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Designs of Early Phase Cancer Trials
with Drug Combinations

José L. Jiménez, Márcio Augusto Diniz, André Rogatko,
and Mourad Tighiouart

1 Introduction

The primary objective of a phase I oncology trial is to estimate a maximum tolerable
dose (MTD) of a new drug or combination of drugs for future efficacy evaluation
in phase II/III trials. For the case of combination trials with two drugs, the MTD is
any dose combination (x, y) of drugs A and B that produces DLT in a pre-specified
proportion of patients θ [16].

P(DLT|x, y) = θ. (1)

The definition of DLT depends on the type of cancer and drugs used in the
trial, but it is typically defined as a grade 3 or 4 non-hematologic or grade 4
hematologic toxicity. Different types and grades of toxicity are described in the
Common Terminology Criteria for Adverse Events (CTCAE), an observer-rated
toxicity grading system used in cancer clinical trials to assess the severity of various
organ system toxicities associated with treatment [58]. Depending on the nature and
severity of treatment-attributable toxicity, the target probability of DLT θ typically
takes values between 0.1 and 0.4.

To model the probability of DLT, we assume a parametric model of the form

P(DLT|x, y) = F(x, y;β), (2)
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where F(.) is a known link function (e.g., power model or a logistic model), and β ∈
Rp is a p×1 vector of unknown parameters. Non-parametric designs have also been
proposed in the past, both for single agent and drug combination settings, see e.g.,
[15, 23, 27, 30, 64]. The common assumption in these designs is monotonicity (i.e.,
the probability of DLT increases with the dose of any one of the agents when the
other one is held constant), which is imposed either through the prior distribution,
or by choosing only monotonic contours when escalating.

Following [51, 53], the general phase I design for drug combinations can be
stated as follows. Let S be the set of all dose combinations available in the trial and
C be the set of combinations (x, y) that produce DLT in a proportion of patients
that is equal to the target risk of DLT. Hence,

C = {(x, y) ∈ S : F(x, y;β) = θ} . (3)

An alternative definition of the MTD is the set of dose combinations (x, y) that
satisfy |F(x, y;β) − θ | ≤ δ, since the set C in (3) may be empty. This can happen,
for example, when S is finite and the MTD is not part of the dose combinations
available in the trial. The threshold parameter δ, 0 < δ < 1, referred to as “100 ×
δ-point window” in [5] must be pre-specified by the clinician.

Consecutive cohorts of one to three patients are enrolled in the trial, and the
model parameters and estimated probabilities of toxicities are updated sequentially,
using dose combinations allocated to all previously treated patients and their DLT
outcomes. The next cohort of patients receives doses determined by minimizing the
risk of exceeding the target probability of DLT according to some loss function. This
general framework of dose finding for drug combinations was studied extensively
in the last two decades, see e.g., [5, 12, 23, 27, 38, 42, 45, 50, 51, 53, 61, 62, 65, 67].
These methods are aimed at either identifying a single MTD or recommending
more than one MTD combination for future efficacy studies. Approaches where
a single MTD is selected may be sub-optimal because important dose combinations
with similar acceptable DLT level and possibly with high probability of response
may be missed. This could happen for two reasons. First, the discrete set of
dose combinations is selected by the investigator based on prior experience with
single agents. Therefore, when these agents are combined, the selected set may not
include intermediate dose combinations with probability of DLT close to the target
probability of DLT and the target probability of treatment response. Second, even
if this discrete set includes dose combinations with probability of DLT close to
the target, their probability of response may be very different and these approaches
may recommend a dose combination with a low probability of response. Hence,
approaches that recommend more than one MTD should be used for future efficacy
studies using randomized or response-adaptive designs.

The main goal of early phase oncology phase I–II trials is to identify one or
many dose combinations that are both safe and efficacious. In single-agent trials,
where efficacy is evaluated within a short window of time (e.g., one or two cycles
of therapy), one-stage sequential designs are frequently used by updating the joint
probability of toxicity and efficacy after each cohort of patients [4, 7, 20, 31, 41,
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44, 46]. This methodology has been extended to accommodate drug combinations
[6, 19, 26, 39, 60, 67, 68]. However, if efficacy cannot be evaluated in a short
time interval, two-stage designs are frequently employed. In the first stage, a set of
maximum tolerated dose combinations is selected, and in the second stage, the set is
tested for efficacy. The patient population used in the second stage may be different
than that from the first stage [8, 24, 40]. For drug combination trials, different
methods for two-stage designs have been proposed for binary efficacy endpoints
[43, 47, 68, 70] and time-to-event efficacy endpoints [21].

In Sect. 2, we review some designs of drug combination trials focusing on
continuous dose levels of both drugs. Estimation of doses to be allocated to the
next cohort of patients uses the escalation with overdose control (EWOC) principle
[1, 2, 13, 48, 49, 52, 54–56, 69, 71] and the continual reassessment method (CRM)
[9, 14, 17, 29, 32–34]. A method that incorporates a covariate with the patients’
baseline characteristics and settings where an unknown fraction of attributable DLTs
will also be reviewed. In Sect. 3, we describe two-stage phase I/II designs based on
the work of [47] and [21]. In each case, stage 1 follows the designs described in
Sect. 2.1 to estimate the MTD curve. In stage 2, [21, 47] search for combinations
along this MTD curve that maximize the probability of treatment response or
median time to an event of interest. We conclude this chapter with a discussion
including practical implementation of these designs and related ongoing research.

