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Abstract: This paper aims to provide technical insights on the aerodynamic characterization activities
performed in the field of the H2020 STRATOFLY project, for the Mach 8 waverider reference configu-
ration. Considering the complexity of the configuration to be analyzed at conceptual/preliminary
design stage, a build-up approach has been adopted. The complexity of the aerodynamic model
increases incrementally, from the clean external configuration up to the complete configuration,
including propulsion systems elements and flight control surfaces. At each step, the aerodynamic
analysis is complemented with detailed mission analysis, in which the different versions of the aero-
dynamic databases are used as input for the trajectory simulation. eventually, once the contribution to
the aerodynamic characterization of flight control surfaces is evaluated, stability and trim analysis is
carried out. The comparison of the results obtained through the different mission analysis campaigns
clearly shows that the accuracy of aerodynamic characterization may determine the feasibility or
unfeasibility of a mission concept.

Keywords: aerodynamic characterization; mission analysis; hypersonic civil transport

1. Introduction
Hypersonic cruisers are currently considered as the long-term future of long-range

civil aviation. The expected high-level performance are challenging engineers and scientists
from around the world in different technological and operational areas. Despite the
wide range of solutions that are emerging for these challenges, everybody agrees on
the urgent need to improve the conceptual design stage, defining innovative and agile
design methodologies able to capture all the most impacting design, performance, and
operational characteristics since the beginning of the process and implementing multi-
fidelity modelling strategies. The development of such an integrated methodology is
one of the outcomes of the STRATOFLY Project, a Horizon 2020 Project funded by the
European Commission in 2018, aimed at assessing the potential of this type of high-speed
civil transport to reach TRL6 by 2035, with respect to key technological, societal and
economical aspects, such as thermal and structural integrity, low-emissions combined
propulsion cycles, subsystems design and integration including smart energy management,
environmental aspects impacting climate change, noise emissions and social acceptance,
and economic viability accounting for safety and human factors.

The aerodynamic characterization is one of the crucial activities of a multidisciplinary
conceptual design approach for high-speed vehicles. It will support the definition and
characterization of the aircraft configuration, suggesting possible improvements necessary
to meet performance and operational requirements. Nowadays, the high-speed air and
space transportation systems are experiencing a revolution in the design process, which is
resulting in highly innovative and integrated concepts, able to push the performance barrier
beyond the limits. This is especially visible in the case of hypersonic civil transportation
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systems, such as the STRATOFLY MR3 concept, where the need to meet a set of challenging
technical and operational requirements may impose the adoption of highly integrated
waverider configurations [1–4]. In these cases, it is fundamental to support the vehicle
design process with a set of aerodynamic investigations and mission analysis, with an
increasing level of complexity. In this context, this paper aims at presenting the results of
the build-up approach adopted in the framework of the H2020 STRATOFLY Project, to
improve the configuration of the reference vehicle, incrementally increasing the complexity
of the aerodynamic model, from the clean external configuration up to the complete
configuration, including propulsion systems elements and flight control surfaces. At each
step, the aerodynamic analysis is complemented with detailed mission analysis, in which
the different versions of the aerodynamic databases are used as input for the trajectory
simulation (see Figure 1).
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Figure 1. Incremental approach to Aerodynamic Characterization and Mission Analysis investigations.

Specifically, after this short introduction, Section 2 briefly provides the reader with
a summary description of the STRATOFLY MR3 vehicle configuration and its reference
mission. Then, Section 3 focuses on the step-by-step aerodynamic characterization of the
vehicle from the clean to the complete vehicle configuration. Even if the aerodynamic
characterization approach is well-known, Section 3 points out specific innovative aspects
which have been introduced to better cope with the analysis of a highly integrated wa-
verider configuration at conceptual design level. The build-up approach starts from the
investigation of the clean configuration, which consists of the external vehicle layout, in-
cluding empennages and undeflected control surfaces. Inviscid CFD simulation techniques
are applied to better describe the subsonic and transonic regime. Complementary, an
updated mathematical formulation for viscous effect corrective factor is disclosed. In the
following steps of the build-up approach, the contributions of the internal flow-path of the
propulsive system, and of the deflected control surfaces are evaluated and added to the
clean configuration. These last steps are extremely important for highly integrated vehicle
waverider configurations where the propulsive subsystems flow-path may represent up to
30–40% of the vehicle available volume and where non-conventional flight control surfaces
architecture may be adopted. The importance of properly addressing these contributions
for the aerodynamic characterization of the vehicle is testified in Section 4, the comparison
of the results obtained through the different mission analysis campaigns clearly shows that
the accuracy of aerodynamic characterization may determine the feasibility or unfeasibility
of the mission concept. In this context, special attention is devoted to the longitudinal
stability analysis, which shows that in order to meet the high-level design and operational
requirements (such as maximum take-off weight and range), the stability concept should
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be relaxed into the low supersonic speed regime. Finally, ideas for future investigations are
reported and main conclusions are drawn.

