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Brain-computer Interfaces for Daily-life
Applications: a Five-year Experience Report

Leopoldo Angrisani1, Pasquale Arpaia1,3, Egidio De Benedetto1,3,
Antonio Esposito2,3, Nicola Moccaldi1,3, and Marco Parvis2

Abstract—This work reports the research on brain-computer
interfaces (BCI) carried out in the last five years at the Aug-
mented Reality for Health Monitoring Laboratory (ARHeMLab),
at the University of Naples Federico II (Italy). In the research,
particular attention has been dedicated to wearability, portability,
and other key features for obtaining user-friendly BCI systems.
Indeed, the interest in the adoption of BCI systems is becoming
particularly relevant for cyber-physical human systems (CPHSs),
where possible applications relate to industry, healthcare, and
daily-life activities in general. In such a context, materials and
explored methods are reviewed, and results are presented with
reference to reactive, active, and passive paradigms.

Index Terms—BCI, brain-computer interface, CPS, Cyber-
physical systems, EEG, electroencephalography, wearable sen-
sors, machine learning.

I. INTRODUCTION

Cyber-physical human systems (CPHSs) integrate the physi-
cal and human components into a synthetic hybrid system [1].
In the context of Industry 4.0, humans do not just exercise
a defined role in an organization; on the contrary, they are
part of a highly-composite automated system [2], [3]. In
industry or in health care, smart machines (i.e., the non-
human components of a CPHS) are increasingly connected
to the physical environment through a multitude of sensors.
Thanks to a distributed intelligence, the non-human actors can
elaborate information and make decision, resulting highly em-
powered by technology innovation. Also humans can benefit
from new technological opportunities: by interacting with new-
generation user interfaces, they can enhance their cognitive,
sensory, and motor skills [4]. Among biosignal-based inter-
faces, brain-computer interfaces (BCIs) allow both monitoring
and control [5]. Through BCI, humans can send commands or
decisions to the CPHS through intentional modulation of brain
waves. Moreover, through the same signal, the system acquires
information on the status of the user.

Electroencephalography (EEG)-based BCIs are character-
ized by numerous paradigms according to the different con-
tents transmitted. A useful BCI taxonomy is proposed in [6]:

• passive BCI, where the user does not directly and con-
sciously control his electrical brainwaves. This paradigm
is generally used for monitoring the user’s mental state;
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• active BCI, where the subject voluntarily produces an
appropriate modulation of the brain waves for controlling
an application, independently of external events;

• reactive BCI, where brainwaves are produced in response
to external stimuli; the subject can consciously or uncon-
sciously expose himself to external stimuli. In the first
case, once again, he can control an application; otherwise,
monitoring is carried out.

For five years, research has been in progress at the Aug-
mented Reality for Health Monitoring Laboratory (ARHeM-
Lab) of the University of Naples Federico II (Italy), on all
the three BCI paradigms: (i) reactive BCI, by focusing on
steady-state visual evoked potential (SSVEP); (ii) active BCI,
by focusing on the signal produced by the motor imagination
and brain signals related to the voluntary closing of the eyes;
and (iii) passive BCI, by studying the brain wave pattern of a
distracted subject while performing a rehabilitative motor task.
Both off-the-shelf instrumentation and CE-marked devices for
medical use were exploited for acquiring brain signals. In
particular, the focus of the research has been on the design
and prototyping of wearable devices for daily-life applications.
Databases available online were consulted and experimental
campaigns were carried out involving a total of more than
200 subjects. In this manuscript, the research experience is
reviewed according to the aforementioned BCI paradigms.

In particular, the present paper is organized as follows.
Section II reports the methods explored in terms of brain
signals detection and classification. Section III discusses the
results obtained for the different paradigms that were con-
sidered during this five-year research. Conclusions follows in
Section IV, and the future work is outlined.

II. MATERIALS AND METHODS

A BCI architecture generally includes (i) a signal acquisition
block; (ii) signal processing block, typically consisting of
features extraction and features classification; and (iii) an ap-
plication. The latter concerns the control or the communication
with an external device, usually providing a feedback to the
user. The following sections present the solutions that have
been investigated for the implementation of the major system
blocks. The common thread is the possibility to adopt such
systems in daily life, and the focus is on EEG-based BCIs.

