous con-
sideration as well as an empirical analysis, the following topology has been
adopted: (64, tanh), (32, tanh), (32, relu), (2, sigmoid). For the sake of
clarity, the first number indicates the number of neurons that constitutes
the fully-connected layer, while the second parameter specifies the activation
function, e.g., hyperbolic tangent, rectified linear unit, sigmoid.

For a fixed topology, tuning training parameters may significantly en-
hance the NN learning capabilities. Hence, K-fold cross-validation method
is employed to find the best optimizer and select optimal parameters such
as batch and number of epochs. One of the challenges faced in ML is mem-
orizing the input samples, especially when having a small training dataset.
However, the NNs have shown to be more resilient to such problem. In any
case, to reduce the generalization error, i.e., to prevent overfitting, a Gaus-
sian noise is added to the input. In this way, the training process is made

26

more robust.

5. Experimental Evaluation

5.1. Experimental Setup
The selected platform is AutoSoC [55], an open-source SoC benchmark

suite, conceived to serve the needs for standardization and benchmarking in
the automotive area.

Figure 15: mor1kx CPU core in cappuccino configuration

For each one of the 28 benchmarks described previously, the following
experimental procedure was used:

1. Parsing of the design model using a set of Python tools and an in-house
developed tool to generate CFGs;

2. Performing the logic simulation and report generation using state-of-
the-art commercial tools; then, adding the information originating from
the coverage and toggle reports to the CFGs;

3. Node extraction: a selection of nodes with their neighborhood is made
(parents and children) to create textual files whose rows contain the
attributes for each of the 4 nodes. For the training process such data
have to be labelled manually; repeating items, if any, are eliminated.

The whole setup has been developed to perform logic simulation and
generate reports in Linux environment on a server equipped with a dual Intel
Xeon CPU E5-2680 v3 and 256 GB of RAM. The process itself is managed
by a set of bash scripts taking care of design elaboration, design simulation,
calculating the coverage and merging the reports. Given the fact that for the

27

training process designs with different type and implementation of HTs have
to be simulated multiple times, the time required for obtaining the reports
can become significant. To speed-up the execution time, a multi-process
environment has been developed. For this purpose, a library of test programs
for mor1kx CPU has been simulated on all the 28 RTL trojan models. The
test program library includes 46 programs for a total of 64 KB. Launching a
set of 46 program simulations on one design in this configuration requires 22
minutes on average. By merging the contribution of each single program, the
entire test program library achieves 85% of statement and toggle coverage
on the golden design model (Fig. 16). It is worth underlying that the test
program library is not able to activate the Hardware Trojans, being coherent
with the assumption that HTs hide under rare trigger conditions.

0

10

20

30

40

50

60

70

80

90

100

C
o

ve
ra

ge
 [

%
]

Test program

85.17%

Figure 16: Individual coverage of each program on mor1kx core

In our approach, the tool for performing the task of parsing is Pyver-
ilog [56]. It is a Python-based hardware design processing toolkit for Verilog
HDL. The tool relies on Icarus,an open-source tool for performing the prepro-
cessing. It flattens the hierarchy by implementing the include and define
directives, producing the equivalent output related to such directives. Suc-
cessively, Pyverilog reads the source code and generates Abstract Syntax
Tree (AST) in the form of Python nested class objects. The parser is built

28

upon PLY4 which is used as a parser generator (compiler-compiler). PLY is
a Python implementation of the Lex-Yacc lexical analyzer.

Module CTRL
(input CLK,
input RST,
output enable,..

Verilog HDL
Code

Lexical
Analyzer

Syntax
Analyzer

AST

Parser

Figure 17: Pyverilog parser

5.2. Experimental results with Support Vector Machine
The first set of experiments is intended to utilize SVM as a model to

perform classification of code sections given in the form of attributes belong-
ing to the family of nodes. Common practice when working with supervised
learning and data classification is to split the data set into three exclusive
sets: training set, validation set, and test set. However, by partitioning the
available data into three sets, we drastically reduce the number of samples
used for the learning phase. Consequently, such action might have a negative
impact on the model’s performance. Furthermore, the results can depend on
a particular random choice when choosing/creating training and validation
sets. A solution to this issue is using k-fold cross-validation. It consists in
splitting the training set into k smaller sets. The following procedure is fol-
lowed for each of the k “folds”: a model is trained using k − 1 folds as input
data for the training; the resulting model is validated on the remaining part
of the data (i.e., it is used as a test set to compute a performance measure).
Training/validation data and test data contain respectively, 80% and 20% of
the complete data set.

