
11 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analytical Modeling of Debonding Mechanism for Long and Short Bond Lengths in Direct Shear Tests Accounting for
Residual Strength / Mirzaei, AMIR MOHAMMAD; Corrado, Mauro; Sapora, ALBERTO GIUSEPPE; Cornetti, Pietro. - In:
MATERIALS. - ISSN 1996-1944. - 14:21(2021), p. 6690. [10.3390/ma14216690]

Original

Analytical Modeling of Debonding Mechanism for Long and Short Bond Lengths in Direct Shear Tests
Accounting for Residual Strength

Publisher:

Published
DOI:10.3390/ma14216690

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2941477 since: 2021-11-30T10:53:39Z

MDPI



materials

Article

Analytical Modeling of Debonding Mechanism for Long and
Short Bond Lengths in Direct Shear Tests Accounting for
Residual Strength

Amir Mohammad Mirzaei *, Mauro Corrado, Alberto Sapora and Pietro Cornetti

����������
�������

Citation: Mirzaei, A.M.; Corrado, M.;

Sapora, A.; Cornetti, P. Analytical

Modeling of Debonding Mechanism

for Long and Short Bond Lengths in

Direct Shear Tests Accounting for

Residual Strength. Materials 2021, 14,

6690. https://doi.org/10.3390/

ma14216690

Academic Editors:

Tommaso D’Antino,

Francesco Focacci and

Christian Carloni

Received: 27 September 2021

Accepted: 1 November 2021

Published: 6 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy; mauro.corrado@polito.it (M.C.); alberto.sapora@polito.it (A.S.);
pietro.cornetti@polito.it (P.C.)
* Correspondence: amir.mirzaei@polito.it

Abstract: Interfacial debonding in fiber-reinforced composites is a common problem, especially in
external strengthening techniques. This investigation aims to determine the load during debonding,
and discusses two practical design parameters for direct shear tests, which are commonly used to
assess the mechanics of debonding. In this study, three different bond-slip cohesive laws and one
finite fracture mechanics approach are considered to investigate debonding in direct shear tests by
taking the effect of residual strength into account. For each model, load during debonding and its
maximum value are given by closed-form expressions, which are then checked against experimental
data reported in the literature. It is shown that using the interfacial mechanical properties extracted
from one geometry, the debonding load of tests with different bond lengths and widths can be
predicted without any fitting procedure. Moreover, effective bond length formulae are suggested
for each model; one is the straightforward extension (accounting for residual strength) of a formula
available in the Standards. The results illustrate the importance of considering residual strength
in direct shear tests, even at debonding onset, with its effect being nonetheless higher for long
bond lengths.

Keywords: debonding; composite joints; friction; fiber-reinforced cementitious matrix (FRCM)
composites; pull-push test; shear lag model; pullout test

1. Introduction

One possible solution to increase or restore the load bearing capacity of an existing
structure is to apply external reinforcements. Fiber Reinforced Polymers (FRPs) possess
high strength to weight ratios. Thus, FRP plates and sheets have been widely used for
structural retrofitting in the last decades, also because of their easy and quick application [1].
However, FRPs have some drawbacks, e.g., high thermal mismatch between the structure
and epoxy resins as well as poor fire resistance. To overcome such problems, recently,
fiber-reinforced cementitious matrix (FRCM) composites have been considered, and their
application seems promising [2,3].

One of the major issues in this strengthening technique is to prevent the debonding
of the reinforcement from the structure. Thus, investigation about the debonding of
FRP/FRCM from the structure seems crucial, as it may define the load-bearing capacity
of the structure. The most common experimental test to analyze debonding is the direct
shear test, sometimes named the pull-push test, in which the load directly pulls up the
FRP or FRCM, and the block is pushed using the reaction force of a fixed frame. It can be
argued that the interface is mainly subjected to shear, and the effect of peeling stress can be
neglected, as it has been shown that the contribution of peeling stress is highly localized
for this test [4]. On the other hand, a considerable number of investigations can be found
in the literature that have successfully applied the one-dimensional shear-lag model [5].
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In this paper, the shear-lag model is employed in four different approaches in order to
study the debonding of the reinforcement from the substrate. All the approaches take the
effect of residual strength into account. This is an important task, especially for FRCM
strengthening systems. Direct shear tests on FRCM reinforced structures are characterized
by a load vs. displacement curve where the load does not fall to zero but, rather, to a
constant value. In FRCMs, debonding occurs typically by pulling off the fiber net from
the cementitious matrix, and friction occurs between the two components. As the effect of
friction is considered as traction in calculations, the shear stress attained for large slips is
called residual strength.

The scientific literature about the subject is vast. In the following, we provide a brief
review of studies which are closely related to the analysis we perform in the paper.

Regarding analytical investigations, a bilinear cohesive law (i.e., not considering any
residual strength) was employed by Yuan et al. [6] to model the debonding process of FRP-
to-concrete joints. The same problem was addressed using linear-exponential softening law
by Cornetti and Carpinteri [7], and then via exponential softening by Biscaia et al. [8]. The
analytical solution for a trilinear bond-slip law, i.e., considering the residual strength, was
first provided by Ren et al. [9], where the authors analyzed the debonding comportment of
grouted rockbolts. However, the validity of the analyses carried out in [6,9] are restricted
to sufficiently large bond lengths. Extensions to short bond lengths were provided by
Cornetti and Carpinteri [7] and Caggiano et al. [10] in the absence of residual strength
and, more recently, by Vaculik et al. [11] by considering their effects. D’Antino et al. [12]
also applied a trilinear cohesive crack model to experimental data on polyparaphenylene
benzobisoxazole (PBO) FRCM composites [13]. On the other hand, two simpler constitutive
interface laws were employed in refs. [14,15] to address the same problem. Finally, note
that Cornetti et al. [16] used a fracture criterion called finite fracture mechanics (FFM) [17]
to determine analytically the delamination load in the pull-push test. They illustrated that
FFM results are close to those obtained by the cohesive crack model. Grande et al. [18]
developed an analytical model to study the debonding of FRCM strengthening systems
considering two interfaces for mortar layers.