2 Designs for Phase I Clinical Trials

2.1 Phase I Model-based Designs for Drug Combinations

Model

Tighiouart et al. [51, 53] assumed that the doses (x, y) from a combination of two
drugs A and B are continuous and standardized into the interval [0,1], with a dose-
toxicity model of the form

P(Z = 1|x, y) = F(β0 + β1x + β2y + β3xy), (4)

where β1, β2 > 0, β3 ≥ 0, Z = 1 if a patient exhibits DLT within one cycle
of therapy given the dose combination (x, y) and Z = 0 otherwise, and F is a
cumulative distribution function (c.d.f). In particular, the logistic function, F(u) =
(1 + e−u)−1, has been used by several authors for single and drug combination
trials, and the probit, normal, and complementary log-log link functions were used
by Tighiouart et al. [51, 53] and Diniz et al. [12] to assess model misspecification.

Following (1) and (4), the MTD set is defined as

C =
{
(x∗, y∗) ∈ S : y∗ = F−1(θ) − β0 − β1x

∗

β2 + β3x∗

}
, (5)
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where (x∗, y∗) represents any dose combinations such that P(Z = 1|x∗, y∗) = θ .
In this context, the MTD is a hyperbola in the Cartesian plane (or a decreasing line
if β3 = 0).

Tighiouart et al. [51] reparameterized the model in (4) using the parameters
ρ10, ρ01, ρ00 corresponding to the probabilities of DLT when the levels of drugs
A and B are 1 and 0, 0 and 1, and both 0, respectively. These parameters can
be easily interpreted by clinicians, and they facilitate prior specifications since
prior information on ρ01, ρ10, and ρ00 may be available from the previous trials.
Moreover, this parametrization extends the one presented in [53], where it was
assumed that the MTD of each drug is within the range of available doses of the
corresponding agent. In this case, the MTD of each agent can lie outside the range
of available doses in the trial when the other one is held at its minimum value.

The original parametrization can be recovered as follows:

β0 = F−1(ρ00),

β1 = F−1(ρ10) − F−1(ρ00),

β2 = F−1(ρ01) − F−1(ρ00),

β3 = η,

(6)

such that 0 < ρ00 < min(ρ01, ρ10) since β1 and β2 are positive. The MTD set (5)
becomes

C =
{
(x∗, y∗) ∈ S : y∗ = F−1(θ) − F−1(ρ00) − (F−1(ρ10) − F−1(ρ00))x

∗

F−1(ρ01) − F−1(ρ00) + ηx∗

}
.

(7)

Prior and Posterior Distributions

Tighiouart et al. [51] assumed that ρ01, ρ10, and η are independent a priori
with ρ01 ∼ beta(a1, b1), ρ10 ∼ beta(a2, b2), and conditional on (ρ01, ρ10),

ρ00
min(ρ01,ρ10)

∼ beta(a3, b3). A gamma distribution with mean E(η) = a/b and

variance V ar(η) = a/b2 is placed on the interaction term η. Vague beta priors are
achieved by taking aj = bj = 1, for j = 0, 1, 2, 3, while a vague gamma prior is
chosen with a mean of 21 and a variance of 540.

Let Dn = {xi, yi}, i = 1, . . . , n, be the data collected after enrolling n patients
in the trial. The likelihood function for the model parameters is

L(ρ00, ρ10, ρ01, η) =
n∏

i=1

(H(ρ00, ρ10, ρ01, η; xi, yi))
zi

× (1 − H(ρ00, ρ10, ρ01, η; xi, yi))
1−zi ,

(8)
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where, using Eq. (6),

H(ρ00, ρ10, ρ01, η; xi , yi)

= F
(
F−1(ρ00) + (F−1(ρ10) − F−1(ρ00))xi + (F−1(ρ01) − F−1(ρ00))yi + ηxiyi

)
.

(9)

Therefore, using Bayes rule, the posterior distribution of the model parameters
ρ00, ρ01, ρ10, and η is proportional to the product of the likelihood and the prior
distribution

π(ρ00, ρ01, ρ10, η|Dn) ∝π(ρ00|ρ01, ρ10) × π(ρ01) × π(ρ10) × π(η)

× L(ρ00, ρ10, ρ01, η),
(10)

which is analytically intractable. Therefore, Monte Carlo Markov Chain (MCMC)
methods are employed such as R [37] and JAGS [35] to estimate the features of the
posterior distribution of the model parameters.

Trial Design

Tighiouart et al. [51] use a dose escalation/de-escalation algorithm that treats
cohorts of two patients simultaneously based on the EWOC criterion, where at each
stage of the trial, one subject receives a new dose of agentA for a given dose of agent
B that was previously assigned and the other patient receives a new dose of agent B
for a given dose of agent A that was previously assigned. Diniz et al. [12] extended
this algorithm to the CRM criterion. The dose escalation algorithm is illustrated in
Fig. 1.

Fig. 1 Illustration of the
dose escalation algorithm for
the first 8 patients
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Specifically, the design proceeds as follows:

1. Each patient in the first cohort of 2 patients receives the same dose combination
(xi, yi) = (0, 0) for i = 1, 2.

2. In the i-th cohort of 2 patients, for i ≥ 2,

(a) If i is even, then patient 2i − 1 receives dose (x2i−1, y2i−3) and patient 2i
receives dose (x2i−2, y2i ), where

x2i−1 = Π−1
ΓA|B=y2i−3

(α|D2i−2)

y2i = Π−1
ΓB|A=x2i−2

(α|D2i−2)

for EWOC criterion.

x2i−1 = argmin
x

|H(ρ̂00, ρ̂01, ρ̂10, η̂; x, y2i−3) − θ |

y2i = argmin
y

|H(ρ̂00, ρ̂01, ρ̂10, η̂; x2i−2, y) − θ |

for CRM criterion.
(b) If i is odd, then patient 2i − 1 receives dose (x2i−3, y2i−1) and patient 2i

receives dose (x2i , y2i−2), where

x2i = Π−1
ΓA|B=y2i−2

(α|D2i−2)

y2i−1 = Π−1
ΓB|A=x2i−3

(α|D2i−2)

for EWOC criterion.

x2i = argmin
x

|H(ρ̂00, ρ̂01, ρ̂10, η̂; x, y2i−2) − θ |

y2i−1 = argmin
y

|H(ρ̂00, ρ̂01, ρ̂10, η̂; x2i−3, y) − θ |

for CRM criterion.

