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Abstract—This paper presents the dqθ flux and torque maps
modelling approach for synchronous machines, where the de-
pendency of flux linkage and torque respect to the rotor phase
angle θ is recorded to account for the effects of space harmonics
and torque ripple. Using a FEA or experimental flux map
identification session over a grid of id, iq operating points,
the new dqθ maps are obtained via dedicated manipulation
of the test results. Instead of averaging the dq flux linkage
and torque waveform respect to θ, the θ related information,
which is flux linkage undulation and torque ripple, is retained.
The fundamental - or θ averaged - dq flux maps can be thus
considered a subset of the extended dqθ approach. Magneto-static
FEA simulations are used in the paper for describing the storage
and manipulation procedure. With the new maps, the torque and
flux waveforms are retrieved by bi-linear interpolation of the
respective maps at any id, iq condition, including non-identified
operating points. Moreover, the torque and flux maps of the
machine after skewing can be calculated off-line in seamless time
by off-line interpolation of the dqθ maps, without additional FEA
simulation and for any skewing angle and number of slices. As
a further validation, the presented procedures will be included
into an open-source design environment, available on the web.

I. INTRODUCTION

Today, the use of permanent magnet (PM) synchronous
machines is increasing at high pace in many applications, es-
pecially in traction [1]. This includes interior PM and surface-
mounted PM machine types [2], [3], but also synchronous
reluctance (SyR) and PM-assisted SyR machines [4]. The
flux linkage maps λd(id, iq), λq(id, iq) are a general way of
modelling all such machines [5], used for computation of the
steady-state and dynamic performance. The flux maps can be
evaluated via Finite Element Analysis (FEA) or experiments.
Notably, the literature refers to the fundamental dq flux maps,
which contain solely the average values of the flux linkages
with respect to the rotor phase angle, omitting their undulation
and therefore the effect of space harmonics. Although the θ in-
formation is usually present in the FEA simulated output used
for obtaining the fundamental model, or in the experimental
raw data, provided that the data recorder in use memorizes
also the rotor position.

In [6] the harmonic content is included in the FEA-
evaluated flux maps by using the Fourier series and polynomial
functions. In [7], the flux linkage harmonics are segregated
using the frozen permeability method. Besides being compu-
tationally intensive and to some extent approximated, both

the mentioned works focus on improving the torque ripple
computation and do not mention all the possible advantages
of the extended machine parametrization.

This work formalizes the data processing and organization
needed to include the effect of the rotor phase angle in the
machine flux and torque maps, using the same set of magneto-
static FEA data previously used for populating the dq funda-
mental flux maps. A SyR machine for industry applications
will be used as example. Fig. 1 reports the cross-section of the
considered motor, whose ratings are reported in Table I. The
evaluation of the torque waveform in a non-identified operating
point and the off-line computation of the machine figures
after skewing are presented as highlights of the potential
associated to the dqθ approach. All the presented procedures
are incorporated and openly accessible in the Matlab-based
design software SyR-e [8].

Fig. 1: Cross-section of the SyR machine selected as example.

TABLE I: SyR motor ratings

Nominal current inom 15 [Apk]
Max current imax 30 [Apk]
Nominal torque Tnom 17 [Nm]
Max torque Tmax 43 [Nm]
DC link voltage Vdc 565 [V]
Nominal speed nnom 2500 [rpm]
Max speed nmax 6000 [rpm]
Nominal power Pnom 4.4 [kW]
Max power Pmax 11.2 [kW]
Number of pole pairs p 3



II. FEA FLUX MAPS COMPUTATION AND ORGANIZATION

Flux maps are a very general way to represent the magnetic
model of a synchronous motor. Usually, the fundamental dq
flux linkages are expressed as a function of the dq currents
of the motor. The average electromagnetic torque can be
retrieved by cross-product of the flux linkage and current com-
ponents, or by a dedicated map, function of the same current
coordinated. The flux maps can be computed through FEA
simulation [9], [10] or measured with dedicated experimental
procedures [11], [12]. In the following, the guidelines for fast
FEA computation of flux maps will be reviewed, looking at
the tradeoff between accuracy and computational time. Then,
the fundamental dq flux maps will be presented as a prologue
to the new extended dqθ model.

