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Abstract

Similarity caching systems have recently attracted the attention of the scientific

community, as they can be profitably used in many application contexts, like

multimedia retrieval, advertising, object recognition, recommender systems and

online content-match applications. In such systems, a user request for an object

o, which is not in the cache, can be (partially) satisfied by a similar stored

object o’, at the cost of a loss of user utility. In this paper we make a first

step into the novel area of similarity caching networks, where requests can be

forwarded along a path of caches to get the best efficiency-accuracy tradeoff.

The offline problem of content placement can be easily shown to be NP-hard,

while different polynomial algorithms can be devised to approach the optimal

solution in discrete cases. As the content space grows large, we propose a

continuous problem formulation whose solution exhibits a simple structure in

a class of tree topologies. We verify our findings using synthetic and realistic

request traces.

Keywords: Cache networks, Similarity search, Content distribution

1. Introduction

Similarity caching is an extension to traditional (exact) caching, whereby a

request for an object can be satisfied by providing a similar cached item, under a
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Figure 1: Application of similarity caching to Mobile Edge Computing.

dissimilarity cost. In some cases, user requests are themselves queries for objects

similar to a given one (similarity searching [1]). Caching at network edges can5

drastically reduce the latency experienced by users, as well as backbone traffic

and server provisioning.

Similarity searching and caching have several applications in multimedia re-

trieval [2], contextual advertising [3], object recognition [4, 5, 6, 7], caching of

videos with different qualities/resolutions [8, 9, 10], recommender systems [3,10

11], online prediction serving systems [12, 13, 14]. Figure 1 shows an applica-

tion scenario of similarity caching in the context of Mobile Edge Computing [15].

Mobile users accessing cloud services from an ultra-low latency, high bandwidth

cellular wireless networks (e.g., 5G) can strongly benefit from the availability

of a cache installed directly at the radio network controller: in such a way, the15

need for a particular object, for example by an Augmented Reality application,

can be satisfied locally with minimum latency by a sufficiently similar object,

without having to traverse a possible long path towards the object repository.

References [4, 5, 6, 7] consider this specific scenario for object recognition appli-

cations. In this case, the request is an image, for which the MEC server provides20

some labels extracted from similar images found in a local database. Note that

several caches can be deployed along the path from the user to the cloud (e.g.,

at micro regional data centers) forming a tree-like similarity caching network
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(in the case of many geographically spread users).

Despite its interesting applications, theoretical understanding of similarity25

caching and development of related algorithms and policies are still at their

early stages.

1.1. Paper contribution

Our contributions can be summarized as follows:

1. while the content placement problem in networks of similarity caches is30

NP-hard, we show that it can be formulated as the maximization of a

sub-modular function over a matroid; therefore a polynomial Greedy

algorithm can be defined with 1/2 approximation ratio;

2. we propose the randomized LocalSwap algorithm that does not enjoy

worst-case guarantees as Greedy, but asymptotically converges to a lo-35

cally optimal solution;

3. we characterize the structure of the optimal similarity-caching placement

problem in special cases; in particular, we show that, under mild assump-

tions, when the cache network has a regular tree structure and requests

arrive only at the leaves the optimal solution in the large catalog regime40

has a relatively simple structure;

4. we show that the above structure is lost in general networks, analyzing a

simple tandem network where requests arrive at both caches;

5. we propose an online, λ-unaware policy called NetDuel, that extends

Duel [16] to the networked setting;45

6. we illustrate our findings considering both synthetic and real request pro-

cesses for Amazon items.
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1.2. Paper outline

We discuss related work in Section 2. In Section 3 we present the main sys-

tem assumptions and we formulate the problem. In Sections 4 and 5 we analyse50

respectively the discrete content case and the continuous content case, present-

ing algorithms and theoretical performance results. In Section 6 we introduce

NetDuel, an efficient on-line caching policy. In Section 7 we report simulation

results, obtained both in synthetic scenarios and more realistic scenarios based

on Amazon traces. We conclude in Section 8, pointing out directions of future55

research.

2. Related Work

Despite the multiple applications of similarity caching, our theoretical under-

standing of the general problem is still limited even in the single-cache scenario,

and similarity caching policies have mostly been proposed in an ad-hoc way60

without taking advantage of the body of work built in the last decades for exact

caching (e.g., [17, 18, 19, 20]).

For example the seminal papers [2, 3], which introduced the concept of sim-

ilarity caching, proposed only simple modifications to the Least Recently Used

policy (LRU) and evaluated them empirically. Similarly, references [12, 4, 5, 6,65

21, 7] focused more on the specific application system (machine learning pre-

diction serving and object recognition), without specific contributions in terms

of cache management policies (e.g., they apply minor changes to exact caching

policies like LRU or LFU).

An adversarial setting was studied in [22] by competitive analysis. The70

authors of [23] have proposed a similarity caching policy (for a single cache)

tailored for the case when cached objects may be embedded in Rd with a distance

that captures dissimilarity costs. The work most closely related to this paper is

[16], where we have analyzed a single similarity cache in the offline, adversarial,

and stochastic settings, proposing also some dynamic online policies to manage75

the cache.
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We mention that many researchers have studied networks of exact caches (e.g.,

[24, 25, 17, 19, 26, 27]), however their results cannot be applied to the similarity

caching setting, which is a fundamentally different problem (in exact caching

there is no notion of distance between objects).80

Networks of caches for videos with different qualities have been studied in [8,

9, 10], but references [9, 10] consider a single layer of caches deployed at the edge

of the network (the request is served by one of these caches or forwarded to the

authoritative server), while we study more complex architectures like trees. The

authors of [8] consider a general architecture, but, while they correctly model85

user’s QoE dependence on video quality, they ignore the cost of retrieving the

videos from farther caches. Moreover, video placement is based on heuristic

policies with no performance guarantees.

Similarity caches for content recommendation have been considered in [11,

28]. The authors have studied how to statically place contents in edge caches90

of a cellular network, given their popularity and the utility for a user interested

in content o to receive a similar content o′. In contrast to us, they focus on

the cellular scenario with spatial cache overlaps (also known as “femtocaching”

[29]).

The recent letter [30] has considered a network of similarity caches, where95

requests can be forwarded along a path of caches towards a repository storing

all objects, at the cost of increasing delays and resource consumption. The

authors of [30] have proposed a heuristic based on the gradient descent/ascent

algorithm to jointly decide request routing and caching, similarly to what was

done in [19] for exact caches but without the corresponding theoretical guar-100

antees. The proposed algorithm requires memory proportional to the size of

the catalog, and appears to be computationally feasible only on small-scale sys-

tems. Table 1 offers a schematic summary of previous work, considering as

criteria the application context, the network architecture, and the catalog type

(discrete/continuous).105

In our work, similarly to [30], we focus mainly on the offline setting, i.e., the

problem of statically placing objects in the caches so as to minimize the expected
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Works Application Architecture Catalog

[2, 3, 23, 22] generic single cache discrete

[16] generic single cache discrete/continuous

[12, 4, 5, 6, 21, 7] machine learning single cache discrete

[9, 10] video single layer discrete

[8] video network of caches discrete

[30] generic network of caches discrete

this paper generic network of caches discrete/continuous

Table 1: Schematic summary of previous work on similarity caching.

cost under known content request rates and routing. In contrast to [30], we

first propose algorithms with guaranteed performance, and then we move to the

continuous limit of the large requests/catalog space, where we investigate the110

structure of the optimal solution.

