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Optimal Targeting in Super-Modular Games
Giacomo Como, Member, IEEE, Stéphane Durand, and Fabio Fagnani, Member, IEEE

Abstract—We study an optimal targeting problem for super-
modular games with binary actions and finitely many players.
The considered problem consists in the selection of a subset of
players of minimum size such that, when the actions of these
players are forced to a controlled value while the others are
left to repeatedly play a best response action, the system will
converge to the greatest Nash equilibrium of the game. Our
main contributions consist in showing that the problem is NP-
complete and in proposing an efficient iterative algorithm for its
solution with provable probabilistic convergence properties. We
discuss in detail the special case of network coordination games
and its relation with the graph-theoretic notion of cohesiveness.
Finally, through numerical simulations we compare the efficacy
of our approach with respect to naive heuristics based on classical
network centrality measures.

Index Terms—optimal targeting; network intervention; net-
work games; super-modular games; strategic complements; Nash
equilibrium selection.

I. INTRODUCTION

In a game with multiple Nash equilibria, what is the
minimum number of players to target in order to force the
system to move from an original Nash equilibrium A to a
desired Nash equilibrium B? This paper deals with such a
problem for the class of super-modular games with binary
actions and where the two Nash equilibria A and B are,
respectively, the least and the greatest ones in the game. In this
paper, we show that the problem is NP-complete in general and
we propose the design of an iterative randomized algorithm for
an efficient solution.

The considered problem can be framed in the more general
setting of studying minimal intervention strategies needed to
drive a multi-agent system governed by agents’ myopic utility
maximization to a desired configuration. In applications where
the goal is to achieve a social optimum, such interventions
are often modeled as perturbations of the utility functions that
lead to a modification of the Nash equilibria of the game.
This viewpoint is natural for instance in analyzing the effect
of taxes or subsidies in economic models or prices and tolls
in transportation systems. More recently, a similar approach
has been proposed in the context of network quadratic games
[2] to model incentive interventions for instance in school and
economic systems.

Some of the results in the paper appeared in preliminary form in [1].
The authors are with the Department of Mathematical Sciences

“G.L. Lagrange,” Politecnico di Torino, 10129 Torino, Italy (e-mail:
{giacomo.como; stephane.durand; fabio.fagnani}@polito.it).

Giacomo Como is also with the Department of Automatic Control, Lund
University, BOX 118, 22100 Lund, Sweden, where he is a member of the
excellence centre ELLIIT.

This work was partially supported by a MIUR grant Dipartimento
di Eccellenza 2018–2022 [CUP: E11G18000350001], a MIUR Research
Project PRIN 2017 “Advanced Network Control of Future Smart Grids”
(http://vectors.dieti.unina.it), and by the Compagnia di San Paolo.

A different viewpoint, that is the one considered in this
paper, is that of individuating a subset of nodes (desirably
small) that, when suitably controlled, lead the entire system
to the desired equilibrium. The minimum cardinality of this
set can also be interpreted as a measure of resilience of the
system’s equilibrium: the larger it is, the more energy is
needed by an external intervention to destabilize it. In the
context of binary actions {0, 1} considered in this paper, the
control action simply amounts to force the set of chosen
players, originally playing action 0 state, to play action 1.
This well models situations where action 1 indicates the use
of a certain technology or the adoption of a new product and
the control action corresponds for instance to a marketing
intervention where, a certain item is offered for free to the
targeted individuals.

Super-modular games have received a great deal of attention
in the recent years as the basic way to model strategic com-
plementarity effects [3]. Their numerous applications include
modeling of social and economic behaviors like adoption of
a new technology, participation to an event, or provision of a
public good effort. In certain cases, games that are not super-
modular can be made such through a change of variables
(see, e.g., the discussion in [4] on the log super-modularity
of Cournot oligopoly models). Super-modular games are typ-
ically endowed with multiple Nash equilibria that admit a
Pareto ordering and the problem of the minimal effort needed
to push the system from a lower to a greater equilibrium is
natural and relevant in all these applicative contexts.

A fundamental example of super-modular games is that of
network coordination games. These are analyzed in detail in
[5] where the key graph-theoretic concept of cohesiveness
of a set of players is introduced and then used in order
to characterize all Nash equilibria. Moreover, the question
whether an initial seed of influenced players (that maintain
action 1 in all circumstances) is capable of propagating to
the whole network is addressed in the same paper and an
equivalent characterization of this spreading phenomenon is
also expressed in terms of the related notion of uniform non-
cohesiveness. More results in this direction are proved in [6]
where the authors determine upper bounds to the maximum
range of the spreading phenomenon as a function of the
cardinality of the original seed. Other studies of this model
include [7] for complete networks as well as [8] and in [9] for
random graphs and random activation thresholds.

This contagion phenomenon is the content of our analysis
in the more general framework of super-modular games. A
subset of nodes from which propagation is successful is called
a sufficient control sets and our goal is to find such sets of
minimum possible cardinality. We notice that the condition
proposed in [5] is computationally quite demanding and in
practice it cannot be used directly to solve the optimization
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problem even for medium size games. Indeed, even determin-
ing whether a given subset of players is a sufficient control
set requires a number of checks growing exponentially in the
cardinality of the complement of such set.

The complementary problem of determining (for network
coordination games) what is the maximum possible spreading
of the state 1 starting from an initial seed of a given number
k of targeted players was studied in the seminal paper [10].
While the problem in [10] and ours are related, they are
independent, in the sense that solving one does not provide a
solution of the other. Another point worth stressing out is that,
in their setting, the authors of [10] consider players equipped
with random independent activation thresholds and chose to
optimize the expected size of the maximum spreading. They
prove that such functional is sub-modular and then design
a greedy algorithm for obtaining sub-optimal solutions. The
introduced randomness is actually crucial in for the results ob-
tained in [10], as the functional considered is not sub-modular
for deterministic choices of thresholds. This lack of sub-
modularity is actually a key feature of network coordination
games where the utility functions present a threshold behavior
and make it unfeasible to try to approximate our targeting
problem by iteratively adding target nodes in a greedy way.
In this regard, the spreading phenomenon we are considering
is also quite different than the one analyzed in [11] where the
underlying activation process is based on pairwise contagion
and not on thresholds.

A targeting intervention problem, related to the one studied
in [10], is considered in [12]. There, the authors consider
the problem of a firm selling a good to a set of individuals
organized through a social network. The firm, in order to
maximize its profit, chooses a set of individuals on which to
concentrate its advertising efforts or other marketing strategies
relative to that specific good. The role of the social network is
either of propagating information (in a gossip pairwise style)
regarding the good so as to push other people to buy it, or
rather to model a positive externality effect where the utility
of an individual to buy that product depends on the number of
neighbors already using it. This second instance is particularly
related to the problem studied in [10] with the important
difference that here authors model the network in a mean field
fashion only considering the degree distribution.

A different targeting intervention problem is studied in
[13] where authors consider network quadratic games and
individuate the k most influential players by studying how
the aggregate output decreases when this set of players is
removed from the network. In the same context of network
quadratic games, an optimal pricing problem similar to the
one considered in [12] has been analyzed in [14]. The general
problem of determining the best set of nodes to exert the
most effective control in a networked system has recently
appeared in other contexts. In [15]–[17] this is studied in the
context of controllability problems for general linear network
systems. In [18]–[20], the authors focus on the problem of the
optimal position of stubborn influencers in voter models or in
linear opinion dynamics. The effect of stubborn agents on the
equilibrium behavior of such models is also analyzed in [21]
and [22].

In this paper, for arbitrary finite super-modular games with
binary action set, we study the problem of finding subsets
of players with minimum cardinality such that if the actions
of these players are forced to 1, then the game admits an
improvement path from every strategy profile to the all-1
strategy profile. We shall refer to such subsets of players
as optimal sufficient control sets. Our main contribution is
threefold. First, we show how the optimal sufficient control
set problem admits a simple solution in the special case of
network coordination games in complete graphs. Second, we
prove that, in contrast, finding optimal sufficient control sets
is an NP-complete problem for general super-modular games,
and in fact also just for network coordination games on general
graphs. This is shown by reducing the considered problem to
the well known 3-SAT problem. Third, we design an iterative
randomized search algorithm with provable convergence prop-
erties towards sufficient control sets of minimum cardinality
for general finite super-modular games with binary action set.
The core of the algorithm is a time-reversible Markov chain
over the family of all sufficient control sets that starts with
the full set, moves through all of them in an ergodic way, and
concentrates its mass on those of minimum cardinality.

