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Abstract. Structural monitoring plays a key role for underground structures such as tunnels.  Strain readings 

are expected to report structural conditions during construction and at the final delivery of the works.  

Furthermore, it is increasingly requested an extension to long-term monitoring from contractors with possible 

use of the same system in service during construction. A robust and efficient monitoring methodology from 

discrete strain measurements is the inverse Finite Element Method (iFEM), which allows to reconstruct the 

structural response without input data on the load pattern applied to the structure as well as material and inertial 

properties of the elements and therefore it is interesting for structural configurations affected by uncertain 

loading conditions, such as the tunnel. The formulation presented in this paper, based on the iFEM theory, is 

improved from the previous work available in literature for both the shape functions used and the 

computational procedure. Indeed, the approach allows to overcome inconsistencies related to structural loading 

conditions and a pseudo-inverse matrix preserve all the rigid body modes without imposing specific constraints 

which is typical for tunnels. Numerical validation of the iFEM procedure is performed by simulating the input 

data coming from a tunnel working in a heterogeneous soil under different loading conditions with direct FEM 

analysis.    

Keywords. iFEM, long-term monitoring, curved beam, shape sensing, tunnel, structural health monitoring.     

1. Introduction 

Underground constructions present an intrinsic level of complexity caused by the interaction with natural 

environment in civil engineering problems and they are then affected by multiple uncertainties since the choice 

of design assumptions to the end of their service life. Unlike surface constructions in which materials with 

well-known properties are gradually assembled to build a structure that finds its equilibrium in the desired 

final configuration, underground constructions are built in a pre-existing equilibrium under unknown 

conditions. The pre-existing stresses within the ground before the excavation is modified by the opening of a 

cavity and channelling around it creating the “arch effect”. An important task of a tunnel design engineer that 

affects the integrity and life of a tunnel is to determine the proper stresses and how trigger the arch effect by 

calibrating excavation and stabilisation operations. Furthermore, lateral and transversal deformations of tunnel 

structures may occur during service life due to geotechnical activities which leads to stress variation in 

structural members. In this context, the monitoring is a fundamental tool for the current tunnelling practice 

that takes part in the construction phases and throughout its service life. In the first time it allows to verify the 

accuracy of the input parameter predicted and then to fine tune the design by adjusting the stabilisation 

operations and calibrating the rate of tunnelling. Once the structure is completed, it is also important to check 

the conditions over time, especially in relation to the rheological and hydrogeological conditions [1]. Long-

term monitoring can also help to reduce uncertainties in the decision-making process by establishing triggering 

thresholds that exceed specific structural performance levels. Until a few years ago monitoring during service 

life of the tunnel was not very common, due to the interference with service. The current trend is to equip the 

structure with remote measurement transmission systems.  

A conventional method used for monitoring tunnels is the convergence measurement. The method 

relies on the distances between couple of points inside the tunnel done with optical measures. Due to the 

intermittent recordings, interrupting construction operations and the impossibility to apply the technique to 

survey tunnel stability during service, the extensometric technique, installing electric strain gages on the 

internal steel arches of any tunnel support system [2]. This technology requires the installation of a number of 

transversal and longitudinal devices to check in some points the internal strains to be compared with design 
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values. Therefore, only a local comparison with expected data is available. With the rapid development of fiber 

optic sensing technology, distributed fiber optic sensor (FOS) has been applied to tunnels. Barbosa et al. [3] 

proposed an automatic tunnel monitoring system using a metallic profile instrumented with FOS and installed 

on the tunnel surface. Tunnel convergences are estimated with the mathematical model by Gama [2] which 

allows to model the radial displacements starting from the initial point achieved by topographic calibration. 

MacPherson et al. [4] presented a multiplexed fibre Bragg grating strain sensor in a multicore fibre, fixed 

across the join between tunnel lining sections. Wang et al. [5] introduced a new package with an additional 

plastic tube in the middle part of the sensor to prevent the FOS from unbonding with the Basalt fiber. Inaudi 

and Walder [6] presented the application of distributed FOS to detect in a highway tunnel strains and cracks 

of concrete lining due to hydrostatic pressure, in a railway tunnel the increase of knowledge on the structural 

behaviour between tunnel lining and the vertical support columns and in a penstock tunnel the discovery micro-

cracks in the welds caused by a landslide. To improve the understanding and prediction on the response of the 

existing tunnel due to close boring activities, Gue et al. [7] presented a case study on the monitoring with 

distributed FOS of an existing cast iron tunnel during the construction of Crossrail’s platform tunnel. De 