Regarding numerical studies, a nonlinear finite element method was used by Pham
and Al-Mahaidi [19] to predict maximum debonding load, strain field and bond-slip curve
for experimental tests of single-lap pull-push. Biscaia et al. [20] compared the debonding
response of FRP-to-concrete joints for various constitutive interface laws by exploiting
finite differences. Two different approaches for both 2D and 3D finite element methods
were employed by Barbieri et al. [21] to simulate debonding process for FRP-to-concrete
tests conducted by the authors. Recently, Carloni et al. [2] used a 3D cohesive crack model
for single-lap direct shear tests of FRCM-concrete joints. Also, Muñoz-Reja et al. [22]
implemented the FFM in a finite element commercial code and compared their analysis
with the experimental results described in [23]. The debonding mechanism in the pull-push
test for FRP-to-concrete joints was analyzed by Zhang et al. [24] using a numerical approach
called bonded-particle model. Additionally, Ciampa et al. [25] analyzed the bond behavior
of the pull-push test by utilizing two different approaches in 3D finite element method.
A nonlocal model was developed by Marfia et al. [26] according to the weighted spatial
averaging approach to study debonding of FRP from concrete.

Concerning experimental analyses, Bizindavyi and Neale [27] used an experimental
approach for the single-lap direct shear test to investigate the bond behavior of FRP-
to-concrete joints, and then modeled their problem using a theoretical approach. Ali-
Ahmad et al. [28] examined the bond performance of FRP-to-concrete using the digital
image correlation approach. Experimental research on the effectiveness of FRCM for the
strengthening of concrete was performed by D’Ambrisi [29]. The authors claimed the
existence of effective bond length (which is also discussed in this paper) and final slip. A
comparison between single- and double-shear tests was conducted by Sneed et al. [30]
experimentally. The authors argued that the maximum load is slightly higher in the single-
lap test. Apart from investigating the effect of bond length in the pull-push test, Ombres [31]
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studied the influence of service temperature on behavior of FRCM-to-concrete bonds. In
an interesting study, Biscaia et al. [32] investigated the effect of residual bond strength on
debonding behavior by applying an external pressure in double-shear tests. The authors
demonstrated the high effect of residual bond strength on the interface performance. An
analysis of the debonding mechanism of FRCM with different fibers, i.e., glass, carbon,
or steel, and two different types of cement, was conducted by D’Antino et al. [33]. Also,
D’Antino et al. [34] studied the effect of concrete strengths and surface preparations of
concrete on the failure mechanism of the FRCM. Recently, a modified double-pull shear
setup was introduced by Mukhtar and Shehadah [35] to determine the bond performance
of FRP-to-concrete joints. It is worthwhile to note that, recently, the fatigue performance of
FRCM composites has been receiving a lot of attention [36,37].

In the next section, the mathematical modelling of the problem will be described,
and closed-form expressions for the load values during the debonding process, for the
maximum debonding load vs. bond length, as well as for the effective bond length, will
be presented according to three different interface cohesive laws and one finite fracture
mechanics approach. Theoretical predictions will be validated and discussed in Section 3.
Finally, conclusions are drawn in Section 4.

The goal of the present work is to determine the load during debonding in direct shear
tests according to the four above-mentioned models, along with the two most relevant
design quantities, i.e., the maximum transferable load and the effective bond length. The
emphasis is placed on the residual strength—usually not considered in previous works on
the subject—and its effect on the structural response. The main novelties of this research are
the analytical solutions for the Dugdale Model (DM) and the rigid finite fracture mechanics
model (RF). Although the two other models (the equivalent-linear elastic brittle interface
model (EL) and the rigid-linear softening one (RL)) were proposed recently [14,15], they
are reported here for the sake of comparison. Moreover, for the EL model, the analytical
expression of the maximum debonding load vs. bond length is original, and the effective
bond length formula differs from that available in the literature.

Finally, note that in the present paper, we only considered the direct shear test, which
is the most common for FRP/FRCM reinforcements. However, other kinds of tests exist
which are able to assess the bonding properties of reinforcements (see, e.g., [38]). Although
worthy of investigation, they require proper modelling that goes beyond the scope of the
present analysis.

2. Mathematical Modeling

The model we are going to develop is a one-dimensional shear-lag model, according to
which the interface has only shear stresses and the reinforcement is subjected only to axial
loads. Of course, more refined one-dimensional models can be built, modeling, for instance,
the reinforcement as a beam and considering peeling stresses along the interface. However,
for the geometry at hand, the shear-lag (sometimes called Volkersen’s [5]) model is sufficient
for our purposes. Its simplicity allows one to apply it easily to a variety of strengthening
systems (see Figure 1): FRP plate, near surface mounted (NSM) reinforcement, embedded
bar, and FRCM strengthening system. Provided that the total area of the reinforcement
and its perimeter vary from case to case, the equations we are going to derive hold for all
the geometries. For the sake of simplicity, in the following figures, we will just illustrate
the geometry (a); on the other hand, experimental comparisons will be provided for
experiments on FRCM test (d), where the effect of the residual strength—the key feature in
the present investigation—is shown to be higher. In this section, the governing equation
of the problem is first determined. Then, three different constitutive interface laws are
employed, i.e., the equivalent-linear elastic brittle interface model (EL), the Dugdale Model
(DM) and the rigid-linear softening model (RL). A fourth fracture mechanics approach,
i.e., the rigid finite fracture mechanics model (RF), is also presented. The main novelty is
that all models account for the presence of residual strength, and attention is focused on its
effect on structural response.
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Figure 1. Schematic view of the direct shear tests for: (a) externally bonded FRP plate; (b) NSM
reinforcement; (c) embedded bar; (d) FRCM strengthening system with n = 3 longitudinal fibers.
For the sake of simplicity, details for the adhesive layer (enlarged) are given only in (a) and proper
constraints to avoid block uplifting are not drawn.

For the first three models, we first solve the corresponding differential equation
providing the stresses along the interface. The fourth model is somewhat different, being
mostly based on linear elastic fracture mechanics. Thus, it does not require knowledge of
interfacial stresses. Then, for all the models, the load during debonding is calculated and
the two most relevant important design parameters, i.e., the maximum debonding load
and the effective bond length, are computed.