In the recent publication [14], one of the authors has proposed the idea of

inference delivery networks, an Internet-wide architecture for fast delivery of

machine learning predictions. Inference delivery networks can be seen as a par-

ticular network of similarity caches. Beside the focus on a specific application,115

reference [14] considers an adversarial request process for a finite number of pos-

sible objects (machine learning models in their case), while we focus on more

common stochastic request process and consider both finite and infinite catalogs

of objects.

In summary, our paper advances the state of art by providing a first analysis120

of networks of similarity caches in the same spirit of works devoted to networks

of exact caches. Specifically, we focus on the offline setting and characterize the

structure of the optimal solution in the large catalog regime.

3. Main assumptions and problem formulation

Let X be the (finite or infinite) set of objects that can be requested by the125

users. We assume that all objects have equal size and cache i can store up to

ki objects.
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We consider a network of caches with requests potentially arriving at every

node. Some nodes can act as content repositories, where (a subset of) requests

can be satisfied exactly or with a small approximation cost. Specifically, we130

assume that each request has at least one repository acting as ‘authoritative

server’ for it, meaning that the approximation cost at the content repository is

either zero or it is negligible as compared to the fixed cost to reach the repository

(see next). Let K be the set of all nodes in the network (including caches and

repositories).135

A request r is a pair (o, i) where o is the requested object and i is the node

where the request first enters the network. Every request is issued according to

a Poisson process with rate λr.

At each cache, for any two objects x and y in X there is a non-negative

(potentially infinite) cost Ca(x, y) to locally approximate x with y. We consider140

Ca(x, x) = 0. We assume that caches can efficiently compute, upon arrival of

a request for x, the closest stored object y. This is typically done resorting to

locality sensitive hashing (LSH) [3].

Moreover, there is an additional retrieval cost h(i, j) to reach node j from

cache i, which is assumed to increase as more and more hops need to be tra-145

versed by the request. Costs h(i, j) represent the additional penalty (in terms

of network delay) incurred by requests, in addition to the approximation cost

Ca. If a request from i cannot be forwarded to cache j, then h(i, j) = +∞.

We call an approximizer α a pair (o′, j), where object o′ has been placed at

cache j. If a request r = (o, i) is served by object o′ at node j, it will incur a150

total cost C(r, α) = Ca(o, o′) +h(i, j), that depends on how dissimilar o is from

o′ and how far node i is from node j. For approximizers located at a content

repository j, we take C(r, α) = h(i, j), neglecting the local approximation cost.

We assume that each cache knows how to route each request to a corre-

sponding repository. Nevertheless, deciding if a request should be served locally155

or should be forwarded along the path to the repository is still a challenging

problem to solve in a distributed way: while a relatively good approximizer can

be found at a cache i, a better one may be located at an upstream cache j,
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justifying the additional cost h(i, j). This is in sharp contrast to what happens

in exact caching network, where the forwarding operation is straightforward (a160

request is forwarded upon a miss).

In our initial investigation, we will suppose that optimal forwarding strategy

is available at all caches, i.e., that each cache knows whether to solve a request

locally or forward it towards the repository. This assumption is reasonable in

two possible scenarios: i) when caches exchange meta-data information about165

their stored objects (this is acceptable when content is static or quasi-static); ii)

when the dominant component of the delay is content download, so that, prior

to download, small request messages can go all the way up to the repository

and back, dynamically finding the best approximizer along the path. We leave

to future work the challenging case in which optimal forwarding is not available170

at the nodes.

A consequence of our assumptions is that each request r will be served

minimizing the total cost, i.e., given S the initial set of approximizers at content

repositories, and A the set of approximizers at the caches, we have

C(r,A) = min
α∈A∪S

C(r, α). (1)

In what follows we will consider two main instances for X and Ca(). In

the first instance, X is a finite set of objects and thus the approximation cost

can be characterized by an |X | × |X | matrix of non-negative values. This case

could well describe the (dis)similarity of contents (e.g. videos) in a finite catalog.175

In the second instance, X is a subset of Rp and Ca(x, y) = f(d(x, y)), where

f : R+ → R+ is a non-decreasing non-negative function and d(x, y) is a metric

in Rp (e.g. the Euclidean one). This case is more suitable to describe objects

characterized by continuous features, as in machine learning applications. For

example, consider a query to retrieve similar images, as one can issue to images.180

google.com. The set of images the user may query Google for is essentially

unbounded, and in any case it is larger than the catalog of images Google has

indexed.

In the continuous case, we assume a spatial density of requests arriving at
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each cache defined by a Borel-measurable function λx,i : X ×K → R+, i.e., for185

every Borel set B ⊆ X , and every cache i ∈ K, the rate with which requests for

objects in B arrive at node i is given by
∫
B λx,i dx. We will refer to the above

two instances as discrete and continuous, respectively.

Under the above assumptions, our goal is to find the optimal static allocation

A that minimizes the expected cost C(A) per time unit (or per request, if we

normalize the aggregate request arrival rate to 1):

C(A) ,


∑
r λrC(r,A), discrete case∑
i∈K

∫
X λx,iC((x, i),A) dx, continuous case

(2)

i.e.,

minimize
A

C(A)

subject to
∑

o:(o,i)∈A

1 ≤ ki, ∀i ∈ K
(3)

Having mathematically formalized the problem, in the next section we take

an algorithmic perspective to characterize and approximate its optimal solution.190

4. Algorithms for the Discrete case

In this section, we restrict ourselves to the discrete scenario, as this allows

us to make rigorous statements about NP-hardness and algorithms’ complexity.

4.1. NP-Hardness and Submodularity

Proposition 4.1. The static off-line similarity caching problem in a network (3)195

is NP-hard.

This is an immediate consequence of the fact that, as shown in [16, Thm. III.1],

the static off-line similarity caching problem is already NP-hard for a single

cache. Nevertheless, we will show in Sec. 5 that, when the cache network has a

regular tree structure, a simple characterization of the optimal solution can be200

determined in the large catalog regime, by exploiting a continuous approxima-

tion.
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Given the initial set S of objects allocated at content repositories, we want

to pick an additional set A of objects and place them at the caches. Let I

denote the set of possible allocations that satisfy cardinality constraints at each

cache (corresponding to the constraints in (3)). Let G(A) quantify the caching

gain [31, 19] from allocation A in comparison to the case when each request

needs to be served by its content repository, i.e.,

G(A) = C(∅)− C(A). (4)

Problem (3) is equivalent to the following maximization problem

maximize
A∈I

G(A). (5)

Proposition 4.2. The static off-line similarity caching problem in a network

is a submodular maximization problem with matroid constraints.