A. Signal acquisition

The key strength of the proposed methods lies in the high
wearability and portability of the implemented BCI systems.
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EEG non-invasiveness is essential for employability in ev-
eryday activities; moreover, ease-of-use is guaranteed by the
adoption of dry electrodes and by keeping their number as low
as possible.
In the research, the firs instrument that was adopted is the
Olimex EEG-SMT [7], which allows EEG acquisition through
active electrodes, with up to two differential channels. Analog
pre-processing is implemented on this low-cost board: it con-
sists of pass-band filtering (0.16-59 Hz nominal bandwidth),
amplification (nominal gain about 6500 V/V), and analog-to-
digital conversion with a 10-bits ADC.

In some applications, however, more EEG channels are re-
quired. Therefore, another commercial system was employed,
namely the Helmate by ab-Medica [8]. This wireless device
exploits ten dry electrodes, providing up to eight single-ended
channels. The dry electrodes are made of conductive rubber
with an Ag/AgCl coating [9]. Three different shapes are used
to reach the scalp by passing the air or by joining hairless
areas.

Finally, in the case of reactive BCIs, an external stimuli
generator is also needed. In the case currently under in-
vestigation at ARHeMLab, augmented reality (AR) glasses
were considered in order to provide visual stimulation. The
proximity of the icons appearing on the display allowed both
wearability and setup optimization, which resulted in higher
signal-to-noise ratio for the measured EEGs.

B. Features extraction

The techniques explored to extract signal features can be
divided into two broad categories: band power-based and
time points-based [10]. In preliminary studies, FFT-based
algorithms were compared [11], [12], eventually leading to
the adoption of power spectral density (PSD) as a signal
feature. The band to consider does depend on the specific
BCI paradigm. As an example, the typical spectrum of an
EEG measured in presence of a flickering light at 10 Hz is
represented in Fig. 1. The PSD in the frequency range close
to 10 Hz (and 20 Hz) determines if the user is staring at an
icon flickering at 10 Hz, rather than at another icon. This is
the basic concept of a BCI paradigm relying on SSVEPs.

In multi-channel acquisitions, also the relation between
different channels can be exploited. To this aim, a widely
adopted approach is the “common spatial pattern” (CSP)
[13], which re-maps the spatial information to increase the
separability between different EEG patterns. Ultimately, CSP
considers log-power of re-mapped EEG signals, thus falling
within band power-based features extraction.

Among the time points-based techniques “canonical cor-
relation analysis” (CCA) was used in SSVEP detection for
minimizing the latency of the measurement method. The
CCA made it possible to reduce the duration of the time
window used by the approaches in the frequency domain for
the necessary resolution. The direct use of temporal samples
was proposed for the recognition of voluntary eye blinking
through comparison with an amplitude threshold. Also in the
case of the stress measurement each feature corresponded
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Fig. 1. Spectrum of an SSVEP component of the EEG corresponding to a
10 Hz flickering stimulus.

to just one time sample and feature selection was carried
out by a standard machine learning technique, the “principal
component analysis” (PCA). The latter allows to compress
data [14] and to approximate signals as a linear combination
of a restricted number of orthogonal components.

C. Classification

Classification methods were chosen among well known
supervised machine learning algorithms. In a binary classifica-
tion problem, a “support vector machine” (SVM) [15] finds the
best separation hyperplane for the input data. BoxConstraint,
KernelFunction, KernelScale, PolynomialOrder were the SVM
hyperparameter optimized in the different studies reported
below. Meanwhile, “random forest” (RF) [16] is made up of
a large number of small decision trees (estimators) and their
autonomous predictions. The random forest model combines
the predictions of the estimators to produce a more accurate
prediction. The number of estimators was the hyperparameter
subjected to optimizatione. Then, the “k-nearest neighbor”
classifier (k-NN) was also considered. Compared to other
supervised machine learning methods, k-NN [17] is non-
parametric (i.e. without a-priori assumption on the data) and it
uses the labelled data themselves for the classification without
training. The behavior of a k-NN in its simplest version can
be described as follows: given a set D of labelled points, a
distance measure (e.g, euclidean, Minkowski), and a positive
integer k, when a new unlabelled point p is provided, the k-NN
algorithm searches in D for the k nearest points from p and
assigns to p the most present class label along its k neighbors
found. Thus, the only hyperparameters required to k-NN are (i)
a positive integer k and (ii) the type of distance measure to use
together with any parameters related to the distance measure
if required. Next, “linear discriminant analysis“ (LDA) [18]
involves developing a probabilistic model per class based on
the specific distribution of observations for each input variable.
A new sample is then classified by calculating the conditional
probability of it belonging to each class and selecting the class
with the highest probability. Gamma Delta, and Discriminant
Type hyperparameters were optimized. Finally, an “artificial
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neural networks“ (ANN) [15] was adopted in the shallow
version with one hidden layer. The optimized hyperparameter
were the activation function (relu, sigmoid, or tanh) and the
hidden layer number of neurons.