Battista et al. [8] used a distributed FOS embedded within the sprayed concrete lining to monitor strains on the 

tunnel lining, during the excavation of cross-passages. Other monitoring methods refer to different techniques 

such as laser scanning. To understand the tunnel behaviour between the construction phase and the final 

stabilized shape, Nuttens et al. [9] proposed the application of terrestrial laser scanning for ovalization 

measurements from the ring assembly until three months after construction. Considering that the relative 

spatial relationship between each segment of the lining ring agrees with the variation of the inclination of each 

segment, Zhang et al. [10] obtained the variation of tunnel diameter using wireless inclinometers. A technique 

based on tunnel deformation monitoring system using ultrasonic transducers has been proposed by Sheng Xu 

et al. [11]. Experimental tests highlighted the dependence by probe angles, distances and surrounding 

temperature variations and then the need of suitable coefficients compensating the deviations. As railway 

tunnels are usually long in the longitudinal direction, a reliable monitoring method using a wireless sensor 

network was developed by Tsuno and Hirata [12]. A SHM network with crackmeters and inclinometers has 

been deployed in a road tunnel in Italy, to understand the non-linear interaction with the slow-moving landslide 

[13]. Due to the difficulties to make a quantitative evaluation for the long-term safety using analytic method, 

Wang et al. [14] developed a multi-level fuzzy synthetic evaluation model.  

Although there are applications that allow to employ SHM by defining an alarm threshold level, still 

many application limits and computational approximations need to be overcome. In strain sensing techniques 

in which the fibre optic is glued on the lining surface, extra care should be taken during installation due to their 

fragility; many applications require the occupation of the roadway and some sensors can only provide limited 

number of measuring points. From the computational point of view, analysis carried out by Mohamad et al. 

[15] underlined the importance of measuring also the axial strain in the tunnel ring and subtracting it to 

calculate the actual deflection of the lining as a result of bending.  Embedded sensor in tunnel lining and 

therefore axial strain as well as bending strain need to be detected. The advances in the Micro Electro-

Mechanical System (MEMS) field have made possible embedded systems that allow to reconstruct the entire 

deformed shape of complex structures with use of a large number of low-costs strain sensors [16]. 

Experimental test on a concrete beam reinforced with steel bars incorporating barometric pressure sensor in 

appropriate sealed cavities showed the robustness of the system during construction and loading phase [17]. 

 An algorithm particularly effective for SHM, that allows to reconstruct the entire deformed shape of a 

structure starting from a limited number of strain measurements, was developed by Tessler and Spangler [18] 

in the aeronautical field; it is also known as inverse Finite Element Method (iFEM). The present shape-sensing 

methodology also implies that other crucial quantities such as stresses can be evaluated, thus enabling real-

time damage prediction. The formulation, based on a least-squares variational principle, allows to reconstruct 

the response of a discretized structural domain without relying on mechanical and loading knowledge. Because 

only strain-displacement relations are involved, solely strains and geometric measurements are required. 

Specialized by Gherlone et al. [19] for the shape sensing of truss, beam and frame structures with Timoshenko 

behaviour, the theory was applied for civil engineering field by Savino et al. [20], with a formulation according 

to the kinematical assumptions of the Bernoulli-Euler theory. Indeed, in order to make this computational 
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method available also to reconstruct the deformed shape of curved elements, Savino et al. [21] developed the 

theory according to the kinematic assumptions of Bernoulli-Euler curved beam theory including the membrane 

and bending deformations. The inverse curved element, formulated with bi-quintic polynomials, is able to 

provide an adequate representation of rigid-body motions and locking-free behaviour. Kefal et al. [22] 

proposed a new iFEM formulation to model laminated composite and sandwich plates and shells with a three-

node inverse-shell element named i3-RZT. The linear incremental iFEM procedure has been introduced by 

Tessler et al. [23] to reconstruct the displacement field of a shell structure undergoing geometric nonlinearity. 

Furthermore, the application of the iFEM theory not only involved the full-field displacements and stress-

strain reconstruction but also the detection of possible damage locations. Colombo et al. [24] used the iFEM 

algorithm to create a load-adaptive baseline for damage identification based on an anomaly index. Roy et al. 