The result does not rely on any specific assumption on C(r, α) but for the205

cost being non-negative. In particular, we can define C(r, α) to embed requests’

routing constraints. For example, given a request r = (o, i), we can enforce the

request to be satisfied by the repository of content o or by one of the caches on

the routing path between node i and the repository (we denote it as Pi,o). This

constraint can be imposed by selecting C((o, i), (o′, j)) = ∞ for each j /∈ Pi,o.210

The proof is quite standard and we report it in Appendix A for completeness.

In the next subsections we introduce two different algorithms to deal in

practice with the off-line similarity caching problem.

4.2. Greedy algorithm and its complexity

As Problem (5) is the maximization of a monotone non-negative submodular215

function with matroid constraints, the Greedy algorithm has 1/2 guaranteed

approximation ratio, i.e., G(AGreedy) ≥ 1
2 maxA∈I G(A) [32]. We mention that

there exists also a randomized algorithm that combines a continuous greedy

process and pipage rounding to achieve a 1− 1/e approximation ratio in expec-

tation [33].220
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The Greedy algorithm proceeds from an empty allocation A = ∅ and pro-

gressively adds to the current allocation an approximizer in argmaxαG(A ∪

{α})−G(A) = argmaxα
∑
r λr(C(r,A)−C(r,A∪{α})) up to select

∑
i ki = K

objects, where K is the total cache capacity in the network (by respecting lo-

cal constraints at individual caches). The detailed pseudocode is reported in225

Appendix B.

Let O, OR, and N denote the number of objects in the catalog, the number

of objects that can be requested, and the number of caches in the network.

When choosing the i-th approximizer the greedy algorithms needs in general

to evaluate ON − i + 1 possible approximizers, and how they reduce the cost230

for the set of requests with cardinality at most ORN . The time-complexity of

the algorithm is then bounded by
∑K
i=1ORN(ON − i + 1) = ORN(ONK −

K(K − 1)/2). A smart implementation can avoid to evaluate the gain of all

possible approximizers at each step, but despite the optimizations, the Greedy

algorithm would be too complex for catalogue sizes O beyond a few thousands235

of objects. Moreover, the set of possible requested objects OR may be much

larger than O.

4.3. LocalSwap algorithm and its complexity

We now present a different algorithm, called LocalSwap, which is based

on the simple idea to systematically move to states with a smaller expected240

cost (2). LocalSwap can be used both in an off-line and on-line scenario. It

works as follows. At the beginning the state of caches is populated by random

contents. Then, in the on-line scenario the algorithm adapts the cache state

upon every request. In the off-line scenario, instead, a sequence of emulated

requests is generated (satisfying the same statistical properties of the original245

arrival process), and applied to drive cache state changes. Let At be the allo-

cation obtained by the algorithm at iteration t. Upon an (emulated) request r

for o, LocalSwap computes the maximum decrement in the expected cost that

can be obtained by replacing one of the objects currently stored at some cache

along the forwarding path with o, i.e., ∆C , minα∈At C(At∪{r}\{α})−C(At).250
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� if ∆C < 0, then cache ie replaces content ye with content o, where (ye, ie) ∈

arg min(y,i)∈At C(At ∪ {(o, i)} \ {(y, i)});

� if ∆C ≥ 0, the cache allocation is not updated.

The detailed pseudocode is reported in Appendix C.

LocalSwap does not provide worst case guarantees as Greedy, but it255

asymptotically reaches a locally optimal cache configuration, defined as a con-

figuration whose cost (2) is lower than the cost of all configurations that can be

obtained by replacing just one content in one cache. On the contrary, Greedy

does not necessarily reach a local optimal state (as we show below in Sect. 4.4).

260

Proposition 4.3. For long enough request sequence LocalSwap converges

with probability 1 to a locally optimal cache configuration.

LocalSwap generalizes a similar algorithm proposed in [16] for a single

cache (called there “greedy”) with similar theoretical guarantees. Under the

assumption that requests are optimally forwarded, the proof of Proposition 4.3265

is essentially the same of [16, Thm. V.3], so we omit it. By clever data structure

design, the computational cost of each iteration can be kept O(NOR).

Remark 1. Note that by cascading Greedy and LocalSwap it is possible

to achieve a locally optimal cache configuration whose approximation ratio is

guaranteed to be at least 1/2 (i.e., G(AGreedy+LocalSwap) ≥ 1
2 maxA∈I G(A)).270

4.4. Greedy and LocalSwap in a toy example

This example shows that 1) Greedy does not converge necessarily to a lo-

cally optimal cache configuration, and 2) there are both settings where Greedy

finds the optimal cache configuration while LocalSwap may not, and settings

where LocalSwap finds the optimal cache configuration while Greedy does275

not.

Consider a scenario with 5 contents xi for 1 ≤ i ≤ 5. Let us assume

12



that Ca(x2, x3) = Ca(x3, x4) = 0, Ca(x1, x2) = Ca(x4, x5) = ε > 01, while

Ca(xi, xj) = ∞ otherwise. We want to solve the content placement problem

for a single cache with k = 2 and λx3
> λx2

= λx4
> λx1

= λx5
. The cost to280

retrieve the objects from the remote server is hs > 2ε. The optimal placement

configuration is: {x2, x4}. Greedy will reach one of the following equivalent

sub-optimal configurations {x3, x}, with x ∈ {x1, x5}. LocalSwap, on the

contrary, will reach the optimal configuration {x2, x4} (because it is the unique

locally optimal configuration). We observe that the configurations reached by285

Greedy are not locally optimal: for example if Greedy selects {x3, x1}, it is

convenient to replace x3 with x4.

If we consider two caches 1 and 2 in tandem, each of size k = 1 with

requests arriving only to the first cache and retrieval cost equal to h(1, 2) if

the object is retrieved from cache 2, and h(1, 2) + hs if it is retrieved by the290

server. The optimal configurations will maintain a similar structure for h(1, 2)

small enough. In particular the optimal configurations will be: {(x4, 1), (x2, 2)}

and {(x2, 1), (x4, 2)}. Greedy will still reach a state {(x3, 1), (x, 2)} with x ∈

{x1, x5}, while LocalSwap will reach an optimal state. For h(1, 2) large enough

the optimal states become {(x3, 1), (x, 2)} with x ∈ {x1, x5} and both previous295

algorithms will succeed in reaching an optimal solution. At the same time there

are settings for which the configurations {(x3, 1), (x1, 2)} and {(x3, 1), (x5, 2)}

correspond to global minima, the configurations {(x4, 1), (x2, 2)} and {(x2, 1), (x4, 2)}

correspond to local minima, and Greedy finds one of the first configurations,

while LocalSwap may reach one of the second configurations. For example300

this is the case for hs = 1, h(1, 2) = ε = 4/9, λ1 = λ5 = 1, and λ2 = λ4 = 4/3

and any λ3 > λ2.

1All costs are assumed to be symmetric.
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5. The Continuous case

When OR is much larger than O, or O is itself very large, it makes sense to

study the request space as continuous. Such continuous representation permits305

us to formulate a simplified optimization problem whose solution well approxi-

mates the optimal cost achieved in discrete scenarios with large catalog size.