2. STRATOFLY MR3: Vehicle and Mission Overview
The STRATOFLY MR3 vehicle is the result of research activities carried out by several

international partners in the framework of the Horizon 2020 STRATOFLY Project funded by
the EC since June 2018. Benefitting from the heritage of past European funded projects and,
in particular, from the LAPCAT II project led by ESA [1], the waverider configuration has
been adopted and investigated in-depth throughout all flight phases. STARTOFLY MR3 is a
highly integrated system, where propulsion, aerothermodynamics, structures and on-board
subsystems are strictly interrelated to one another, as highlighted in Figure 2a [2,3].
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Figure 2. (a) STRATOFLY MR3 Vehicle and (b) Idealized Mission Concept.

Looking at the configuration, the STRATOFLY MR3 design is driven by its peculiar
mission concept, which can be summarized as follows: STRATOFLY MR3 will be able
to fly along long-haul routes reaching Mach 8 during the cruise phase at a stratospheric
altitude (h > 30,000 m) carrying 300 passengers as payload. Figure 2a shows STRATOFLY
MR3 external configuration. STRATOFLY MR3 has a waverider configuration with the
engines and related air duct embedded into the airframe and located at the top. The
integration of the propulsive system at the top of the vehicle allows maximization of the
available planform for lift generation without additional drag penalties, thus increasing
the aerodynamic efficiency, and it allows optimizing the internal volume. This layout
guarantees furthermore to expand the jet to a large exit nozzle area without the need to
perturb the external shape which would lead to extra pressure drag.

The mission profile (Figure 2b) is based on the LAPCAT reference [5]. During the
first part of the mission the ATR engines are used and the vehicle performs the first climb
phase, which terminates at Mach = 0.95 and at an altitude between 11 and 13 km. The air
turbo–rocket (ATR) is a particular case of turbine-based combined cycles cycle engines
which brings together elements of the turbojet and rocket motors and provides a unique
set of performance characteristics. This engine offers a high thrust-to-weight ratio and
specific thrust over a wide range of speed and altitude, constituting an excellent choice
as an accelerator engine up to high-supersonic speeds. Then, the vehicle performs the
subsonic cruise. This phase is needed to prevent a sonic boom while flying on land. A
constraint on the distance flown from the departure site should be considered to fulfill
this requirement: the subsonic cruise phase ends when the vehicle is at 400 km from the
departure airport. Then, the supersonic climb starts, and the vehicle accelerates up to
Mach = 4. At the end of this phase, the ATR engines are turned off and the DMR is activated
to accelerate up to Mach = 8. Dual Mode Ramjet engine (DMR) is the high-speed engine
that can be operated in both ramjet and scramjet modes. The next phase is the hypersonic
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cruise: in case of a Europe to Asia or Australia mission, the vehicle should point towards
the Bering strait, then it flies over the Pacific Ocean to reach the designated destination.
The cruise altitude should be in the range from 30 to 35 km. Eventually, the engines are
turned off and the vehicle performs the descent towards the landing site.

An overview of the vehicle dimensions is also reported in Table 1 [2].

Table 1. STRATOFLY MR3 vehicle dimensions.

Parameter Value Unit of Measure

Length 94 m
Wingspan 41 m

Wing surface 1365 m2

Aspect ratio ~1 -

3. Aerodynamic Characterization
3.1. Methodology Overview

This section aims at describing the methodology used to perform the aerodynamic
characterization of the STRATOFLY MR3 vehicle concept. Considering that the project
deals with the conceptual and preliminary design of the vehicle, an incremental build-up
approach has been exploited [6–9]. The approach starts from the investigation of the
clean configuration which consists of the external vehicle layout, including empennages
and undeflected control surfaces. Then, when additional details on the integration of the
propulsive flow-path and of the control surface deflections are available, the aerodynamic
database is improved with new contributions. In details, the lift coefficient is evaluated
adding to the clean configuration, the contributions to lift of all the control surfaces i (i.e.,

n

Â
i = 1

(DCL)i
). Similarly, the drag coefficient is evaluated adding to the clean configuration,

the contributions to drag of all the control surfaces. Finally, the y-moment coefficient is
evaluated by summing to the value of the clean configuration, the single effects of the
control surfaces, and the additional effects of the misalignment of thrust vector with respect
to the longitudinal vehicle axis.

CL = (CL)clean
+

n

Â
i = 1

(DCL)i
(1)

CD = (CD)cleaninv
+ (DCD)viscext

+ (DCD)viscint
+

n

Â
i = 1

(DCD)i
(2)

CMy =
�
CMy

�
clean

+
n

Â
i = 1

�
DCMy

�
i
+

�
DCMy

�
T

(3)

When dealing with conceptual design, due to the time and budget constraints, sim-
plified approaches are preferred for the aerodynamic characterization, such as the Panel
Methods. However, in this case, taking into account the complexity of the vehicle configu-
ration, and remembering that one of the main goals of the H2020 STRATOFLY Project is
to better investigate the behavior of the vehicle concept in subsonic and transonic speed
regimes, simplified CFD simulation campaigns have been selected, as the most appro-
priate approach. Specifically, inviscid CFD simulation techniques have been applied at
all Mach numbers from low subsonic to the hypersonic speed regime (from Mach 0.3 to
Mach 8.0) and viscous effects have been added later through innovative simplified engi-
neering formulations. In this case, starting from available mathematical formulations, new
parametric equations have been developed to better capture the peculiarities of waverider
configuration with integrated dorsal propulsive flow-path. The exploitation of simplified
CFD simulations guarantees more reliable results without excessively compromising the
available resources.
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3.2. Clean Configuration: Inviscid CFD and Innovative Viscous Corrections