III. RESULTS

In this section, the results achieved in experimenting differ-
ent BCI paradigms are reported. The discussion is conducted
by dividing the BCI systems into reactive, active, and passive.
Moreover, an hybrid BCI is reported, which integrates a reac-
tive paradigm with voluntarily generated artifacts. Classifica-
tion accuracy is mainly adopted as a performance metric. The
overall aim is to give some indications about the current state
of wearable BCI technologies, and to evaluate the possibility
of their daily-usage.

A. Reactive BCI

Among reactive BCI paradigms, SSVEPs have relatively
high signal-to-noise ratio and great inter-subject reproducibil-
ity [19], [20]. SSVEP occurs in EEG as a response to a visual
stimulus and it exhibits the same main harmonic component.
In general, extensive user and/or algorithm training is not
required, eventually leading to a training-free system [11],
[12], [21]. SSVEP-related activity is measured in the occipital
area of the scalp. Therefore, the system was implemented by
measuring brain activity between occipital and frontal lobe
through a single differential channel.

In the considered case study, the user could carry out an
inspection task within the Industry 4.0 framework. Flickering
icons on the display of AR glasses were exploited to commu-
nicate hands-free with a wireless sensor network. In particular,
icons were activated by simply staring at them [22]. Two
flickering icons were chosen, at nominal frequencies equal to
10.0 Hz and 12.0 Hz, respectively. The AR glasses application
was developed with Android Studio. The architecture of the
proposed system is reported in Fig. 2.

Fig. 2. BCI architecture for the Industry 4.0 case study [23].

Twenty subjects (13 males), between 22 and 47 years old,
took part to the experiments. For each subject, 24 trials
with two flickering icons were conducted. In each trial, the
brain signal acquisition lasted up to 10.0 s, with few seconds
between consecutive trials. Nonetheless, smaller time windows
were also analyzed. An average accuracy of 98.9% was

(a) (b)

Fig. 3. SSVEP-BCI with eye blink detection: (a) voluntary and involuntary
blinks, (b) state machine associated to the system operation [23]

achieved with a latency of 10.0 s, dropping to 81.1% at 2.0 s
(Table I).

TABLE I
SSVEP CLASSIFICATION ACCURACIES OBTAINED AS A MEAN AMONG 20

SUBJECTS AND AT VARYING TIME WINDOW. THE STANDARD DEVIATION IS
ALSO REPORTED

10.0 s 8.0 s 6.0 s 5.0 s 4.0 s 3.0 s 2.0 s
MEAN 98.9% 98.1% 97.5% 96.0% 94.8% 88% 81%

STD 2.3% 3.2% 4.1% 6.0% 6.1% 12% 17%

B. An hybrid BCI

The next step of the research at ARHeMLab was to enhance
the performance of reactive BCI by exploiting voluntary eye-
blink as an additional command. Eye-blink artifacts are char-
acterized by negative peaks along the EEG track. Voluntary
blinks are generally emphasized with respect to involuntarily
ones, as shown in Fig. 3. Therefore, a proper threshold must
be fixed in eye-blinking detection. Moreover, SSVEP signals
were processed in the time domain by calculating correlation
with respect to two reference sine waves, at 10 Hz and 12 Hz,
respectively. This allowed to study also time windows shorter
than 2 s.

This hybrid BCI was tested in a rehabilitation protocol for
children with attention deficit hyperactivity disorder (ADHD)
and/or autism. The children were engaged in piloting a robot
indoor. By means of voluntary eye blinks, the robot state
could be changed between (i) idle state, (ii) change direction,
and (iii) move forward (Fig. 3.b). In the “change direction”
state, the child could choose the direction (left or right) by
means of flickering icons evoking SSVEPs. Resulting mean
accuracy and latency for SSVEP and eye-blink detection are
reported in Table II. The latency in eye-blink detection is
also reported. This considers either the fact that, in detection,
the EEG amplitude must be below a threshold for a non-zero
amount of time, and then there is a latency related to the
interrupt routine sending the command associated with the
detected eye-blink.