The rest of the paper is organized as follows. In the final part
of this section we report some basic notation conventions. Sec-
tion II is dedicated to the formal introduction of the problem
and in particular of the concept of sufficient control sets. Here
we introduce the important notion of monotone improvement
path (appeared for other purposes in [23] and [24]) and we
give an equivalent (but more operative) characterization of
sufficient control sets. In Section III, we focus on the special
case of network coordination games: first, we consider the
special case of an arbitrary graph and homogeneous thresholds
and show how our problem is related to the notion of cohe-
siveness and then we analyse the special case of heterogeneous
network coordination games on the complete graph. Section
IV is dedicated to the complexity analysis: we show that the
problem is equivalent to an instance of the 3-SAT problem
and thus NP-complete. In Section V we present and analyze
a distributed algorithm to find optimal sufficient control sets.
In Section VI, we report some numerical simulation results
comparing the performance of this algorithm with that of
certain heristics. Finally, Section VII summarizes the main
results of the paper and presents a discussion of possible
directions for future research.

We conclude this introduction with a few notational conven-
tions to be adopted throughout the paper. Vectors are indicated
in bold-face letters, e.g., x. We define the binary vectors δi
with entries (δi)i = 1 and (δi)j = 0 for every j 6= i. For a
subset S ⊆ {1, . . . , n}, we put 1S =

∑
i∈S δi. Every x in

{0, 1}n can be written as x = 1S for some S ⊆ {1, . . . , n}.
We use the notation 1 for the all-1 vector.

II. PROBLEM FORMULATION AND BASIC PROPERTIES

We consider strategic form games with a finite set of players
V = {1, . . . , n} whereby each player i choses her action
xi from a binary set A = {0, 1}. Let X = An denote the
(strategy) profile space, whose elements x will be referred to
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as (strategy) profiles. We shall consider the standard partial
order on X , given by

x ≤ y ⇐⇒ xi ≤ yi, ∀i ∈ V . (1)

As customary, given a strategy profile x in X and a player i,
we indicate with x−i the strategy profile of all players but i.
Each player i is endowed with a utility function ui : X → R,
so that

ui(x) = ui(xi,x−i) ,

denotes the utility of player i when she plays action xi while
the rest of the players’ strategy profile is x−i. A game will be
formally identified by the triple (V,A, {ui}).

The best response coorespondance for a player i in V is the
set-valued map

Bi(x−i) = argmaxa∈A ui(a,x−i) ,

while the set of pure strategy Nash equilibria is formally
defined as

N = {x ∈ X |xi ∈ Bi(x−i), ∀i ∈ V} .

Throughout the paper, we shall consider games satisfying
the following increasing difference property [25].

Assumption 1: For every player i in V and every two strategy
profiles x,y in X such that x−i ≥ y−i,

ui(1,x−i)− ui(0,x−i) ≥ ui(1,y−i)− ui(0,y−i) . (2)

Assumption 1 states that the marginal utility of increasing
player i’s action from xi = 0 to xi = 1 is a non-decreasing
function of the strategy profile x−i of all the other players.
For finite games, as is our case, such increasing difference
property is equivalent to super-modularity [26], [27], [28]. For
this reason, we will refer to a game (V,A, {ui}) satisfying
property (1) as a finite super-modular game. In the economic
literature, these are also referred to as games of strategic
complements [29].

A standard result for super-modular games ensures that their
set of pure strategy Nash equilibria is always nonempty and
that there exist a minimal and a maximal Nash equilibria
with respect to the partial order (1). Throughout the paper,
we shall assume that such minimal and maximal pure strategy
Nash equilibria are the all-0 profile and, respectively, the all-1
profiles. This assumption implies no effective loss of generality
since the presence of players that maintain a strict preference
for action 0 or action 1 independently from the actions played
by the other players can be easily integrated in our framework
by suitably modifying the other players’ utilities.

In this paper, we study the problem of finding subsets of
players S ⊆ V of minimal cardinality for which there exists
an improvement path from S to the whole player set V . This
is formalized by the following definitions.

Definition 1: For a finite game with binary actions
(V,A, {ui}), a sequence of strategy profiles (xk)k=0,...,m is
an improvement path from a set S ⊆ V to a set T ⊆ V if

1) x0 = 1S , xm = 1T ;
2) for every 1 ≤ k ≤ m there exists ik in V such that:

• xk−ik = xk−1−ik and xkik 6= xk−1ik
;

• uik(xk) ≥ uik(xk−1) .

Definition 2 (Sufficient control set): For a finite game with
binary actions (V,A, {ui}):
• S ⊆ V is a sufficient control set if there exists an

improvement path from S to V;
• a sufficient control set is minimal if none of its proper

subsets is a sufficient control set;
• a sufficient control set S ⊆ V is optimal if there exists

no sufficient control set of strictly smaller cardinality.
Notice that sufficient control sets always exist, as the whole
set of players V trivially is a sufficient control set. Also,
observe that an optimal sufficient control set is necessarily
minimal, but not vice versa. Our objective is to find optimal
sufficient control sets: as we shall see in Section V, this can be
performed by suitably exploring the space of minimal control
sets.

A key fact is that, in dealing with the concept of suffi-
cient control set, it is not restrictive to consider exclusively
improvement paths where all action changes are from 0 to 1.
Such improvement paths are formally defined below.

Definition 3 (Monotone Improvement path): For a finite
game with binary actions (V,A, {ui}), an improvement path
(xk)k=0,...,m from a set S ⊆ V to a set T ⊆ V is monotone
if for 1 ≤ k ≤ m, there exists a player ik in T \ S such that
xk = xk−1 + δik .

Remark 1: If there exists a monotone improvement path
(xk)k=0,...,m from S ⊆ V to T ⊆ V , then necessarily S ⊆ T ,
m = |T \ S| = |T | − |S|, and the players i1, . . . , im in T \ S
subsequently changing action from 0 to 1 are distinct. In fact,
a monotone improvement path is completely specified such
m-tuple of action-changing players.

The following result formalizes our previous claim.
Lemma 1: In a finite super-modular game with binary

actions (V,A, {ui}), a subset of players S ⊆ V is a sufficient
control set if and only if there exists a monotone improvement
path from S to V .

Proof: Clearly, if there exists a monotone improvement
path from S to V , then S is a sufficient control set.

Conversely, if S is a sufficient control set, then there exists
a (not necessarily monotone) improvement path (yk)k=0,...,l

from S to V . For every player i in V \ S, let

k(i) = min{k = 1, . . . , l | yk = yk−1 + δi}

be the first time that player i changes her action from 0 to 1
along the considered path. Now, let m = n − |S| and order
the players in V \ S as i1, . . . , im in such a way that k(i1) <
k(i2) < · · · < k(im). For 0 ≤ h ≤ m, define

xh = 1S +

h∑
j=1

δij ,

and notice that xh ≥ yk(ih). Then,

ui(x
h)− ui(xh−1) = ui(1,x

h−1
−ih )− ui(0,xh−1−ih )

≥ ui(1,y
kih
−ih)− ui(0,y

kih
−ih)

= ui(y
kih )− ui(ykih−1)

≥ 0 ,
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where the first inequality follows from the increasing differ-
ence property (since xh−ih ≥ y

k(ih)
−ih ), and the last one from

the fact that (yk)k=0,...,l is an improvement path. This shows
that (xk)k=0,...,m is an improvement path from S to V . By
construction, it is monotone, thus proving the claim.

This new characterization of sufficient control sets allows
for proving the following intuitive fact.

Proposition 1 (monotonicity for inclusion): In a finite super-
modular game with binary actions (V,A, {ui}), if S ⊆ V is
a sufficient control set, then every T ⊆ V such that S ⊆ T is
also a sufficient control set.

Proof: For a sufficient control set S, by Lemma 1 there
exists a monotone improvement path (xk)k=0,...,m from S to
V . For k = 1, . . . ,m, let ik in V \ S be such that xk =
xk−1 + δik . Consider some T ) S. Let l = |T | − |S| and
0 = k0 < k1 < k2 < · · · < kl ≤ m be such that ikh ∈ V \ T
for 1 ≤ h ≤ l. For 0 ≤ h ≤ l, let yh = max{1T ,xkh} ≥ xkh .
Then, a supermodularity argument analogous to the one in the
proof of Lemma 1 shows that (yk)k=0,...,m′ is a monotone
improvement path from T to V , thus proving the claim.