[25] introduced the use of the iFEM to localize damages by reconstructing the damaged strain field of the 

structure. Mathematical concepts have been also demonstrated with experimental application to SHM of 

aerospace, marine and mechanical structures. Gherlone et al. [26] considering a laboratory experiment on a 

thin-walled cantilevered beam, investigated the accuracy of the deformed shape reconstructed by strain-rosette 

data by comparison with displacement transducers measurements. Kefal and Oterkus [27] performed 

displacement and stress monitoring of a typical chemical tanker mid-ship based on iFEM methodology. Papa 

et al. [28] validated the iFEM formulation with the Mindlin plate on a wing of an unmanned aircraft vehicle 

properly equipped with strain gages. Since the deformation of the gantry structure in heavy-duty machine tools 

is an important factor that affects machining accuracy, Liu et al. [29, 30] verified the accuracy of the iFEM 

algorithm with fiber Bragg grating sensors in the mechanical manufacturing field. Niu et al. [31] presented a 

multi-nodes iFEM that reconstructs the displacement of a flexible antenna panel consistent with Mindlin plate 

theory. 

Due to the independency by the type of construction methods and loading pattern coming from geological and 

hydrogeological conditions, the use of iFEM is particularly effective in the tunnel monitoring. In this paper, 

further developments of the computational method are presented to make it suitable also for the underground 

structures. Despite satisfactory results of bi-quintic shape functions, a new highly efficient shape functions 

have been designed to overcome numerical inefficiencies; this incorporates an adequate representation of the 

possible rigid-body or strain-free motions other than the strain-inducing motions. To obtain the exact solution, 

the governing differential equations of Bernoulli-Euler curved beam have been solved, taking into account the 

coupling between radial and circumferential displacement. A further novelty is introduced in the present 

formulation because the inverse solution for tunnel static scheme does not provide for specifying problem-

dependent displacement boundary conditions. To solve the latter problem, the Moore-Penrose pseudoinverse 

matrix [32-33] is employed. This matrix is frequently used to solve a system of linear equations when the 

system does not have a unique solution or has many solutions. The method relies on the singular value 

decomposition (SVD) to form a system of linear equations. The resulting singular system of algebraic 

equations that allow to calculate the unknown degrees of freedom can be then efficiently solved providing the 

deformed structural-shape predictions.  

After a comparison between two types of shape functions, the case of a bored tunnel under a flat and 

a slope terrain is presented. In order to simulate measured strains on field, the results of a finite element analysis 

using PLAXIS 2D software [34] are used. 

2. Inverse Finite Element Method for curved beam 

The deformations of curved iFEM elements are assumed to correspond to the assumptions of Bernoulli-Euler 

theory [21]. The geometry of the generic element can be suitably described introducing the curvilinear 

coordinates (R, β), which gives the curvilinear abscissa (Fig. 1) with the following derivative: 

ds = R ∙ dβ 
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Figure 1 - Curved beam geometry. 

The displacement field is completely defined by the radial displacement v, tangential displacement u and the 

rotation φ. The kinematic variables can be interpolated within the element using a set of shape functions N(β), 

u(β) = N(β) ∙ ue 

where ue are the nodal degrees of freedom. According to the adopted structural theory, the strain field can be 

expressed in terms of nodal degrees of freedom  

e(u) = B(β) ∙ ue                                                                                                                                                       (1) 

where the matrix B(β) contains the derivatives of the shape functions N(β). The iFEM approach reconstructs 

the deformed shape of a discretized structure by minimizing a functional Φ defined as the least-squares error 

between experimental section strains obtained by in situ strain measurements, eε, and analytic section strain, 

e(u). For a single element, the error functional is expressed by 

Φ𝑒(u) = ||e(u) − eε||
2
 

Thus, in case of discretization with m elements, the total lest-squares functional is the sum of each one  

Φ = ∑ Φe

m

e=1

 

Accounting for the membrane and bending deformations, the squared norms can be written in terms of the 

normalized Euclidean norms such as 

||ε(u) − εε||
2

=
Le

n
∙ ∑(ε(βi) − εi

ε)2

n

i=1

 

||χ(u) − χε||
2

=
I𝑒 Le

Ae n
∙ ∑(χ(βi) − χ𝑖

ε)2

n

i=1

 

where Le, Ae and Ie are the length of the element, the area and the moments of inertia, n is the number of 

locations where the section strains are evaluated. 