A. Fast FEA Evaluation of dq flux and torque

Reference is made to the 2D magnetostatic FEA simulation
of radial-flux synchronous machines. The same approach
applies to 3D and transient FEA, as well as to synchronous
machines of different types.

Geometric and electric symmetries must be utilized, for fast
simulation. Referring to the motor in use, the anti-periodic
symmetry applies, allowing the simulation of one pole, which
is 1/6 of the complete motor and a rotation of 60 electrical
degrees, which is again 1/6 of the electrical period.

Under these assumptions, the simulation of one id, iq oper-
ating point with a mesh of 5095 elements, using 30 positions
over 60 electrical degrees of rotation takes about 75 seconds.
Fig. 2 shows the flux linkage and torque waveform output of
the simulation, giving evidence of the 30 simulated points
(red). The full-cycle waveform (continuous blue lines) are
obtained by symmetry.

B. Fundamental dq Flux Maps Organization

The fundamental flux maps are computed by repeating the
60-degrees simulation described above on a regular grid in the
(id, iq) domain. The numbers of considered id and iq values
are called nd and nq , respectively. The resulting flux linkages
λd, λq and torque T are averaged with respect to θ and saved
in corresponding look-up tables.

The flux map functions are denoted with capital bold
symbols, so Λd(id, iq) and Λq(id, iq) are the average dq flux
linkages maps, while T(id, iq) is the average torque map.
Further matrices can be computed, for example the peak-to-
peak torque ripple map ∆T(id, iq).

The 2-dimensional look-up tables (LUTs) are organized as
follows. The grid of current values is organized as (1):

Id =

id,1 ... id,nd

... ... ...
id,1 ... id,nd

 , Iq =

 iq,1 ... iq,1
... ... ...
iq,nq ... iq,nq

 (1)

The λd look-up table is defined accordingly (2).

Λd =

 λd(id,1, iq,1) ... λd(id,nd
, iq,1)

... ... ...
λd(id,1, iq,nq ) ... λd(id,nd

, iq,nq )

 (2)

Fig. 2: Waveform for d and q axis flux linkages and torque:
FEA point simulated in red and complete waveform in blue.

The same operator Λd is used to indicate both the look-
up table and the flux map function Λd(id, iq) for the sake of
simplicity. The values of the function are obtained from the
look-up table by bi-linear interpolation. The other maps are
not explicitly reported for brevity.

The dq current grid must cover the overload condition.
Reasonable numbers for simulated nd and nq are between 10
and 20, i.e. tables of 100 to 400 elements. Fig. 3 reports an
example of flux and torque maps, where the simulated points
are highlighted by red dots. nd = nq = 15 was used in this
case.

The number of simulated rotor positions nθ can be as low
as 6 for fundamental model flux maps. However, for a precise
evaluation of the pk-pk torque ripple map it is recommended
to use a value of nθ as high as 30 (on 60 electrical degrees).
The same recommendation is valid for the dqθ maps described
later.

Altogether, the number of FEA instances nd · nq · nθ deter-
mines the total computational time. In the reported example,
nd · nq = 15 · 15 = 255 current points and nθ = 30 rotor
positions are used, for a total of 6750 FEA simulations.



(a) (b)

(c) (d)

Fig. 3: FEA maps of the motor under test. a) d-axis flux
linkage, b) q-axis flux linkage, c) average torque, d) peak-
to-peak torque ripple.

Parallel computing can further speed up the process, as
different dq operating points can be evaluated in parallel by
different cores. Using the 6 cores of a laptop with an Intel
i7-8750H CPU and 16 GB of RAM the 6750 simulations take
55 minutes circa. This set of data is used for the dq as well
as for the dqθ maps.

