
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy Management of a Residential Heating System Through Deep Reinforcement Learning / Brandi, S.; Coraci, D.;
Borello, D.; Capozzoli, A.. - STAMPA. - 263:(2022), pp. 329-339. (Intervento presentato al  convegno 13th KES
International Conference on Sustainability and Energy in Buildings, SEB 2021 nel 2021) [10.1007/978-981-16-6269-
0_28].

Original

Energy Management of a Residential Heating System Through Deep Reinforcement Learning

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-981-16-6269-0_28

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Sustainability in Energy and Buildings
2021. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-981-16-6269-0_28

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2938752 since: 2021-11-18T19:34:10Z

Springer Science and Business Media Deutschland GmbH



Energy Management of a Residential Heating System 

through Deep Reinforcement Learning 

Silvio Brandi1*, Davide Coraci1, Davide Borello1, Alfonso Capozzoli1  

1 , Department of Energy “Galileo Ferraris”, TEBE Research group, BAEDA Lab, Politecnico 

di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy. 

*silvio.brandi@polito.it 

Abstract. In this study, a controller based on deep reinforcement learning was 

tested for a residential building equipped with a radiant heating system. In detail, 

a Soft Actor-Critic (SAC) algorithm was implemented to optimize the operation 

of the heating system while ensuring adequate levels of indoor temperature. A 

probabilistic window opening behavior model was implemented within the sim-

ulation framework in order to emulate the interaction of the occupants with the 

building. 

A sensitivity analysis on SAC hyperparameters was carried out to determine the 

best configuration that was then deployed in four different scenarios in order to 

analyze the adaptability of the controller to different boundary conditions. The 

performance of the reinforcement learning agent was evaluated against a baseline 

strategy which combines rule-based and climatic control. 

The developed agent was able to achieve a saving of heating energy provided to 

the building in the range between 2% and 6% while increasing temperature con-

trol performance up to 65% in the four scenarios investigated. 

Keywords: building adaptive control, deep reinforcement learning, automated 

system optimization. 

1 Introduction 

The energy consumption related to the operation of building systems accounts for 40% 

of the worldwide energy demand and 36% of CO2 emissions [1]. Heating, Ventilation 

and Air Conditioning (HVAC) systems represent the most energy-intensive in build-

ings and significant improvements have been made in recent years to enhance their 

energy efficiency [2]. However, the optimal management of these systems is challeng-

ing due to the influence of stochastic endogenous and exogenous factors which cause 

the non-linearity of the control problem [3]. Traditionally, ON/OFF or Proportional-

Integrative-Derivative (PID) controllers are the most widely applied bottom-level con-

trol system. At the supervisory level Rule-Based Control agents (RBCs) are commonly 

employed. However, since these strategies are mainly reactive and unable to predict 

changes in weather or building conditions [4], or to take into account more than one 

control objective, their implementation results in sub-optimal control policies [5,6]. 
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Model-based control strategies, such as Model Predictive Control (MPC), were ex-

plored to overcome such limitations, showing an excellent ability in improving comfort 

conditions and energy efficiency in buildings [7–9]. However, despite the promising 

results, MPCs are not widely adopted in real-world applications due to their strong de-

pendence from the accuracy of the underlying model of the system [10] and from the 

robustness of the optimization algorithm [11]. As a consequence, Reinforcement Learn-

ing (RL), specifically Deep-RL (DRL), has emerged as a promising control algorithm 

due to its model-free approach for the optimization of building performance [12]. Re-

cent works in literature have proven the feasibility in the application of DRL strategies 

to control supply water temperature [13–15] and indoor temperature setpoint [16,17].  

In this paper, an off-policy DRL algorithm named Soft Actor-Critic [18], was imple-

mented to control the supply heating power for a residential building located in Turin, 

Italy. The experiment was carried out in a simulation environment which combines 

Python and EnergyPlus. The control agent is designed to reduce heating energy sup-

plied to the building while maintaining the desired indoor temperature values. Moreo-

ver, it was implemented a probabilistic model for the operation of the windows 

(open/close) to simulate the interaction of occupants with the residential building.  