The average recall, precision, accuracy and F1-score [57] were calculated
on cross-validation sets with 10 folds for each of the four classifiers and re-
ported in the first four columns of the Table 2. Subsequently, the model was
trained on the whole training data set (80%), with a particular model config-
uration. Next, we examined the models’ strength by applying test data that
had not been used previously, i.e., the remaining 20% of the initial complete
set.

Receiver Operating Characteristic (ROC) curve is a graphical plot show-
ing the influence of the threshold margin on the performance of the binary

4http://www.dabeaz.com/ply/

29

http://www.dabeaz.com/ply/

Table 2: Experimental results of the four SVM classifiers
.

Cross-Validation 10− fold Training [80%] Test [20%]

Kernel Rec. Prec. Acc. F1-sc. Rec. Prec. Rec. Prec. Acc. F1-sc. TN FP
FN TP

Linear 0.79 0.60 0.87 0.69 0.80 0.64 0.81 0.61 0.87 0.70 314 42
15 66

Polynomial 0.49 0.90 0.90 0.63 0.57 0.97 0.64 0.95 0.93 0.76 353 3
29 52

RBF 0.82 0.81 0.93 0.82 0.88 0.90 0.91 0.87 0.96 0.87 345 11
7 74

Sigmoid 0.67 0.42 0.77 0.52 0.68 0.4 0.64 0.41 0.76 0.5 280 76
28 53

classifier system; it gives a trade-off between sensitivity (true positive rate)
and specificity (1 - false positive rate). Classifiers with corresponding ROC
curves closer to the top-left corner indicate a better performance. On the
other hand, the closer the curve comes to the 45-degree diagonal of the ROC
space, which is used as a baseline for the random classifier, the less powerful
the classifier becomes. Four Receiver Operating Characteristic (ROC) curves
for linear, polynomial, rbf and sigmoid kernels are given in Fig. 18. They
provide enough information to analyze the predictive power of a classifier
and find the optimal threshold. Based on the aforementioned analysis, the
threshold was set to 0.19. Moreover, the RBF kernel was chosen as the best
one in terms of performance when compared to the other 3. This claim can
be supported by observing the numerical values in Table 2, where we report
recall and precision on the training set, and successively, recall, precision,
accuracy and F1-score on the test set, together with the corresponding con-
fusion matrix. Additionally, here we decided to split the attributes extracted
from the set of nodes and examine their partial influence on the performance
of the classifiers. As shown in the Fig. 18, we performed training using ex-
clusively static attributes (stat), then dynamic attributes (dyn) and finally,
latter and former combined (stat+dyn). All of the classifiers clearly un-
derperformed when relying only on the dynamic attributes. In case of the
classifier with the RBF kernel, using the complete set of attributes instead of
static attributes only resulted in improved classification power; in particular,
0.91 instead of 0.88 for recall, 0.87 instead of 0.8 for precision, 0.96 instead

30

(a) ROC curve for linear kernel (b) ROC curve for polynomial kernel

(c) ROC curve for rbf (gaussian) kernel (d) ROC curve for sigmoid kernel

Figure 18: ROC curves for 4 different kernels including different set of extracted attributes
(farther from the 45-diagonal, i.e., closer to the upper-left corner, the better)

of 0.94 for accuracy and 0.87 instead of 0.84 for f1-score.

5.3. Experimental Results with Artificial Neural Networks
The second set of experiments is related to training the NN and eval-

uating its performance. For selecting the parameters of the NN during the
training process, exhaustive experiments were run using LazyGrid5, an open-
source package that eases hyper-parameters tuning and comparing different
machine-learning models.

To evaluate the effectiveness of the proposed NN approach, eight different

5https://github.com/glubbdubdrib/lazygrid

31

https://github.com/glubbdubdrib/lazygrid

Table 3: Experimental results of the NN

.

Training
Dataset
∪T\

Training performance Test
Dataset
(nCFG)

Test performance FP
rate
[%]

Det.