In order to derive the governing equation of the problem, the horizontal equilib-
rium equations for an arbitrary element of the reinforcement, as well as for the overall
reinforcement and substrate system, are needed (see Figure 1a):

Ap dσp − τ Lp dx = 0 (1)

σp Ap + σb Ab = 0 (2)

where the subscripts p and b are representative of the reinforcement (the FRP plate for the
geometry (a)) and of the block (substrate), respectively. Parameters Ap and Ab represent
the cross-sectional area of the reinforcement and the block, while the bonded perimeter is
expressed by Lp. We assume that the components follow a linear elastic behavior. Denoting
the normal stress as σ, Young’s modulus as E, and the displacement along the longitudinal
axis x as u, we have σi =Ei (dui/dx), i = p, b while the shear stress along the interface
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between the substrate and the reinforcement is τ. Some analytical manipulations lead to
the following governing second order differential equation:

d2s
dx2 − Lp

1 + ρ

Ep Ap
τ[s] = 0 (3)

where ρ = Ep Ap/Eb Ab is the mechanical fraction of reinforcement and s is the relative
longitudinal displacement between reinforcement and block, i.e., s = up − ub. The normal
stress in the reinforcement is:

σ[s] = σp[s] =
Ep

1 + ρ

ds
dx

(4)

For details see, e.g., [16]. In Equation (3), the bond-slip law, τ[s], is seen as a property
of the bonding system, i.e., a constitutive (cohesive) law for the interface. In the following
subsections, different models are introduced and employed to analyze the debonding of the
reinforcement. Note that they are all based on three parameters, being univocally defined
by the fracture energy, Gc, the shear strength, τc, and the residual strength, τr.

Regarding the residual strength, it should be noted that it is a mechanical parameter
that takes into account, at the macroscale, different mechanisms occurring at the microscale.
Among them, stick-slip can be frequently observed in pull-out testing. This phenomenon is
typically attributed to the interlocking between the fiber and matrix, resulting in an increase
of the load till a critical value. The fiber then slips causing a drop in load-displacement
curve (see [39–41]). Clearly, the proposed models are not able to catch such mechanisms,
but rather, an idealized, averaged, mechanical behavior. Also, it is assumed that the residual
strength (friction) has a constant distribution along the debonded zone, assuming the same
value for multiple fibers. However, although the use of the residual strength represents an
oversimplification of the interfacial behavior, it will be shown that the proposed models
are able to catch the basic features of the problem at hand with reasonable accuracy.

2.1. Equivalent-Linear Elastic Brittle Interface Model (EL)

Based on the Equivalent-Linear Elastic Brittle Interface Model, the interface can be
considered as a bed of linear springs with a stiffness equal to k. The constitutive interface
law is presented in Equation (5):

τ[s] =
{

k s, s ≤ sf
τr, s > sf

(5)

where sf is the final relative displacement, i.e., the displacement corresponding to the drop
of the shear stress drops to the residual strength. As the governing equation of the problem
is a second-order differential equation (Equation (3)), two boundary conditions are needed
to determine the relative displacement, s. According to Figure 2 and Equation (4), boundary
conditions for the problem can be imposed as follows:

σ[0] = 0→ s′[0] = 0 (6)

σ[l − a] =
F− τr a Lp

Ap
→ s′[l − a] =

1 + ρ

Ep Ap

(
F− τr a Lp

)
(7)

where a is the debonded (crack) length with constant stress distribution equal to τr. From
these boundary conditions, the relative displacement field results:

s[x] =
(

F− a Lp τr
)√ 1 + ρ

Ep Ap Lp k
csch

[
(l − a)

√
k Lp(1 + ρ)

Ep Ap

]
cosh

[
x

√
k Lp(1 + ρ)

Ep Ap

]
(8)
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Figure 2. Shear stress field along the interface when the debonding crack has length a.

The corresponding stress is obtained multiplying Equation (8) by the interface stiffness
k. The maximum is achieved at the edge between the undamaged zone and the frictional
region, i.e., at x = l − a:

τmax = k s[l − a] =
(

F− a Lp τr
)√ k(1 + ρ)

Ep Ap Lp
coth

[
(l − a)

√
k Lp(1 + ρ)

Ep Ap

]
(9)

Equations (8) and (9) hold for any k value and will be exploited later in Section 2.4.
On the other hand, we named the present model as Equivalent, since in the linear elastic
brittle interface model, interface stiffness is an independent parameter characterizing the
interface, while in the EL model, k depends on the other interface properties, see Equation
(11) below. In fact, according to the EL model (see Figure 3a), the stiffness k and the “final”
displacement sf are functions of
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c, τc and τr according to:

sf =
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Figure 3. Interface cohesive laws according to: (a) Equivalent Linear Elastic Brittle Interface Model (EL); (b) Dugdale Model
(DM); (c) Rigid Linear Softening Model (RL). Their comparison in dimensionless form is in sub-figure (d).

The bond-slip response of the interface, τ–s, based on the EL model, is depicted in
Figure 3a.

To justify the reason for considering the dark area as the fracture energy of the interface,
we can simply evaluate the crack closure work for a vanishing step. The stress required to
close the crack is τc − τr, while the displacement is (τc − τr)/k corresponding to the dark
triangle in Figure 3a, see also [15,42,43]. Analogously, the strain energy release rate
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is the
elastic energy released by the spring at the crack tip. Hence:
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c. According to Equation (12), this is tantamount to
state that crack grows when τmax = τc. Before proceeding, it is convenient to normalize the
quantities at hand, introducing a reference load and length. The reference load is:
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It can be proven that, in the absence of a residual strength, F∞
c represents the maximum

admissible debonding load, usually achieved for infinite or sufficiently large bond length,
independently of the bond-slip law shape, i.e., it depends on the fracture energy only, see
e.g., Cornetti et al. [16].
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length, traction free and no-slip at x = 0 are the proper boundary conditions: 

[ ]0 0s =  (23) 
[ ] [ ]0 0 0 0sσ ′= → =  (24) 