3. Repeat step 2 until n patients are enrolled in the trial subject to a safety stopping
rule in which the trial is stopped if the estimated probability of DLT at the lowest
dose combination is higher than a pre-specified threshold.

Π−1
ΓA|B=y

(·|D) denotes the inverse c.d.f. of the posterior distribution of the MTD

of drug A given the level of drug B = y, and for the CRM method, ρ̂q , η̂, q ∈
{00, 01, 10} are the posterior medians.
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The EWOC criterion consists of finding a dose x� such that the posterior
probability that the MTD exceeds this dose is bounded by a feasibility bound α.
For example, in step 2 of the above algorithm, the dose of drug A is the maximum
dose level of A such that the posterior probability that the MTD of A given that
the level of drug B is y2i−3 exceeds x� is bounded by α, i.e., x� = x2i−1 =
Π−1

ΓA|B=y2i−3
(α|Di−1). Babb et al. [1] suggested a fixed feasibility boundary α equal

to 0.25. Babb and Rogatko [2] introduced an increasing feasibility boundary until
0.5 with initial α equal 0.25, while Wheeler et al. [63] suggested a similar strategy,
but conditional on the previous patient having no DLT.

The CRM criterion consists of finding a dose x� such that it minimizes the
absolute value difference between the estimated probabilities of DLT for the target
toxicity rate θ . For example, in step 2 of the above algorithm, the dose of drug A is
the dose x� that minimizes |H(ρ̂00, ρ̂01, ρ̂10, η̂; x�, y2i−3) − θ |.

At the end of the trial, the MTD (7) is estimated as

Ĉ =
{

(x∗, y∗) ∈ S : y∗ = F−1(θ) − F−1(ρ̂00) − (F−1(ρ̂10) − F−1(ρ̂00))x
∗

F−1(ρ̂01) − F−1(ρ̂00) + η̂3x
∗

}
.

(11)

The discussed approach can be easily extended to a discrete grid of doses, i.e.,
(x1, · · · , xr ) and (y1, · · · , yr ) be the doses of agents A and B, respectively. Trial
design proceeds using the algorithm described in Sect. 2.1 with the continuous doses
recommended in step 2 being rounded to the nearest discrete dose level.

At the end of the trial, a discrete set Γ of dose combinations satisfying (i) and (ii)
below is selected as MTDs. LetCi be the estimated MTD curve at the end of the trial
and denote by d((xj , yk), Ci) the Euclidian distance between the dose combination
(xj , yk) and Ci as in (14).

(i) Let ΓA =
r⋃

t=1

{
(x, yt ) : x = argmin

xj

d((xj , yt ), Ci)

}
,

ΓB =
r⋃

t=1

{
(xt , y) : y = argmin

yj

d((xt , yj ), Ci)

}
, and Γ0 = ΓB ∩ ΓA.

(ii) Let Γ = Γ0\{(x∗, y∗) : P(|P(Z = 1|(x∗, y∗)) − θ | > δ1|Dn) > δ2}.
In (i), dose combinations closest to the MTD are selected by first minimizing the

distances across the levels of drug A and then across the levels of drug B. In (ii),
we exclude MTDs from (i) that likely to be either too toxic or too low. The design
parameter δ1 is selected after consultation with a clinician, and the parameter δ2 is
selected after exploring a large number of scenarios for a given prospective trial.
Following [51], δ1 = 0.1, δ2 = 0.3.
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Design Operating Characteristics

The performance of trial designs with finite sample size is assessed based on
operating characteristics calculated from a Monte Carlo simulation study with m

replicates, often with m = 1000.
In single agents, there are several operating characteristics such as bias, mean-

squared error, average DLT rate, percentage of trials in which DLT rate is within
an optimal toxicity interval, the percentage of trials with the estimated MTD
within an optimal MTD interval, and the percentage of patients receiving optimal
doses defined by those optimal intervals among others [13]. These operating
characteristics can be divided in two classes measuring the safety of the trial design
and the efficiency to estimate the MTD curve.

However, not all of them can be easily extended when estimating the MTD as a
curve instead of a point in the dose space. Tighiouart et al. [53] presented some of
these extensions.

Safety

The average percentage of DLT and the percentage of trials that have a DLT rate
exceeding θ + δ are, respectively, given by

θ̄ = 1

m

m∑
i=1

θ̂i (12)

θ̄δ = 1

m

m∑
i=1

1(θ̂i > θ + δ) (13)

where θ̂i is the estimated DLT rate for ith replicate for i = 1, . . . , m. It is expected
that θ̄ is close to θ , and the threshold δ = 0.1 is considered to be an indication of an
excessive DLT rate.

Efficiency

The pointwise average relative minimum distance from the true MTD curve to
the estimated MTD curve can be interpreted as the pointwise average bias when
estimating the MTD.