If the number of objects in the catalog is finite, one could in principle devise

a Greedy algorithm also for this case, working exactly as in the discrete case.

Indeed the problem (3) can be easily shown to be still submodular even when310

requests lies over a continuous space. However, one now has to evaluate, for each

possible candidate approximizer α to add to the current allocation, complex

integrals over the infinite query space. It is not simple to define in general

the complexity of such operations but it is evident that previous algorithmic

approaches becomes rapidly unfeasible for large set of requests and/or large315

catalog.

Hereinafter, we will assume that both the request space and the catalog

space are continuous.

5.1. Preliminary: continuous formulation for a single cache

As a necessary background, we summarize here some results obtained in [16]320

for the case of a single cache with capacity k1. Let Br(y0) be the closed ball of

radius r around y0, i.e., the set of points y such that d(y, y0) ≤ r. The authors

of [16] proved:

Proposition 5.1. Under a homogeneous request process with intensity λ over

a bounded set X , any cache state A = {y1, . . . , yk1}, such that, for some r, the325

balls Br(yh) for h = 1, . . . , k1 are a tessellation of X (i.e., ∪hBr(yh) = X and

|Br(yi) ∩ Bd(yj)| = 0 for each i and j), is optimal.

Such regular tessellation exists, in all dimensions, under the norm-1 distance,

and corresponds to the case in which balls are squares (assuming that k1 such

squares cover exactly the domain X ).330
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Figure 2: Perfect tessellation with square cells in a two-dimensional domain, under the norm-1

distance.

It is then immediate to analytically compute the optimal cost for this case.

For example, in a two-dimensional domain (see Fig. 2), requests arriving in a

particular ball produce an approximation cost:

c(r) = 4

∫ r

0

∫ r−x

0

(x+ y)γλ dy dx = 4λ
rγ+2

γ + 2
(6)

and the total cost is just C(A) = k1c(r).

Equation (6) provides a simple close-form expression of the approximation

cost, but it relies on the assumption that the request space is continuous. To

assess the extent of the approximation, we compare it to the cost achieved in

the case of a discrete request space, where requests (and catalog objects) are335

constrained to lie on the points of a L× L square with unitary step and wrap-

around conditions.

For some special values of L, namely L = 1 + 2l(l + 1), where l ∈ N ,

there exists a regular tessellation of the grid with L squares, each comprising

L points. Figure 3 provides an example of such regular tessellation in the case

l = 2, L = 13. When k1 = L, the discrete versions of Proposition 5.1 allows

us to conclude that storing in the cache the central object of each square is

15



Figure 3: Example of perfect tessellation of a square grid with wrap-around conditions, in

the case l = 2, L = 13. Black dots correspond to a minimum cost cache configuration under

homogeneous request process.

optimal, achieving the per-request approximation cost:

cgrid(r) =

l∑
i=1

4iγ+1

L
(7)

which can be understood by noticing that there are 4i points at hop distance

i from the central object. The optimal cost as described by Equation (7) for

these special discrete cases can be compared to the continuous approximation340

(6), where we need to set r =
√
L/2, λ = 1/L.

Figure 4 shows the result of this comparison as function of k1 = L, for

different values of γ. We observe that the continuous approximation is very

good provided that the number of objects falling in each square is not too small

(say larger than a few tens).345

If the request rate is not space-homogeneous, one can apply the results above

over small regions Xi of X where λx can be approximated by a constant value

λXi . Intuitively, the approximation becomes better and better the more λx

varies smoothly over each Voronoi cell of region i. This in particular occurs

when λx is smooth over the entire domain, and the cache size increases.350

Under this approximation, let ki,1 be the number of cache slots devoted
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Figure 4: Per-request approximation cost as function of k1 = L, for different values of γ, under

uniform request process. Comparison between continuous request space (lines) and discrete

request space (marks).

to region i (with the constraint that
∑
i ki,1 = k1). Then, using standard

constrained optimization methods, it is possible to determine the optimal value

of ki,1 as function of the local request rate λXi . Without loss of generality, we

can assume that domain X is partitioned into M regions of unitary area, on355

which the request rate is approximately assumed to be constant and equal to

λi, 1 ≤ i ≤M .

Then, focusing for simplicity on the two dimensional case when d(x, y) is

the norm-1, and Ca(x, y) = d(x, y)γ , each cache slot is used to approximate

requests falling in a square of area 1/ki,1 and radius ri =
√

1/(2ki,1). Following

(6), the approximation cost ci within a square belonging to region i can be easily

computed as:

ci(ri) = 4λi
rγ+2
i

γ + 2
= ζλik

− γ+2
2

i,1 (8)

where ζ , 2(2−γ)/2/(γ+2). Hence the total approximation cost in the whole do-

main, which depends on the vector k of cache slots ki,1’s, is C(k) =
∑M
i=1 ki,1ci,1(ki,1).
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We select the values k that minimize the expected cost:

minimize
k1,1,...,kM,1

ζ

M∑
i=1

λik
−γ/2
i,1

subject to

M∑
i=1

ki,1 = k1

(9)

Employing the standard Lagrange method, one obtains that λik
−(γ+2)/2
i,1

equals some unique constant for any region i, which means that ki,1 has to be

proportional to λ
2/(γ+2)
i . After some algebra we get:

minC(k) = ζk
−γ/2
1

(
M∑
i=1

λ
2
γ+2

i

) γ+2
2

. (10)

In the limit of large M , we substitute the sum in (10) with an integral, obtaining:

minC(k) ≈ ζk−γ/21

(∫
X
λ(x)

2
γ+2 dx

) γ+2
2

. (11)

We observe that, when the distance is the norm-1, this approach from [16]

can be extended to higher dimensions computing integrals similar to (6).2 Under

other distances, things are not as simple, but in principle one can determine the

best partitioning of the domain into k1 Voronoi cells3 Vi with center bi, such

that

C(A) =
∑
i

∫
Vi

Ca(x, bi) dx (12)

is minimum, and store in the cache objects {bi}i. Similarly to [16], we prefer to360

avoid such geometric complications, and stick for simplicity to the norm-1 case.

5.2. Chain topology

Here we extend the approach recalled in previous section to a chain network

of N caches, where requests arrive at the leaf cache 1, and are possibly forwarded

2In the d dimensional case we have c(r) = adλr
γ+d, for an appropriate constant ad.

3This task is not hard when the domain X can be exactly partitioned into k1 Voronoi cells

of the same shape. Otherwise, for sufficiently large cache sizes, one can neglect border effects

and approximately consider k1 Voronoi cells of the same shape covering the entire domain.
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along the chain up to the node providing the best approximizer. In a chain the365

cost incurred by request r for object x, served by approximizer α = (o′, j) is

C(r, α) = Ca(x, o′) + h(1, j). As request originates always at the leaf cache 1,

we simplify the notation and denote h(1, j) by hj . We naturally assume hi > hj

if i > j. The N -th cache in the chain is the repository, where the approximation

cost is negligible. In the following formulas, we recover this situation considering370

that the last cache has infinite cache size.