Remark 2: The notion of sufficient control set introduced in
Definition 2 can be reinterpreted in terms of the asynchronous
best response dynamics. Given a subset of players S ⊆ V ,
consider the Markov chain Xt on the strategy profile space X
whose transitions are described as follows. At every discrete
time, a player, among those in V \ S , is chosen uniformly
at random and updates her action choosing uniformly at
random among the actions of her current best response to the
other players’ strategy profile. Notice that the existence of an
improvement path from S to V is equivalent to that, for every
initial state X0 such that X0

i = 1 for all i in S, the Markov
chain Xt reaches the all-1 profile 1 in finite time with positive
probability.

Actually, more is true. For a superset of players S ′ ⊇ S ,
consider the strategy profile x = 1S′ . If S is a sufficient
control set, it follows from Proposition 1 that also S ′ is a
sufficient. This implies that there exists a monotone improve-
ment path from S ′ to V and thus Xt will also reach 1 from
x in finite time with positive probability. If the all-1 strategy
profile 1 is a strict Nash equilibrium (in the sense that all
players have, in that profile, a best response consisting of
the singleton 1) then this argument proves that S ⊆ V is a
sufficient control set if and only if the corresponding Markov
chain Xt is absorbed in 1 in finite time with probability one.
In the more general case where there are indifferent players for
whom ui(0,x−i) = ui(1,x−i) for all x−i, then the condition
on the Markov chain is replaced by the existence of a set
of strategy profiles containing 1 on which the Markov chain
Xt gets trapped in finite time with probability one and within
which it moves ergodically.

III. OPTIMAL TARGETING IN NETWORK COORDINATION
GAMES

A notable example of super-modular games with binary
actions is provided by network coordination games. In this
section, after reviewing network coordination games, we study

the optimal targeting problem for two classes of them. We first
study coordination games on arbitrary undirected networks
where the players have homogeneous thresholds: in this case,
we characterize best responses and highlight the relationship
between the optimal control set problem and the notion of
cohesiveness [5]. The second class we consider is that of co-
ordination games on a complete networks with heterogeneous
thresholds: in this case, we show that the optimal targeting
problem admits a relatively simple analytical solution in the
spirit of Granovetter’s seminal work [7].

Let G = (V, E ,W ) be a (finite, weighted, directed) graph,
whereby V is the set of nodes, E ⊆ V×V is the set of directed
links, and W in RV×V+ is the weight matrix, such that Wij > 0
if and only if there is a link (i, j) in E directed from its tail
node i to its head node j, in which case Wij represents the
weight of link (i, j). Let wi =

∑
j 6=iWij denote the out-

degree of a node i in V . We assume that G contains no self-
loops and no sinks, i.e., that Wii = 0 and wi > 0 for every i in
V . We refer to the graph G as simple if Wij = Wji ∈ {0, 1}:
in this case the weight matrix W is completely determined by
link set E and the graph can be simply denoted as G = (V, E).

A network coordination game on a graph G = (V, E ,W )
is a game (V,A, {ui}) with binary action set A = {0, 1} and
utilities

ui(x) =
∑
j 6=i

Wij ((1− xi)(1− xj) + xixj) + cixi , (3)

where the constant ci in [−wi, wi] models a possible bias of
player i towards action 0 (if ci < 0) or action 1 (if ci > 0).
In fact, the best response correspondances are given by

Bi(x−i) =



{0} if
1

wi

∑
j 6=i

Wijxj < θi

{0, 1} if
1

wi

∑
j 6=i

Wijxj = θi

{1} if
1

wi

∑
j 6=i

Wijxj > θi

(4)

where
θi =

wi − ci
2wi

(5)

is the threshold of player i in V . In the special case when the
graph is simple and ci = 0 (so that the threshold is θi = 1/2)
for every player i in V , this is also known as the majority
game.

A. Homogeneous network coordination games

In this subsection, we focus on the special case when the
players all have the same threshold θi = θ in [0, 1]. Sufficient
control sets in this case can be equivalently formulated in terms
of the graph-theoretic notion of cohesiveness introduced in [5].
Specifically, a subset of nodes S ⊆ V is called α-cohesive in
a graph G if ∑

j∈S
Wij ≥ αwi , ∀i ∈ S . (6)

For a simple graph, the above means that every node in S has
at least a fraction α of its neighbors within S (equivalently,
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Fig. 1. An optimal sufficient control set for the complete graph with n nodes
has size bn/2c.

Fig. 2. Optimal sufficient control sets for simple graphs with maximum degree
2 are of size 1.

at most a fraction 1 − α outside S). Considerations in [5]
and in [3] yield the following characterization of sufficient
control sets. Define a subset S ⊆ V uniformly no more than
θ-cohesive if no subset S ′ ⊆ S is θ′-cohesive for some θ′ > θ.
The following is a consequence of this definition and explicitly
proven in [3] (see Proposition 4 therein).

Proposition 2: Consider a network coordination game on
a graph G = (V, E ,W ) where all players have the same
threshold θ. Then, S ⊆ V is a sufficient control set if and
only if V \ S is uniformly no more than (1− θ)-cohesive.

This reformulation of the concept of sufficient control set
is of limited interest from the computational point of view.
Indeed, checking that the set V \S is uniformly no more than
(1−θ)-cohesive involves an analysis of all possible subsets of
V\S . Nevertheless, this characterization can be used to analyze
special cases. Examples of sufficient control sets for the special
case of the majority game for specific simple connected graphs
are presented in Figures 1, 2,a nd 4 as well as in Example 1.

Example 1: Let G be a tree. Then, the set of the leaf nodes
is always a sufficient control set. Indeed let S be any subset
of the nodes not containing leaves and consider a path (a walk
with no repeated nodes) of maximum length all consisting of
nodes in S, say (i1, . . . , il). Notice that i1 can not have other
neighbors in S otherwise the path could be extendable. On
the other hand, since i1 is not a leaf in the tree, it must have
degree at least 2, namely, at least one neighbor outside of S.
This implies that S can not be θ-cohesive for θ > 1/2. We
conclude using again Proposition 2. In general, such sets are
not optimal. Indeed, the argument above shows that also the set
of nodes that are neighbors of the leaves is a sufficient control
set, typically of smaller cardinality than the set of leaves. An
example is reported in Figure 3.

The examples considered above show that optimal sufficient
control sets for the majority game may exhibit different
relative sizes depending on the considered graph. In complete
graphs, their size is a constant fraction of the number n of
players and we expect the same to hold in very well connected
graphs as for instance random Erdös-Rényi graphs. This
conjecture is corroborated by numerical simulations presented
in Section VI. In contrast, for more loosely connected graphs

Fig. 3. Two examples of sufficient control sets for a tree: the one consisting
of the leaves in green squares and the one consisting of the leaves’ neighbors
in red diamonds. The second one is optimal.

Fig. 4. An optimal sufficient control set for a 2-dimensional grid of order
n = m2 has size m =

√
n.

(trees, grids), the size of optimal sufficient control sets scales
as a negligible fraction of the size n.

B. Heterogeneous coordination game on the complete graph

In this subsection, we focus on network coordination games
on the complete graph, whereby Wij = 1 for every i 6= j in
V . In contrast with the previous subsection, we shall allow for
full heterogeneity of the players’ thresholds, that in this case
are given by

θi =
n− ci − 1

2(n− 1)
, i ∈ V . (7)

Our results show that optimal sufficient control sets can be
completely characterized in terms of the threshold distribution
function

F (z) =
1

n
|{i ∈ V : θi ≤ z}| , z ∈ [0, 1] . (8)

First, we have the following technical result.
Lemma 2: On an heterogeneous network coordination game

on the complete graph with threshold distribution F (z), the
empty set ∅ is a sufficient control set if and only if

F (z) ≥ z , ∀z ∈ [0, 1] . (9)

Proof: We start with a general consideration that will be
used to prove both implications. Fix S ⊆ V and let x = 1S .
Put n1 = |S|. It follows from (4) that for every player i such
that xi = 0, it holds Bi(x−i) = {0} if only if

θi >
n1
n− 1

. (10)

Now, suppose that the emptyset ∅ is not a sufficient control
set and let S ( V be a set of maximum cardinality such that
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there exists a monotone improvement path from ∅ to S. Put
x = 1S and observe that n1 = |S| ≤ n− 1 and that and that
(10) holds true for every player i such that xi = 0. Therefore,

n− n1 ≤
∣∣∣∣{i ∈ V : θi >

n1
n− 1

}∣∣∣∣ = n

(
1− F

(
n1
n− 1

))
.