LetCi be the estimatedMTD curve for the ith Monte Carlo replicate andCtrue be
the true MTD curve. For every point (x, y) ∈ Ctrue, the minimum relative distance
of the point (x, y) on the true MTD curve to the estimated MTD curve Ci can be
calculated as follows:

d
(i)
(x,y) = sign(y′ − y) × min{(x∗,y∗):(x∗,y∗)∈Ci }((x − x∗)2 + (y − y∗)2)1/2, (14)
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where y′ is such that (x, y′) ∈ Ci for i = 1, . . . , m. If the point (x, y) is below Ci ,
then d

(i)
(x,y) is positive. Otherwise, it is negative.

Then, the pointwise average bias is defined as follows:

d(x,y) = 1

m

m∑
i=1

d
(i)
(x,y). (15)

As the magnitude of bias is relative to the true MTD, it is also important to
quantify the percentage of trials satisfying a given condition relative to the true
MTD value. Let Δ(x, y) be the Euclidean distance between the minimum dose
combination (0, 0) and the point (x, y) on the true MTD curve, such that the
minimum distance of the point (x, y) from the true MTD curve to the estimated
MTD curve Ci is no more than (100 × p)% of the distance of the true MTD from
the minimum dose,

R(x,y) = 1

m

m∑
i=1

I
(
|d(i)

(x,y)| ≤ pΔ(x, y)
)

, (16)

where 0 < p < 1.
One can interpret (16) as drawing a circle with center (x, y) on the true MTD

curve and radius pΔ(x, y), and then the percent of trials with the MTD curve
estimate Ci within this circle is given by R(x,y). Therefore, the statistic (16)
measures the percentage of correct recommendations.

Results

The methodology for a phase I trial proposed by Tighiouart et al. [51, 53] and Diniz
et al. [12] has also been used by Diniz et al. [10], Tighiouart [47], and Jiménez
et al. [21]. Therefore, there are several scenarios available in the literature with
different values for ρ00, ρ01, ρ10, and η. For illustration purposes, we present the
operating characteristics of one of these multiple scenarios based on 2000 simulated
trials. Dose escalation proceeds following EWOC and CRM criteria with the target
toxicity rate θ = 0.33. For EWOC, the feasibility boundary α starts at 0.25 with an
increment of 0.05 for each new cohort of patients up to 0.5. Cohorts of two patients
were accrued with the total sample size of 40 patients.

Assuming (ρ00, ρ10, ρ01, η) = (1, 0.01, 0.6, 10) from [51], Table 1 shows safety
operating characteristics indicating that the proposed designs rarely surpass the
toxicity rate given that one drug has low toxicity. Figure 2A shows the estimated
MTD, with Fig. 2B indicating increasing bias at the edges of the MTD curves,
varying from −0.06 to 0.06 for EWOC and −0.045 to 0.045 for CRM. The
percentage of correct recommendation in Fig. 2C displays high values for both
tolerances p = 0.1, 0.2 reaching the minimum values on the far left edge of MTD
curve, with 63% for EWOC and 74% for CRM. Therefore, the CRM criterion
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Table 1 Safety results from the simulated scenario presented in Fig. 2 from [51]

Design
Average % of
toxicities

% of trials with DLT rate
> θ + 0.05

% of trials with DLT rate
> θ + 0.10

CRM 27.21 0.20 0.00

EWOC 25.25 0.05 0.00
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Fig. 2 Simulated scenario taken from [51], (ρ00, ρ10, ρ01, η) = (1, 0.01, 0.6, 10). In (A), we
show the true and estimated MTD curves as defined in Eq. (7) as well as each final recommended
dose combination after simulating 1000 trials. In (B) and (C), we observe the bias and the
percentage of correct recommendation, respectively, for each value of dose for drug A contained
in the MTD curve

presents superior operating characteristics for this scenario. Overall, both designs
have good operating characteristics and are able to estimate the MTD curve while
keeping the proportion of DLTs within reasonable boundaries.
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2.2 Attributing Dose-Limiting Toxicities

Model

Following [22] and using the same notation as the one defined in Sect. 2.1, the
doses of drugs A and B are standardized to be in a desired interval. The marginal
probability of DLT of each compound is defined in terms of the power model (i.e.,
P(Z = 1|x) = xα and P(Z = 1|y) = yβ ), and we specify the joint probability of
DLT using the Gumbel copula model (see [31]) as

P(δA, δB |x, y)

= (xα)δA
(
1 − xα

)1−δA (yβ)δB
(
1 − yβ

)1−δB + (−1)(δA+δB)γ (x, y),
(17)

where γ (x, y) = xα (1 − xα) yβ
(
1 − yβ

)
e−γ −1
e−γ +1 , δA is the binary indicator of DLT

attributed to drug A, δB is the binary indicator of DLT attributed to drug B, and γ

is the interaction parameter. A sufficient condition for the monotonicity assumption
to hold is to assume that xα and yβ are the increasing functions (i.e., α > 0 and
β > 0). Using (17), if the DLT is attributed exclusively to drug A, then

P(δA = 1, δB = 0|x, y) = πA = xα(1 − yβ) − γ (x, y). (18)

If the DLT is attributed exclusively to drug B, then

P(δA = 0, δB = 1|x, y) = πB = yβ(1 − xα) − γ (x, y). (19)

If the DLT is attributed to both A and B, then

P(δA = 1, δB = 1|x, y) = πAB = xαyβ + γ (x, y). (20)

Equation (18) represents the probability that a DLT is caused only by drug A.
This can happen, for example, when a type of DLT of taxotere (A), such as grade
4 neutropenia, is observed. However, this type of DLT can never be observed with
metformin (B). This can also happen when the clinician attributes a grade 4 diarrhea
to taxotere (A) but not to metformin (B) in the case of a low-dose level of this later
even though both drugs have this common type of side effect. The fact that dose
level y is present in Eq. (18) is a result of the joint modeling of the two marginals
and accounts for the probability that drug B does not cause a DLT. This later case
is, of course, based on the clinician’s judgment. Equations (19) and (20) can be
interpreted similarly.