The first step of the build-up approach for the aerodynamic characterization of the
STARTOFLY MR3 vehicle consists in the analysis of the clean configuration, i.e., the vehicle
external layout including empennages and undeflected flight control surfaces. For the clean
configuration, a Eulerian unstructured grid of about one million of cells (half configuration)
has been generated by means of ICEMCFD-TETRA grid generator (Figure 3). and the
commercial code Fluent has been adopted for the numerical calculations. Based on past
experiences with very similar problems [7,8], the number of cells has been selected to
guarantee a good compromise between calculation time and accuracy. Please note that
a grid convergence analysis has not been done due to the simplified and preliminary
approach. However, a grid error less than 10% is expected [7]. However, grid convergence
analysis will be carried on as soon as high-fidelity calculations will be performed.
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Some results are reported in the Figures 4 and 5 where the results of the inviscid
external CFD simulations are compared with already available results previously obtained
by means of Supersonic/Hypersonic Panels Method (Surface Impact Method tool), based
on classical Modified-Newtonian, Tangent-Wedge, and Shock-Expansion Theories. In the
supersonic-hypersonic range down to Mach = 3, the comparisons show good results, at
least for small angles of attack (i.e., the case reported in Figures 4 and 5). The discrepancy
between the two methods is expected to increase for higher angles of attack. However,
this is not the case for the STRATOFLY MR3 vehicle whose angle of attack throughout the
mission is between �2� and +2�.



Energies 2021, 14, 3580 6 of 28

Energies 2021, 14, x FOR PEER REVIEW 6 of 26 
 

 

discrepancy between the two methods is expected to increase for higher angles of attack. 
However, this is not the case for the STRATOFLY MR3 vehicle whose angle of attack 
throughout the mission is between ƺ2° and +2°. 

 
(a) 

 
(b) 

Figure 4. Lift (a) and Drag (b) coefficients versus Mach at ΅ = 0°. 

 
(a) 

 
(b) 

Figure 5. Pitching Moment (a) and Centre of Pressure (b) versus Mach at ΅ = 0°. 

An updated mathematical formulation for viscous effect corrective factor is disclosed 
hereafter. The innovation lays in the fact that formulations, already available in the liter-
ature, have been modified to better capture the peculiarities of highly integrated wa-
verider configurations. The viscous effect is added in a second step by means of an engi-
neering formula available in the literature ([10–12]) which can be generalized as in Equa-
tion (4). 

ሺοܥሻ௩௦ೣ ൌ ߙ כ ଵ
ሾሺோሻሿమǤఱఴ

כ ଵ
ሺଵାఉכெమሻം

כ ೢ
ೝ

, (4) 

The parametric formulation reported in Equation (4) allows for the estimation of the 
viscous effect by correcting the turbulent flat plate theory (represented by the term 

ଵ
ሾሺோሻሿమǤఱఴ

, see [10]) with (i) the factor ଵ
ሺଵାఉכெమሻം

 which takes into account the compressi-
bility effect [11], (ii) the wetted and the reference areas ratio and (iii) the parameter ߙ will 
be customized depending on the vehicle configuration. In the original formulation which 
was used to support the Space Ship 2 Aerodynamic Characterization [12], the values sug-
gested for these parameters are as follows: ߙ ൌ ͲǤͶͷͷǡ ߛ and ,0.144 = ߚ ൌ ͲǤͷ. 

Considering the substantial differences between STRATOFLY MR3 and the Space 
Ship 2 configurations, a new formulation of the parameters has been considered. Firstly, 
the peculiar shape of STRATOFLY MR3 prevents use of Equation (4) for the entire vehicle 

Figure 4. Lift (a) and Drag (b) coefficients versus Mach at ↵ = 0�.

Energies 2021, 14, x FOR PEER REVIEW 6 of 26 
 

 

discrepancy between the two methods is expected to increase for higher angles of attack. 
However, this is not the case for the STRATOFLY MR3 vehicle whose angle of attack 
throughout the mission is between ƺ2° and +2°. 

 
(a) 

 
(b) 

Figure 4. Lift (a) and Drag (b) coefficients versus Mach at ΅ = 0°. 

 
(a) 

 
(b) 

Figure 5. Pitching Moment (a) and Centre of Pressure (b) versus Mach at ΅ = 0°. 

An updated mathematical formulation for viscous effect corrective factor is disclosed 
hereafter. The innovation lays in the fact that formulations, already available in the liter-
ature, have been modified to better capture the peculiarities of highly integrated wa-
verider configurations. The viscous effect is added in a second step by means of an engi-
neering formula available in the literature ([10–12]) which can be generalized as in Equa-
tion (4). 