By dividing both sides by n and rearranging terms, we obtain

F

(
n1
n− 1

)
≤ n1

n
<

n1
n− 1

. (11)

This implies that (9) does not hold true.
Suppose instead that (9) does not hold true and let z in [0, 1]

be such that F (z) < z. By the way F is defined, there exists
n1 in {0, 1, . . . , n− 1} such that F (z) = n1/n. Observe that
n1 = nF (z) < zn implies that n1 ≤ zn−1 and, consequently,

n1
n− 1

≤ zn− 1

n− 1
≤ z .

Then, by monotonicity of the threshold distribution function
we get

F

(
n1
n− 1

)
≤ F (z) =

n1
n
. (12)

Let S be a set consisting of n1 players with the least possible
threshold and let x = 1S . It then follows from (12) that
each player i playing xi = 0 has threshold satisfying (10)
and hence, as observed at the beginning of this proof, it is
such that Bi(x−i) = {0}. This implies that there cannot be a
monotone improvement path from S to V . As a consequence,
S is not a sufficient control set and neither is the empty set ∅
by Proposition 1.

Remark 3: Lemma 2 may be related to Granovetter’s sem-
inal work on threshold models [7]. Specifically, [7] studies a
model collective behavior whereby n individuals are equipped
each with threshold value θi in [0, 1] and iteratively update
their binary action xi(t) for t ≥ 0 according to the threshold
rule

xi(t+ 1) =

{
1 if xi(t) = 1 or 1

n

∑
j 6=i xj(t) ≥ θi

0 if xi(t) = 0 and 1
n

∑
j 6=i xj(t) < θi .

(13)
Let now z(t) = 1

n

∑n
j=1 xj(t) be the fraction of individuals

choosing action 1 at time t and let z(0) = 0. Then it can be
directly verified that z(t) satisfies the recursion

z(t+ 1) = F (z(t)) , t ≥ 0 , (14)

where F : [0, 1]→ [0, 1] is the threshold distribution function
as defined in (8). Since F (z) is non-decreasing and such that
F (1) = 1, standard dynamical system arguments imply that
z(t)→ 1 as t grows large if and only if

F (z) > z , ∀z ∈ [0, 1) . (15)

Notice that the threshold distribution function F (z) is right-
continuous and, for a finite population of n players as is
our case, it is piecewise constant on [0, 1]. This implies
that, if F (z∗) = z∗ for some z∗ in [0, 1), then, necessarily,
F (z) = z∗ < z for z in a right neighborhood of z∗, thus
showing that (9) and (15) are equivalent. It then follows from
Lemma 2 that the empty set ∅ is a sufficient control set in
the heterogeneous coordination game on the complete graph

F
(z

)

0

1

1z

Fig. 5. If the graph of the threshold distribution function F (z) is never below
the one of the identity function z, then the empty set ∅ is a sufficient control
set (Lemma 2).

F
(z

)

0

1

1z z

1

F
(z

)

0

1

1

Fig. 6. IIf the graph of the threshold distribution function F (z) is below
the one of the identity function for some z in [0, 1], then the empty set ∅
is not a sufficient control set (Lemma 2). On the other hand, a set S of M
players with maximal threshold, where M is defined as in (16) is an optimal
sufficient control set (Proposition 3). Forcing these players to play action 1
corresponds to lowering their threshold to 0, leading to a modified threshold
distribution function F (z) whose graph is obtained by shifting the one of
F (z) (and saturating it at 1) by just enough to keep it above the one of the
identity function.

if and only if Granovetter’s dynamical system (13) converges
to the all-1 configuration when started from the all-0 one.

As an application of Lemma 2, we obtain the following
characterization of the optimal sufficient control sets for
heterogeneous network coordination games on the complete
graph.

Proposition 3: Consider a heterogeneous network coordina-
tion game on the complete graph with threshold distribution
F (z). Then, the minimal size of a sufficient control set is

M =

⌈
n · sup

0≤z≤1
[z − F (z)]+

⌉
. (16)

In particular, every S consisting of M players i in V with the
M largest thresholds θi gives an optimal sufficient control set.

Proof: First observe that a subset of players S ⊆ V is a
sufficient control set for the network coordination game with
utilities (3) if and only if ∅ is a sufficient control set for the
modified network coordination game with utilities

ui(x) =
∑
j 6=i

((1− xi)(1− xj) + xixj) + (n− 1)xi , (17)

for every i in S, and∑
j 6=i

((1− xi)(1− xj) + xixj) + cixi , (18)

for every i in V \ S, whereby all the players i in S have
modified threshold θi = 0 and the rest of the players j in V\S
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have the same threshold θj = θj . Let F (z) be the threshold
distribution function of this modified game and observe that

0 ≤ F (z)− F (z) ≤ |S|/n , ∀z ∈ [0, 1] . (19)

We now show that any subset S ⊆ V such that |S| < M
can not be a sufficient control set. If M = 0 there is nothing
to prove. Assume now that M ≥ 1 and notice that

n · sup
0≤z′≤1

[z′ − F (z′)]+ = M − 1 + ε (20)

for some ε > 0. Since sup
0≤z′≤1

[z′ − F (z′)]+ > 0, we have that

sup
0≤z′≤1

[z′ − F (z′)]+ = sup
0≤z′≤1

{z′ − F (z′)} . (21)

If |S| < M , then (19), (20), and (21) imply that

0 ≤ n
(
F (z)− F (z)

)
≤ |S|

≤ M − 1

= n · sup
0≤z′≤1

{z′ − F (z′)} − ε ,

for every 0 ≤ z ≤ 1. This yields

z − F (z) ≥ z − F (z)− sup
0≤z′≤1

{z′ − F (z′)}+ ε/n ,

for every z ∈ [0, 1]. Taking the sup on both sides of the above,
we finally obtain

sup
0≤z≤1

{
z − F (z)

}
≥ ε/n > 0 .

Then, Lemma 2 implies that ∅ is not a sufficient control set for
the modified network coordination game with utilities (17)–
(18), hence S is not a sufficient control set for the original
game.

To complete the proof, we now consider a set S of M
players with the highest thresholds. In this case,

F (z) = min{1, F (z) +M/n}

≥ min

{
1, F (z) + sup

0≤z′≤1
[z′ − F (z′)]+

}
≥ z ,

for every 0 ≤ z ≤ 1. It then follows from Lemma 2
that ∅ is a sufficient control set for the modified network
coordination game with utilities (17)–(18), thus showing that
S is a sufficient control set for the original game.

A graphical illustration of Lemma 2 and Proposition 3 is
proposed in Figures 5 and 6. If the threshold distribution
function of a heterogeneous network coordination game on
the complete graph is such that F (z) ≥ z for all z in [0, 1],
then the empty set is a sufficient control set. Otherwise, if
F (z∗) > z∗ for some z∗ in [0, 1], then the size of an optimal
sufficient control set (16) is given by the minimum integer M
such that F (z) = min{F (z) + M/n, 1} ≥ z for z in [0, 1]
and any subset of M players with the largest thresholds is a
sufficient control set.

In particular, Proposition 3 implies that the problem of
finding optimal sufficient sets in for a heterogeneous network

coordination game on the complete graph allows for a simple
solution. In fact, such solution heavily relies on the symmetry
structure of the complete graph. As we shall see in Section IV,
finding optimal sufficient control sets is a computationally hard
problem for network coordination games on general graphs.

IV. COMPLEXITY OF FINDING A SUFFICIENT CONTROL SET

In this section, we study the complexity of finding sufficient
control sets for arbitrary super-modular games and prove that it
is an NP-complete problem [30, Section 7.4]. Formally, given a
binary super-modular game and a positive integer n we define
SCS to be the logical proposition ”there exists a sufficient
control set of size less than or equal to s for the game”. The
main result of this section is the following.

Theorem 1: The problem SCS is NP-complete.