TABLE II
MEAN CLASSIFICATION ACCURACY AND LATENCY OF SSVEP AND

EYE-BLINK SIGNALS.

accuracy (%) latency (%)
SSVEP 78.5 ± 6.5 1.22 ± 0.42

eye-blink 93.0 ± 4.6 0.22 ± 0.02
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C. Active BCI

Motor imagery (MI) is probably the most adopted paradigm
within active BCIs. It consists in imagining a specific move-
ment without executing it, and then acquiring and classifying
the associated sensorimotor rhythms [24]. Several researches
have shown MI-BCI suitability in communication, control,
and rehabilitation [25], [26]. Such BCIs are easy to use and
comfortable because they rely on spontaneous brain activity.
However, performance is limited by inter-subject and intra-
subject variability [27]. Moreover, wearability and portability
are limited by the relatively high number of channels required
in many paradigms.

In this regard, the research focus at ARHeMLab has been
dedicated to decrease the number of required channels. A
“filter-bank common spatial pattern” (FBCSP) approach was
exploited in processing EEG signals [28]. By doing so, signals
were represented through logarithmic band-power features
containing both spectral and spatial information. The devel-
oped selection method adds a non-uniform embedding strategy
[29] to evaluate the contribution of each channel to the final
performance. As a result, the channel selection returns the
classification accuracy as a function of the number of selected
channels. Moreover, a specific sequence for channels to select
is also achieved. This method was validated on the dataset 2a
of BCI Competition IV [30]. The accuracy in classifying motor
imagery tasks was assessed with a 6-fold cross-validation. The
results in terms of mean cross-validation accuracy among 9
subjects are reported with a blue line in Fig. 4 with specific
regard to the imagination of left hand or right hand movement.
In the figure, the sequence of channels resulting from the algo-
rithm is represented on the x-axis. These channels are located
according to the 10-20 standard for EEG electrodes placing
[31]. Meanwhile, the classification accuracy is represented in
percentage on the y-axis, and a light-blue area also depicts the
standard deviation associated to the mean accuracy.

Fig. 4. Mean classification accuracy and associated standard deviation as
a function of selected channels, in the case of left hand versus right hand
imagery. The red line represents accuracy at maximum number of channels
(22), while the red circle corresponds to the minimum number of channels
for which this same accuracy is reached (8 in the present case).

The significance of this representative results is in the
fact that 8 channels can be used, instead of 22, without
losing in classification performance. On the other hand, the
performance still remains inadequate for many applications.
Therefore, future studies will deal with EEG non-stationarity
and feedback will be also exploited in trying to improve such
a BCI.

D. Passive BCI

1) stress detection: systematic alterations in frontal EEG
asymmetry, in response to specific emotional stimuli, can be
exploited to analyze emotional response [32]. In particular,
EEG asymmetry proved to be capable of predicting state-
related emotional changes and responses. For example, a
greater self-reported happiness or positively-valued stimuli
might be expected to be associated with greater relative
left frontal activity. Therefore, greater relative right frontal
activity would be expected in response to negative stimuli [33].
However, fear or happiness response to stimuli may either be
attenuated or amplified according to any given individual’s
trait pattern of frontal EEG asymmetry [33].

The architecture of the proposed method is shown in Fig. 5,
in an example of interaction with a cobot. Prefrontal asym-
metry is measured by two electrodes as the difference of
brainwaves from position FP1 and FP2, according to 10/20
system. The differential signal is referred to the earlobe.
Analog signal is digitized by the acquisition unit and it is sent,
via wires, to the wi-fi transmission unit. Digital data arrives
at the processing unit through wireless communication for
real-time elaboration. Preliminary experiments in frequency
domain highlighted poor accuracy results. Therefore, data
analysis was carried out in the time domain. According to the
state of the art [34], an EEG time window of 2 s was chosen
as the optimal solution considering the trade-off accuracy vs
latency. In time domain, EEG tracks are divided into 2–s
records of 512 samples. In this way, raw data are composed of
512 features, i.e. each feature corresponds to just one sample.
Feature extraction was carried out by a standard machine
learning technique, the PCA.

Fig. 5. BCI architecture for stress detection [35].