By using Equations (3) and (21) (for s < sf) as well as boundary conditions (23) and 
(24), the slip distribution is: 

[ ] ( ) c p

p p

2 1
2

x L
s

E
x

A
ρ τ+

=  (25) 

Now, the bond length required for a fully developed process zone can be determined 
using the condition that at the end of this length, the relative slip is equal to sf; see Figure 
5, left side. It is worth noting that, in this figure, the area under the shear stress distribution 
curve represents the debonding load. On the other hand, for lengths greater than the fully 
developed process zone, the load increments are minor (see stages (c) to (e) in Figure 5), 
being attributable to the residual strength only. Consequently, this length can be consid-
ered as the effective bond length leff for the DM. Thus, setting s[leff] = sf, by Equations (14), 
(22) and (25), we get: 

eff
eff

ch r

1
1

l
l τ

λ = =
−

 (26) 

c Ep Ap

(1 + ρ)Lp
(14)

From Equation (14), it is clear that lch can be seen as the bond length that endures
F∞

c if the interfacial shear stress distribution is constant and equal to the interface shear
strength, τc.

We can now introduce the dimensionless auxiliary variables as:

F =
F

F∞
c

, λ =
l

lch
, α =

a
lch

, τr =
τr

τc
(15)
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By exploiting Equation (9), (12) and (15), the load during the debonding process is
achieved as:

F =
tanh[(λ− α)(1− τr)]

1− τr
+ α τr (16)

2.1.1. Maximum Load vs. Bond Length

Maximum load during debonding can be considered as one of the most important
parameters for design purposes, as it determines the final load-bearing capacity of the
joint. By inspection of Equation (16), it can be easily verified that the maximum load,Fc,
is achieved at the crack onset (a = 0) for bond lengths lower than a limit value, i.e., for
λ < λlim, where:

λlim =
1

1− τr
arccosh

[
1√
τr

]
(17)

For bond lengths higher than λlim, setting the derivative of the debonding load
(Equation (16)) to zero with respect to the crack length a, we find that the crack length at
which the load is the highest is:

α = λ− λlim (18)

Therefore, the maximum (critical) load Fc is achieved by replacing Equation (18) into
(16). Summarizing, according to EL, the maximum load is:

Fc =
Fc

F∞
c

=

{
1

1−τr
tanh[λ(1− τr)], λ ≤ λlim

1√
1−τr

+ τr(λ− λlim), λ > λlim
(19)

It is worth emphasizing that, in dimensionless form, the maximum load depends only
on the normalized bond length and the ratio between residual and undamaged strengths.
This feature is also shared with the following models. The maximum load vs. bond length
is plotted according to Equation (19) in Figure 4 for τr = 0, 0.15. In this figure, the limit
value of bond length, λlim, is also illustrated for τr = 0.15, whereas it is infinity for τr = 0.
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Figure 4. Maximum load vs. bond length according to EL for τr = 0, 0.15.

2.1.2. Effective Bond Length

As Figure 4 clearly evidences, the maximum load strongly increases with the bond
length for small values of this parameter. Then, the slope decreases, finally reaching a
constant value for bond lengths higher than the limit value, see Equation (17). In contrast,
in the origin the slope is proportional to the undamaged strength, τc, for large bond lengths,
the slope is proportional to the lower residual strength τr. Therefore, one can define an
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effective bond length as the length above which the load increment is limited. For the EL,
the effective bond length cannot be taken equal to the limit one (Equation (17)), since this
goes to infinity when τr → 0. Thus, it is convenient to define the effective length as the
length that tolerates β percent of the load at the transition point between short and long
bond lengths, λlim. Simple analytical manipulations yield:

λeff =
1

1− τr
Arctanh

[
β
√

1− τr

]
(20)

As shown, the effective bond length depends on β for EL model. As Arctanh [1] is
infinity, choosing high β values close to unity may result in unrealistically high effective
bond lengths. Thus, in order to get reasonable effective bond length estimates for any
residual strength value, we opted for β = 80%, see Figure 4 where the effective bond lengths
are highlighted for both frictionless and frictional cases (τr = 0, 0.15).

As observed in the Introduction, despite the EL model having already been proposed
in the Literature, Formula (19), providing the critical load, is original, while the effective
bond length estimate (20) is supposed to be more reliable (taking friction into account) than
the simpler estimate λeff

∼= 4 provided in [15].

2.2. Dugdale Model (DM)

According to DM, the interface is characterized by a constant shear stress in the
cohesive process zone, equal to τc. As the relative displacement, s, reaches its threshold
value, sf, debonding occurs and shear stress drops to residual strength, τr:

τ[s] =
{

τc, s ≤ sf
τr, s > sf

(21)

where:
sf =

Gc

τc − τr
(22)

A view of bond-slip relation according to DM is presented in Figure 3b. Again, the
shaded area represents the fracture energy.

To obtain the fracture load during the debonding, first, the minimum bond length
required for a fully developed process zone should be calculated. To determine this length,
traction free and no-slip at x = 0 are the proper boundary conditions:

s[0] = 0 (23)

σ[0] = 0→ s′[0] = 0 (24)

By using Equations (3) and (21) (for s < sf) as well as boundary conditions (23) and
(24), the slip distribution is:

s[x] =
x2(1 + ρ)τc Lp

2 Ep Ap
(25)

Now, the bond length required for a fully developed process zone can be determined
using the condition that at the end of this length, the relative slip is equal to sf; see Figure 5,
left side. It is worth noting that, in this figure, the area under the shear stress distribution
curve represents the debonding load. On the other hand, for lengths greater than the fully
developed process zone, the load increments are minor (see stages (c) to (e) in Figure 5),
being attributable to the residual strength only. Consequently, this length can be considered
as the effective bond length leff for the DM. Thus, setting s[leff] = sf, by Equations (14), (22)
and (25), we get:

λeff =
leff
lch

=
1√

1− τr
(26)
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Figure 5. Distribution of shear stress for different stages of debonding based on DM: (a–g) for long (l > leff), and (h–l) for
short (l < leff) bond lengths.