The overall probability of DLT is calculated following [65] as the sum
of (18), (19), and (20), which translates into

P(DLT|x, y) = π = xα + yβ − xαyβ − γ (x, y). (21)
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To calculate the MTD, re-write Eq. (1) as a second-degree polynomial in yβ and
solve for the solutions. This allows us to define the MTD set C as

C =
⎧⎨
⎩(x∗, y∗) : y∗ =

[
−(1 − xα∗ − κ) ±√(1 − xα∗ − κ)2 − 4κ(xα∗ − θ)

2κ

] 1
β

⎫⎬
⎭ ,

(22)
where

κ = xα∗ (1 − xα∗ )
e−γ − 1

e−γ + 1
.

Among patients treated with dose combination (x, y) who exhibit DLT, suppose
that an unknown fraction η of these patients have a DLT with known attribution,
i.e., the clinician knows if the DLT is caused by drug A only, or drug B only, or
both drugs A and B. Let A be the indicator of DLT attribution when Z = 1. It
follows that for each patient treated with dose combination (x, y), there are five
possible toxicity outcomes. This is illustrated in the chance tree diagram in Fig. 3.
Using Eqs. (18), (19), (20), (21), and Fig. 3, we can define the contributions to the
likelihood from each of the five observable outcomes as defined in Table 2.

The likelihood function is defined as

L(α, β, γ, η) =
n∏

i=1

[(
ηπ

(δAi
,δBi

)

i

)Ai

(πi (1 − η))1−Ai

]Zi

(1−πi)
1−Zi , (23)
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Fig. 3 A chance tree illustrating the 5 possible outcomes we can find in a trial
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Table 2 Contributions to the likelihood function based on the observed outcomes: toxicity,
attribution, attribution to drug A (δA), and attribution to drug B (δB ) for each patient

Toxicity (Z) Attribution (A) δA δB Likelihood

0 – – – 1 − π = 1 − [xα + yβ − xα × yβ − γ (x, y)
]

1 0 – – π × (1 − η) = [xα + yβ − xα × yβ − γ (x, y)
]× (1 − η)

1 1 1 0 π × η × π(1,0)

π
= η × [xα(1 − yβ) − γ (x, y)

]
1 1 0 1 π × η × π(0,1)

π
= η × [yβ(1 − xα) − γ (x, y)

]
1 1 1 1 π × η × π(1,1)

π
= η × [xαyβ + γ (x, y)

]

and the joint posterior probability distribution of the model parameters as

P(α, β, γ, η|x, y, δA, δB) ∝ P(α)P (β)P (γ )P (η) × L(α, β, γ, η). (24)

Using Eq. (24), we can easily sample and obtain MCMC estimates of α, β, γ ,
and η.

Trial Design

Dose escalation/de-escalation proceeds using the following modified univariate
continual reassessment method (CRM) [32] described in Sect. 2.1:

1. Each patient in the first cohort of 2 patients receives the same dose combination
(xi, yi) = (0, 0) for i = 1, 2.

2. In the i-th cohort of 2 patients, for i ≥ 2,

(a) If i is even, then patient 2i − 1 receives dose (x2i−1, y2i−3) and patient 2i
receives dose (x2i−2, y2i ), where

x2i−1 = argmin
x

∣∣P̂rob(Z = 1|x, y2i−3) − θ
∣∣ ,

y2i = argmin
y

∣∣P̂rob(Z = 1|x2i−2, y) − θ
∣∣ .

If a DLT was observed in the previous cohort of two patients and was
attributable to drug A, then x2i−1 is further restricted to be no more than
x2i−3. On the other hand, if a DLT was observed in the previous cohort of
two patients and was attributable to drug B, then y2i is further restricted to
be no more than y2i−2.

(b) If i is odd, then patient 2i − 1 receives dose (x2i−3, y2i−1) and patient 2i
receives dose (x2i , y2i−2), where

x2i = argmin
x

∣∣P̂rob(Z = 1|x, y2i−2) − θ
∣∣

y2i−1 = argmin
y

∣∣P̂rob(Z = 1|x2i−3, y) − θ
∣∣ .
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If a DLT was observed in the previous cohort of two patients and was
attributable to drug A, then x2i is further restricted to be no more than x2i−2.
On the other hand, if a DLT was observed in the previous cohort of two
patients and was attributable to drug B, then y2i−1 is further restricted to be
no more than y2i−3.

3. Repeat step 2 until n patients are enrolled in the trial subject to a safety stopping
rule in which the trial is stopped if the estimated probability of DLT at the lowest
dose combination is higher than a pre-specified threshold.