ሺοܥሻ௩௦ೣ ൌ ߙ כ ଵ
ሾሺோሻሿమǤఱఴ

כ ଵ
ሺଵାఉכெమሻം

כ ೢ
ೝ

, (4) 

The parametric formulation reported in Equation (4) allows for the estimation of the 
viscous effect by correcting the turbulent flat plate theory (represented by the term 

ଵ
ሾሺோሻሿమǤఱఴ

, see [10]) with (i) the factor ଵ
ሺଵାఉכெమሻം

 which takes into account the compressi-
bility effect [11], (ii) the wetted and the reference areas ratio and (iii) the parameter ߙ will 
be customized depending on the vehicle configuration. In the original formulation which 
was used to support the Space Ship 2 Aerodynamic Characterization [12], the values sug-
gested for these parameters are as follows: ߙ ൌ ͲǤͶͷͷǡ ߛ and ,0.144 = ߚ ൌ ͲǤͷ. 

Considering the substantial differences between STRATOFLY MR3 and the Space 
Ship 2 configurations, a new formulation of the parameters has been considered. Firstly, 
the peculiar shape of STRATOFLY MR3 prevents use of Equation (4) for the entire vehicle 

Figure 5. Pitching Moment (a) and Centre of Pressure (b) versus Mach at ↵ = 0�.

An updated mathematical formulation for viscous effect corrective factor is disclosed
hereafter. The innovation lays in the fact that formulations, already available in the
literature, have been modified to better capture the peculiarities of highly integrated
waverider configurations. The viscous effect is added in a second step by means of an
engineering formula available in the literature ([10–12]) which can be generalized as in
Equation (4).

(DCD)viscext
= a ⇤ 1

[Log(Re)]2.58 ⇤ 1
(1 + b ⇤ M2)g ⇤ Awet

Are f

, (4)

The parametric formulation reported in Equation (4) allows for the estimation of
the viscous effect by correcting the turbulent flat plate theory (represented by the term

1
[Log(Re)]2.58 , see [10]) with (i) the factor 1

(1+b⇤M2)g which takes into account the compressibil-

ity effect [11], (ii) the wetted and the reference areas ratio and (iii) the parameter a will be
customized depending on the vehicle configuration. In the original formulation which was
used to support the Space Ship 2 Aerodynamic Characterization [12], the values suggested
for these parameters are as follows: a = 0.455, b = 0.144, and g = 0.65.

Considering the substantial differences between STRATOFLY MR3 and the Space Ship
2 configurations, a new formulation of the parameters has been considered. Firstly, the
peculiar shape of STRATOFLY MR3 prevents use of Equation (4) for the entire vehicle
configuration, but it allows for applying it only at the external surface. Therefore, in
this case the vehicle presented an integrated propulsive flow-path, the ratio Awet

Are f
will be

evaluated by considering the external wetted area only, without taking into account the
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integrated propulsive flow-path, which characterizes STRATOFLY MR3 configuration. For
STRATOFLY MR3, this leads to a value of about 2.31. Then, a, b, and g coefficients have
been tuned to use a set of viscous CFD simulations carried out at angle of attack zero all
over the range of Mach number. To achieve reliable results, the previous grid (Figure 3)
has been stretched close to the vehicle wall by adding a prism layer and thus reaching a
total number of cells of about 3.2 million. The k-!-SST turbulence modeling, which can
be used for a wide range of fluid flows as in the present calculations (see [13]) has been
adopted. Pressure-far-field conditions have been applied for the external surfaces of the
domain (assigning Mach number, pressure, and temperature), while the surfaces of the
vehicle are treated as no-slip adiabatic walls. The AUSM scheme (upwind) for numerical
convective flux is used, coupled with a density-based approach and an implicit time
discretization that allows for higher than 1 CFL number (up to 6). Considering that viscous
CFD runs require much more CPU time than the inviscid Eulerian ones, the viscous CFD
runs have been performed only at angle of attack zero for the tuning of previous formula
(Equation (4)). Results of the viscous external CFD simulations carried out throughout
the reference trajectory are reported in blue in Figure 6. The strange behavior of the curve
for low Mach numbers is mainly due to the fact that for each Mach number, the CFD
simulation has been conducted keeping the real flight altitude, resulting therefore in a
different Reynolds number. In order to make the tuning easier, the CFD results have been
scaled to the same Reynolds number (the value of Mach 0.3, which is 6.54 ⇥ 108) as reported
in green. At the same time, the (DCD)viscext

predicted using the original formulation has
been plotted (see the grey line). Eventually, a, b, and g coefficients have been tuned to
better predict the trend of the green line through the analytical formulation, thus obtaining a
new modified analytical formulation, which is more accurate for wave-rider configurations.
The curve obtained at the end of the tuning process is reported in red, and it corresponds
to Equation (4) with a = 0.43, b = 0.31, and g = 0.37.
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This procedure cannot be applied to the internal flow-path, where strong section area
variations cause significantly different behavior of the air flow with respect to the simple
flat plate. Therefore, for the internal part, the viscous internal CFD results are directly used,
scaled only for the Reynolds effect, using Equation (5):

CD fint
=

[Log(Renom)]
2.58

[Log

⇣
Re f light

⌘
]
2.58 ⇤ PolynomialCFD ⇤ Awetint

Are f

, (5)
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where Renom is the Reynolds number of the reference trajectory (used for CFD calculations),
Re f light is the actual trajectory Reynolds number, and Polynomial_CFD is the stepwise
interpolation of CFD data all along the Mach number (Figure 7).
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The test matrix used to produce the results of the clean aero-database considers
16 Mach Numbers at 7 angles of attack for a total number of 112 runs. The commer-
cial code Fluent has been used running on CIRA Linux Cluster (“Turing” 50 Teraflops,
1440 computing cores) and taking about one day for each polar with 16 parallel cores.