Let ki,j be the number of cache slots devoted by cache j to region i. Each

of these slots is used to approximate requests falling in a square of area 1/ki,j

and radius ri,j =
√

1/(2ki,j). Hence the cost incurred by requests falling in a

square of region i and served by cache j is:

ci,j(ri,j) = 4

∫ ri,j

0

∫ ri,j−x

0

[(x+ y)γ + hj ]λi dy dx =

4λi
rγ+2
i,j

γ + 2
+ 2λir

2
i,jhj (13)

The cost Ci,j incurred by all requests falling in region i and served by cache

j, as function of ki,j , reads:

Ci,j(ki,j) = ζλik
− γ2
i,j + λihj (14)

In general a region i can be served by several caches along the path (ev-

ery cache for which ki,j > 0). However observe that a single request (i.e., a

point of the region) will be always served by one specific cache, cache j∗ with

j∗ = argminj Ci,j (ties can be neglected). We encode previous property by375

introducing weights wi,j ∈ [0, 1], where wi,j represents the fraction of region i

served exclusively by cache j. Let wj be the vector of {wi,j}i.
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We obtain the optimization problem:

minimize
w2,...,wN

ζk
−γ/2
1

(
M∑
i=1

(
1−

N∑
j=2

wi,j

)
λ

2
γ+2

i

) γ+2
2

+

M∑
i=1

(
1−

Z∑
j=2

wi,j

)
wiλih1+

N∑
j=2

[
ζk
−γ/2
j

( M∑
i=1

wi,jλ
2
γ+2

i

) γ+2
2

+

M∑
i=1

wi,jλihj

]

subject to wi,j ≥ 0 ∀j > 1,∀i
N∑
j=2

wi,j ≤ 1 ∀i

(15)

where notice that we have separated the contribution of cache 1, and taken as

decision variables vectors wj , with j > 1, since w1 = 1 −
∑N
j=2 wj . More-

over, notice that the constraints in (15) are sufficient to guarantee that also the380

following obvious constraints hold:

wi,j ≤ 1 ∀j > 1,∀i

0 ≤ wi,1 ≤ 1 ∀i

In this form, (15) is a convex minimization problem over a convex domain,

thus it has a global minimum. Without loss of generality, let the M regions be

sorted in increasing values of λi. Employing the standard method of Lagrange

multipliers, KKT conditions imply that the global optimum is attained when385

cache 1 handles all most popular regions region i > i∗ (i.e., wi,1 = 1, i > i∗),

plus possibly a piece of region i∗ (if 0 < wi∗,1 < 1). Cache 1 does not allocate

any slot to regions i < i∗.

Previous result allows us to prove the following interesting property about

the structure of the optimal solution:390

Proposition 5.2. In the case of a chain topology, with requests arriving only

at the first cache, the best solution of the continuous-domain, finite-M problem

(15) is characterized by a set of popularity thresholds λ∗0 = min{λi} ≤ λ∗1 ≤
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λ∗2 ≤ . . . ≤ λ∗N−1 ≤ λN = max{λi}, such that cache j approximates all requests

falling in regions i with λ∗j−1 < λi < λ∗j , plus possibly a portion of a region with395

λi = λ∗j−1, and a portion of a region with λi = λ∗j .

Proof. It is sufficient to apply the above property about the regions handled by

cache 1, filtering out the requests handled by cache 1, and iteratively applying

the same result to the request process forwarded upstream to caches 2, . . . , N .

400

When the set of popularity values is not finite, it is possible to extend the

result in Proposition 5.2, letting M diverge. We partition X into N sub-domains

Xj , j = 1, . . . , N , stacked in vector X , such that cache j handles only requests

falling into domain Xj , and we seek to minimize:

C(X ) =

N∑
j=1

ζk−γ/2j

(∫
Xj
λ(x)

2
γ+2 dx

) γ+2
2

+ hj

∫
Xj
λ(x) dx

 (16)

In principle we would like to find the best partitioning:

X ∗ = arg min
X

C(X )

In this asymptotic case we can restate Proposition 5.2 as follows, providing a

simpler and more elegant proof.

Proposition 5.3. In the case of a chain topology with requests arriving only at

the first cache, the best partition X ∗ is characterized by the following property:

for any i < j, infX∗i λ(x) ≥ supX∗j λ(x).405

Proof. By contradiction, let us assume that we find two non negligible areas

∆Xi ⊆ X ∗i and ∆Xj ⊆ X ∗j such that:

sup
∆Xj

λ(x) > inf
∆Xi

λ(x)

Then we can always find two non-negligible areas ∆X ′i ⊆ ∆Xi and ∆X ′j ⊆ ∆Xj
such that we jointly have:∫

∆X ′i
λ(x)

2
2+γ dx =

∫
∆X ′j

λ(x)
2

2+γ dx (17)
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and

inf
∆X ′j

λ(x) ≥ sup
∆X ′i

λ(x) > 0 (18)

Now let us see what happens if we ‘swap’ ∆X ′i with ∆X ′j , i.e., if we take a

new partition X ′ where X ′i = (X ∗i \∆X ′i ) ∪∆X ′j and X ′j = (X ∗j \∆X ′j) ∪∆X ′i .

Note that by construction

C(X ′) = C(X ∗) + (hj − hi)
∫

∆X ′i
λ(x) dx+ (hi − hj)

∫
∆X ′j

λ(x) dx

Therefore, since hj > hi, we have C(X ′) ≤ C(X ∗) if we can show that∫
∆X ′j

λ(x) dx ≥
∫

∆X ′i
λ(x) dx.

Denoted with β = 2/(2 + γ) < 1 we have:∫
∆X ′j

λ(x) dx =

∫
∆X ′j

λ(x)βλ(x)1−β dx

≥ ( inf
∆X ′j

λ(x))1−β
∫

∆X ′j
λ(x)β dx

= ( inf
∆X ′j

λ(x))1−β
∫

∆X ′i
λ(x)β dx by (17)

≥ (sup
∆X ′i

λ(x))1−β
∫

∆X ′i
λ(x)β dx by (18)

=

∫
∆X ′i

(sup
∆X ′i

λ(x))1−βλ(x)β dx

≥
∫

∆X ′i
λ(x)1−βλ(x)β dx =

∫
∆X ′i

λ(x) dx

5.3. Extension to equi-depth trees

Previous results obtained for the chain topology can be easily extended to

trees with L leaves at the same depth D, where requests arrive only at the

leaves and all caches at the same level have the same size. Let hD−j be the410

(equal) cost to reach the cache at level j starting from a leaf. We assume the

spatial arrival rate at leaf ` to be given by λ`(x) = β`λ(x), for some constant

β` > 0, i.e., spatial arrival rates at different caches are identical after rescaling
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by a constant factor. Moreover arrival processes at different leaves are assumed

to be independent. We will call equi-depth tree a cache network with the above415

characteristics. We naturally assume hi > hj if i > j.

Proposition 5.4. In an equi-depth tree the optimal cost is achieved by repli-

cating the same allocation at each cache of the same level. The allocation to be

replicated is the one obtained in the special case of a chain topology (L = 1).