Ten healthy young volunteers (average age 25 years) of
whom five women and five men, participated in the study.
Participants were divided equally into control and experimen-
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Fig. 6. BCI architecture for distraction detection.

tal groups, to complete a task, which induces mental load,
together with (experimental group) or without (control group)
negative social feedback. In particular, the Stroop experimental
and clinical purposes, aimed to challenge subject using a
complex cognitive task. As triple metrological references,
standardized stress tests, observational questionnaires given by
psychologists, and performance measurements were exploited.
Four different machine learning classifiers were used for vali-
dating the proposed method, by distinguishing stressed subject
signals from no-stressed subject signals: (i) SVM (linear ker-
nel), (ii) k-nearest neighbors (n neighbors = 9), (iii) random
forest (criterion = ’gini’, max depth = 118, min samples split
= 49) , and (iv) ANN (one hidden layer, activation function
for hidden node = hyperbolic tangent, loss function = cross
entropy cost, post processing = soft max, training algorithm =
Resilient Propagation). Each classifier was fed with both raw
data (2-s EEG epoch) and PCA pre-processed data. Generally,
PCA allows to obtain a better noise robustness. The results
show the adequacy of the proposed solution based on a single-
acquisition channel and time domain-based feature selection.
In the worst case, the linear-kernel SVM classifier succeeded
in discriminating stress conditions with an accuracy of 97.5 ±
0.6% and a latency of 2 s. For latency above 4 s the accuracy
reaches 100%. Noise robustness was tested in order to exclude
the impact of bias during signal acquisition and to empower
generality to the results.

2) distraction detection: in everyday life, many types of
distracting effects (visual, auditory, and their combinations)
divert attention when performing any task, especially if engag-
ing [36]. Diez et al. identified attention just as the ability to
select interesting stimuli, by ignoring other distracting stimuli
in the surrounding environment [37]. These distractors play
a fundamental role in analyzing the attentional process [38].
Changes in cognitive processes related to attention activate
different parts of the brain. Concurrent distracting events
deactivate certain brain areas by activating other ones [39].

The measurement method is illustrated in Fig. 6. The
EEG signals are acquired by active dry electrodes from the
scalp. Each channel is differential with respect to AFz (REF),
and referred to Fpz (GND), according to 10/20 international
system. Analog signals are first transduced by the active dry
electrodes and then conditioned by the analog front-end. Next,

they are digitized by the acquisition unit and transmitted to the
data analysis stage. Here, suitable features are extracted by
the chain of a 12-component filter bank and a CSP algorithm.
The k-NN classifier receives the feature arrays and detects
distraction.

Experimental validation was realized on nine volunteers.
The commercial EEG acquisition system Ab Medica Helmate
[8] was employed. The device, composed of ten dry electrodes,
guarantees eight acquisition channels. The EEG signal is
acquired by dry electrodes made of conductive rubber with
an Ag/AgCl coating at their endings [9]. Different features
extraction from spatial, temporal, and frequency domain and
classification strategies were compared. The performances of
five supervised classifiers in discriminating between attention
on pure movement and with distractors were compared. The
higher accuracy, 89.4±3.0 %, was obtained by a k-nearest
neighbors classifier when the features extraction is based on a
custom 12 pass-band filter bank and the CSP algorithm. The
latency of the device, of only 1.5 s, is suitable, for example, to
improve the main motor rehabilitation therapies and allows the
therapist or an automated system to know when to stimulate
the patient’s attention for enhancing the therapy effectiveness.

IV. CONCLUSION

In this paper, a five-year research activity on BCI at
ARHeMLab of University Federico II of Naples was pre-
sented. All the BCI paradigms were explored: reactive, active,
and passive. Standard benchmark dataset and data from custom
experimental campaigns (more than 200 volunteers involved in
five years) were used. Custom device conceived with off-the-
shelf components and CE marked EEG instrumentation were
employed. The major goals of the investigated measurements
methods were:

• enhanced wearability: low number of channels, dry elec-
trodes, and wi-fi connection allow daily-life applications;

• low-cost solutions: off-the-shelf components based de-
vices will expand the end-user market;

• BCI for control and monitoring: among the bio-signal
based interfaces, BCI guaranties simultaneously control
and monitoring. It is a particularly effective interface in
connecting humans to the cyber-physical systems.
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Results showed that machine learning based solutions are suc-
cessful in extracting information from highly wearable EEG
devices based on few channels and dry electrodes. As a general
consideration, the promising results achieved so far anticipate
a strong potential of BCI systems for practical applications and
motivating further research dedicated to improving wearability
and identifying low-cost implementation solutions. This would
ultimately lead to a large-scale adoption of BCI in daily
activities.
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