TP TN FN FP TP TN FN FP

T1∗ 260 1781 42 8

T1(183) 23 1493 7 1 1.1 X
T11(183) 18 1493 6 1 1.1 X
T12(183) 27 1493 9 1 1.1 X
T13(184) 24 1493 7 1 1.1 X
T14(185) 23 1493 8 1 1.1 X

T2∗ 308 1764 13 14
T2(182) 19 1490 15 5 0.1 X
T21(183) 24 1491 16 6 0.1 X
T22(182) 19 1493 11 5 0.1 X

T3∗ 358 1769 22 11
T3(182) 8 1487 1 10 0.3 X
T31(183) 6 1489 2 10 0.3 X
T32(184) 5 1490 7 12 0.3 X

T4∗ 346 1770 25 16

T4(182) 5 1485 9 10 0.3 X
T41(182) 4 1487 10 10 0.3 X
T42(182) 40 1494 11 10 0.3 X
T43(183) 3 1487 11 10 0.3 X

T5∗ 305 1770 16 13

T5(184) 35 1487 7 8 1.4 X
T51(184) 28 1489 6 8 1.8 X
T52(184) 35 1491 8 13 1.8 X
T53(185) 38 1489 7 8 1.8 X

T6∗ 343 1641 30 9
T6(181) 7 1489 9 5 1.2 X
T61(181) 9 1492 5 5 1.1 X
T62(181) 9 1486 15 5 1.3 X

T7∗ 358 1781 32 7
T7(183) 23 1494 2 3 1.0 X
T71(183) 21 1496 2 1 1.0 X
T72(184) 29 1496 4 1 1.1 X

T8∗ 340 1656 34 5
T8(181) 8 1490 13 2 0.4 X
T81(181) 10 1493 8 2 0.4 X
T82(181) 10 1493 8 7 0.5 X

experiments have been conducted, one for each group of HTs. To determine
how the NN will generalize for an independent data set, we used cross valida-
tion technique. In other words, the NN has been trained on a set completely
independent from the test one. The results show that even though the NN

32

learns only on a category of HTs, it is able to discover different types as well.
In Table 3, we report for each training data set, the results obtained by

evaluating the learning capabilities of the NN on the corresponding test sets.
For a subset of benchmarks Tk∗ that is used later for test, we first train the
NN on the whole set of all benchmarks (

⋃
T) excluding that one particular

subset Tk and benchmarks derived from modifying it (Tk∗). Confusion ma-
trix terminology is used to present training and test performance given the
predicted and expected classes for binary classification. The number of CFGs
in a design (a set) is equal to the number of processes it contains. Finally, a
false positive rate (FP

FP+TN
) is given in the penultimate column of the table.

Figure 19: Set of nodes belonging to HT as TP and FN

Classification Explanation
True positive (TP) Trojan code correctly recognized as malicious
True negative (TN) Circuit code correctly considered safe
False positive (FP) Safe circuit code believed to be malicious (i.e., a false alarm)
False negative (FN) Malicious code that escaped detection (i.e., a major error)

Table 4: Meaning of the confusion matrix in context of HT detection

Elements of the confusion matrix in context of HT detection are given in
Table 4, with their corresponding explanation and the effect from the user’s
point of view. The number of FPs (a non-trojan detected as trojan) should
ideally be 0, i.e., in practice it should be kept as low as possible, together with
the FNs. However, the obtained numbers (FP and FN) are still significantly
low, given the total number of samples that have been evaluated (∼1.5k).

It is essential to outline that, first of all, the number of FPs remains
significantly lower than the number of TNs, while being comparable to TPs.
Therefore, checking all samples marked as positive (TPs + FPs), does not

33

represent a huge effort. Secondly, even though there are FNs, it does not
mean some parts of malicious code escape the final analysis and remain
undetected. As it can be seen from Fig. 19, a set of nodes marked in orange
belongs to the HT (inserted malicious code), while those in blue are not.
Those nodes covered in red polygon are detected as malicious, therefore enter
in TP category, while those in blue polygon are left undetected, belonging
to the FN. By revealing one, others can be examined and by tracing back all
TPs, a verification engineer is able to completely discover all of maliciously
inserted code. Thus, we can confirm that all of the Trojans in the test set
have been discovered.