Therefore, we have two different scenarios: long (l > leff, left side in Figure 5) and short
(l < leff, right side in Figure 5) bond lengths. For long bond lengths, simple calculations
show that the load during the debonding propagation (stages (c–g)) can be determined as:

F =

{
1√

1−τr
+ α τr, 0 < α ≤ λ− λeff

(λ− α) + α τr, λ− λeff < α < λ
(27)

Maximum Load vs. Bond Length

From Equation (27), it is clear that the maximum load is achieved when α equals
(λ − λeff), i.e., at stage (e) in Figure 5 (left column). On the other hand, the maximum is
reached at debonding onset for short bond lengths, i.e., at stage (j), right column in Figure 5.
Hence, we have:

Fc =
Fc

F∞
c

=

{
λ, λ ≤ λeff

1√
1−τr

+ τr(λ− λeff), λ > λeff
(28)

In Figure 6, the maximum load vs. bond length for τr = 0, 0.15 is shown based on
Equation (28), whereas the effective bond length λeff is also illustrated. Note that the
maximum load corresponding to the limit/effective bond length, according to EL and DM,
is the same and higher than F∞

c (if friction is present), respectively.
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Figure 6. Maximum load vs. bond length according to DM for τr = 0, 0.15.

2.3. Rigid-Linear Softening Model (RL)

According to RL (Figure 3c), the interface is characterized by a (linear) softening from
τc to τr as the relative displacement s increases from 0 to sf. The corresponding bond-slip
law for this model is:

τ[s] =
{

τc − (τc − τr)
s
sf

, s ≤ sf

τr, s > sf
(29)

For the RL model, the final relative displacement writes:

sf =
2
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1
1

l
l τ

λ = =
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c

τc − τr
(30)

As for DM, to compute the load during debonding, the minimum length for a fully
developed softening zone, leff, has to be determined. The boundary conditions of the
problem are no-slip and traction-free at x = 0, see Equations (23) and (24). By inserting the
RL constitutive law (29). s < sf) into the governing equation, Equation (3), the relative slip
and shear stress along the interface are:

s[x] = sf

1− cos
[

x
lch
(1− τr)

]
1− τr

(31)

τ[x] = τc cos
[

x
lch

(1− τr)

]
(32)

In Figure 7, the shear stresses for different stages of debonding based on the RL model
are plotted.

Also, for the RL model, the bond length required for a fully developed softening zone,
leff, can be calculated setting s[leff] = sf in Equation (31) (or, equivalently, τ[leff] = τr in
Equation (32)). Thus:

λeff =
leff
lch

=
arccos[τr]

1− τr
(33)
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Figure 7. Distribution of the shear stresses for different stages of debonding based on the RL model: (a–g) for long, and
(h–m) for short bond lengths.

For long bond lengths (l > leff, left side in Figure 7), during debonding (stages (c–e)),
the applied load can be computed as:

F =
F

F∞
c

=
Lp
∫ leff

0 τ[x]dx + τr a Lp

τc lch Lp
=

√
1 + τr

1− τr
+ α τr, 0 < α ≤ λ− λeff (34)

For stages (e) to (g), i.e., α > λ−λeff, it is necessary first to solve Equation (3) in the
softening zone with the first row in Equation (29). Boundary conditions are represented by
Equation (24) and:

s[l − a] = sf (35)

In this way we get s[x] for 0 < x < l−a. Its derivative at the right edge is:

s′[l − a] =
sf
lch

τr tan
[

l − a
lch

(1− τr)

]
(36)

Then, we solve Equation (3) in the frictional zone, i.e., with the second row in
Equation (29) and boundary conditions (35) and (36), since the stress and the displace-
ment must be continuous at x = l−a. In this way, we get s[x] for l−a < x < l. Evaluating its
derivative at the loaded end, using Equation (4), we finally get the load for stages (e–g):

F =
τr

1− τr
tan[(λ− α)(1− τr)] + α τr , λ− λeff < α < λ (37)

Equations (34) and (37) define the load during debonding according to RL. As such,
they are analogous to Equation (27) for DM, and Equation (16) for EL.
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Maximum Load vs. Bond Length

For short bond lengths, it is easily seen from Figure 7 (right column) that the maximum
is achieved at stage (j), i.e., when the whole interface softens and τ[0] = τc. By Equation (32):

Fc = Lp

∫ l

0
τ[x]dx =

sin[λ(1− τr)]

1− τr
τc lch Lp (38)

On the other hand, for long bond lengths, λ > λeff, the maximum load occurs at
stage (e), and its value is achieved by replacing α = λ − λeff into either Equation (34) or
Equation (37). Summarizing, we have:

Fc =
Fc

F∞
c

=

{ 1
1−τr

sin[λ(1− τr)], λ ≤ λeff√
1+τr
1−τr

+ τr (λ− λeff), λ > λeff
(39)

Equation (39) is plotted in Figure 8 to illustrate the behavior of maximum load vs.
bond length according to RL for τr = 0, 0.15. Note that the maximum load corresponding
to the effective bond length (first term in the second row in Equation (39)) according to RL
is higher than the ones provided by EL and DM.
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Figure 8. Maximum load vs. bond length according to RL for τr = 0, 0.15.

2.4. Rigid-Finite Fracture Mechanics Model (RF)

In this section, a fracture mechanics based model called FFM is employed to tackle the
debonding process in the direct shear test. According to FFM [17], the crack is assumed to
grow by a discrete amount ∆. Two conditions have to be fulfilled for crack growth. The
first is the discrete energy balance:

Lp

∫ a+∆

a
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A view of bond-slip relation according to DM is presented in Figure 3b. Again, the 
shaded area represents the fracture energy. 