Results

An extensive simulation study is performed by Jimenez et al. [22]. For illustration
purposes, in Fig. 4, we present the results of one scenario that illustrates the main
conclusion of this chapter.
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Fig. 4 Simulated scenario taken from [22]. In (A), we show the true and estimated MTD curves as
defined in Eq. (22) as well as each final recommended dose combination after simulating 1000 trials
for different levels of toxicity attribution. In (B) and (C), we observe the bias and the percentage
of correct recommendation, respectively, for each value of X contained in the MTD curve
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Table 3 Safety results from the simulated scenario presented in Fig. 4 from [22]

η Average % of toxicities
% of trials with DLT rate
> θ + 0.05

% of trials with DLT rate
> θ + 0.10

0.00 33.62 25.90 4.10

0.10 32.67 22.60 4.80

0.25 31.55 17.60 2.70

0.40 30.70 13.30 2.00

Jimenez et al. [22] evaluate the effect of toxicity attribution in several scenarios
assuming proportions of attributed DLTs of 0%, 10%, 25% and 40% (i.e., η =
{0, 0.1, 0.25, 0.4}). These values are reasonable because higher values of η in
practice are very rare. In general, increasing the value of η increases the pointwise
percent of MTD recommendation and reduces bias. The approach of partial toxicity
attribution generates safe trial designs, as presented in Table 3, and efficient
estimation of the MTD. Further details about the approach and computer codes can
be found in [22].

2.3 Adding a Baseline Covariate

Although chemotherapy and radiotherapy are still the main cancer treatments for
tumors after surgical excision, these conventional therapies may be combined
with targeted agents to enhance treatment efficacy. Traditional drug combination
designs as presented in the previous section assume that the patient population is
homogeneous of treatment tolerance. Therefore, a design that specifies the dose-
toxicity relationship given a baseline covariate that indicates when a patient is more
susceptible to a given targeted agent is desirable for drug combinations.

Model

Diniz et al. [10] proposed a parametric model to identify tolerable dose combi-
nations of two synergistic drugs A and B given a patient with a binary baseline
covariate with value w. Assuming the same notation used along this chapter, the
proposed model is defined as

P(Z = 1|x, y,w) = F(β0 + β1x + β2y + β3xy + β4w). (25)

The MTD for a patient with covariate value w is defined as the set of combina-
tions (x∗, y∗) such that

C =
{
(x∗, y∗) ∈ S : y∗ = F−1(θ) − β0 − β1x

∗ − β4w

β2 + β3x∗

}
. (26)
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The model (25) is reparameterized to allow a more meaningful prior elicitation
defining ρ000 as the probability of DLTwhen the level of drugsA andB is minimum,
and w = 0; ρ100 as the probability of DLT when the level of drug A is maximum,
the level of drug Y is minimum and w = 0; ρ101 as the probability of DLT when the
level of drug X is maximum, the level of drug B is minimum and w = 1; ρ010 as
the probability of DLT when the level of drugs A is minimum, the level of drug B

is maximum, and w = 0. Then, it follows that

β0 = F−1(ρ000)

β1 = F−1(ρ100) − F−1(ρ000)

β2 = F−1(ρ010) − F−1(ρ000)

β3 = η

β4 = F−1(ρ101) − F−1(ρ100). (27)

The MTD set defined in (26) can be written as

C =
{
(x∗, y∗) ∈ S : y∗ = G(θ, ρ000) − (G(ρ100, ρ000))x

∗−(G(ρ101, ρ100))w

G(ρ010, ρ000) + ηx∗
}

,

(28)

where G(a, b) = F−1(a) − F−1(b).
Let Dn = {(xi, yi, zi , δi), i = 1, . . . , n} be the data after enrolling n patients in

the trial. The likelihood function under the reparameterization is

L(ρ000, ρ100, ρ101, ρ010, η|Dn) =
n∏

i=1

(H(ρ000, ρ100, ρ101, ρ010, η; xi, yi , wi))
δi

× (1 − H(ρ000, ρ100, ρ101, ρ010, η; xi, yi , zi ))
1−δi ,

(29)
where

H(ρ000, ρ100, ρ101, ρ010, η; xi, yi, zi)

= F(F−1(ρ000) + (F−1(ρ100) − F−1(ρ000))xi + (F−1(ρ010) − F−1(ρ000))yi

+ (F−1(ρ101) − F−1(ρ100))wi + β3xiyi).

(30)

Prior and Posterior Distributions

Diniz et al. [10] consider the priors ρ100 ∼ beta(a1, b1), ρ010 ∼ beta(a3, b3),
ρ101 ∼ beta(a2, b2), ρ000/min(ρ100, ρ010) ∼ beta(a0, b0), and η ∼ gamma(a, b)
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with meanE(η) = a/b and variance V ar(η) = a/b2. See Sect. 2.1 for the definition
of the hyperparameter values of each distribution. The posterior distribution is given
by

P(ρ000, ρ100, ρ101, ρ010, η|Dn) ∝
n∏

i=1

(H(ρ000, ρ100, ρ101, ρ010, η; xi, yi, wi))
Zi

× (1 − H(ρ000, ρ100, ρ101, ρ010, η; xi, yi, wi))
1−Zi

× P(ρ000|ρ100, ρ010)P (ρ100)P (ρ101)P (ρ010)P (η).

(31)

Trial Design

The algorithm for dose escalation/de-escalation is similar to the one discussed
in Sect. 2.1 with the additional binary covariate information. It uses the EWOC
principle [1] where at each stage of the trial, we seek a dose of one agent using
the current posterior distribution of the MTD of the agent given the current dose of
the other agent and the next patient’s baseline covariate value. Specifically, for the
i-th cohort of two patients, the design proceeds as follows:

1. If i is even, patient (2i − 1) receives dose (x2i−3, y2i−1) and patient 2i receives
dose (x2i , y2i−2), where y2i−1 = Π−1

ΓB|A=x2i−3,W=w2i−1
(α|D2i−2) and x2i =

Π−1
ΓA|B=y2i−2,Z=z2i

(α|D2i−2). Here, Π−1
ΓA|B=y,W=w

(α|D) is the inverse cumulative

distribution function of the posterior distribution, π(ΓA|B=y,Z=z|D).
2. Similarly, if i is odd, patient (2i − 1)receives dose (x2i−1, y2i−3) and patient

2i receives dose (x2i−2, y2i ), where x2i−1 = Π−1
ΓA|B=y2i−3,W=w2i−1

(α|D2i−2) and

y2i = Π−1
ΓB|A=x2i−2,W=w2i

(α|D2i−2).