6. Conclusions

It has been drawn to the attention of the reader that approaches to detect
HTs at the RTL are essential because the contamination of the design cycle is
prevented. However, the literature review discovered only a few approaches
that incidentally, work only for a specific type of HTs. In this paper, we
have addressed the problem of detecting RTL HTs resorting to ML-based
techniques in a pipelined CPU. A mixed approach consisting of static and
dynamic model analysis is presented where robust machine learning algo-
rithms are used to perform classification. Experimental results prove the
technique’s efficacy: no HT was left undetected, showing that this technique
could be used with similar complex industrial designs, in an automatized
manner, reducing both effort and time. The in-house tool was built and
integrated into the whole flow to provide a fast and efficient analysis. It is
adjustable for other commercial tools that can simulate the design and gen-
erate a code coverage report. Additional items and rules can be introduced
for feature extraction, as well as different CFG node environments to create
the classification input. The final flow processing of the input, given as an
RTL behavioral model, includes logic simulation, CFG extraction and anno-
tation, and input formatting. The final result of the evaluation is the list of
suspicious locations in the code. By “out-of-sample” testing we showed that
the NN method is able to identify all HTs embedded in a complex design ag-
gravating the detection process. Additionally, we evaluated the performance
of four different SVM classifiers. The one using RBF kernel was shown to
generalize very well. Comparing two models in terms of performance, SVM
RBF kernel is more successful in discovering the set of nodes that is marked
as malicious and also takes less time to train. Nevertheless, both approaches

34

in the end detect each HT as an entity, following the discussion that a set of
nodes might represent only one section of a HT. The relatively small amount
of training data might be responsible for a poorer performance of the NN.

It should be acknowledged that there are certain limitations to this ap-
proach. Since it is both static and dynamic, it requires input data for the
simulation, either high-level software code, e.g., C code, or directly on the
hardware side, e.g., an RTL testbench. Nowadays, in the industrial practice
of chip design and development, writing such (verification) programs can
start early in the life-cycle, which makes it suitable for this application. Tro-
jans evolve in structure and their location is unpredictable. A lot of effort is
being invested into their classification and development. Since the supervised
type of learning is used to train both SVM and ANN, it is uncertain how
their classification performance will change with new types of HTs. How-
ever, such new malicious insertions may be included into the training set.
Another limitation is the number of false positives. As it has been explained
in the discussion of experimental results, false positives at the output of the
classifier mean that a part of HT has not been identified as malicious. This
does not mean that the whole Trojan escaped detection: it implies that some
additional manual effort is required to decide. The efficiency of the approach
nevertheless remains high, given the size and complexity of modern designs.

Future work will be focused on examining and extending the set of prop-
erties used for the analysis and validating the approach further with some
other HTs.

Acknowledgements

The work has been partially supported by the European Commission
through the Horizon 2020 RESCUE-ITN project under the agreement No.
722325.

References

[1] K. Xiao, et al., Hardware trojans: Lessons learned after one decade of
research, ACM Trans. Des. Autom. Electron. Syst. 22 (2016).

[2] S. V. Pham, J. Dworak, An analysis of differences between trojans in-
serted at rtl and at manufacturing with implications for their detectabil-
ity, 2012.

35

[3] R. Elnaggar, K. Chakrabarty, Machine learning for hardware security:
Opportunities and risks, Journal of Electronic Testing 34 (2018) 1–19.

[4] C. Bao, D. Forte, A. Srivastava, On application of one-class svm to
reverse engineering-based hardware trojan detection, in: Fifteenth In-
ternational Symposium on Quality Electronic Design, 2014, pp. 47–54.

[5] W. Li, Z. Wasson, S. A. Seshia, Reverse engineering circuits using be-
havioral pattern mining, in: 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust, 2012, pp. 83–88.

[6] K. Hasegawa, M. Yanagisawa, N. Togawa, Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection
using random forest classifier, in: 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), 2017, pp. 1–4.

[7] E. Zhou, et al., A novel detection method for hardware trojan in third
party ip cores, in: 2016 International Conference on Information System
and Artificial Intelligence (ISAI), 2016, pp. 528–532.