In order to prove Theorem 1, we will first show that SCS
belongs to the complexity class NP (c.f., [30, Definition 7.19])
and then that it is NP-hard.

Lemma 3: The problem SCS belongs to NP.
Proof: We show that, given an instance of a finite binary-

action super-modular game and a witness consisting in subset
of players S ⊆ V , checking if S is a sufficient control set
can be done in a time growing proportionally to the square
of n − s, where n = |V| and s = |S|. In fact, this can be
achieved by an iterative algorithm that starts with time index
t = 0 and profile x(0) = 1S and then proceeds as follows. If
there exists at least one player i in V such that

xi(t) = 0 , 1 ∈ Bi(x−i(t)) , (22)

then arbitrarily chose one such player i, increase the time index
t by one unit and define the new profile x(t) with xi(t) = 1
and x−i(t) = x−i(t− 1). Otherwise, if no player i satisfying
(22) exists, then halt and return the current value of the time
index t. Since, by Proposition 1, every superset of a sufficient
control set is itself a sufficient control set, we have that S is a
sufficient control set if and only if the algorithm defined above
terminates with t = n− s. Clearly, the number of steps of the
algorithm is at most n− s and at the t-th step, it is necessary
to compute the best responses of at most n− t players, so that
the algorithm effectively requires at most

∑n−s−1
t=0 (n − t) =

(n− s)(n− s+ 1)/2 best response computations. This proves
that the problem belongs to the complexity class NP.

We will now prove that SCS is NP-hard by showing that the
3-SAT problem [30, Ch. 7.2] can be reduced, in polynomial
time, to a particular instance of SCS. Consider any instance
I = (X,C) of the 3-SAT problem, consisting of a set of vari-
ables X = {x1, x2 · · ·xs−1} and clauses C = {c1, c2, · · · cm},
such that in every clause in C exactly three, possibly negated,
variables from X appear. Then, we associate to I a simple
graph GI = (VI , EI) of order |VI | = 2s + 5m and size
|EI | = s+ 8m as follows. The node set VI is the union of the
following six disjoint sets of nodes:
• A set W = {w1, w2, . . . , wm}, whose elements corre-

spond each to a clause in C;
• A set Y = {y1, y2, . . . , ys−1}, whose elements corre-

spond each to a variable in I , with the interpretation that
yi encodes xi if xi is true;
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(1)

(1)

(3) (3)
(4)

(2)

(2)

Y

Ȳ

W zL M

• A set Ȳ = {ȳ1, ȳ2, . . . , ȳs−1}, whose elements corre-
spond each to a variable in I , with the interpretation that
ȳi encodes xi if xi is false;

• A single node z, whose role will be to break possible
ties;

• Two sets of leaves L and M, of cardinality |L| = 3m
and |M| = m+ 1.

Links in EI only connect pairs of nodes belonging to different
sets and in particular:
(1) A node wj in W is connected to a node yi in Y if and

only if the variable xi appears in the clause cj and to
a node ȳi in Ȳ if and only if the variable x̄i appears in
the clause cj ;

(2) For each clause containing the variable xi, node yi in Y
is connected to a different node in L, and for each clause
containing the variable xi, node yi in Y is connected to
a different node in L, in such a way that the elements
of L are each connected to exactly one element either
of Y or of Y;

(3) The node z is connected to every element of W and of
M;

(4) For every i = 1, . . . , s− 1, node yi is connected to the
corresponding node ȳi.

There is a total of 3m links of type (1), 3m links of type (2),
2m+ 1 links of type (3), and s− 1 links of type (4). Nodes
in L and M all have degree 1, nodes in W all have degree 4,
node z has degree 2m + 1, while the degree of a node yi in
Y (respectively yi in Y) is 1 plus twice the number of clauses
the variable xi (respectively, xi) appears in.

Now, we shall consider the majority game on the graph GI ,
whereby each player in VI has action set {0, 1} and the utility
of player i is equal to the number of her neighbors that play
the same action as her. We then ask the question ”is there a
sufficient control set of size less than or equal to s for this
game?” We will now show that the answer to this question is
true if and only if the instance of 3-SAT is satisfiable.

Lemma 4: Let I = (X,C) be an instance of the 3-SAT
problem, and let GI = (VI , EI) be the simple graph defined
above. If I is satisfiable with a solution x∗ in {0, 1}s−1, then

S = {z} ∪ {yi : x∗i = 1} ∪ {yi : x∗i = 0}

is a sufficient control set of size s for the majority game on
GI .

Proof: Since I is satisfied by x∗, for every clause cj in
C there exists i in {1, . . . , s− 1} such that either xi appears
in cj and x∗i = 1 or xi appears in cj and x∗i = 1. Thus, in
the graph GI , all clause-related nodes in W have at least one

neighbor in (Y ∪ Y) ∩ S . Since they are all connected to z
in S also, and have all degree 4 in GI , this implies that there
exists a monotone improvement path from S to S ∪W .

Now, consider a variable xi in X and let mi be the number
of clauses it appears in. Then, notice that, if the corresponding
node yi in Y does not belong to S, it necessarily has one
neighbor in S (yi) as well as mi neighbors in W (those
corresponding to the clauses it belongs to). Since its degree
in GI is exactly 2mi + 1, this implies that S ∪W ∪Y can be
reached by a monotone improvement path from S ∪W , hence
from S. Analogously, one proves that S ∪W ∪Y ∪Y can be
reached by a monotone improvement path from S.

Finally, since every remaining node in L∪M is of degree
one and connected to a node in Y ∪ Y ∪ {z}, we get that
the monotone improvement path from S can be extended to
reach the whole node set VI , thus proving that S is a sufficient
control set.

We will now show that the converse of Lemma 4 holds true.
Lemma 5: Let I = (X,C) be an instance of the 3-SAT

problem, and let GI = (VI , EI) be the simple graph defined
above. If there is a sufficient control set S of size s for the
majority game on GI , then I is solvable.

Proof: We will first show that there exists a sufficient
control set S ′ of the same size s containing z and exactly one
node among yi and ȳi for each 1 ≤ i ≤ s− 1.

First, for every i = 1, . . . , s − 1, at least one node among
yi, ȳi, and the leaves in L connected to them must be in
S. Otherwise, neither of the pair {yi, ȳi} can be converted
before the other preventing any improvement path. For the
same reason at least one element among z and the leaves in
M must be in S.

In case when neither yi nor ȳi belong to S, removing the
leaf connected to them that is in S and adding its sole neighbor
(either yi or ȳi) let the control set stay sufficient and preserves
its size. We construct S ′ in this way replacing leaves with
variable nodes and finally applying the same substitution idea
to include the node z removing a leaf connected to it. This
gives us a sufficient control set of the same size as before,
using no leave and having exactly z and one among each pair
of variables.

Because of the structure of the graph and since S ′ contains
no leaves in L∪M, in any monotone improvement path from
S ′ to VI , a node in (Y∪Y)\S ′ can only appear after all nodes
inW have already appeared. Since all nodes inW have degree
4, this says that each of them must have at least two neighbors
in S ′, one of them being z. This implies that every node in
W must have at least one neighbor in S ′ \ {z} ⊆ Y ∪ Y .

Consider now the candidate solution x∗ in {0, 1}s−1 that
has x∗i = 1 if and only if yi in S ′. Then, it follows from
the argument above that for every clause cj there exists i in
{1, . . . , s − 1} such that either xi appears in cj and x∗i = 1
or xi appears in cj and x∗i = 1. This proves that the instance
I is solvable.

Lemma 4 and Lemma 5 thus show that starting from an
instance of the 3-SAT, we could build an instance of the SCS
problem in polynomial time and of polynomial size, solvable if
and only if 3-SAT instance is solvable, with a polynomial way
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to convert the solution back to the 3-Sat format. This shows
that SCS is NP-hard. Together with Lemma 3, this shows that
SCS is an NP-complete problem.

Remark 4: Notice that we have in fact proven that the 3-
SAT problem can be reduced to the SCS problem for the
majority game on an arbitrary graph. Hence, not only is the
SCS problem on general super-modular games with binary
actions NP-complete, but also its special case for the majority
game on general graphs is NP-complete.