Finally, the dq flux maps are re-sampled over a finer mesh
of nd = nq = 256 current levels using Matlab interpolation.
The maps on the finer mesh are reported in color in Fig. 3.

C. Novel dqθ Flux Maps Organization

Described as above, the fundamental dq flux maps are a
lossy way to store the results of the simulations, as the rotor
position information is lost when averaging the flux linkage
and torque waveforms. The dqθ approach can be seen as
a better organization of the same simulated data, to avoid
information loss. The data are stored in 3-dimensional look-
up tables, to have the dependency from d- and q-axis currents
and the rotor phase angle. The dqθ domain is defined with
reference to the d- and q-axis current steps ∆id, ∆iq and the
rotor angle step ∆θ, and using i, j and k as indexes along the
respective dimensions of the look-up table:

id(i, j, k) = (i− 1) ·∆id
iq(i, j, k) = (j − 1) ·∆iq
θ(i, j, k) = (k − 1) ·∆θ

(3)

The example refers to the grid of currents starting from
zero, valid for the reported case of a SyR machine. For

Fig. 4: Composition of the 3D look-up table of the d-axis flux
linkages, by stacking 2D tables. Three values of rotor position
are shown for clarity.

PM synchronous machines the current domain is suitably
redefined. For example, the d flux linkage is reported in Fig. 4
as a function of the three input variables using colored maps
at different values of θ. The red dots are the FEA points. The
current and angle steps of simulation are the same used for
the fundamental maps, according to the declared values of
nd, nq, nθ.

D. dqθ Maps Interpolation

As for the fundamental flux maps, the same symbols are
used both for functions and for the corresponding look-up
tables. For instance Λd(id, iq, θ) identifies the d-axis flux
linkage function, and its values are obtained by interpolating
the Λd look-up table.

To ease the data manipulation, the θ domain is extended
from the simulated 60 electrical degrees to one electrical
period (360 degrees), by exploiting the waveforms symmetry
discussed in section II-A. Hence, assuming nd and nq current
levels, respectively in the d and q axis, a nθ simulated rotor
positions provide dqθ look-up tables with the dimension of
nd × nq × 6nθ.

Instead of interpolating on a super-fine mesh as done for the
fundamental maps, the dqθ maps are accessed and manipu-
lated using the griddedInterpolant function of Matlab
[13]. This function creates interpolant objects Λd(id, iq, θ),
Λq(id, iq, θ) and T(id, iq, θ) from the set of simulated data.
In this way, any (id, iq, θ) point within the identification
domain can be evaluated at high resolution, provided that the
identification mesh is well conceived (appropriate number of
simulated points).

E. Computation of the Inverse Flux Maps

The inverse of the flux maps, i.e. the maps of currents func-
tion of flux linkages Id(λd, λq), Iq(λd, λq) (or Id(λd, λq, θ),
Iq(λd, λq, θ)), are evaluated by manipulation of the dq (or dqθ)
maps. The inverse maps are used to solve the dynamic model
of the machine when the flux linkages are the state variables,



Fig. 5: Inverse torque map (colored contour), FEA-simulated
points reported in black, MTPA and MTPV locus reported in
red and green, respectively.

for example for control simulation purposes, as shown later.
Given the rectangular (id, iq) mesh, the corresponding (λd, λq)
points cover the distorted domain shown in Fig. 5, where
the black dots represent the FEA-simulated points (i.e. the
regular grid of current points). The input domain of the inverse
map LUTs is thus reduced to a regular mesh of (λd, λq)
points, and this dictates loss of information at the borders.
The figure shows in color the domain of the inverse LUTs,
and in white the non represented areas. The interpolation of
the raw data to the regular (λd, λq) mesh is done using the
scatteredInterpolant function of Matlab [14].

Fig. 6 shows the current and torque maps function of the
flux linkage components of the benchmark motor.