The minimization of the inverse-element error functional with respect to the unknown nodal dof ue leads to the 

inverse element matrix equation:  

[Se] ∙ {ue} = {he}          

where the matrix [Se] and the vector {he} can be split in the membrane, ε, and flexural, χ, contributions:  

[Sε
e] =

Le

n
∑{Bε(βi)}T{Bε(βi)}

n

i=1

 

[Sχ
e] =

Ie Le

Ae n
 ∑{Bχ(βi)}

T
{Bχ(βi)}

n

i=1
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{hε
e} =

le

n
∑{Bε(βi)}Tεoi

ε

n

i=1

 

{hχ
e} =

Ie Le

Ae n
 ∑{Bχ(βi)}

T
χi

ε

n

i=1

 

The usual finite element assembly of a discretized structure, taking into account coordinate transformations to 

the global coordinate systems, is then performed giving a linear system of algebraic equations:  

[S] ∙ {u} = {h}          

Since the matrix [S] contains the rigid body motion of the structure, it is a singular matrix and the prescription 

of displacement boundary conditions is essential to get the inverse. However, there are applications for which 

all rigid body motions are unrestrained and then the inverse of rank deficient matrix should be computed. This 

study widens the previous foundings on iFEM analysis by taking the inverse of the symmetric matrix [S] 

without eliminating the rigid body components. Moore and Penrose showed that there is a general solution to 

theses equations by taking into account the Moore-Penrose “pseudo-inverse” [S†], which is the unique matrix 

that satisfies the following four properties: 

S ∙ S† ∙ S = S 

S† ∙ S ∙ S† = S† 

(S ∙ S†)
𝑇

= S ∙ S† 

(S† ∙ S)
𝑇

= S† ∙ S 

Further, the Moore-Penrose inverse S† yields the inverse S-1 when S is square and a non-singular matrix.  

When S is not full rank and then have nor eigenvalue and eigenvector, the pseudo-inverse can be computed 

using the Singular Value Decomposition (SVD). Then there exist orthogonal matrices U and V such that the 

matrix S can be decomposed as follows: 

S = U ∙ Σ ∙ V𝑇 

where Σ is a matrix having the form: 

Σ =
|
|

𝜎1 0 ⋯ 0 0
0 𝜎2 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 0 0
0 0 ⋯ 𝜎𝑝 0

|
|
 

and {σi} are the singular values of the matrix S found from the non-zero eigenvalues of ST∙S and S∙ST. The 

columns of the orthogonal matrices U and V are respectively the left singular vectors and the right singular 

vectors. Using the SVD of the matrix S, the pseudo-inverse of this matrix can be computed from the following 

equation: 

S† = V ∙ Σ† ∙ U𝑇 

where the matrix Σ† takes the form: 

Σ† =
|
|

1/𝜎1 0 ⋯ 0 0
0 1/𝜎2 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 0 0
0 0 ⋯ 1/𝜎𝑝 0

|
|
 

If the matrix S is rank deficient, then one or more of its singular values will be zero and is placed in the 

corresponding entry of Σ†. 
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With the pseudo-inverse matrix [S†], the least squares solution for the inverse problem lacks of a unique 

displacement field and is computed by: 

{u} = [S†] ∙ {h}                                                                                                                                                   (2) 

In line with traditional iFEM solution, Eq. 2 is suitable for real time monitoring because [S†] remains 

unchanged for a given distribution of strain sensors; the vector {h} needs to be updated during each strain-data 

acquisition. Using the evaluated vector of unknown dof {u}, the continuous strain field of the structure can be 

obtained through the derivatives of the shape functions (Eq. 1). Furthermore, the stresses are computed using 

constitutive relations and can be introduced into appropriate failure criteria for damage prediction. 

3. High efficiency shape functions for curved element  

A key step of the iFEM formulations is the definition of suitable shape functions. The definition of the shape 

functions for curved elements consider the representation of the rigid body mode, the membrane-bending 

coupling, the membrane-shear locking, etc. To achieve a good accuracy and convergence property, two factors 

should be taken into account in the model definition: 

• the element displacement field must contain a proper representation of any rigid-body motion; 

• to represent all possible strain-modes accurately, the displacement components should contain at least as 

many terms as the exact solutions of the differential Euler equations which govern the behaviour of the 

element.    