V. A DISTRIBUTED OPTIMAL TARGETING ALGORITHM

The characterization of sufficient control sets through mono-
tone improvement paths (Lemma 1) suggests the possibility
that such sets may be searched for by starting from the all-1
profile 1 and iteratively replacing 1’s with 0’s in the attempt
to follow backwards a monotone improvement path.

In order to capture this intuition, in this section we introduce
a family of discrete-time Markov chains (Zεt )t≥0 on the
strategy profile space X , parameterized by a scalar value ε
in [0, 1]. We will then prove that, for every 0 < ε ≤ 1, the
Markov chain (Zεt )t≥0 is time-reversible and irreducible on
the set of sufficient control sets, whereas, as ε vanishes, its
stationary distribution concentrates on the family of optimal
sufficient control sets.

The dynamics of the Markov chain Zεt are described as
follows: at every discrete time t = 0, 1 . . ., given that Zεt =
z, a player i is chosen uniformly at random from the whole
player set V . Then, if ui(1, z−i) < ui(0, z−i), the state is not
changed, i.e., Zεt+1 = z. Otherwise, if ui(1, z−i) ≥ ui(0, z−i),
then, if the current action of player i is zi = 1 it is changed
to 0 with probability 1, while if her current action is zi = 0,
it is changed to 1 with probability ε and kept the same with
probability 1− ε.

Precisely, for a strategy profile x in X , let

n0(x) = |{i ∈ V : xi = 0, ui(1,x−i) ≥ ui(0,x−i)}| ,

n1(x) = |{i ∈ V : xi = 1, ui(1,x−i) ≥ ui(0,x−i)}

and

αε(x) =
εn0(x) + n1(x)

n
.

Then, let Zεt be a Markov chain with state space X and
transition probabilities

P εx,y =



1/n if y = x− δi and ui(y) ≤ ui(x)

ε/n if y = x + δi and ui(y) ≥ ui(x)

1− αε(x) if x = y

0 otherwise ,
(23)

for every x,y in X , where we recall that δi stands for a vector
of all 0’s except for a 1 in the i-th entry.

Notice that, for ε = 0, only transitions from action 1 to
action 0 are allowed. In this case, the Markov chain Z0

t has
absorbing states. Let

Z = {x ∈ X | P(∃t0 ≥ 0 : Z0
t0 = x | Z0

0 = 1) > 0} (24)

be the set of all states (i.e., strategy profiles) that are reachable
by the Markov chain Z0

t when started from Z0
0 = 1 and

Z∞ = {x ∈ X | P(∃t0 ≥ 0 : Z0
t = x∀t ≥ t0 | Z0

0 = 1) > 0}
(25)

the set of absorbing states reachable by Z0
t from Z0

0 = 1.
Then, we have the following result:

Proposition 4: For a finite super-modular game with binary
actions (V,A, {ui}), let Z and Z∞ be defined as in (24) and
(25), respectively. Then,

(i) S ⊆ V is a sufficient control set if and only if 1S ∈ Z;
(ii) if S is a minimal sufficient control set then 1S ∈ Z∞;

(iii) x in X is an absorbing state for Z0
t if and only if

n1(x) = 0.
Proof: (i) By definition, x = 1S belongs to the set of

reachable states Z if and only if there exists a sequence of
strategy profiles (yk)k=0,...,l, such that y0 = 1, yl = 1S , and

yk = yk−1 − δik , uik(yk) ≤ uik(yk−1) 1 ≤ k ≤ l .
(26)

Notice that (26) is equivalent to say that the reversed path
(xk)k=0,...,l with xk = yl−k for 0 ≤ k ≤ l is a monotone
improvement path from S to V . By Lemma 1, this is equivalent
to say that S is a sufficient control set.

(ii) If S is a minimal sufficient control set, we know from
point (i) that the strategy profile 1S belongs to the set Z of
reachable states. By contradiction, if 1S did not belong to the
set of reachable absorbing states Z∞, then, from x = 1S , the
Markov chain Z0

t could reach, in one step, a different state
x′ = 1S′ with S ′ ( S, thus contradicting the minimality
assumption on S.

(iii) Since α0(x) = n1(x)/n, by (23) we have P 0
x,x = 1 if

and only if n1(x) = 0.

Point (i) of Proposition 4 implies that the problem of finding
optimal sufficient control sets can be equivalently stated as the
problem of finding strategy profiles x in Z of minimal l1-norm
||x||1 =

∑
k xk, i.e., that S is an optimal sufficient control set

if and only if
|S| = min

x∈Z
||x||1 . (27)

On the other hand, point (ii) implies that we can actually
restrict the minimization in (27) to the set Z∞ of those
absorbing states of the Markov chain Z0

t that are reachable
from the all-1 strategy profile. However, as Example 2 below
shows, the set Z∞ may contain strategy profiles corresponding
to sufficient control sets that are suboptimal and, possibly, not
even minimal.

Example 2: Consider the majority game on the ring graph
with four nodes {1, 2, 3, 4}. Then, z1 = (1, 0, 1, 0) in Z∞
corresponds to the sufficient control set S = {1, 3}, but it is
not minimal since {1} is also a sufficient control set.

As a consequence, by simply simulating the Markov chain
Z0
t started from Z0

0 = 1, we are not guaranteed to reach
an optimal sufficient control set. To overcome this issue, we
will instead use the Markov chain Zεt with ε > 0, which,
as shown below, is time-reversible and ergodic on whole set
Z of reachable strategy profiles and, hence, it does not get
trapped in non-optimal control sets, and at the same time has
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a stationary distribution concentrating on the set of optimal
control sets as the parameter ε vanishes.

Theorem 2: For a finite super-modular game with binary
actions (V,A, {ui}), let Z be defined as in (24). Then, for
0 < ε ≤ 1, the Markov chain Zεt with transition probabilities
(23)

(i) keeps the set Z invariant, namely, if Zε0 belongs to Z ,
then Zεt belongs to Z for every t ≥ 0;

(ii) is time-reversible and ergodic on the set Z;
(iii) has stationary probability distribution

µεx :=
1

Kε
ε||x||1 , x ∈ Z , (28)

where
Kε =

∑
x∈Z

ε||x||1 .

In particular,
lim
ε↓0

µε = µ ,

where µ is the uniform probability distribution on the set of
profiles corresponding to optimal sufficient control sets.

Proof: (i) Let x in Z be strategy profile that is reachable
from the all-1 profile by the Markov chain Z0

t and y in X
a strategy profile such that P εx,y > 0. We will prove that y
belongs to Z .

If y = x− δi for some player i in V , then (23) implies that
P εx,y = 1/n > 0, so that in particular P 0

x,y = 1/n > 0, thus
showing that the strategy profile y belongs to Z .

On the other hand, if y = x+δi for some player i in V , we
argue as follows. Since x in Z is a strategy profile reachable
by the Markov chain Z0

t from the all-1 profile, we can find a
sequence of profiles (xk)k=0,...,l such that x0 = 1 and xl = x
and P 0

xk−1,xk > 0 for 1 ≤ k ≤ l. From (23), this is equivalent
to the existence of players i1, i2, . . . , il in V such that

xk = xk−1−δik , uik(xk) ≤ uik(xk−1) , 1 ≤ k ≤ l .
(29)

Observe that y = x+δi implies that xi = 0, so that that there
exists a unique integer s in {1, . . . , l} such that is = i, hence

xs = xs−1 − δi , uik(xk) ≤ uik(xk−1). (30)

Now, define the sequence of profiles (zk)k=0,...,l−1 as

zk =

{
xk if 0 ≤ k ≤ s− 1
xk+1 + δi if s ≤ k ≤ l − 1 .

(31)

Observe that z0 = 1 and zl−1 = x+ δi = y. We are going to
show that

P 0
zk−1,zk > 0 , (32)

for every 1 ≤ k ≤ l− 1, thus proving that the strategy profile
y is reachable from 1 by the Markov chain Z0

t . In fact, for
1 ≤ k ≤ s − 1, we simply have P 0

zk−1,zk = P 0
xk−1,xk > 0,

thus showing that (32) holds true in this case. On the other
hand, it follows from the equalities in (29) and (30) that

zs = xs+1+δi = xs+δi−δis+1
= xs−1−δis+1

= zs−1−δis+1
,

and, for s+ 1 ≤ k ≤ l − 1,

zk = xk+1 + δi = xk + δi − δik+1
= zk−1 − δik+1

,

so that

zk = zk−1 − δik+1
, s ≤ k ≤ l − 1 . (33)

Notice that, for s ≤ k ≤ l − 1, zk ≥ xk+1, so that (29) and
the super-modularity property (2) imply that

0 ≤ uik+1
(xk)− uik+1

(xk+1)

= uik+1
(1,xk+1

−ik+1
)− uik+1

(0,xk+1
−ik+1

)

≤ uik+1
(1, zk−ik+1

)− uik+1
(0, zk−ik+1

)

= uik+1
(zk−1)− uik+1

(zk)

Together with (33) and (23), the above implies that P 0
zk−1,zk =

1/n > 0 for s ≤ k ≤ l−1. Thus, (32) holds true for for every
1 ≤ k ≤ l − 1, showing that y belongs to Z .