The flux maps inversion is extended to the dqθ model by
applying the map inversion to each rotor position. The surfaces
of the inverse maps for a single angular value are similar to
the ones reported in Fig. 6 for the fundamental model.

III. REVIEW OF FUNDAMENTAL MODEL MAP

Examples of fundamental dq maps manipulation are briefly
reviewed in this section:

A) computation of the control trajectories such as MTPA
(Maximum Torque per Ampere), MTPV (Maximum
Torque per Voltage) and related operating limits (torque
versus speed profile at limited current and voltage ampli-
tudes)

B) motor model scaling:
• number of turns: the flux and torque maps of the

rewound machine can be derived without the use of
FEA, by scaling the current according to the inverse
turns ratio and the flux linkage according to the turns
ratio.

• stack-length: the flux and torque maps of the shorter or
longer machine are derived by scaling the flux linkages
according to the stack-length ratio.

All such features are still valid also for the dqθ maps
and they are part of the dedicated SyR-e interface called

(a) (b)

(c) (d)

Fig. 6: Inverse flux maps: d-axis (a) and q-axis (b) currents,
torque (c) and torque ripple (d).

GUI Syre MMM (Graphical User Interface of SyR-e for the
Magnetic Model Manipulation).

A. Identification of the Control Trajectories

One manipulation of primary importance is the control
trajectory identification. This is done using the dq flux maps,
referring to average values as typical for control. The most
considered trajectories are the MTPA and the MTPV laws,
but other loci can be identified, as the maximum power factor
per ampere or the minimum torque ripple law. The method
to identify one locus is general and it is usually defined as
the maximization or minimization of the ratio of two figures
across the id, iq domain.

For example, the MTPA consists of the maximization of
the average torque for a given current amplitude. The points
of the map belonging to the selected current contour are
isolated and the torque is evaluated from the torque maps.
The maximum torque (id, iq) combination is found and stored
as one MTPA element. The process is repeated for the next
current amplitude, ranging from zero to the maximum allowed
by the maps current domain. The MTPV is computed using
the same algorithm but moving on constant flux linkage curves
instead of the current ones.

The MTPA and MTPV trajectories of the SyR machine are
reported in Fig. 7. They are expressed as id and iq vectors
function of torque T . This allows to extract from the flux and
torque maps all the other information, as flux linkages (dq
components, amplitude, angle), torque ripple and so on.



Fig. 7: MTPA (red) and MTPV (blue) locus on the torque
map, computed with the algorithm included in SyR-e.

B. Flux Maps Scaling

The electric motor scaling can be a useful tool in the
design section, that avoid the FEA simulation of a scaled
machine. Several scaling rules are available [15], at this time
the manipulations embedded in SyR-e are:

• change the number of turns;
• change the axial length;
• add extra inductance.
Axial length and number of turns are independent from

the FEA simulation, since the model is 2D (axial length is
a multiplication factor) and the simulation is set with one turn
each phase. Dealing with the additional inductance, it can be
added to the flux linkages matrices Λd and Λq , both for dq
and dqθ models. Torque matrix is not affected from additional
inductance since it is equal on both axis.

IV. NEW dqθ MAPS MANIPULATION

The additional possibilities enabled by the dqθ model are:
A) computation of the flux linkages and torque waveforms

of non-simulated idq conditions.
B) computation of the step-skewed motor model, for any

number of steps and any angle of skew.
C) dynamic model of the machine accounting for back-emf

and torque harmonics.

A. Torque and Flux Waveforms

One of the main advantage of the dqθ model is the possi-
bility to retrieve the flux linkage and torque waveform without
running further FEA simulations. The waveform are obtained
by interpolation from the respective 3D matrix of the dqθ
model, with inputs constant id and iq vectors and θ vector
spanning on the whole electrical period.