Nevertheless, it has been widely recognized in literature that good results could be reached without the explicit 

representation of the rigid-body motions but only adopting independently-interpolated displacement at least of 

fifth degree. A bi-quintic inverse element was introduced by Savino et al. [21] for iFEM formulation obtaining 

fast convergence in terms of displacements. However, the use of polynomial displacement function could leads 

to issues in stability of the solution [35]. Due to this reason, new high-efficiency shape functions (HESF) for 

an exact representation of the rigid-body motions are proposed. To satisfy such requirements, the coupling 

between normal and tangential displacements should be taken into account by analytically solving the strain-

displacement equations of the curved beam theory. Ashwell et al. [35] showed how to derive satisfactory shape 

function from simple assumed strain functions, fε(β) and fχ(β), by integrating the strain-displacement equations 

ε =
1

R
(

du

dβ
+ v) = fε(β) 

                                                                                                                                                                                                 (3)  

χ =
1

R2 (−
du

dβ
+

d2v

dβ2) = fχ(β) 

where the number of independent constants in, fε(β) and fχ(β), has been chosen considering six degrees of 

freedom for an element.  

In this work new high-efficiency shape functions have been obtained, increasing the terms of polynomial 

functions according to the twelve degrees of freedom adopted in Savino et al. [21] to define the bi-quintic 

inverse element (Fig. 2) 

{ue} = {u1, u′1, u′′1, v1, v′1, v′′1, u2, u′2, u′′2, v2, v′2, v′′2}T 

 
Figure 2 - Two node inverse finite element (Savino et al. [21]). 

To obtain the equations that represent the rigid-body displacements with zero deformations, the solution of the 

associated homogeneous system (fε(β) = fχ(β) = 0) must be calculated, resulting: 

v0 = c1 cos(β) + c2 sin(β) 
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                                                                                                                                                                                                (4) 

u0 = −c1 sin(β) + c2 cos(β) + c3 

A suitable choice for fε(β) and fχ(β) is required, to accurately represent the strain state inherent the 

circumferential deformation, ε, and the increase in curvature, χ. The arch element has twelve degrees of 

freedom and consequently the shape functions should have twelve independent constants. Among these 

constants, three are required for the rigid-body motions (Eq. 4), leaving the remaining nine for the strain 

functions  

fε = c4 + c5β + c6β2 + c7β3 

                                                                                                                                                                                                (5) 

fχ = c8 + c9β + c10β2 + c11β3 + c12β4 

By substituting Eq. 5 into Eq. 3, the following particular integrals are obtained   

vp =  c4R + c5R β + c6(R β2 − 2 R) + c7(R β3 − 6 R β) + c8R2 + c9R2 β + c10(R2 β2 − 2 R2)

+ c11(R2 β3 − 6 R2 β) + c12(24 R2 − 12 R2 β2 + R2 β4) 

                                                                                                                                                                                                (6) 

up = c62 R β + c73 R β2 − c8R2 β − c9

R2β2

2
+ c10 (2 R2 β −

R2β3

3
) + c11 (3 R2 β2 −

R2β4

4
)

+ c12 (4 R2 β3 − 24 R2 β −
R2β5

5
) 

The general equations of the displacement field result by adding the solution of the associated homogeneous 

(Eq. 4) and of the particular integral (Eq. 6). The polynomials thus calculated contain the explicit representation 

of the rigid-body motions and the coupling of the displacement field. The shape functions are obtained after 

calculating the twelve independent constants by imposing the boundary conditions on the element’s nodes. In 

this way, the issues related to the use of polynomial displacement functions in the form reported by Savino et 

al. [21] are solved.     

4. Numerical study 

4.1 Comparison between bi-quintic and high efficiency shape function 

In order to demonstrate the numerical performance of the shape functions introduced in the previous paragraph 

from the point of view of both the displacement and strain field, a comparison with the bi-quintic shape 

function [21] is reported. To simulate experimentally measured strains and to obtain reference displacements, 

direct FEM analysis with LUSAS software [36] is performed using a refined mesh of 20 elements with 

Bernoulli-Euler shape functions. The element used is a parabolically curved beam in which the tangential and 

radial displacements are approximated along the length as quadratic and cubic functions, respectively. 

A configuration of deep-thick semi-arch, clamped on one side and free on the other is studied having a curved 

beam with radius of curvature R = 1 m, opening angle β = 90° and rectangular cross section with b = 0.3m and 

h = 0.5m. The beam is modelled in direct FEM analysis with linear elastic isotropic material of Young’s 

modulus E = 210 GPa and Poisson’s ration υ = 0.3. The comparison is performed with reference to two loading 

conditions: a concentrated tip force (F = 1 KN) and a uniformly distributed load (q = 10 KN/m) (Fig. 3 a-b). 
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Figure 3 – The deep-thick arch: a) concentrated force, b) distributed load.  