2 Methods 

Reinforcement learning (RL) can be formalized as a Markov Decision Process 

(MDP), defined by a four-values tuple, including a set of state S, a set of action A, 

transition probabilities between the states and a reward function r. The goal of the RL 

agent is to learn an optimal control policy (π), a mapping between states and actions 

that maximizes the cumulative sum of future rewards [19]. The problem can be defined 

by two functions, namely state-value vπ(s) and action-value qπ(s). These functions de-

termine the optimal policy of the RL agent and are used to show the expected return of 

a control policy π starting from a specific state or a state, action pair, as follows: 

                                  vπ(s) = E[rt+1 +  γvπ (s′)|St = s, St+1 = s′]                                 (1) 

                                 𝑞𝜋(𝑠, 𝑎) = 𝐸[𝑟𝑡+1 + 𝛾𝑞𝜋  (𝑠′, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = a]                           (2) 

where γ [0,1] is the discount factor for future rewards. For γ = 1 the agent will con-

sider future rewards more important than current ones. Contrarily, for γ = 0 the agent 

will give greater importance to immediate rewards. The most widely applied approach 

among RL algorithms is the Q-Learning. Q-Learning exploits a tabular approach to 

map the relationships between states and action pairs [13]. These relationships are for-

malised as Q-values, which are updated according to the following formula: 

                          𝑄(𝑠, 𝑎) ⃪ 𝑄(𝑠, 𝑎) + 𝜇[𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]               (3) 

where 𝜇 [0,1] is the learning rate, which determines the degree of overwriting of old 

knowledge with the new one. For 𝜇 = 1 new knowledge completely substitutes old 

knowledge. 
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Soft Actor-Critic 

Deep Neural Networks, and their combination with RL algorithms (i.e., Deep Rein-

forcement Learning (DRL)) seemed to overcome Q-Learning limitations. Therefore, 

DRL resulted more suitable for complex problems. In this paper, it was implemented 

the Soft-Actor Critic (SAC), an off-policy algorithm introduced by Haarnoja et al. [18] 

capable of handling continuous action spaces. The adopted actor-critic architecture em-

ploys two different deep neural networks: the Actor maps the current state based on the 

estimated optimal action, while the Critic evaluates the actions by calculating the value-

function. The entropy regularization represents a key-feature in SAC, ensuring that the 

agent is pushed towards the exploration of new policies while avoiding that it gets stuck 

in sub-optimal behavior [3]. Therefore, in SAC algorithm the objective is to maximize 

both expected reward and entropy [20] as follows: 

                                       𝜋∗ = arg max
𝜋

𝔼𝜋 ∑  [𝑟𝑡 +  𝛼𝐻𝑡
𝜋]∞

𝑡=0                                     (4) 

where H is the Shannon entropy term, expressing the attitude of the agent in taking 

random actions, and α is the temperature parameter, a regularization coefficient that 

determines the importance of the entropy term against the reward.  

3 Case Study and Methodology 

The proposed control strategy was developed for a five stories residential building lo-

cated in Turin, Italy. The building is characterized by a net heated surface of 527 m2 

organized into five different thermal zones, one for each floor. The average transmit-

tance values of the opaque and transparent envelope components are 0.985 and 2.681 

W/m2K respectively. The thermal zones are served by a radiant floor heating system 

equipped with a variable speed circulation pump. The amount of heat delivered to each 

zone can be controlled by three-way circulation valves. The objective of the developed 

DRL controller is to maintain the indoor temperature into an acceptability range, de-

fined between [-1, 1] °C from the desired temperature value of 21°C, while reducing 

the heating energy provided to the building through the regulation of the heating power 

supply to each radiant floor. The design value of supply heating power per each floor 

is respectively equal to 11 kW, 6.5 kW, 5.0 kW, 5.0 kW and 6.5 kW. The interaction 

between the control agent and the building energy model was simulated through Build-

ing Control Virtual Test Bed (BCVTB), that allows the information exchange between 

the building model (developed in EnergyPlus) and the SAC control agent (developed 

in Python). Simulation time step and control time step was equally set to 30 minutes. 

3.1 Occupancy schedules and modeling of window opening behavior  

Different occupancy schedules were implemented for each floor in the building. 