Proof. Suppose to increase the number of nodes in the topology, creating a420

system of L parallel chain topologies. Each leaf now has an independent path

towards a dedicated copy of the root node. By doing so the total cost in the

system of parallel chains is surely not larger than the total cost achievable in

the original tree, and, in general, it might be smaller (this because we can

independently place objects in every chain so as to minimize the cost induced425

by the requests arriving at the corresponding leaf). On the other hand, the

optimal allocation on each chain is the same, since the objective function in

(15) is linear with respect to parameter β`. Therefore, by adopting such equal

allocation on each cache of the same level in the original tree, we obtain exactly

the same total cost achieved in the system of parallel chains, hence this allocation430

is optimal.

One crucial assumption of chain topologies (and equi-depth trees) is that

requests arrive only at the leaf (leaves). In the next section we discuss what

happens when this assumption does not hold, considering the simplest possible

case with just two caches.435

5.4. A tandem network with arrivals at both nodes

In general cache networks that do not belong to the class of equi-depth trees,

the simple optimal structure described in Proposition 5.2 is, unfortunately, lost.

To see why, it is sufficient to consider the simple case of a tandem network with

two identical caches (hereinafter called the leaf and the parent), where the same440

external arrival process λ(x) of requests arrives at both nodes (see scenario 2

in Figure 7). Now, let us suppose that the cost h to reach the parent from the
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leaf is large (but it does not need to be disproportionally large). Then the leaf

will not find particularly convenient to forward its requests to the parent, unless

maybe for objects very close to the ones stored in the parent (whichever they445

are). On the other hand, the parent has to locally approximate all requests,

hence it will need to adequately cover the entire domain X like an isolated

cache. As a consequence, we do not expect any clear separation of X into a

sub-domain handled by the leaf, and a sub-domain handled by the parent. In

particular, the property that we had before, according to which a single cache450

has to allocate slots to cover a particular region of the domain, does not hold

anymore.

A more formal explanation of what happens in this simple case can be pro-

vided by the following model. Again, we divide the domain, both at the leaf and

at the parent cache, into M regions of unitary area. The request rate over each

region is assumed to be constant and we denote it by λi and βλi for the leaf and

the parent cache, respectively (hence by setting β = 0 we can recover previous

case in which requests arrive only at the leaf). Let ki,1 and ki,2 be the number

of slots devoted to region i by the leaf and the parent node, respectively. Notice

that now both quantities are in general different from zero. The leaf node will

forward to the parent the requests falling in a fraction (1 − wi,1) of region i,

and it is natural to assume that these requests are those falling farther from

the locally stored objects, i.e., at a distance larger than r∗1,i =
√
w1,ir1,i, where

r1,i =
√

1/(2ki,1). Therefore the approximation cost (14) is changed to:

Ci,1(ki,1, wi,1) = ζλiwi,1
γ+2
2 ki,1

− γ2 . (19)

Requests forwarded to the parent cache will experience an additional move-

ment cost h, plus a local approximation cost at the parent, that we model by

assuming that the total area of the subregion forwarded to the parent cache

ki,12r2
1,i(1−w1,i) will be served by the ki,2 points at the parent, within squares

of radius: √
ki,1r2

i,1(1− wi,1)

ki,2
=

√
1− wi,1

2ki,2
(20)
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Moreover, at the parent cache the local requests will generate an approximation

cost similar to (14) (with no retrieval cost).

The total approximation cost in the network is then:

C(A) = ζ

M∑
i=1

λiwi,1
γ+2
2 ki,1

− γ2

+ ζ

M∑
i=1

λi(β + (1− wi,1)
γ+2
2 )ki,2

− γ2 + h

M∑
i=1

λi(1− wi,1). (21)

This cost should be minimized over {wi,1}i, {ki,1}i, and {ki,2}i. By finding the

optimal values for {ki,1}i and {ki,2}i given {wi,1}i, we get

C(w) = ζk
− γ2
1

(
M∑
i=1

λ
2

2+γ

i wi,1

) 2+γ
2

+ ζk
− γ2
2

(
M∑
i=1

λ
2

2+γ

i (β + (1− wi,1)
γ+2
2 )

2
2+γ

) 2+γ
2

+ h

M∑
i=1

λi(1− wi,1). (22)

Note that for β = 0 we recover the cost resulting from (15) in the case of a

tandem network. Computing the derivative of the above cost with respect to

wi,1 we get:

∂C(w)

∂wi,1
= ζk

− γ2
1

γ + 2

2

(
M∑
i=1

λ
2

2+γ

i w1,i

) γ
2

λ
2

2+γ

j

− ζk−
γ
2

2

γ + 2

2

(
M∑
i=1

λ
2

2+γ

i (β + (1− w1,i)
γ+2
2 )

2
2+γ

) γ
2

× λ
2

2+γ

j

(1− w1,j)
γ
2

(β + (1− w1,j)
γ+2
2 )

γ
2+γ

− hλj . (23)

Imposing the optimality conditions, we find that there may be multiple regions455

with different popularities λi for which w1,i∗ ∈ (0, 1), i.e., for which the leaf

forwards part of the requests to the parent. The structure of the solution in

Proposition 5.2 might be lost, leading to optimal allocations where both caches

handle portions of the same region.
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z

Figure 5: Optimal allocation in the tandem network with uniform arrival process at both

nodes. Red areas denote the portion of the domain approximated by red centroids to be

stored at the leaf cache. Green areas denote the portion of the domain approximated by green

centroids to be stored at the parent cache.

To shed light into this phenomenon, we have further investigated the special460

case in which λ is uniform over the whole domain. In this case it is convenient

to shift over space the two regular tessellations so that the centroids at the leaf

and at the parent are as far as possible, as shown in Fig. 5. This allows the leaf

to forward the requests farthest from its centroids to the parent, where they are

better approximated.465

Requests arriving at the leaf are approximated by the leaf in the red portion

of the domain, as depicted in Fig. 5, while they are approximated by the parent

in the green portion of the domain. Distance z (in Fig. 5) that defines the

separation between the two portions can be easily computed (for γ = 1) as

z = max{0, (r − h)/2}, where r is the radius of the square of each tessellation470

(note that if h > r requests are not forwarded from the leaf to the parent).

Then one can easily compute the reduction ∆c = 8
3z

3 in the approximation

cost for requests arriving at the leaf, provided by each slot of the second cache,
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and compute the resulting overall approximation cost (the approach can be

generalized to γ 6= 1, but we omit the details here).475

6. NetDuel: an online dynamic policy

Although in our work we have focused on the static, offline problem of con-

tent allocation at similarity caches, we have also devised an online, λ-unaware

dynamic policy NetDuel, which is a networked version of policy Duel we have

proposed in [16]. At high-level, it is based on the following idea: each (real)480

content currently is the cache is paired to a (virtual4) content competing with

it. The cumulative saving in the total cost produced by the real and the virtual

objects are observed over a suitable time window, and if the saving of the vir-

tual object exceeds the saving of the real one by a sufficient amount, the virtual

replaces the real in the cache. Otherwise, at the end of the observation window,485

the virtual object is discarded, and afterwards the real object will be paired to

a new virtual object taken from the arrival process. In contrast to Greedy

and LocalSwap, NetDuel does not require information about object arrival

rates {λr}r, and converges more slowly because it needs to estimate such rates

from the arrival process itself. On the other hand, it can automatically adapt490

to dynamic object popularity.