(ii) Notice that

ε||x||1P εx,y = ε||y||1P εy,x , (34)

for every two strategy profiles x and y in X , thus showing
that the Markov chain Zεt is time-reversible with respect to
the stationary distribution µεx defined in (28).

Since the positive probability transitions for the Markov
chain Z0

t have also positive probability for the Markov chain
Zεt , we have that all profiles in Z can be reached from the
all-1 profile 1 by the Markov chain Zεt for every 0 < ε ≤ 1.
Moreover, Equation (34) shows that a transition probability
P εx,y is positive if and only if the reverse transition P εy,x is
positive, thus 1 is reachable from every other profile in Z .
This shows that Zεt is ergodic on the set Z .

(iii) Ergodicity and Equation (34) imply that, for every 0 <
ε ≤ 1, the unique stationary distribution of the Markov chain
Zεt restricted to Z has the form (28).

As ε vanishes, a direct check shows that the stationary
distribution µε converges to a uniform distribution on the
set argminx∈Z ||x||1. Using Proposition 4, argminx∈Z ||x||1
coincides with the set of optimal sufficient control sets, thus
completing the proof.

Theorem 2 suggests an iterative stochastic algorithm for the
selection of an optimal sufficient control set: simply run the
Markov chain Zεt for some sufficiently small value of ε > 0.
This can be considered a distributed algorithm in the sense
that, for each iteration, once a uniform random player i is
selected, the update rule only depends on the current action
of player i and on the current action of the other players on
which the utility ui depends on.

In particular, notice that, by Proposition 4 (i), Z coincides
with the space of sufficient control sets. Hence, Theorem 2
implies that, when started from Zε0 = 1, the Markov chain Zεt
explores the space of sufficient control sets Z in an ergodic
fashion. Writing Zεt = 1St , we have that the expected size
of the random sufficient control set St in stationarity can be
computed using (28) as

lim
t→+∞

E[|St|] =
1

Kε

n∑
l=M

lNlε
l , Kε =

n∑
l=M

Nlε
l ,

where M is the size of a minimal control set, Nl is the
number of sufficient control sets of size l for l = M, . . . , n.
As ε vanishes, such expected stationary size converges to the
optimal sufficient control set size M .
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However, because of the positive diagonal entries P εx,x =
1 − αε(x) of the transition probability matrix of the Markov
chain Zεn, a straightforward implementation of this algorithm
would remain idle form many iterations, the more so the closer
to 1 such diagonal entries are. Notice that on the one hand

lim
ε↓0

P εx,x = 1− n1(x)/n , ∀x ∈ Z ,

on the other hand, by Proposition 4 (iii), n1(x) = 0 if and
only if x ∈ Z∞. Hence, in particular,

lim
ε↓0

P εx,x = 1 , ∀x ∈ Z∞ .

As a consequence, for small positive values of ε, the algorithm
would tend to get stuck in small sufficient sets, waiting for
either choosing one of the few remaining best-responding 1-
players (if any, i.e., only if the state is not in Z∞), or for
choosing a 0-player with best response 1 and flipping her
action with probability ε.

In order to speed up the algorithm, a possibility consists in
zeroing the diagonal entries of the transition probability matrix
and rescaling its off-diagonal entries in order to keep the row-
sums equal to 1, c.f. [31]. Formally, this leads one to consider
the modified Markov chain Z̃εt on the same state space X and
transition probabilities

P̃ εx,y =


1/(nαε(x)) if y = x− δi and ui(y) ≤ ui(x)

ε/(nαε(x)) if y = x + δi and ui(y) ≥ ui(x)

0 otherwise ,
(35)

for all x,y in X . Clearly, reachable states for the modified
Markov chain Z̃εt are the same as those for the original Markov
chain Zεt . On the other hand, typically Z̃εt is not a reversible
Markov chain. Nevertheless, we can compute its stationary
distribution as stated in the following result. In it, we shall
refer to a sufficient subset U ⊆ V as quasi-optimal if

U = S ∪ {i} , (36)

for some optimal sufficient control set S and some player i in
V \ S.

Corollary 1: For 0 < ε ≤ 1, consider the Markov chain Z̃εt
with transition probabilities (35). Then:

(i) Z̃εt keeps the set Z invariant and is ergodic on it;
(ii) Z̃εt has stationary probability

µ̃εx :=
1

K̃ε

ε||x||1(n1(x) + εn0(x)) , x ∈ Z , (37)

where K̃ε =
∑

x∈Z(ε||x||1n1(x) + ε||x||1+1n0(x)).
(iii) limε↓0 µ

ε = µ , where µ̃ is a probability distribution
supported on the set of strategy profiles corresponding to
optimal and quasi-optimal sufficient control sets whose
entries are given by

µ̃x =

 n0(x)/K̃ if x = 1S , S optimal
n1(x)/K̃ if x = 1S , S quasi-optimal
0 otherwise

(38)

where

K̃ =
∑
S optimal

n0(1S) +
∑

S quasi-optimal

n1(1S) .

Proof: Point (i) follows from Theorem 2 (i) and (ii) and
the observation that, for x 6= y in X , we have P̃ εx,y > 0 if
and only if P εx,y > 0.

We now prove (ii). Let Dε in RX×X be a diagonal matrix
with entries Dε

xx = αε(x). Then, the transition probability
matrices P ε and P̃ ε of the Markov chains Zεt and Z̃εt ,
respectively, are related by the formula

P ε = I −Dε +DεP̃ ε ,

which implies that (P ε)′µ = µ if and only of (P̃ ε)′Dεµ =
Dεµ. This shows that the unique stationary distribution of Zεt
on Z satisfies

µ̃x ∝ µxαε(x) ,

thus proving (ii).
Finally, in order to prove (iii), we first make a number of

observations. Let m be the minimum cardinality of a sufficient
control set. First, consider an optimal sufficient control set
S and let x = 1S be the associated strategy profile. Then,
S is necessarily a minimal sufficient control set so that, by
Proposition 4 (ii), x ∈ Z∞. Hence, x is an absorbing state
of the Markov chain Z0

t , so that n1(x) = 0 by Proposition 4
(iii). On the other hand, since for 0 < ε ≤ 1 the Markov chain
Zεt is ergodic on Z , we necessarily have n0(x) ≥ 1 (since,
if n0(x) = 0, then x would be an absorbing state for Zεt ). It
then follows from (37) that

µ̃εx =
n0(x)εm+1

K̃ε

, ∀ε ∈ (0, 1] . (39)

Now, consider a quasi-optimal sufficient control set U and
let x = 1U . Since (36) is satisfed for some optimal sufficient
control set S and some player i in V\S such that ui(1,x−i) ≥
ui(0,x−i), we have that n1(x) > 0. Then, (37) yields

µ̃x =
n1(x)εm+1 + o(εm+1)

K̃ε

, as ε ↓ 0 . (40)

Finally, if we take x = 1T for any T that is neither optimal
nor quasi-optimal, we necessarily have that ||x||i ≥ m+1 and
that if ||x||i = m+ 1, then ui(1,x−i) < ui(0,x−i) for every
i in T . Hence, ni(x) = 0 and (37) implies that, in any case,

µ̃x =
o(εm+1)

K̃ε

, as ε ↓ 0 . (41)

The limit relation (38) then follows from (39)–(41).

In the following section, we shall refer to the Distributed
Optimal Targeting (DOT) algorithm as an implementation of
the modified Markov chain Zεt .