3.3. Impact of Propulsive Flow Path

This section further exploits the CFD simulations already presented in the previous
sections (that includes both the external and the internal domain of the vehicle) and
provides suggestions on how to evaluate the contribution of the integrated propulsive
flow path which consists of an intake, a combustor, and a nozzle, all embedded inside the
waverider vehicle layout. As is reported in Figure 8, the flow-path substantially contributes
to the overall aerodynamic forces, especially in subsonic, transonic, and low supersonic
speed regimes. The main effects are the additional drag and a down-lift, both mainly due
to the intake.
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The sudden reduction of drag at M = 4 (Figure 8a) can be explained because the
combustor swallows the shock wave, and in addition, the intake down-lift disappears
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(Figure 8b). The swallowing of the shock wave provides the aerodynamic characteristics
with a hysteresis phenomenon, as can be seen in Figure 9. The investigated configuration
shows that the shock wave is captured by the combustor between Mach 5 and Mach
6 during the ascent trajectory, while it is expelled between Mach 4 and Mach 3 during the
descent trajectory. This different behavior of the air-intake can be noted in Figure 10 where
we can see the Mach number contours at M = 4 and AoA = 0� far field conditions during
ascent and descent phases. However, looking at the envisaged in-flight operations of the
MR3 propulsion subsystem, only the descending branch of the hysteresis graph has been
considered. Indeed, the ATR ducts are expected to be open, thus facilitating the entrance of
the shock wave into the combustor between Mach 3 and Mach 4.
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3.4. Impact of Control Surfaces

The effect of control surfaces is taken into account through a simplified approach
(inviscid calculations) and simplified configuration selecting only the parts of the vehicle of
interest. For example, for the effect of flaps, a wing-flap configuration is used (Figure 11a),
while for the canard, a stand-alone one. As far as the body-flap is concerned, a more
complex configuration has been generated, accounting for both the rear part of the fuselage
and the vertical tail (Figure 11b). Viscous corrections are not considered, since the delta
values (with respect to the clean configuration) are used.
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From Figures 12–14, the effect of control surfaces is reported. The contribution of
the control surfaces is evaluated with respect to the clean configuration case (undeflected
control surfaces); this effect is referred here as DCL and DCD. There is good agreement
with the Surface Impact Method (SIM) except for with the body-flap configuration, which
is due to the strong effect of fuselage and vertical tail not considered by SIM (Figure 14).
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4. Mission Analysis
The Aerodynamic analysis performed for the STRATOFLY MR3 vehicle is comple-

mented by a parallel mission analysis which exploits the available aerodynamic database.
As the complexity of the aerodynamic model increases and consequently, the aerodynamic
database, the accuracy of the results of the mission simulations increases as well. In the
following subsections, details on the mission simulation, performed with ASTOS 9.17,
are provided.

4.1. Methodology Overview

The mission analysis is carried out mirroring the steps of the build-up approach used
for the aerodynamic database, and three main steps can be identified.

First, a preliminary mission simulation is run considering only the aerodynamic data
of the vehicle clean configuration, which does not take into account the deflection of
the flight control surfaces or any aerodynamic contributions due to propulsive system
components. A very first estimation of the vehicle performance along the trajectory can be
evaluated in the preliminary phases of the Aerodynamic Analysis.

Then, once the contribution of the flight control surfaces is added to the aerodynamic
database, a more detailed mission simulation can be performed. However, one main
limitation exists: ASTOS does not include the possibility to perform a static stability and
trim analysis. For that reason, the trimmed conditions are separately evaluated through a
Matlab script for each Mach number, and then used to create the trimmed aerodynamic
database. Therefore, as final step, different mission simulations are carried out, considering
the trimmed aerodynamic database and different possible routes.

A detailed description of the vehicle model, including aerodynamics and propulsion
characteristics, flight phases, and constraints are provided as inputs to the software for the
mission simulation. For all the simulations, the standard atmosphere model contained in
ASTOS has been used, and no cross winds have been considered. The vehicle structural
mass is equal to 218.75 Mg, while the propellant mass is 181.25 Mg. The maximum take-off
weight is then equal to 400 Mg [2]. The propulsive database contains the data of the ATR
and DMR engines, and it is derived from LAPCAT MR2 project. Moreover, the angle
of attack and the throttle are the two parameters which are used to control the vehicle
throughout the simulation. The AoA is set to vary in the range �2�/+2�, while the throttle
can vary between 0 (engine-off conditions) and 1 (full thrust).

Based on the LAPCAT MR2.4 reference vehicle and mission [5], the STRATOFLY
MR3 vehicle has been originally conceived to cover antipodal routes with a range up to
19,000 km, such as a Brussels to Sydney mission. However, as the aerodynamic database
accuracy increases, the simulations show a detrimental effect for the vehicle aerodynamic
performance due to the more accurate modelling of the propulsion flow-path. These effects



Energies 2021, 14, 3580 12 of 28

practically prevent the MR3 vehicle from meeting the antipodal range. Therefore, a shorter
mission connecting Brussels to Tokyo is also considered, with a range of approximately
12,000 km. The vehicle initial conditions are reported in Table 2.