NetDuel achieves an allocation close to the optimal one, suggesting that

effective online dynamic policies can be devised for networks of similarity caches,

at least under the assumption that each node knows when to forward requests

upstream.495

7. Numerical experiments

We now verify the theoretical findings in previous sections and the perfor-

mance of proposed algorithms by running numerical and simulation experiments

4The cache stores only metadata of a virtual object, not the object itself. Virtual objects

are taken from the arrival process.
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on simple scenarios. We will consider both a synthetic arrival process (sec. 7.2)

and a more realistic request stream based on an Amazon trace (sec. 7.3).500

7.1. Methodology

We implemented the Greedy algorithm and the computation of the con-

tinuous approximation (15) using the C language. To run LocalSwap and

NetDuel, instead, we developed an ad-hoc event driven simulator, based on

the ns-2 network simulator engine [34], using the C++ language. The simulator505

can take as input either a synthetically generated stream of requests, or an ac-

tual trace. An input file provides all parameters and the description of a generic

tree-like network topology. Note, however, that all results presented here have

been obtained in a simple tandem network of two nodes. The output of the sim-

ulator is a file containing the objects stored in each cache of the network after510

a given number of requests have been processed. To find the best approximizer

along the forwarding path, the simulator emulates a simple protocol sending a

message all the way up to the repository and back, dynamically discovering the

cache providing the best approximation cost. The simulator code is available

from the authors upon request.515

7.2. Synthetic arrival process

To test our algorithms, we consider 10000 objects falling on the points of a

bi-dimensional L× L grid with L = 100, equipped with the norm-1 metric and

the local cost Ca(x, y) = d(x, y), i.e., we take (unless otherwise specified) γ = 1.

The request process follows a Gaussian distribution, such that the request rate520

of object i is proportional to exp(−d2
i /(2σ

2)), where di is the hop distance from

the grid center. To jointly test our continuous approximations, we assume that

each grid point i is the center of a small square of area 1, on which λ is assumed

to be constant and equal to λi.

We first consider a simple tandem network with arrivals only at the leaf, and525

fixed cost h to reach the parent (scenario 1 in Fig. 7). In Fig. 6 we compare the

total cost produced by Greedy, LocalSwap, the continuous approximation
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Figure 6: Total cost obtained by Greedy, LocalSwap, continuous approximation and Net-

Duel in a tandem network with arrivals at the leaf, for σ = L/2 (thick curves) or σ = L/8

(thin curves).

user requests user requests

h h

user requests

(scenario 1) (scenario 2)

Figure 7: Simple tandem networks with two identical caches, with arrivals only at the leaf

(scenario 1 on the left), or with arrivals at both caches (scenario 2 on the right). Requests

forwarded from the leaf to the parent cache incur the additional fixed cost h.
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Greedy LocalSwap

Continuous NetDuel

Figure 8: Allocations obtained by Greedy, LocalSwap, continuous approximation and Net-

Duel in the tandem network with σ = L/8, h = 3. Circle marks for the parent cache and

triangle marks for the leaf cache.

(the solution of (15)) and NetDuel, as function of h, for a larger Gaussian

(σ = L/2) or a narrow Gaussian (σ = L/8). We observe that LocalSwap

performs better than Greedy, which performs better than NetDuel. The530

continuous approximation does not necessarily provide a lower bound to dis-

crete algorithms/policy, since it is a different system where the request space

is continuous, rather than constrained on the grid points. However, we do

observe that the continuous approximation curve gets closer to the curve pro-

duced by LocalSwap for σ = L/2 (thick curves), since in this case λ varies535

more smoothly over the domain.

In Fig. 8 we show the allocations (circles for the parent, triangles for the

leaf) produced by the four approaches above in the case σ = L/8 and h = 3,

using two different colors for the sub-domains where requests arriving at the
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Figure 9: Parent allocation obtained by LocalSwap in a tandem network with arrivals at

both nodes. Gaussian traffic (left plot) and Uniform traffic (right plot).

leaf are approximated by the leaf or the parent.5 6
540

While our algorithms are completely oblivious to the threshold-based solu-

tion predicted by the continuous approximation, they achieve, qualitatively, the

same cache allocation structure. Differences emerge at the boundary between

the area served by the leaf and the area served by the parent, and are more

evident for Greedy and NetDuel. Next, we see what happens when the cru-545

cial assumption underlying the above structure, namely, the fact that requests

arrive only at the leaf, is removed.

In Fig. 9 we report, for a larger system with 100000 contents, the allocation

produced at the parent by LocalSwap in a tandem network with requests

arriving at both nodes (scenario 2 in Fig. 7), showing also with two different550

colors the regions where requests arriving at the leaf are approximated by the

leaf or the parent. We consider both a Gaussian arrival process with σ = L/8

(left plot), and a simple Uniform process (right plot), and fixed h = 3. Notice

that the parent cache covers also the central part of the domain, in contrast to

Fig. 8. Results produced by LocalSwap suggest that now, for the requests555

5For the continuous approximation, we do not show stored contents, and (border)

squarelets are considered as handled exclusively by the parent if wi,2 > wi,1.
6On an Intel i7 desktop computer equipped with 8GB of DDR4 RAM, the running time

of Greedy, LocalSwap and NetDuel to produce the allocations in Fig. 8 were, respectively,

3 minutes, 5 minutes and 12 minutes.
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Figure 10: Total cost in the tandem network with arrivals at both nodes, λ uniform, as function

of h, for different values of γ, according to LocalSwap (points) and continuous approximation

(curves).

arriving at the leaf, the regions served directly by the leaf and the regions

approximated by the parent are intertwined in a complex way. For uniform

λ, Fig. 10 shows the accuracy of the continuous approximation based on the

shifted regular square tessellations shown in Fig. 5.

7.3. Amazon trace560

By crawling the Amazon web-store, the authors of [35] built an image-based

dataset of users’ preferences for millions of items. Using a neural network pre-

trained on ImageNet, each item is embedded into a d-dimensional space, on

which Euclidean distance is used as item similarity. We consider as request

process the timestamped reviews left by users for the 10000 most popular items565

belonging to the baby category, with d = 100. The resulting trace, containing

about 10.3M requests, is fed into a cache of size 100, with a parent cache of

the same size (a tandem network) reachable by paying an additional fixed cost

h = 150. The local approximation cost is set equal to the Euclidean distance.

In Fig. 11 we show the allocations produced by LocalSwap in both caches,570
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Figure 11: Allocations obtained by LocalSwap in a tandem network with arrivals at the leaf

according to Amazon trace. Unconstrained version (left) and constrained version (right).
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reporting, for each stored item, the popularity rank (x axes) and the distance

from the baricenter (y axes). Across the entire catalog we found no correlation

between popularity rank and distance from the baricenter. Nevertheless, we do

observe that the leaf cache tends to store items that are either very popular or

very close to the baricenter. The resulting total cost is C = 266 (left plot in575

Fig. 11).