VI. NUMERICAL SIMULATIONS

In this section, we briefly present some numerical simu-
lations of the DOT algorithm proposed in Section V for the
case of the network coordination game on a simple graph G, as
defined in Section III. Specifically, we apply our algorithm to
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Fig. 7. Size of the optimal sufficient control sets for Erdös-Rényi random
graphs E(n, p) with p = 0.4 (left) and p = 4

n
logn (right).

determine optimal control sets for the majority game on Erdös-
Rényi random graphs. The Erdös-Rényi random graph E(n, p)
is a random undirected graph with n nodes where undirected
links between pairs of nodes are present with probability p
in [0, 1] independently from one another. We let the graph
order n range up to 70 and consider two different regimes for
the probability p. In the first regime, we set p = 0.4 to be
a constant independent from the graph order n, thus leading
to quite a densely connected graph. In contrast, in the second
case, we set p = 4

n log n, leading to a more sparse graph
that nevertheless remains connected with high probability as
n grows large [32, Theorem 2.8.1].

First, we have run the DOT algorithm with parameter
ε = 0.3 for a number of steps proportional to the square of
the graph order (precisely, 100n2) and the control set returned
is the one of minimum cardinality encountered along the walk
of the Markov chain. For small values of n, an explicit com-
parison with the optimal solution, obtained through exhaustive
search, proves correctness of our approach for reasonable time
horizons. Simulation results are reported in Figure 7.

Clearly, a fundamental parameter of our algorithm is the
time horizon T over which the DOT algorithm is run. In Figure
8, for a specific sample of an Erdös-Rényi graph of order
n = 100 we report the evolution in time of the cardinality
of the smallest sufficient control set found so far by the DOT
algorithm. In particular, we have run the simulation 100 times
and plotted the average size of the smallest sufficient control
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Fig. 8. For a specific sample of the Erdös-Rényi graph of order n = 100,
and 100 independent simulation runs, the average cardinality of the smallest
sufficient control set found so far by the algorithm is plotted in blue as a
function of the number of transitions of the Markov chain (“time”). The light
red interval corresponds to the range between the minimal and maximal size
of the current control set (i.e., the current state of the Markov chain).

Fig. 9. Coverage obtained by taking the k highest degree node, with k the size
of the set found by the Markov Chain algorithm for random graphs E(n, p)
with p = 0.4 (top) and p = 4

n
logn (bottom)

set found so far as the blue curve, while the range between the
minimal and maximal size of the current control set (among
all the 100 simulations) is plotted as a light red interval. Notice
that the average is very close to the minimum, thus suggesting
small variability of the DOT algorithm.



13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  20  40  60  80  100  120

si
ze

 o
f 

su
ffi

ci
e
n
t 

co
n
tr

o
l 
se

t

network size

DOT,t=100n
DOT, t=1000n3

random nodes
greedy nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30  35  40  45  50

si
ze

 o
f 

su
ffi

ci
e
n
t 

co
n
tr

o
l 
se

t

network size

DOT,t=100n
DOT, t=1000n3

random nodes
greedy nodes

Fig. 10. For random graphs E(n, p) with p = 0.4 (top) and p = 4
n
logn

(bottom), comparison between the performance of the random-node, max-
degree, and greedy heuristics with that of our Markov Chain algorithm with
two different time horizons.

We now compare the performance of the DOT algorithm
with other heuristic algorithms. First, we consider a naive
heuristic algorithm selecting the maximal degree nodes, to be
referred as the maximal degree heuristic (MDH) algorithm.
In fact, the degree is the first and conceptually simplest
measure of network centrality [33, p. 38]: e.g., in undirected
graphs, the degree vector coincides, up to a scaling factor,
with the stationary distribution of a random walk on the
graph. In Figure 9 we make a comparison between the DOT
and the MDH algorithms. Specifically, for each value of n,
we consider a set of the highest degree nodes of the same
cardinality as the one found by our DOT algorithm. We then
plot the percentage of the graph nodes that would turn to 1
using that specific control set. When n is sufficiently large this
percentage is around 30% and shows how the degree is not
the right property to look at for the optimal targeting problem.

Finally, in Figure 10 we compare the performance of our
DOT algorithm with that of the previously discussed MDH
algorithm, as well as to that of a completely random node
heuristic (RNH) algorithm —simply selecting nodes to be
added to S uniformly at random until S becomes a sufficient
control set— and of a “greedy heuristic” (GH) algorithm
working as follows: Start with the all-zero action profile
x(0) = 0, pick a node i1 with highest degree in G and put
x
(0)
i1

= 1, then follow a monotone improvement path in the

network coordination game until reaching an action profile
x(1); then pick a node i2 with highest degree among those with
x
(1)
i2

= 0, put x(1)
i2

= 1 and follow a monotone improvement
path in the network coordination until reaching an action
profile x(2); stop when the all-1 action profile x(k) = 1 ie
reached and return the sufficient control set S = {i1, . . . , ik}.
As Figure 10 shows, our DOT algorithm outperforms the RNH
algorithm even for short simulation lengths, and does better
than both the MDH and the GH algorithms (which have a
similar performance) when the Markov chain is allowed to
evolve over a long enough time horizon.

A comparison of the computational complexities of the
aforementioned heuristics is in order. On the one hand, a
straightforward implementation of either the RNH or the MDH
algorithms requires order of n3 computations since each time
a node is added to S one needs to verify whether the obtained
set S is a sufficient control set, which requires a number of
iterations that is quadratic in n at worst. On the other hand,
the complexity of the GH algorithm presented above is of the
order of n2, since the complexity of computing a monotone
improvement path is of order n times the length of the path
and the total length of the followed monotone improvement
paths is less than n. In fact, our simulations show that the
DOT algorithm displays a similar performance as such greedy
heuristic when the length of the time horizon over which the
Markov chain is allowed to run is of the order of the quadratic
complexity of the GH algorithm and better performance when
it is allowed to run for longer time horizons.

However, the “anytime” structure of our Markov chain
based DOT algorithm provides an inherent advantage with
respect to any of such heuristics, as it allows for the flexibility
of getting a feasible solution consisting of a sufficient control
set of non-increasing size at any time during its run, with
the guarantee of convergence to the optimal one as the time
horizon increases.

VII. CONCLUSION

In this paper, we have studied an optimal targeting problem
for super-modular games with binary actions and finitely many
players. The considered problem consists in the selection of
a subset of players of minimum size such that, when the
actions of these players are forced to a given common value,
there exists an improvement path from every strategy profile to
the pure strategy Nash equilibrium where all players play the
same chosen action in the constrained super-modular game.
Our main contributions consist in: (i) showing that this is an
NP-complete problem; (ii) proposing a computationally simple
randomized algorithm that provably selects an optimal solution
with high probability.

Moreover, we have presented some numerical simulations
results for the case of the majority game on Erdös-Rényi
random graphs. We have compared the performance of our
algorithm with that of an exhaustive search (for small problem
sizes) and that of simple heuristics, including targeting players
are those with the highest centrality in the graph. The first
such comparison validates our theoretical results. The second
comparison shows that the centrality-based heuristic performs



14

as much as 70% worse than our algorithm in this problem,
thus highlighting the relevance of our analysis.

The problem studied in this paper can be considered a
particular instance of a control problem in a game-theoretic
framework. Our results show how the structure of the game,
in particular super-modularity, can be leveraged to get insight
into the solution of the control problem.

Several directions for future research can be considered.
In the context of super-modular games, two natural gener-
alizations are of certain interest. The first one concerns the
extension to games with non-binary action sets. Particularly
interesting is the example of partnership games where each
player’s action is a nonnegative real number measuring the
individual effort put in a certain common activity. A challeng-
ing step will be the design of a similar randomized algorithm
to find optimal sufficient control sets in the continuous setting.

A second direction of research is that of considering more
complex interventions, where the utilities of the controlled
players are altered, rather than their actions directly forced to
a desired one. A third direction would consist in studying the
optimal sufficient control set problem for ensembles of large-
scale random games. In particular, we believe that the local
mean-field approaches such as those developed in [8], [34]
could be a viable tool for developing results with probabilistic
guarantees in sparse random graphical game settings.

As our approach strongly relies on super-modularity, ex-
tensions to more general classes of games is an even more
challenging direction. In particular, network public goods
games are another interesting family for which target inter-
vention problems can be formulated and studied. We believe
that, in spite of the difference with respect to super-modular
games, randomized distributed algorithms, presumably based
on different mechanisms, can play a role to solve optimal
intervention problems.
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