Moreover, in order to better characterize the behavior of the occupants and, in particu-

lar, their interactions with the building a probabilistic model for window opening/clos-

ing was implemented within the simulation environment. The model developed in [21] 
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employs indoor temperature, relative humidity and CO2 along with outdoor air temper-

ature, relative humidity, wind speed and solar radiation to estimate probabilities of 

opening and closing of the windows in the building. The model is based on logistic 

regression which coefficients depends on the day of the week and the time of the day 

and was implemented in Python. The open/close state of windows was passed as an 

additional binary “control-signal” (i.e., 0 = closed, 1 = open) to EnergyPlus at each 

control time step. 

3.2 Baseline control logic 

The performance of the DRL controller was evaluated against a baseline controller con-

sisting of a combination of rule-based and climatic-based logics for the control of the 

supply power of the heating system. The RBC controller manages the operation of the 

radiant heating systems according to the indoor temperature values and occupancy 

schedules separately for each floor. The heating energy to each floor is supplied two 

hours before the arrival of the occupants or when the indoor temperature is lower than 

the lower threshold of the acceptability range during occupancy period. Contrarily, dur-

ing unoccupied hours or when the indoor temperature is higher than the upper threshold 

of the acceptability range during occupancy period the heating energy is not supplied. 

The opening degree of the valves, which determines the fraction of the nominal heating 

power provided to each floor, is managed through a climatic-based curve implemented 

in the real building on which this case study is based on. Nominal heating power is 

provided when outdoor air temperature values fall below 6°C, while when outdoor tem-

perature rises above 19 °C the system is switched off. 

3.3 Design of Reinforcement Learning Control Agent 

This section discusses the design of the action-space, state-space and reward function 

of the DRL controller.  

 

Design of the action-space. Since SAC was selected as the control algorithm, the ac-

tion-space was expressed as a continuous space of 5 different actions, related to the 

supply power per each thermal zone, expressed in kW: 

         𝐴𝑡 = [𝐴𝑔𝑟𝑜𝑢𝑛𝑑 𝑓𝑙𝑜𝑜𝑟 , 𝐴𝑓𝑖𝑟𝑠𝑡 𝑓𝑙𝑜𝑜𝑟 , 𝐴𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑙𝑜𝑜𝑟 , 𝐴𝑡ℎ𝑖𝑟𝑑 𝑓𝑙𝑜𝑜𝑟 , 𝐴𝑓𝑜𝑢𝑟𝑡ℎ 𝑓𝑙𝑜𝑜𝑟]         (5) 

The supply power was limited between 0 and the design value for each floor.  

 

Design of the state-space. The state-space is composed of 26 observed variables, re-

ported in Table 1 with their lower and upper bounds, and the time step at which they 

are evaluated. The variables chosen are feasible to be collected in a real-world imple-

mentation and provide the necessary information required by the agent to predict im-

mediate future rewards. 

Observations were scaled in the (0,1) range according to a min-max normalization in 

order to be fed to the neural network. 
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Design of the reward function. The reward function was formulated as a linear com-

bination of two competing terms. The first term is related to the heating energy supplied 

to the building expressed in kWh that is directly proportional to the control action. The 

second term is defined as quadratically proportional to the difference between the meas-

ured indoor temperature (Ti) and the desired setpoint (TSP). 

These terms were combined through the introduction of two weight factors (δ and β) 

that determine respectively the relative importance of heating energy consumption and 

indoor temperature requirements. 

Table 1. State-space variables 

Variable Timestep Min Value Max value Unit 

Hour of the day t 1 24 H 

Day of the week t 1 7 - 

Outdoor Air Temperature t -8 32 °C 

Direct Solar Radiation t 0 1100 W/m2 

Time to Occupancy start t 0 10 H 

Time to Occupancy end t 0 15 H 

Indoor ΔTground floor t, t-1, t-2, t-4 -5 10 °C 

Indoor ΔTfirst floor t, t-1, t-2, t-4 -5 10 °C 

Indoor ΔTsecond floor t, t-1, t-2, t-4 -5 10 °C 

Indoor ΔTthird floor t, t-1, t-2, t-4 -5 10 °C 

Indoor ΔTfourth floor t, t-1, t-2, t-4 -5 10 °C 

 