Fig. 8 compares the dq flux linkages and torque waveform
computed with FEA and interpolated from dqθ model. The
selected point (id, iq) is close to the MTPA at rated current,
but it is far from the FEA-evaluated point of the flux map-
in order to test the interpolation capability. The waveform

from the two methods are perfectly overlapped, even if the
selected operating point is not a node of the identification grid.
However, the match between the two methods can be reduced
if the set of FEA simulations used to create the dqθ model is
limited. The presented results achieve a good level of accuracy
with the maps of nd × nq × nθ = 15 × 15 × 30, computed
in about 55 minutes of FEA simulations on a standard laptop,
and represents a good computational time compared to the
accuracy.

(a)

(b)

Fig. 8: Validation of the dqθ waveform interpolation: flux
linkages (a) and torque (b) waveform FEA evaluated (dashed
lines) and interpolated from dqθ flux maps (solid lines).

B. Evaluation of the Skewed Motor Performance

Skewing is one of the most common method to reduce
torque ripple for electric machines. It consists of an axial
rotation of the rotor laminations of a well defined angle, called
skew angle θskew. Assuming a target torque ripple harmonic
h, the mechanical skew angle in degrees is:

θskew =
360

p · h
(4)

For PM motors, the most common type of skewing is the
step-skewing, that consist in dividing the rotor in nslice axial
slices and rotating one from the other, in order to emulate a
continuous skewing, that can be seen as an extreme case, with
the number of slices equal to the number of laminations.

Ideally, to evaluate the performance of a skewed motor, the
3D FEA simulation is needed because of the 3D nature of
the problem [16]. Moreover, a simpler method, called multi-
slice simulation, can be implemented [17]. Assuming nslice
axial slices, the method run nslice 2D FEA simulations (one



(a) (b)

Fig. 9: Example of a nslice = 3 step-skewing: axial sketch of
the motor (a) and currents on the dq plane for each slice (b).

per axial section) and then sum the simulations results. The
initial position of each slice is shifted from the other, and the
current is the same for each simulation. This means that the
dq currents that must be set in each slice are slightly different,
because of the angular shift. The concept is described in the
following for a nslice = 3 step-skewed motor.

Fig. 9a reports a simplified top view of the motor, with
the three slices highlighted with different colors and a black
reference line to highlight the skewing. Since nslice is odd,
the dq reference of the central slice is the same of the full
machine, while the dq axis of the other slices are slightly
rotated because of the skewing. The rotation of each slice
respect to the previous is θskew

nslice
. Fig. 9b shows the same dq

current on the local dq axis of each slice, and the colors
coherent with Fig. 9a. The effect of the angular skewing is
the rotation of the dq currents too. The blue section is aligned
with the whole machine dq axis, so has no shift.

Fig. 10: Torque waveform of the step-skewed motor: single
slice waveform (colored), skewed motor waveform (solid
black) and unskewed motor waveform (dotted black).

Fig. 10 shows the torque contribution of the three slices and
the torque waveform of the step-skewed motor. The difference
between the three colored waveform are:

• an angular shift of the peaks, according to θskew;
• slightly different torque profile, caused from the different

local dq working point.
The waveform of the skewed motor is obtained as the sum of

the colored waveform and it is reported with black solid line.
For a sake of comparison, the unskewed motor waveform is
reported with black dotted line, to highlight the torque ripple
reduction and the average torque detriment caused from the
skewing.

The flux maps evaluation of a skewed motor with FEA
simulations is nslice time longer that the flux maps evaluation
of a straight motor, for the reason introduced before. Moreover,
the possibility to retrieve torque and flux linkage waveform
from the proposed dqθ flux maps can drastically speed-up the
evaluation process.

With dqθ model, skewed motor flux maps are computed
in post-processing from the straight motor flux maps. The
computational time for the post-processing is around one
minutes, that is negligible compared with the time needed
to compute the flux map of the straight motor (around 45
minutes). Thanks to the dqθ post-processing, it is possible to
evaluate the flux maps of skewed motor in minutes instead of
hours of simulation.