To obtain the fracture load during the debonding, first, the minimum bond length 
required for a fully developed process zone should be calculated. To determine this 
length, traction free and no-slip at x = 0 are the proper boundary conditions: 

[ ]0 0s =  (23) 
[ ] [ ]0 0 0 0sσ ′= → =  (24) 
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Now, the bond length required for a fully developed process zone can be determined 
using the condition that at the end of this length, the relative slip is equal to sf; see Figure 
5, left side. It is worth noting that, in this figure, the area under the shear stress distribution 
curve represents the debonding load. On the other hand, for lengths greater than the fully 
developed process zone, the load increments are minor (see stages (c) to (e) in Figure 5), 
being attributable to the residual strength only. Consequently, this length can be consid-
ered as the effective bond length leff for the DM. Thus, setting s[leff] = sf, by Equations (14), 
(22) and (25), we get: 
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For the sake of simplicity and of comparison with the rigid cohesive zone mod-
els (i.e., DM and RL), for this model, we consider a rigid interface too. Thus, from
Equations (9) and (11) and letting k→ ∞, we get:
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Substituting Equation (41) into (40), we get, in dimensionless form:

F2 − τr(2 α + δ) F + τ2
r (3 α2 + 3 α δ + δ2) ≥ 1 (42)

where δ = ∆/lch. The second condition to be fulfilled is a stress requirement: the average
stress acting on the crack advance ∆ must be higher than the interfacial strength τc. Since
the interface is rigid, the force in the plate is transferred to the block in a pointwise manner,
i.e., abruptly at the crack tip (x = l − a). Hence, the stress condition reads:

F− τr a Lp

Lp ∆
≥ τp (43)

By some analytical manipulations of Equation (42), and casting in dimensionless form
Equation (43), the debonding load can be determined as the minimum load satisfying the
following system of inequalities: F ≥

(
(α + δ/2)τr +

√
1− (τrδ)2/12

)
H[(λ− α)− δ]

F ≥ δ + τr α
(44)

where the Heaviside function, H[·], has been introduced because the energy condition is
always fulfilled in case of complete failure, i.e., ∆ = l − a.

Looking for the maximum load Fc during the debonding process, it is easy to check that
two cases can be met. In the first one, occurring for short bond lengths, λ < 1, the maximum
load is achieved at debonding onset, α = 0, see Figure 9a. Accordingly, Fc = δ = λ and crack
propagation is obviously unstable (under load control), being an abrupt debonding crack
predicted all over the interface. In the latter case, occurring for long bond lengths (λ > 1),
the minimum of the system in Equation (44) is achieved for an infinitesimal crack growth
(δ = 0) and for a dimensionless load equal to unity, see Figure 9b. However, in such a
case, the debonding process is stable, since the debonding load increases along with the
crack length α. Figure 9c shows, however, that crack growth becomes unstable when the
debonding crack α reaches the value (λ − 1) and the crack increment for which the load is
minimum jumps from δ = 0 to δ = 1, i.e., the crack advance coincides with the ligament. The
corresponding load reveals itself to be the maximum one, and is equal to Fc= 1 +τr(λ−1),
see Figure 9c.

From the above observations, it is clear that for long bond lengths, the load during
debonding is given by the energy condition (first equation in system (44)) with infinitesimal
crack increment (δ = 0) as long as α < λ − 1, and by the stress condition (second equation
in system (44)) with crack advance equal to the ligament (δ = λ − α) for α > λ − 1:

F =

{
1 + α τr, α ≤ λ− 1
(λ− α) + α τr, α > λ− 1

(45)

Note that the second row in Equation (45) coincides with the one valid for DM,
Equation (27).

Maximum Load vs. Bond Length

From the previous analysis, the maximum load vs. bond lengths reads:

Fc =
Fc

F∞
c

=

{
λ , λ ≤ 1
1 + τr (λ− 1), λ > 1

(46)
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Equation (46) is plotted in Figure 10 to illustrate the maximum load vs. bond length 

according to RF for  r 0, 0.15  . It is clear that, according to RF model, the effective bond 

length is always equal to unity (eff = 1), and thus is independent of the residual strength. 

The maximum load corresponding to the effective bond length is equal to  cF  , and thus 

is lower than those provided by the previous models. 

Figure 9. Graphical representation of the inequality system (44): continuous lines show energy
condition, first inequality; dashed lines illustrate stress requirement, second inequality. The dot
highlights the minimum load, thus identifying the debonding load and the corresponding crack
growth. Normalized load vs. crack advance according to RF model for (a) a short bond length
(λ = 0.8) at debonding onset (α = 0); (b) a long bond length (λ = 3) at debonding onset (α = 0, stable
crack growth); (c) a long bond length (λ = 3) when the load is maximum (α = 2) and the crack growth
turns unstable. We assumed τr = 0.3.

Equation (46) is plotted in Figure 10 to illustrate the maximum load vs. bond length
according to RF for τr = 0, 0.15. It is clear that, according to RF model, the effective bond
length is always equal to unity (λeff = 1), and thus is independent of the residual strength.
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The maximum load corresponding to the effective bond length is equal to F∞
c , and thus is

lower than those provided by the previous models.
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Figure 10. Maximum load vs. bond length according to RF for τr = 0, 0.15.

3. Results and Discussions

In this section, some parametric studies are performed on the effect of residual strength
and bond length on the maximum debonding load. The effective bond length relations are
recalled and investigated in more detail, and the evolution of the load during the debonding
process is assessed according to the different models. Finally, theoretical predictions are
examined and compared with the experimental data available in the literature.

3.1. Maximum Debonding Load vs. Bond Length

The maximum debonding load is depicted in Figure 11a–d as a function of residual
strength and bond length for EL, DM, RL and RF, respectively. The effective bond length for
each model is illustrated with solid lines, while the dots in Figure 11a show the evolution
of λlim for EL.

For the case of τr = 0 and long bond lengths, DM, RL and RF predict Fc= 1, while for
EL, an asymptotic behavior towards unity can be seen. Equivalently, for the EL model, the
bond length value λlim, separating short and long bond joint solutions, goes to infinity as
the residual strength vanishes. As such, the limit value cannot be used as an effective bond
length estimate for the EL model, while it can for DM, RL and RF.

All in all, Figure 11 clearly shows that each graph can be divided into two different
parts via λeff. In the left part, for increasing bond lengths, the load increment is strong,
whereas it is weak in the right part. It is worthwhile to note that the left parts are determined
via the first row of Equations (19), (28), (39) and (46), while the right parts are plotted using
the relationships in the corresponding second row. Also, the effect of residual strength on
maximum debonding load is higher for long bond lengths than for short ones.