The resulting reward function depends by the presence of the occupants and it is 

expressed as follows: 

                         𝑅 = {
−𝛿 ∗ ∑ 𝐸𝐻𝐸𝐴𝑇𝐼𝑁𝐺,𝑖

𝑁
𝑖=1 − 𝛽 ∗ (𝑇𝑆𝑃 − 𝑇𝑖)2,  𝑖𝑓 𝑂𝐶𝐶 = 1

−𝛿 ∗ ∑ 𝐸𝐻𝐸𝐴𝑇𝐼𝑁𝐺,𝑖
𝑁
𝑖=1             , 𝑖𝑓 𝑂𝐶𝐶 = 0

                                       (6) 

where EHEATING,i is the energy provided to each floor and N is the number of floors.  

3.4 Training and Deployment Phase 

Training phase. The performance of the DRL agent is highly influenced by several 

hyperparameters. To assess their influence, a sensitivity analysis was performed to se-

lect the value of the following hyperparameters: discount factor γ, learning rate 𝜇, 

weight factors of the reward terms β and δ, batch size, number of neurons per hidden 

layer and number of training episodes. The different tested configurations are shown in 

Table 2. A training episode lasts 61 days and includes two months, from 1 November 

to 31 December, for a total of 2928 control time-steps. The weather file used in this 

phase refers to the heating season 2018/2019 for Turin, Italy. 

Deployment phase. The best configuration of hyperparameters, retrieved from the sen-

sitivity analysis performed during the training phase, was deployed in four different 
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scenarios to evaluate the adaptability of the learned control policy. The deployment 

period last one episode including two months, from 1 January to 28 February, consid-

ering the same weather file as in the training phase. The proposed scenarios are the 

following: 

 Scenario 1: this is the base case with no implemented changes in the controlled en-

vironment. This scenario aims to evaluate the adaptability of the control agent to 

different patterns of outdoor conditions. 

 Scenario 2: in this scenario the indoor temperature setpoint was decreased from 21 

°C  to 20 °C to assess the performance of the agent in satisfying different temperature 

requirements from the one assumed in the training phase. 

 Scenario 3: in this case was evaluated the performance of the agent considering ther-

mal transmittance Uw and the solar factor g of windows reduced to 1.1 W/m2K and 

0.33 respectively. 

 Scenario 4: in the last scenario it was assessed the adaptability of the agent consid-

ering the internal mass doubled to rise the thermal inertia and internal heat capacity 

of the building. 

The best trained agent was deployed statically, then it was not updated during the de-

ployment and was used as static function. This process requires less computational time 

at the cost of a lower capability to adapt to changes in the controlled system [14]. 

Table 2. Tested hyperparameters configurations for the DRL controller during the training phase 

Configuration γ 𝜇 β δ Batch size Neurons Episodes 

 1 0.9 0.001 1 0.1 256 256 10 

 2 0.95 0.001 1 0.1 256 256 10 

         3 0.99 0.001 1 0.1 256 256 10 

         4 0.9 0.001 1 0.5 256 256 10 

         5 0.9 0.001 1 0.1 512 256 10 

         6 0.9 0.001 1 0.1 128 256 10 

 7 0.9 0.0001 1 0.1 128 256 10 

 8 0.9 0.0001 1 0.1 256 256 25 

 9 0.9 0.001 1 0.1 256 256 25 

 10 0.9 0.0001 1 0.01 256 256 25 

 11 0.9 0.0001 5 0.1 256 256 25 

 12 0.9 0.0005 1 0.1 256 256 25 

 13 0.9 0.0001 10 0.1 256 256 25 

 14 0.9 0.0001 1 0.1 256 128 25 

 15 0.9 0.0001 1 0.1 256 512 25 
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4 Results and Discussion 

In order to consider the influence of the hyperparameters on the DRL control logic 

performances, a sensitivity analysis was performed. Two metrics were used to compare 

the different hyperparameters configuration: the energy saving with respect to the base-

line and the cumulative sum of temperature violations during the occupancy hours. 