For both cases, the beam is modelled in the iFEM analysis using only one inverse element restrained with the 

boundary conditions described above and five station points spaced by 22.5° (Fig. 4). 

 
Figure 4 – Inverse finite element. 

The displacements and strains (continuous lines) are compared with those obtained by FEM analysis depicted 

with the red dots in Figures 5-6. As expected, in both cases (Fig. 5 (a-b) concentrated force, Fig. 6 (a-b) 

distributed load) a good agreement is registered for displacements and deformation, except for the fluctuations 

obtained in the axial deformations in case of using the bi-quintic shape functions.  
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Figure 5 – Comparison between iFEM (bi-quintic and HESF) and FEM solutions for concentrated force: a) u and v displacements, b) ε 
and χ strain. 

 

 
Figure 6 – Comparison between iFEM (bi-quintic and HESF) and FEM solutions for distributed load: a) u and v displacements, b) ε 

and χ strain. 

As showed above, a high improvement in performance has been achieved with the new shape functions in 

terms of strain outcome.   

4.2 Real case study 

The application of the iFEM method integrated with the pseudo-inverse matrix and the new inverse curved 

beam element is tested simulating the cases of a bored tunnel under a flat and a slope terrain. Direct FEM 

analyses, performed using PLAXIS 2D [34], are used to provide both input strain measurements and data as 

reference results for iFEM analyses. The tunnel segment is modelled using one-dimensional curved element 

with three degrees of freedom per node: two translational and one rotational. Each beam element is defined by 

5 nodes whereas 15-node soil elements are used to model the soil behavior. The lining is discretized with a 

total of 12 elements. 

The tunnel has a diameter of 8 m and its centre is located at a depth of 14 m. The soil profile related to the flat 

configuration, contains the first layer with a thickness of 7 m and consists of clay. Below there are two layers 

with thickness of 7 m respectively, in which the tunnel is located. The first one is modelled as sand whereas 

the remaining part is deep sand. The mechanical behaviour of soil is modelled with linear-elastic-perfectly-
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plastic Mohr-Coulomb law with the parameters listed in Table 1. The further layer below is considered to be 

fully rigid and modelled by appropriate boundary conditions. All boundaries are restrained according to the 

Standard fixities provided by the PLAXIS 2D toolbar, i.e. fully fixity at the base of the geometry and roller 

conditions at the vertical sides (Fig. 7). 

 

Figure 7 - Geometry of the tunnel project with the soil layers (flat land). 

 Clay Sand Deep Sand 

γunsat 

[KN/m3] 15 16.5 17 

E 

[KN/m2] 3400 80000 120000 

υ 0.33 0.3 0.3 

c 

[KN/m2] 5.5 1 1 

φ [°] 24 31 33 

Table 1 - Material properties of soil. 

The tunnel lining is modelled with curved beams of normal stiffness EA = 1.4∙107 [KN/m], flexural rigidity EI 

= 1.43∙105 [KNm2/m], thickness d = 0.35 [m] and Poisson’s ratio υ = 0.15.  

The accuracy of the iFEM prediction is assessed by means of the average percentage difference between the 

predicted parameters, xiFEM, and the experimentally simulated ones coming from FEM analysis, xFEM, given as:   

%𝑒𝐷𝑖𝑓𝑓,𝑥 =
100

𝑛
∑

𝑥𝑖
𝑖𝐹𝐸𝑀 − 𝑥𝑖

𝐹𝐸𝑀

𝑥𝑚𝑎𝑥
𝐹𝐸𝑀

𝑛

𝑖=1

                                      (16) 

where x indicates the data analysed and n the number of the output points. The effectiveness of the shape 

functions in converging to the correct solution, is also examined by plotting the number of inverse elements 

used to model the structure, against the average percentage difference. 

Regular mesh patterns are used having each inverse curved element with the minimum number of station points 

[21]. The strain sensors configurations consist of five station points referred at the centroid axes and equally 

spaced along the element (red dots). As depicted in Fig. 8, the tunnel is modelled with 2, 3 and 4 inverse curved 

elements numbered internally with subtended angle (β) of 180°, 120° and 90° respectively (beginning and end 

of each element is evidenced by a transversal segment). 
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Figure 8 - Strain sensors configurations: a) 2 inverse elements, b) 3 inverse elements, c) 4 inverse elements. 