[8] S. Wang, et al., Hardware trojan detection based on elm neural network,
in: 2016 First IEEE International Conference on Computer Communi-
cation and the Internet (ICCCI), 2016, pp. 400–403.

[9] Y. Liu, Y. Jin, A. Nosratinia, Y. Makris, Silicon demonstration of
hardware trojan design and detection in wireless cryptographic ics, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25 (2017)
1506–1519.

[10] Support Vector Machines, Andrew Ng, 2019. URL: https://zkf85.
github.io/public/cs229/cs229-notes3.pdf.

[11] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor,
Benchmarking of hardware trojans and maliciously affected circuits,
Journal of Hardware and Systems Security 1 (2017). doi:10.1007/
s41635-017-0001-6.

[12] M. Rostami, F. Koushanfar, R. Karri, A primer on hardware security:
Models, methods, and metrics, Proceedings of the IEEE 102 (2014)
1283–1295. doi:10.1109/JPROC.2014.2335155.

36

https://zkf85.github.io/public/cs229/cs229-notes3.pdf
https://zkf85.github.io/public/cs229/cs229-notes3.pdf
http://dx.doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1109/JPROC.2014.2335155

[13] Y. Gao, S. F. Al-Sarawi, D. Abbott, Physical unclonable functions, in:
Nature Electronics, volume 3, 2020. doi:10.1038/s41928-020-0372-5.

[14] M. Rostami, J. B. Wendt, M. Potkonjak, F. Koushanfar, Quo vadis,
puf?: Trends and challenges of emerging physical-disorder based secu-
rity, in: 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), 2014, pp. 1–6. doi:10.7873/DATE.2014.365.

[15] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, S. Devadas,
Robust and reverse-engineering resilient puf authentication and key-
exchange by substring matching, IEEE Transactions on Emerging Top-
ics in Computing 2 (2014) 37–49. doi:10.1109/TETC.2014.2300635.

[16] K. F. Rührmair U., Devadas S., Security based on physical unclonability
and disorde, in: Introduction to Hardware Security and Trust, Springer,
New York, 2012. doi:https://doi.org/10.1007/978-1-4419-8080-9_
4.

[17] M. Xue, J. Wang, Y. Wang, A. Hu, Security against hardware trojan
attacks through a novel chaos fsm and delay chains array puf based
design obfuscation scheme, in: Z. Huang, X. Sun, J. Luo, J. Wang
(Eds.), Cloud Computing and Security, Springer International Publish-
ing, Cham, 2015, pp. 14–24.

[18] S. Bhunia, M. Hsiao, M. Banga, S. Narasimhan, Hardware trojan at-
tacks: Threat analysis and countermeasures, 2014, pp. 1229–1247.

[19] M. Nourian, M. Fazeli, D. Hely, Hardware trojan detection using an
advised genetic algorithm based logic testing, Journal of Electronic
Testing 34 (2018). doi:10.1007/s10836-018-5739-4.

[20] C. Bao, D. Forte, A. Srivastava, On reverse engineering-based hard-
ware trojan detection, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35 (2016) 49–57. doi:10.1109/TCAD.
2015.2488495.

[21] F. Courbon, P. Loubet-Moundi, J. J. Fournier, A. Tria, A high effi-
ciency hardware trojan detection technique based on fast sem imaging,
in: 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), 2015, pp. 788–793. doi:10.7873/DATE.2015.1104.

37

http://dx.doi.org/10.1038/s41928-020-0372-5
http://dx.doi.org/10.7873/DATE.2014.365
http://dx.doi.org/10.1109/TETC.2014.2300635
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-8080-9_4
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-8080-9_4
http://dx.doi.org/10.1007/s10836-018-5739-4
http://dx.doi.org/10.1109/TCAD.2015.2488495
http://dx.doi.org/10.1109/TCAD.2015.2488495
http://dx.doi.org/10.7873/DATE.2015.1104

[22] M. Rathmair, F. Schupfer, C. Krieg, Applied formal methods for hard-
ware trojan detection, in: 2014 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), 2014, pp. 169–172.

[23] A. Waksman, M. Suozzo, S. Sethumadhavan, Fanci: Identification of
stealthy malicious logic using boolean functional analysis, 2013, pp.
697–708. doi:10.1145/2508859.2516654.