For a better understanding and in order to draw a comparison, the estimations of
maximum debonding load according to different models are plotted in Figure 12a for a
constant residual strength (τr = 0.15). As shown, all the models for very short bond lengths
predict equivalent maximum debonding load. On the other hand, for long bond lengths,
predictions by DM and RL are almost the same, RF is in the middle while EL presents lower
estimations for the maximum debonding load. Note also that the slope of the tangent in
the origin is proportional to the undamaged shear strength τc (1 in the dimensionless plot),
whereas the slope of the linear branch in the frictional stage is proportional to τr (τr in the
dimensionless plot).
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Figure 12. (a) Maximum debonding load vs. bond length according to EL, DM, RM and RF models
for τr = 0.15; (b) effective bond length vs. residual strength. For EL, β = 0.8.

Finally, in case no information is available for the shape of the bond-slip law, it may
be advised to employ the EL model, as it yields the most conservative estimates for the
maximum load. The other models might overestimate it.

3.2. Effective Bond Length

For the sake of clarity, it is good to recall expressions for the effective bond length in
their dimensional forms, according to the EL, DM, RL and RF models, respectively:

leff, EL =
arctanh

[
β
√

1− τr/τc
]
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A view of bond-slip relation according to DM is presented in Figure 3b. Again, the 
shaded area represents the fracture energy. 

To obtain the fracture load during the debonding, first, the minimum bond length 
required for a fully developed process zone should be calculated. To determine this 
length, traction free and no-slip at x = 0 are the proper boundary conditions: 

[ ]0 0s =  (23) 
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Now, the bond length required for a fully developed process zone can be determined 
using the condition that at the end of this length, the relative slip is equal to sf; see Figure 
5, left side. It is worth noting that, in this figure, the area under the shear stress distribution 
curve represents the debonding load. On the other hand, for lengths greater than the fully 
developed process zone, the load increments are minor (see stages (c) to (e) in Figure 5), 
being attributable to the residual strength only. Consequently, this length can be consid-
ered as the effective bond length leff for the DM. Thus, setting s[leff] = sf, by Equations (14), 
(22) and (25), we get: 
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Note that the dimensional part is the same for all equations, which therefore differ
only because of the dimensionless factor, depending on the residual to undamaged shear
strength ratio.

For the EL model, the value of β was set to 0.8 in Figure 12b. Beyond the advantages
already highlighted in Section 2.1.2, this value ensures a monotonically increasing effective
bond length, i.e., a physically consistent trend and in agreement with the other models. It
is worth noting that Equation (49) can be seen as a straightforward generalization of the
formula proposed by the Italian Standards CNR-DT 200 R1/2013 [44] in order to take the
effect of the residual strength (and the mechanical fraction of reinforcement) into account.
In fact, by setting τr and ρ to zero (and introducing the plate thickness tp = Ap/Lp) in
Equation (49), the CNR-DT 200 R1/2013 effective bond length expression is recovered.

leff,CNR−DT =
π
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In Figure 12a, the effective bond length estimates, Equations (47)–(50), according to the
four models are highlighted in the maximum load vs. bond length plot (for a given residual
strength value), whereas in Figure 12b they are plotted as a function of the normalized
residual strength. Figure 12b shows that for allmodels, except RF, the effective bond length
increases with increasing residual strengths, while it is constant for RF. The RL is the most
conservative among the proposed criteria, providing the highest estimate for the effective
bond length.

Finally, with regard to neglect the residual strength (which might be a considerable
value, especially for FRCMs), one underestimates both the debonding load and the effective
bond length. Thus, using expressions like Equation (13) or Equation (51), the strengthening
system is not used to its full potential.

3.3. Debonding Load vs. Relative Crack Length

For the sake of simplicity, in this paper, we derived the expression of the load during
debonding only for long bond lengths. The corresponding plot is provided in Figure 13
according to the different models, i.e., by Equations (16), (27), (34), (37) and (45). It is seen
that all models except RF estimate a normalized load higher than unity at α = 0, i.e., the
effect of residual strength is present also at the onset of debonding. DM and RF show
the same behavior for debonding process: a linear increase, and then a linear decrease.
Note that predictions by RF are lower in the stable debonding branch. Also, RL shows a
linear increase of the load in the stable branch, followed by a dramatic decrease after the
maximum load has been reached. The dramatic decrease of force when α > λ−λeff can be
explained by looking at Figure 7. Because of the (linear) softening, at the beginning of the
softening-frictional stage (stages (e) and (f) in Figure 7) the reduction in load is higher than
that observed through other models (e.g., stages (e) and (f) in Figure 5). EL provides the
lowest maximum load, and a smooth load variation during debonding.
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Figure 13. Debonding load as a function of debonding crack length α for λ = 4 and τr = 0.15.

Figure 13 also confirms the trend in Figure 12a. Therefore, ordering the models from
the largest to the smallest maximum load estimate provided, we have DM, RL, RF, EL. This
trend is illustrated in Figure 12a (for a fixed—long—bond length).

3.4. Comparison with Experimental Data

In order to validate the presented models, experimental data of direct single lap shear
test for polyparaphenylene benzobisoxazole (PBO) FRCM-to-concrete joint were taken
from the literature [13], see Figure 1d as reference. For these experiments, concrete blocks
with 125 mm × 125 mm cross-section were used. Each fiber of the net had a cross-section
of about 5 mm × 0.092 mm with an elastic modulus of 206 GPa, settled between two 4 mm
thick cementitious matrix layers (as the elastic modulus of the matrix is not mentioned in
the reference paper, we assumed it to be equal to 30 GPa [45]).

The experimental results of three different bond widths, i.e., 43, 60, 80 mm, and five
different bond lengths, i.e., l = 100, 150, 200, 250, 330, 450 mm, were employed to assess
the accuracy of the models in estimating the maximum debonding load. Failure mainly
occurred by debonding between the PBO net and the cementitious matrix. Thus, we
considered Ap ~ n × 5 mm × 0.092 mm and Lp ~ n × 2 × 5 mm, where n is the number of
PBO longitudinal fibers, i.e., 5, 7, and 9 for a reinforcement-to-substrate width equal to 43,
60 and 80 mm, respectively.