Table 2. Initial condition for mission simulation.

Initial Condition Value

Latitude 50.9�
Longitude 4.49�
Altitude 0 m
Velocity 128 m/s
Heading �15�

The simulation starts at the end of the take-off phase, as the runway acceleration at
take-off cannot be properly simulated in ASTOS. An initial velocity of 128 m/s is set to
ensure lift-off and to guarantee the stability of the trajectory simulation.

4.2. Mission Analysis with Clean Configuration

The first set of mission simulations is run considering the initial version of the aerody-
namic database, which is referred to the vehicle clean configuration only. A complete view
of the mission trajectory is reported in Figure 15, where the line is colored by Mach numbers.
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Figure 15. BRU-SYD mission trajectory.

The Mach and altitude profiles are reported in Figures 16 and 17. The vehicle performs
the hypersonic cruise at M = 8 and an altitude that varies from 31 to 36.8 km. The latter
altitude is higher than the 35 km maximum altitude of the reference mission profile and
this is mainly due to the higher lift coefficient during the climb phase. The total mission
time is equal to 2 h 52 m (10,300 s).
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Figure 17. Altitude vs. mission time for clean configuration.

The Lift-to-Drag ratio profile is shown in Figure 18. The maximum L/D is equal to
9 and it is reached during the subsonic flight. However, the L/D drops to the minimum
value of 4 during the supersonic climb between Mach 2 and 3, where the aerodynamic
performances are very poor. Then, during the hypersonic cruise the L/D is increasing to 7.8.
The final part of the mission involves an unpowered descent. The internal duct is empty,
and the air flows through the internal duct, negatively affecting the overall aerodynamic
characteristics of the vehicle. This results in a poor aerodynamic performance in engine-off
conditions, where the L/D ranges between 3 and 5.

The angle of attack used during the simulation is reported in Figure 19. During the
climb phases, the AoA is set to negative values to limit the excess of lift which is produced
due to the large vehicle surface. If the vehicle flew at higher angles of attack, it would
quickly increase its altitude. Conversely, during the unpowered descent, the AoA is set
to the maximum value of 2�. During this phase, since the Lift-to-Drag ratio is very low,
it is necessary to increase the lift generated by the vehicle as much as possible, to avoid a
steep descent.
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The value of the propellant mass contained on-board at each instant is reported in
Figure 20. The highest fuel consumption rate is experienced during the supersonic and
hypersonic climb, where the thrust is increased up to the maximum available thrust. Almost
all fuel is burnt during the mission and only 1 Mg is left at the end of the last propelled
phase (Hypersonic cruise). These results seem to be not promising, considering that the
clean configuration represent the best-case scenario for what concerns the aerodynamic
performance. If the flight control surfaces contribution is added to the aerodynamic
database, the aerodynamic performance degrades, and the fuel consumption increases.
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4.3. Trim Analysis

Once the complete aerodynamic database has been delivered, the static longitudinal
stability and trim analysis has been performed. This activity is crucial for the design of a
civil passenger aircraft that is expected to fly stable through the mission phases. However,
it has to be noticed that the need to fly through different speed regimes and the peculiarities
of high-speed vehicle configurations, and therefore the Center of Gravity (CoG) shift
throughout the mission, may suggest relaxing the stability requirements, taking advantage
from the modern guidance and navigation equipment.

The complete aerodynamic database is composed of different contributions, namely
the clean configuration and the flight control surfaces (canards, flaps, and bodyflap). The
viscous correction is also added for the drag coefficient. An additional contribution is
considered when evaluating the pitching moment coefficient CMy. Since the thrust vector is
not aligned with the vehicle x-axis, the thrust produces a not negligible pitching moment.

CM_T = �CT ·Dz/L (6)

where CT is the thrust force coefficient, Dz is the z distance between the thrust vector and
the vehicle x-axis, and L is the vehicle length.

The propulsive database already contains the net thrust, which is evaluated considering
both the gross thrust and the contribution of the internal drag. Thus, the thrust contribution
to the total CD is not considered here. Moreover, the thrust is supposed to be applied along
the x-axis, and it does not contribute to the total CL. The total value of the aerodynamic
coefficients CL, CD, and CMy is evaluated as the sum of the different contributions:

CL = CL clean + CL f lap + CL canard + CL body f lap (7)

CD = CD clean + CD f lap + CD canard + CD body f lap + CD viscous (8)

CM = CM clean + CM f lap + CM canard + CM body f lap + CM Thrust (9)

The different contributions are also listed in Table 3.
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Table 3. Aerodynamic coefficients.