[24] J. Zhang, F. Yuan, L. Wei, Y. Liu, Q. Xu, Veritrust: Verification for
hardware trust, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 34 (2015) 1148–1161.

[25] J. Zhang, Q. Xu, On hardware trojan design and implementation
at register-transfer level, 2013, pp. 107–112. doi:10.1109/HST.2013.
6581574.

[26] Y. Jin, N. Kupp, Y. Makris, Experiences in hardware trojan design and
implementation, in: 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, 2009, pp. 50–57. doi:10.1109/HST.2009.
5224971.

[27] H. Salmani, M. Tehranipoor, R. Karri, On design vulnerability analysis
and trust benchmarks development, in: 2013 IEEE 31st International
Conference on Computer Design (ICCD), 2013, pp. 471–474.

[28] S. Yu, W. Liu, M. O’Neill, An improved automatic hardware trojan
generation platform, in: 2019 IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI), 2019, pp. 302–307. doi:10.1109/ISVLSI.2019.
00062.

[29] H. Salmani, Cotd: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist, IEEE
Transactions on Information Forensics and Security 12 (2017) 338–350.
doi:10.1109/TIFS.2016.2613842.

[30] M. Hicks, et al., Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically, in: 2010 IEEE Sym-
posium on Security and Privacy, 2010, pp. 159–172.

38

http://dx.doi.org/10.1145/2508859.2516654
http://dx.doi.org/10.1109/HST.2013.6581574
http://dx.doi.org/10.1109/HST.2013.6581574
http://dx.doi.org/10.1109/HST.2009.5224971
http://dx.doi.org/10.1109/HST.2009.5224971
http://dx.doi.org/10.1109/ISVLSI.2019.00062
http://dx.doi.org/10.1109/ISVLSI.2019.00062
http://dx.doi.org/10.1109/TIFS.2016.2613842

[31] C. Sturton, M. Hicks, D. Wagner, S. T. King, Defeating uci: Building
stealthy and malicious hardware, in: 2011 IEEE Symposium on Security
and Privacy, 2011, pp. 64–77.

[32] A. Ahmed, F. Farahmandi, Y. Iskander, P. Mishra, Scalable hardware
trojan activation by interleaving concrete simulation and symbolic exe-
cution, in: 2018 IEEE International Test Conference (ITC), 2018.

[33] Y. Lyu, A. Ahmed, P. Mishra, Automated activation of multiple targets
in rtl models using concolic testing, in: 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), 2019, pp. 354–359.

[34] L. Piccolboni, A. Menon, G. Pravadelli, Efficient control-flow subgraph
matching for detecting hardware trojans in rtl models, ACM Trans.
Embed. Comput. Syst. 16 (2017).

[35] F. Demrozi, R. Zucchelli, G. Pravadelli, Exploiting sub-graph isomor-
phism and probabilistic neural networks for the detection of hardware
trojans at rtl, in: 2017 IEEE International High Level Design Validation
and Test Workshop (HLDVT), 2017, pp. 67–73.

[36] D. F. Specht, Probabilistic neural networks, Neural Netw. 3 (1990)
109–118.

[37] A. Damljanovic, A. Ruospo, E. Sanchez, G. Squillero, A Benchmark
Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores,
24th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS) (to be published) (2021).

[38] D. K. Pradhan, I. G. Harris, Practical Design Verification, Cambridge
University Press, 2009. doi:10.1017/CBO9780511626913.

[39] A. Piziali, Functional Verification Coverage Measurement and Analysis,
1st ed., Springer Publishing Company, Incorporated, 2007.

[40] S. Tasiran, K. Keutzer, Coverage metrics for functional validation of
hardware designs, IEEE Des. Test 18 (2001) 36–45. URL: https://
doi.org/10.1109/54.936247. doi:10.1109/54.936247.

[41] F. Rosenblatt, The perceptron: A probabilistic model for information
storage and organization in the brain., Psychological Review 65 (1958).

39

http://dx.doi.org/10.1017/CBO9780511626913
https://doi.org/10.1109/54.936247
https://doi.org/10.1109/54.936247
http://dx.doi.org/10.1109/54.936247

[42] C. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018.
doi:10.1007/978-3-319-94463-0.