As described in Sect. 2.1, dose escalation is further restricted to be no more than
a pre-specified fraction of the dose range of the corresponding agent as well as
stopping rules.

At the completion of the trial, an estimate of the MTD curve for w = 0, 1 is
obtained using Eq. (28) as

Ĉ =
{
(x∗, y∗) ∈ S : y∗ = G(θ, ρ̂000) − (G(ρ̂100, ρ̂000))x

∗ − (G(ρ̂101, ρ̂100))w

G(ρ̂010, ρ̂000) + β̂3x∗

}
,

(32)

where G(a, b) = F−1(a) − F−1(b), and ρ̂000, ρ̂100, ρ̂101, ρ̂010, and β̂3 are the
posterior medians given the data Dn.
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Table 4 Safety results from the simulated scenario presented in Fig. 5 from [10]

Covariate (W) Average % of toxicities
% of trials with DLT
rate > θ + 0.05

% of trials with DLT
rate > θ + 0.10

Overall 30.70 4.80 0.40

0 22.10 0.60 0.10

1 39.40 58.80 32.80

Results

In [10] several scenarios we evaluated, including a comparison between including
and not including a baseline covariate in parallel trials. We illustrate the design
for drug combination with a baseline covariate using a simulation study with 1000
trials. Dose escalation proceeds following EWOC criterion with the target toxicity
rate θ = 0.33, and the feasibility boundary α starts at 0.25 with an increment of
0.05 for each new cohort of patients up to 0.5. Cohorts of two patients were accrued
with the total sample size of 40 patients such that two sub-groups of 20 patients
randomly accrued over each trial.

Table 4 shows safety operating characteristics indicating that the proposed design
is able to control the overall average DLT, with higher overdose for patients with
W = 1 because they are more susceptible, i.e., their MTD curve is closer to the
minimum dose. Figure 5A shows the estimated MTD for both sub-groups, with
Fig. 5B indicating increasing bias at the edges of the MTD curves, but still with
negligible absolute values. The percentage of correct recommendation in Fig. 5C
displays high values for both tolerances p = 0.1, 0.2 whenW = 0 and only p = 0.2
when W = 1.

3 Designs for Phase I–II Clinical Trials

3.1 Binary Endpoint

Let Ĉ be the estimated MTD curve obtained in Eq. (11) and suppose it is defined
for (x, y) ∈ [X1, X2] × [Y1, Y2] ⊂ [Xmin, Xmax] × [Ymin, Ymax]. Let E be the
indicator of treatment response, E = 1 if we have a positive response, and E = 0
otherwise. Let p0 be the probability of efficacy of the standard-of-care treatment.
The goal of the stage II trial is to identify dose combinations (x, y) ∈ Ĉ such that
P(E = 1|(x, y)) > p0.

Model

Tighiouart [47] models the probability of response by first mapping dose combina-
tions on Ĉ to [0, 1] as follows. For (x, y) ∈ Ĉ, let x be the vertical projection of
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Fig. 5 Simulated scenario taken from [10], (ρ000, ρ100, ρ010, ρ101, η) = (0.01, 0.40, 0.40,
0.80, 10). In (A), we show the true and estimated MTD curves as defined in Eq. (28) as well as
each final recommended dose combination after simulating 1000 trials. In (B) and (C), we observe
the bias and the percentage of correct recommendation, respectively, for each value of drug A
contained in the MTD curve

(x, y) on the interval [X, Y ] and z = h(x) = (x −X)/(Y −X). z can be considered
as a dose combination since there is a one-to-one transformation mapping z ∈ [0, 1]
to (x, y) ∈ Ĉ. Let

P(E = 1|z,ψ) = F(f (z;ψ)) (33)

be the probability of efficacy, where F is a known link function, f (z;ψ) is
unknown, and ψ is an unknown parameter. A flexible way to model the probability
of efficacy along the MTD curve is the cubic spline function
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f (z;ψ) = β0 + β1z + β2z
2 +

k∑
j=3

βj (z − κj )
3+, (34)

where ψ = (β, κ), β = (β0, . . . , βk), κ = (κ3, . . . , κk) with κ3 = 0. Let Dm =
{(zi, Ei), i = 1, . . . , m} be the data after enrolling m patients in the trial, where Ei

is the response of the i-th patient treated with dose combination zi and let π(ψ) be
a prior density on the parameter ψ . The posterior distribution is

π(ψ |Dm) ∝
m∏

i=1

[F(f (zi;ψ))]Ei [1 − F(f (zi;ψ))]1−Ei π(ψ). (35)

Trial Design

This stage of the trial makes use of response-adaptive randomization to allocate
patients to dose combinations that are likely to have high probability of efficacy. Let
pz be the probability of efficacy at dose combination z and p0 be the probability of
a treatment not worthy of further investigation. To test the hypothesis

H0 : pz ≤ p0 for all z versus H1 : pz > p0 for some z,

we enroll n patients in the trial according to the following design:

1. The first n1 patients are randomly assigned to dose combinations z1, . . . , zn1

equally spaced along the MTD curve Cest.
2. Update the posterior in (35) and obtain a Bayes estimate ψ̂ .
3. Generate n2 dose combinations from the standardized density F(f (z; ψ̂)) and

assign them to the next cohort of n2 patients.
4. Repeat steps (2) and (3) until n patients have been enrolled subject to pre-

specified stopping rules.