To demonstrates the accuracy of the iFEM approach and the effectiveness of the increasing number of inverse 

elements used, Fig. 9 shows the comparison between the strain state obtained via FEM and three iFEM 

configurations. The influence on the results of both the number of inverse elements and the station points is 

studied. Accurate results have been obtained using a minimum number of three inverse elements and twelve 

station points. 
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The possibility to reconstruct the whole strain field allows to know other quantities such as stresses that can 

be obtained using constitutive laws. A convergence analysis has been performed to evaluate the adequacy of 

the new high-efficiency shape functions (Fig. 10).  

 

Figure 10 - Convergence diagram: average percentage difference vs. number of inverse elements. 

Figure 10 depicts the convergence of the average percentage difference according to the number of inverse 

elements used in the modelling; particularly for the discretization with four inverse elements, the error on the 

membrane strain is 0.32% while that on the flexural strain is 2.02%. 

Figure 9 - Comparison along the beam axis of iFEM solution to FEM strain state (flat land). 
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The same material properties and tunnel geometry have been adopted to model the case of a bored tunnel in 

presence of slope. In this case the first layer has a variable thickness from a minimum of 2 m to a maximum 

of 7 m (Fig. 11). 

 
Figure 11 - Geometry of the tunnel project with the soil layers (slope land). 

In Fig. 12 the accuracy of the iFEM approach in terms of strain distribution along the beam element for the 

bored tunnel with slope is demonstrated. Again, to evaluate the influence of the number of both sensors used 

and inverse elements, three different configurations have been considered (Fig. 8). 

 

 
Figure 11 - Comparison along the beam axis of iFEM solution to FEM strain state (slope land). 

Figure 13 depicts the convergence analysis of the average percentage difference according to the number of 

inverse elements used in the modelling; particularly for the discretization with four inverse elements, the error 

on the membrane strain is 0.65% while that on the flexural strain is 0.90%. 
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Figure 12 - Convergence diagram: average percentage difference, vs. number of inverse elements.  

The results obtained demonstrate the accuracy of the iFEM approach with the pseudo-inverse matrix, 

integrated with the new shape functions. Despite the problem complexity, a good agreement is reached between 

the FEM and iFEM predictions with a relatively limited number of strain sensors.  

Conclusions 

In order to establish a suitable computational method for the structural health monitoring system in tunnel 

application, a new formulation have been implemented in the inverse Finite Element Method (iFEM). The 

present shape sensing methodology has relevant implications for the monitoring of smart structures equipped 

with discrete strain sensors, resulting an enabling technology to provide feedback to the control system. The 

reconstruction of the full-field displacement allows to obtain key quantities of structural response and to 

monitor in real-time the safety level. The iFEM uses a least-squares variational principle involving membrane 

and bending deformations of Bernoulli-Euler curved beam theory. The error functional enforces the 

compatibility between experimentally measured strains and strains interpolated within the inverse elements in 

a least-squares sense.  

The Moore-Penrose inverse matrix is introduced to solve the issue in analysing singular and rank deficient 

matrix deriving by the typical configuration of tunnel structures characterized by unrestrained rigid-body. The 

pseudoinverse matrix is obtained from the Singular Value Decomposition tool, inverting all singular non-zero 

values.   

A new inverse element, having two node and twelve degrees of freedom, have been developed. The element 

shape functions are based on the analytical solution of the strain-displacement equations of the curved beam 

theory to take into account the coupling between normal and tangential displacements. The formulation shows 

effectiveness in terms of both strain and displacement outcomes by comparison with bi-quintic shape functions 

based on interdependent interpolations previously developed [21].   

The shape-sensing capability have been demonstrated simulating a case study of a tunnel in a heterogeneous 

soil and subject to an asymmetrical load. To provide the simulated and reference measurements, a finite 

element analysis has been developed using PLAXIS 2D code. The iFEM has shown to be highly effective and 

efficient in predicting the structural response.  

Future efforts will concern the assessment of the algorithm efficiency in case of noise related to real 

measurements that affect experimental data. For such purpose, a greater number of station points than the 

minimum required in iFEM formulation with a proper signal processing could be necessary.  Similar approach 

could be used in case of potential malfunctioning of sensors due to the harsh environment that can be also 

overcome with a new configuration of the inverse elements and the relative position of the station points along 

each element.  
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