These metrics were summed up at the end of the training episode. The temperature 

violations, evaluated in °C, were calculated as the absolute difference between the in-

door temperature and the lower or upper limit of the temperature acceptability range 

[19, 21], when the internal temperature was lower or higher than these limits. Fig. 1 

shows the cumulative sum of temperature violations (on y-axis, defined on a logarith-

mic scale for the sake of legibility) for the last training episode as a function of the 

energy saving. The performance of the baseline is reported with black dashed lines that 

divides the plot into four quadrants. The left-bottom quadrant includes the configura-

tions in which the DRL agent reduced both the supplied heating energy and the tem-

perature violations.  

 

 

Fig. 1. SAC control agent performance in the last episode of the training phase 

The configuration eight (i.e. run 08 in the figure) showed the best trade-off between 

energy saving (-5%) and temperature violations (-65%). The agent trained with this 

configuration was successively statically deployed in the four deployment scenarios.  

Table 3 shows the results obtained for the DRL agent in the four deployment scenarios, 

considering the energy savings and the reduction of the cumulative sum of temperature 

violations with respect to the RBC control selected as baseline. In all scenarios, the 
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DRL controller leads to a reduction of heating energy supplied and temperature viola-

tions. The SAC control logic achieves the highest energy saving (i.e., about 5%) in the 

fourth scenario without reducing the temperature violations with respect to the baseline. 

In contrast, in the third scenario the DRL controller shows the highest reduction of 

temperature violations (60 %) with the lowest energy saving with respect to the baseline 

(around 2%). Overall, the SAC control agent ensures better performance than the base-

line. In addition, the definition of a carefully designed state-space allows the developed 

agent to adapt to each scenario even if statically deployed, avoiding control instability 

issues and reducing the computational time.  

Table 3. Performance comparison between DRL and RBC agents for all deployment scenarios 

Scenario 
Energy consumption [MWh] Temperature violations [°C]2 

DRL agent Baseline DRL agent Baseline 

1 20.6 21.2 592.2 1447.8 

2 22.6 23.6 395.3 1158.6 

3 20.0 20.3 603.2 1553.1 

4 20.8 22.0 505.6 508.9 

 

Fig. 2 reports the comparison between the SAC and RBC controllers in the first 

scenario during 5 days of the deployment period. The figure shows the indoor temper-

ature and supply power patterns for the ground floors. The adaptive control agent is 

capable to reduce the temperature violations and energy supplied through an optimal 

management of the heating system. The SAC controller optimizes the pre-heating 

phase. In particular, the developed agent switches-ON the heating system later than the 

baseline, reducing the corresponding energy supplied and ensuring that indoor comfort 

requirements are met.  

 

 

Fig. 2. Comparison between SAC and baseline controllers in Scenario 1 
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5 Conclusions  

In this paper, a DRL agent was implemented to control the heating power supplied to 

each floor zone of a residential building. To represent the occupants’ behavior as close 

as possible to the reality, it was adopted a model presented in literature based on logistic 

regression to simulate the windows opening and closing. The control agent was de-

signed to enhance the energy efficiency while maintaining the indoor temperature 

within an acceptability range. A sensitivity analysis on the hyperparameters of the SAC 

algorithm was performed during the training phase to choose the DRL agent ensuring 

the best performance with respect to the baseline controller. The best trained agent was 

able to reduce the cumulative sum of temperature violations by more than 65%, while 

ensuring a reduction in the heating energy supplied. Furthermore, the agent was found 

effective in adapting to modification in the controlled system such as weather condi-

tions, indoor temperature requirements and physical characteristics even if statically 

deployed. In particular, the developed controller reduced the heating energy supplied 

up to a maximum of 6% compared to the baseline controller, while ensuring better in-

door temperature conditions.  

Future works will be focused on the aspects of reproducibility and standardization 

of the developed controller, since it could perform differently in other buildings or 

HVAC systems. Moreover, the evaluation of indoor thermal comfort could be per-

formed, by introducing parameters such as Predicted Percentage of Dissatisfied (PPD) 

and Predicted Mean Vote (PMV) in the reward function. 
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