[43] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature
521 (2015) 436–444. URL: https://doi.org/10.1038/nature14539.
doi:10.1038/nature14539.

[44] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of
the 2015 IEEE International Conference on Computer Vision (ICCV),
ICCV ’15, IEEE Computer Society, USA, 2015, p. 1026–1034. URL:
https://doi.org/10.1109/ICCV.2015.123. doi:10.1109/ICCV.2015.
123.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei,
Imagenet large scale visual recognition challenge, International Journal
of Computer Vision (IJCV) 115 (2015) 211–252. URL: https://doi.
org/10.1007/s11263-015-0816-y. doi:10.1007/s11263-015-0816-y.

[46] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Las Vegas, NV, USA, 2016, pp. 770–778.
URL: https://doi.org/10.1109/CVPR.2016.90. doi:10.1109/CVPR.
2016.90.

[47] B. E. Boser, I. M. Guyon, V. N. Vapnik, A training algorithm for optimal
margin classifiers, in: Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, COLT ’92, Association for Computing
Machinery, New York, NY, USA, 1992, p. 144–152. URL: https://doi.
org/10.1145/130385.130401. doi:10.1145/130385.130401.

[48] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag, Berlin, Heidelberg, 1995.

[49] C. Savas, F. Dovis, The impact of different kernel functions on the
performance of scintillation detection based on support vector machines,
Sensors 19 (2019). URL: https://www.mdpi.com/1424-8220/19/23/
5219.

40

http://dx.doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
https://doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
http://dx.doi.org/10.1145/130385.130401
https://www.mdpi.com/1424-8220/19/23/5219
https://www.mdpi.com/1424-8220/19/23/5219

[50] python, tuning the hyper-parameters of an estimator, scikit-learn
(0.24.2). URL: https://scikit-learn.org/stable/modules/grid_
search.html.

[51] T. M. Cover, Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition, IEEE Trans-
actions on Electronic Computers EC-14 (1965) 326–334. doi:10.1109/
PGEC.1965.264137.

[52] Ieee standard for vhdl language reference manual, IEEE Std 1076-2019
(2019) 1–673. doi:10.1109/IEEESTD.2019.8938196.

[53] Ieee standard for verilog hardware description language, IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001) (2006) 1–590. doi:10.1109/
IEEESTD.2006.99495.

[54] J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised
discretization of continuous features, in: A. Prieditis, S. Rus-
sell (Eds.), Machine Learning Proceedings 1995, Morgan Kauf-
mann, San Francisco (CA), 1995, pp. 194–202. URL: https://www.
sciencedirect.com/science/article/pii/B9781558603776500323.
doi:https://doi.org/10.1016/B978-1-55860-377-6.50032-3.

[55] F. Silva, et al., Special session: Autosoc - a suite of open-source auto-
motive soc benchmarks, 2020, pp. 1–9. doi:10.1109/VTS48691.2020.
9107599.

[56] S. Takamaeda-Yamazaki, Pyverilog: A python-based hardware design
processing toolkit for verilog hdl, in: Applied Reconfigurable Comput-
ing, 2015.

[57] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems, O’Reilly Media, 2019.

41

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
http://dx.doi.org/10.1109/PGEC.1965.264137
http://dx.doi.org/10.1109/PGEC.1965.264137
http://dx.doi.org/10.1109/IEEESTD.2019.8938196
http://dx.doi.org/10.1109/IEEESTD.2006.99495
http://dx.doi.org/10.1109/IEEESTD.2006.99495
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
http://dx.doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50032-3
http://dx.doi.org/10.1109/VTS48691.2020.9107599
http://dx.doi.org/10.1109/VTS48691.2020.9107599

	Introduction
	Related Works
	HT Design
	Detection Techniques

	Preliminaries
	HT Benchmarks
	Digital Design Verification
	Artificial Neural Networks
	Support Vector Machine

	Proposed Approach
	Control Flow Graphs Extraction
	Static Attributes
	Assign DataFlow Map
	Dynamic Attributes

	Input Data Formatting
	Classification
	Classification with Support Vector Machine
	Classification with an Artificial Neural Network

	Experimental Evaluation
	Experimental Setup
	Experimental results with Support Vector Machine
	Experimental Results with Artificial Neural Networks

	Conclusions