Moreover, by computing the request density within spherical shells at dis-

tance d ∈ [ρ, ρ + 1] from the baricenter, we found a decreasing trend in ρ, see

Fig. 12, which justifies the attempt of ‘enforcing’ the structure of the optimal

solution that we found in chain topologies fed only from the leaf. We do so by580

constraining the leaf (parent) cache to store only contents at distance from the

baricenter smaller (larger) than a given threshold d∗. The constrained Local-

Swap algorithm obtains, for the best possible d∗ = 350, a total cost C = 269

(only 1% worse than before), right plot in Fig. 11, suggesting that a simple al-

location and forwarding rule based on the distance from the baricenter is close585

to optimal also in a realistic scenario.

8. Conclusions and future work

In this paper we have made a first step into the analysis of networks of sim-

ilarity caches, focusing on the offline problem of static content allocation. De-

spite the NP-hardness of the problem, effective greedy algorithms can be devised590

with guaranteed performance, but their implementation become prohibitive as

the system size increases. For very large request space/catalog size, we have

relaxed the problem to the continuous, obtaining for equi-depth tree topolo-

gies an easily implementable solution with a simple structure, which greatly

simplifies the related request forwarding problem. The above simple structure595

is unfortunately lost in more general networks. We have also proposed a first

online dynamic policy, NetDuel, whose effectiveness is confirmed by prelimi-

nary simulation results. More experiments under both synthetic and real traces

could be done to confirm the findings of our preliminary assessment of proposed
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algorithms and policies.600

Future work will focus on: i) the design of practical, scalable algorithms

which can deal with similarity caching network having general topology, and

large catalog size; ii) the investigation of simple request forwarding strategies

for the online setting, in the absence of complete information about which items

are stored in upstream caches; iii) the extension of algorithms and policies to the605

case in which multiple (e.g., the m closest) approximating objects are needed, so

as to offer several alternatives to the user; iv) additional numerical experiments

under synthetic and real traces.
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Appendix A. Proof of Proposition 4.2740

Proof. We first show that constraints are matroid ones. The empty set obviously

belongs to I, and if A ⊂ B with B ∈ I, then A ∈ I. Finally, given two

allocations with |A| < |B|, there exists a cache i that stores less elements under

A than under B, i.e., such that
∑
o′:(o′,i)∈A 1 <

∑
o′:(o′,i)∈B 1. Then, there exists

an object o that is stored at i under B, but not under A. As
∑
o′:(o′,i)∈A 1 <745 ∑

o′:(o′,i)∈B 1 ≤ ki, A ∪ (o, i) is still a feasible allocation.

We now prove that G(A) is a non-negative monotone submodular function.

G(A) =
∑
r

λrC(r, ∅)−
∑
r

λrC(r,A)

=
∑
r

λr (C(r, ∅)− C(r,A))

=
∑
r

λr

(
C(r, ∅)− min

α∈S∪A
C(r, α)

)
=
∑
r

λr

(
C(r, ∅)−min

(
min
α∈A

C(r, α), C(r, ∅)
))

=
∑
r

λr

(
C(r, ∅)−min

α∈A
min (C(r, α), C(r, ∅))

)
=
∑
r

max
α∈A

λr

(
C(r, ∅)−min (C(r, α), C(r, ∅))

)
=
∑
r

max
α∈A

λr

(
max (C(r, ∅)− C(r, α), 0)

)
Then G(A) =

∑
r maxα∈AMr,α, where Mr,α ≥ 0 for all r and α. The set

function is obviously monotone (i.e., if A ⊂ B, then G(A) ≤ G(B)) and non-

negative and corresponds to the utility of a facility location problem that is

known to be submodular (e.g., [36], but it is also easy to check directly).750
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Appendix B. Pseudocode of Greedy algorithm

After an initial initialization corresponding to the empty allocation (lines

1–3), the algorithm performs K steps (line 4), where K is the total cache ca-

pacity in the network. In each step, we consider the addition of any possible

approximizer at each cache, i.e., an approximizer not already present in a cache755

which has not yet been filled up (line 6), searching for the one that minimizes

the total cost resulting from the addition of the considered approximizer (line

7). Then we add the found approximizer to the current allocation (lines 14–16),

and proceed to the next step.

Algorithm 1 Greedy

Require: cache sizes ki,∀i ∈ K, arrival rates {λr}r,∀r, costs C(r, α),∀(r, α)

1: A = ∅ . Initialize set of approximizers

2: Oi = ∅, ∀i ∈ K . Initialize set of allocated objects in each cache

3: ai = 0, ∀i ∈ K . Initialize number of allocated objects in each cache

4: for i = 1 . . .K do

5: C =∞

6: for all α = (o, i) : o /∈ Oi, ai < ki do

7: C∗ =
∑
r λrC(r,A ∪ {α}) . cost resulting from addition of α

8: if C∗ < C then

9: C = C∗

10: o∗ = o

11: i∗ = i

12: end if

13: end for

14: A ⇐ A∪ (o∗, i∗)

15: Oi∗ ⇐ Oi∗ ∪ o∗

16: ai∗ ⇐ ai∗ + 1

17: end for

18: return A . Final set of approximizers
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Appendix C. Pseudocode of LocalSwap algorithm760

We start from a random allocation of objects at the caches (line 1), and

perform at most max iter noimprov attempts to improve the current alloca-

tion, where max iter noimprov is a parameter of the algorithm, to be chosen

sufficiently large to achieve convergence. In each attempt, we consider a real or

emulated request for an object o (line 4), and evaluate what would happen if:765

i) we evict an object y from a cache i along the forwarding path of o; ii) insert o

at cache i in place of y. By considering all possible substitutions as above (line

6), we compute the largest possible negative variation ∆C∗ in the total network

cost (line 8–11) keeping track of the substitution that produces such variation

(line 10). If we indeed obtain a negative variation (line 13) (note that ∆C is770

initialized to zero on line 5), we actually perform the corresponding substitution

(line 14).
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Algorithm 2 LocalSwap

Require: parameter max iter noimprov, cache sizes {ki}i, arrival rates

{λr}r,∀r, costs C(r, α),∀(r, α)

1: Allocate ki distinct random objects in each cache . Initialize A

2: iter = 0

3: while iter < max iter noimprov do

4: generate request for object o according to {λr}r . real or emulated

5: ∆C = 0

6: for all α = (y, i) ∈ A do

7: ∆C∗ = C(A ∪ {(o, i)} \ {(y, i)})− C(A)

8: if ∆C∗ < ∆C then

9: ∆C = ∆C∗

10: (ye, ie)⇐ (y, i)

11: end if

12: end for

13: if ∆C < 0 then

14: A ⇐ A∪ {(o, ie)} \ {(ye, ie)}

15: iter = 0

16: else

17: iter⇐ iter + 1

18: end if

19: end while

20: return A . Final set of approximizers
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