The central PBO fiber of four specimens (all with a bond length equal to 330 mm) was
equipped with strain gauges. By these measurements, in a subsequent paper, D’Antino
et al. [12,13] were able to determine an average bond-slip law whose parameters were
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Now, the bond length required for a fully developed process zone can be determined 
using the condition that at the end of this length, the relative slip is equal to sf; see Figure 
5, left side. It is worth noting that, in this figure, the area under the shear stress distribution 
curve represents the debonding load. On the other hand, for lengths greater than the fully 
developed process zone, the load increments are minor (see stages (c) to (e) in Figure 5), 
being attributable to the residual strength only. Consequently, this length can be consid-
ered as the effective bond length leff for the DM. Thus, setting s[leff] = sf, by Equations (14), 
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c = 0.481 N/mm, τc = 0.77 MPa and τr = 0.06 MPa. Note that the authors used a different
definition of fracture energy (namely, the total area under the tau-slip curve up to sf), so
that their fracture energy corresponded to a value equal to 0.387 N/mm in the present
model. Hence, for the above experimental data, from Equations (13)–(15) we get τr = 0.078,
F∞

c /n = 819.3 N and lch = 106.4 mm.
A comparison between the experimental data and the analytical predictions in terms

of failure load (per unit fiber) vs. bond length is shown in Figure 14. The theoretical results
are illustrated by lines, whereas the experimental results referring to widths of 43, 60,
80 mm are plotted by squares, circles and triangles, respectively.
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Figure 14. Maximum debonding load for different bond lengths and widths. Dot-dashed line,
short dashed line, long dashed line and solid line refer to estimations using EL, DM, RL and RF,
respectively. The experimental data from [13] are shown by markers, whose shape refers to different
widths, i.e., squares, circles, and triangles are representative for widths of 43, 60, 80 mm.

It is remarkable to see that all models were able to catch the experimental data trend
rather satisfactorily. The agreement between theory and experiments is even more valuable
if we observe that the interface parameters were not fitted for the matching, but derived
from strain and displacement measures performed on just one geometry (more precisely
that with bond length 330 mm). In other words, by testing one bond length, the models
were able to predict the failure for any bond length (and thickness). This proves the
soundness of the presented approaches (beyond the high accuracy of the experimental
measures provided in [12]).

In greater detail, for the bond lengths close to the transition length lch, DM and RF
predictions were rather poor, since the experimental data showed a smooth transition
between short and long bond lengths, whereas the EL and RL models seemed to catch this
transition. EL predictions for short bond lengths were the best, while RF was the model
that best matched experiments for long bond lengths. This observation, along with its
simplicity, proves the effectiveness of the FFM approach regarding the problem at hand.
Finally, regarding the data related to different reinforcement widths, Figure 14 shows
that although the models were one-dimensional, they take the width effect into account
reasonably well.

To compare the results of each model for different bond lengths in more detail, the
corresponding percentage error is presented in Table 1.

Table 2 also presents the correlation coefficient, mean squared error, and effective
bond length for each model to better evaluate the performance of each model.

Table 1. Percentage error between analytical and (average) experimental maximum loads [13] for
each bond length and each model. Error = 100(model-experiment)/experiment.

Bond Length (mm) 100 150 200 250 330 450

EL

Percentage error

14 3 −1 −2 −5 1
DM 40 19 7 6 2 9
RL 23 15 7 5 1 8
RF 40 15 4 2 −1 5
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Table 2. The correlation coefficient, mean squared error, and effective bond length for each model.

Model EL DM RL RF

Correlation coefficient 0.827 0.797 0.827 0.776
Mean squared error (N) 72 98 85 143

Effective bond length (mm) 120 113 176 109

It should be noted that the results of effective bond length are in agreement with those
calculated in [46] using the finite difference method.

Finally, it is worth noting that if failure loads are recorded only in an experimental
campaign, the interface parameters can be determined by a best fitting procedure provided
that data are available for several (short and long) bond lengths. Without entering into the
details of a best fitting procedure, we just want to observe that, starting from the maximum
load vs. bond length experimental curve, τc can be recovered from its slope in the origin,
τr from its slope for long bond lengths, and
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c from the position of the knee between short
and long bond length asymptotes.

4. Conclusions

By means of four (three Cohesive and one FFM) one-dimensional, three-parameter
interface models (τc, τr, and
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c), the effect of residual strength on the mechanics of debond-
ing in the direct shear tests was investigated, both for short and long bond lengths. The
laws utilized here refer to different interface behaviors, i.e., EL models the interface as
a bed of linear elastic-purely brittle springs, while DM considers a constant shear stress
distribution along the process zone, RL assumes a softening along the process zone and RF
is based on finite fracture mechanics. Thanks to the relative simplicity of these approaches,
relevant quantities were determined in closed-form expressions, which are handy for
design purposes of strengthening of beams. It is noteworthy that the effective bond length
formula provided by the rigid-linear softening model is a straightforward generalization of
cases where the residual strength is non-negligible regarding the one proposed by Italian
design guidelines.

Then, the proposed models were compared and validated against available data in the
literature for FRCM-to-concrete joints, while all of the models could predict failure loads
for different bond widths and lengths with reasonable accuracy.

It is shown that three models yielded higher effective bond length values when
residual strength was considered (no increment according to RF). Thus, design rules should
be more demanding in terms of minimum bond length. On the other hand, engineers
can depend upon a higher load value in the reinforcement. This means that friction and
interlocking between the fiber/reinforcement and the matrix/substrate have an overall
positive effect on the strengthening system.

The main disadvantage of all models, except for EL, is that they exhibit a sharp transi-
tion from short to long bond lengths, a transition that appears smooth in the experimental
data. It is expected that this problem will be solved by taking the interface elastic stiff-
ness into account, thus retaining the best of elastic-purely brittle and rigid-softening or
rigid-finite fracture mechanics approaches.

Future developments will include stiffness as a fourth independent interface parame-
ter, being either infinite or dependent in the approaches proposed herein. Such a goal has
been partly already achieved in the domain of cohesive modelling [8,9], but still has to be
developed for the FFM approach.
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