Coefficient Clean
Config

Viscous
Correction Canards Flaps Bodyflap Thrust

Correction

CL x x x x
CD x x x x x

CMy x x x x x

Canards and flaps deflection ranges between �20� and +20�, while the bodyflap
deflection is in the range �30�/0�. The resulting total CMy is evaluated for each possible
combination of surfaces deflections and for the entire Mach range. The aim is to understand
which conditions guarantee longitudinal static stability, namely dCMy/da < 0, at a given
Mach number and CoG position. The latter is derived from the preliminary CoG shift model
which has been evaluated by PoliTO. A specific value of the CoG position is considered for
each Mach number, as reported in Figure 21.
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Then, the trim analysis can be performed. Among the full set of stable conditions
evaluated during the previous step, it is possible to select the surfaces deflections and
the corresponding angle of attack ↵trim which guarantee CMy = 0. The first output of
this analysis is a set of trim maps, as the ones reported in Figures 22 and 23. The 3D
map shows the resulting ↵trim, which corresponds to the trimmed state, as a function of
bodyflap and flap deflections, for Mach = 8 and CoG = 48 m. Each canard deflection �canard
is reported with a different color. Figure 23 also shows similar results. However, in this
plot, the bodyflap deflection is fixed and the angle of attack ↵trim varies only with the flap
deflection �flap.
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Since the STRATOFLY MR3 vehicle is supposed to fly at low angles of attack, only
↵trim between �2� and 2� is considered for the analysis. For each ↵trim the corresponding
CL and CD can be also evaluated and, accordingly, the L/D. Moreover, for a given Mach
number and CoG position, the same ↵trim can be achieved with different combinations of
Control Surfaces deflections. However, only one combination should be selected to be used
as an input for the mission simulation in ASTOS. The combination that corresponds to the
highest L/D is selected.

Eventually, the complete trimmed aerodynamic database can be derived and used to
perform the mission simulation. The resulting CL, CD and L/D, at different Mach numbers
and for AoA = 0�, are reported in Figures 24–26 for the clean configuration and the trimmed
case. The impact of the Control Surface deflections is clearly visible, especially for what
concerns the increase in total drag and, consequently, the decrease in the aerodynamic
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efficiency along the entire Mach range. Eventually, an example of the database used in
ASTOS is given in Table 4 where only some Mach numbers, representative of the different
Mach regimes, are reported.
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Table 4. Excerpt of the trimmed aerodynamic database.

Mach
(-)

Alpha
(�) CL (-) CD (-) L/D (-) �flap (�) �canard

(�)
�bodyflap

(�)
CoG
(m)

0.5 �2 0.118 0.021 5.49 4.15 11 �26 53
0.5 0 0.160 0.028 5.75 4.9 7 �29 53
0.5 2 0.220 0.041 5.33 6.55 10 �30 53
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.95 �2 0.121 0.025 4.83 �6.6 16 �1 51.5
0.95 0 0.167 0.031 5.43 �6.2 13 �7 51.5
0.95 2 0.215 0.041 5.29 �7.6 12 �5 51.5
. . . . . . . . . . . . . . . . . . . . . . . . . . .
3 �2 0.036 0.017 2.14 2.95 20 �20 50.5
3 0 0.059 0.016 3.77 �7.95 13 �23 50.5
3 2 0.103 0.023 4.58 �18.1 16 �4 50.5

. . . . . . . . . . . . . . . . . . . . . . . . . . .
8 �2 0.020 0.004 5.37 �11.15 12 �2 48
8 0 0.042 0.006 7.05 �7.55 13 �3 48
8 2 0.064 0.010 6.63 �10.4 13 �5 48

4.4. Mission Analysis with Trimmed Configuration: BRU-SYD Mission Simulation

Once the aerodynamic analysis is complete, further mission simulations can be per-
formed, considering the complete trimmed aerodynamic database. The reference trajectory
is Brussels to Sydney and the other input parameters are the same used for the clean. The
new simulation shows that the fuel consumption increases considerably during the entire
mission, as reported in Figure 27. As a result, the vehicle runs out of fuel at approximately
7700 s (2 h 8 m), while flying the last part of the hypersonic cruise. It is worth noting that
the propulsive database has remained unchanged in the simulations with clean configu-
ration and trimmed aerodynamic database. Figure 28 shows the Mach number variation
with range (i.e., the distance flown by the aircraft during the mission), and the vertical
dashed line represents the point in which all the fuel is consumed. An estimation of the
maximum range achievable in these conditions can be obtained from these results which is
equal to approximately 12,200 km. However, it should also be highlighted that the ASTOS
simulation can be continued even if the fuel mass becomes 0, so the results from that point
on are not realistic.
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The time needed to perform the climb phase is increasing considerably with respect
to the previous simulation (Figure 29). This increment is due to the reduced aerodynamic
performances, if compared to the clean configuration, as reported in Figure 30. The trimmed
aerodynamic performances are poorer compared to those of the clean configuration: the
L/D ratio ranges between 5 and 6 in the subsonic regime, while it drops below 3.5 during
the supersonic climb.

This highly affects the duration of the supersonic climb and limits the capability of
the STRATOFLY MR3 vehicle to cover the antipodal route from Brussels to Sydney.

However, if the vehicle performance is improved, the fuel mass consumption could
be reduced. A possible solution could be to relax the stability conditions in the Mach
range from 0.95 to 3, where the lift-to-drag ratio reaches the lowest value. Therefore, the
constraint on longitudinal static stability is removed and the trim conditions are evaluated
again in this range, considering that dCMy/da > 0. The resulting L/D is reported in
Figure 31, where the continuous line represents the trim conditions with static stability and
the dashed line refers to the unstable case. The aerodynamic efficiency is slightly increasing
in this range, even if the increase is limited to values below 0.5.
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Figure 31. Comparison of the Lift-to-Drag ratio between stable and unstable conditions in the
supersonic Mach regime.