The dqθ post-processing is equivalent to the multi-slice
simulation, with the difference that no FEA simulations are
run and all the information are extracted from dqθ flux
maps, by selecting proper dq currents and proper rotor angle.
For each slice, the respective flux maps are computed by
accounting for the shorter axial length. In the interpolation
process, attention must be paid on the dq reference system
when summing the contributions from the different slices. The
dq axis rotation between the local and global reference system
cause a reduction of the dq current domain of the skewed
flux maps. Fig. 11 shows this reduction for θskew = 10◦ and
nslice = 3 applied to the benchmark motor: the domain of the
unskewed motor (equal to the central slice) is highlighted in
blue, while the domain of the two rotated slices are reported
with black lines. The dq domain of the skewed motor flux
maps (colored in red) are identified as the biggest square
included in all the slice domains.

C. Results on Skewed Motor

After the skewing post-processing, the flux maps (both dq
and dqθ) have the same format of the baseline motor, and
thus all the elaboration described in the previous sections can
be applied also to skewed motor model. The main advantage
of the dqθ model is the availability of the torque waveform
for both unskewed and skewed motor, without the need of
further simulations. An example is reported in Fig. 12, where
the torque waveform computed from dqθ maps of unskewed
and skewed motor are compared, for two different current
levels. These results are istantaneously obtained directly from
the dqθ models of the baseline and skewed motor.

Since the format of the skewed motor flux maps is the same
of the baseline motor, all the post-processing operations can
be applied also to skewed motor. For instance, Fig. 13 reports



Fig. 11: Limits of the flux maps of skewed motor computed
with post-processing: unskewed motor flux map in blue and
skewed motor flux map in red.

Fig. 12: Torque waveform for unskewed (blue) and skewed
(red) motors, retrieved from dqθ model for |Idq| = 15 A and
|idq| = 30 A.

the T = f(|idq|) and the ∆Tpp = f(T ) characteristic of the
unskewed and skewed motors, computed along the MTPA
(slightly different for the two machines). As expected, the
skewed motor expresses slightly lower torque but it achieves
a drastic torque ripple reduction.

D. Dynamic Model

The dqθ flux maps can be exploited to build the dynamic
model of the machine for control simulation for example in
Matlab/Simulink [18]. The dynamic model uses the inverse
flux maps, computed as in section II-E, implemented as lookup
tables (LUTs). The reference block diagram is in Fig. 14. The
use of the inverse dqθ maps includes the dependency on the
rotor position, with a negligible increase of computational
time.

A meaningful example is furnished in Fig 15-16. Current
vector control in synchronous coordinates is imposed with a
reference amplitude of 15 A, first using the dq fundamental
model, Fig 15, then using the dqθ model, Fig. 16. The sinu-
soidal three-phase currents of Fig 15 are considered in both
cases, though, the dq model provides just the fundamental
values of flux linkage and thus continuous torque, whereas

(a)

(b)

Fig. 13: Torque versus current (a) and torque ripple versus
torque (b) comparison for unskwewed (blue) and skewed (red)
motor, along the respective MTPA trajectories.

the dqθ model returns the more realistic undulated waveforms.
Here, the worth of the novel method is highlighted, since
contemplating the current and torque undulations is critical
in the control domain.

Fig. 14: Dynamic model of the machine, using the dqθ model.

V. CONCLUSION

The paper reviews the flux maps evaluation and elabo-
ration of synchronous machines and proposes the improved
dqθ tables model. With the same FEA computational effort,
information on harmonic content is retained in the tables,
so to memorize torque and flux linkage waveforms at every
operating point. Examples of applications include the fast
computation of skewed motors, with a time saving of hours
in the evaluation of flux maps of a single skewed motor
and the dqθ dynamic model of the machine used for control
simulation.



Fig. 15: Field oriented control with fundamental model of the
machine.

Fig. 16: Field oriented control with dqθ model of the machine.

The proposed dqθ approach and all the presented manip-
ulation methods are included in the open-source framework
SyR-e, available online.
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