A further simulation is then run considering the unstable trim conditions from M = 0.95
to M = 3, while the same set of trim data is used for the other Mach numbers. The results
are reported in Figures 32 and 33 with the dash-dot line, where the altitude and Mach
profiles are compared to the other cases. The time needed to perform the supersonic
climb decreases to 1040 s, a mid-value with respect to the two previous cases. However, a
significant difference still exists if compared to the clean configuration mission profile.

The resulting aerodynamic efficiency is reported in Figure 34. The L/D is still low at
supersonic speeds, but the vehicle is now able to accelerate in a shorter time. However,
the overall fuel consumption is still too high. The vehicle runs out of fuel during the
hypersonic cruise after 2 h 5 m (7500 s), while flying the last part of the hypersonic cruise
(Figure 35). The altitude and Mach profile vs. range are reported in Figures 36 and 37,
where the vertical dashed line shows the point where the fuel ends. The maximum range
is equal to approximately 12,600 km.
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4.5. Mission Analysis with Trimmed Configuration: BRU-NRT Mission Simulation

The results of the previous mission simulation suggest that the STRATOFLY MR3
vehicle could not be able to complete the 19,000 km range mission. For that reason, a
shorter mission should also be considered. The range is decreased to about 12,000 km and
the selected route is Brussels to Tokyo Narita (BRU-NRT). This route is chosen since it
allows the vehicle to fly entirely over the sea at Mach greater than 1, as it also happens for
the BRU-SYD mission. An overview of this trajectory is reported in Figure 38. The first part
of the mission up to the Bering strait is equivalent to the previous case. From this point on,
the vehicle performs a right turn heading towards Tokyo.
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Figure 38. BRU-NRT mission trajectory.

The resulting altitude and Mach profiles are reported in Figures 39 and 40. The
hypersonic cruise duration is 3100 s (52 min), a value that is shorter than the BRU-SYD
case, due to the reduced range. Therefore, the altitude at the end of the cruise is limited
to 35.5 km. The total mission duration is equal to 2 h 17 m (8200 s). The propellant mass
of 181.25 Mg is sufficient to cover the BRU-NRT mission, and the residual propellant at
the end of the mission is equal to 10.45 Mg, as can be seen in Figure 41. The L/D and AoA
profiles are reported in Figures 42 and 43, respectively.
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Figure 41. Propellant mass vs. mission time for trimmed AEDB with unstable conditions at super-
sonic Mach numbers. BRU-NRT mission.
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The following table (Table 5) summarizes the major results of the mission simulations 
performed in this study. The 3rd column has been added to highlight if the mission can 
be properly achieved with the available fuel on board. If this is possible, the distance 
flown, the residual fuel and the time needed to perform the mission are reported. Con-
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is used.  
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Route 
Aerodynamic 
Configuration 

Mission  
Completed? 
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flown (km) 
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(Mg) 
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Figure 42. Lift-to-Drag ratio vs. mission time for trimmed AEDB with unstable conditions at
supersonic Mach numbers. BRU-NRT mission.
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The following table (Table 5) summarizes the major results of the mission simulations
performed in this study. The 3rd column has been added to highlight if the mission can be
properly achieved with the available fuel on board. If this is possible, the distance flown,
the residual fuel and the time needed to perform the mission are reported. Conversely, the
distance flown and time reported refer to the condition in which all the fuel is used.

Table 5. Overview of trajectory simulations results.

Route Aerodynamic
Configuration

Mission
Completed?

Distance
flown (km)

Residual
fuel (Mg)

Time
(hr:min)

Brussels to
Sydney

Clean Yes 18,200 1.00 2 h 52 m
Trimmed and

stable No 12,200 0.00 2 h 8 m

Trimmed and
unstable No 12,600 0.00 2 h 5 m

Brussels to
Tokyo

Trimmed and
unstable Yes 12,245 10.45 2 h 17 m

5. Conclusions
This paper provides technical insights on the aerodynamic characterization activities

coupled with detailed mission analysis simulations, performed in the field of the H2020
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STRATOFLY project, for the Mach 8 waverider reference configuration. Considering the
complexity of the configuration to be analyzed at conceptual/preliminary design stage,
a build-up approach has been adopted, incrementally increasing the complexity of the
aerodynamic model, from the clean external configuration up to the complete configuration,
including propulsion system elements and flight control surfaces. The comparison of the
results obtained through the different mission analysis campaigns clearly shows that the
accuracy of aerodynamic characterization may determine the feasibility or unfeasibility of
the mission concept. It is worth noting that in all the simulations presented in the previous
section, the descent was performed in engine-off conditions. However, due to the poor
aerodynamic performance during this phase, the rate of descent could become too high.
During the final part of the mission, the aerodynamic efficiency drops to values ranging
between 2.5 and 5, causing the vehicle to quickly loose altitude. Therefore, the authors are
currently working to remove the constraints on the unpowered descent, understanding the
benefits of a sustained descent phase.
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