This algorithm can be viewed as an extension of a Bayesian adaptive design to
select a superior arm among a finite number of arms [3] to selecting a superior arm
from an infinite number of arms.

Decision Rule At the end of the trial, accept H1 if

Maxz[P(F(f (z;ψ)) > p0|Dn)] > δu, (36)

where δu is a design parameter.

Stopping Rules For ethical considerations and to avoid exposing patients to sub-
therapeutic doses, the trial may be stopped for futility after j patients are evaluable
for efficacy if there is strong evidence that none of the dose combinations are
promising, i.e., Maxz[P(F(f (z;ψ)) > p0|Dj)] < δ0, where δ0 is a small pre-
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specified threshold. In cases where the investigator is interested in stopping the trial
early for superiority, the trial may be terminated after j patients are evaluable for
efficacy if Maxz[P(F(f (z;ψ)) > p0|Dj)] > δ1, where δ1 ≥ δu is a pre-specified
threshold and the corresponding dose combination z∗ = argmaxu{P(F(f (u;ψ)) >

p0|Dj)} is selected for future randomized phase II or III studies.

Results

Performance of this design depends on a number of parameters including the
sample size n, the probability of a poor treatment efficacy p0, design parameter
δu, and desired effect size. Using extensive simulations, [47] showed that this phase
2 response-adaptive design has good operating characteristics using sample sizes
and effect sizes comparable to single-arm phase 2 trials with one dose level. For
illustration purpose, we provide in Fig. 6 the 6 scenarios presented in [47], where
scenarios A–C favor the null hypothesis and scenarios D–F favor the alternative
hypothesis (see Sect. 3.1). These were used to derive the operating characteristics
of a combination trial cisplatin–cabazitaxel in advanced prostate cancer patients
with clinical benefit as the treatment response. The probability of a poor treatment
response is p0 = 0.15 and the effect size is 0.25. Thirty patients were enrolled
in stage 2 following 30 patients in stage 1. Scenarios A–C have estimated powers
of 0.896, 0.921, and 0.81, respectively. Scenarios D–F have estimated type-I error
probabilities of 0.1, 0.19, and 0.143, respectively. Additional results such as average
bias and percentage of correct recommendation, and safety for stage 1 are presented
in [47] as well as in its supplementary material. These results allow to conclude that
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Fig. 6 True efficacy curves, mean posterior probability of efficacy curves, and estimated efficacy
curves for different dose combinations (z) in 6 scenarios under H0 and H1. The grey-solid lines
represent the null probability of efficacy p0 (i.e., the probability of a poor treatment efficacy) and
the grey-dashed lines represent the target probability of efficacy (i.e., the effect size)
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this design has, in general, good operating characteristics allowing to identify the
dose combination that maximizes the efficacy.

3.2 Survival Endpoint

Introduction

In this section, we review the work of Jiménez et al. [21] that extends the
methodology in [47] from binary efficacy endpoint to time-to-event endpoint.

Model

Jiménez et al. [21] model the time to progression as a Weibull distribution with
probability density function

f (t; z) = k

λ(z;ψ)

(
t

λ(z;ψ)

)k−1

exp

(
− t

λ(z;ψ)

)k

, (37)

where λ > 0 is the shape parameter and k > 0 is the scale parameter.
The median TTP is

Med(z) = λ(z;ψ)(log 2)
1
k . (38)

A flexible way of modeling the median TTP along the MTD curve is through the
use of the cubic spline function

λ(z;ψ) = exp

⎛
⎝β0 + β1z + β2z

2 +
5∑

j=3

βj (z − φj )
3+

⎞
⎠ , (39)

where ψ = (β,φ), with β = (β0, . . . , β5) and φ = (φ3, . . . , φ5), being φ3 = 0.
Let Dn = {(zi, ti , δi), i = 1 . . . , n} be the data after enrolling n patients in the trial
where t represents the TTP or last follow-up, and δ the censoring status, and let
π(ψ, k) be the joint prior density on the parameter vectors ψ and k. The posterior
distribution is

π(ψ, k|Dm) ∝ π(ψ, k)

n∏
i=1

[
k

λ(zi;ψ)

(
ti

λ(zi;ψ)

)k−1
]δi

× exp

(
− ti

λ(zi;ψ)

)k

.

(40)
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Let Medz be the median TTP at dose combination z, and let Med0 be the median
TTP of the standard-of-care treatment. We propose an adaptive design in order to
test the hypothesis

H0 : Medz ≤ Med0 for all z vs.

H1 : Medz > Med0 for some z.
(41)

It is important to keep in mind that the reason why [21] propose a model with a
fairly large number of parameters is because they work in a continuous dose space.
In a discrete dose space, it is not common to test so many dose combinations. Also,
a model with a large number of parameters would most likely be non-identifiable,
even with large sample sizes. The use of continuous dose combinations is not
uncommon in dose-finding studies since the drugs are administered intravenously
and this allows to administer any drug concentration we desire.

Trial Design

This stage of the trial makes use of response-adaptive randomization to decide in
which dose combinations cohorts of patients are allocated. The algorithm is similar
to the one discussed in Sect. 3.1 with the difference that in this one [21] work with
time-to-event data:

1. We first treat n1 patients at dose combinations x1, . . . , xn1 , which are equally
spaced along the estimated maximum tolerated dose combination curve Cest.

2. Obtain posterior distribution of ψ and k given the data Dn1 using Eq. (40). Note
that prior to obtaining the posterior distribution of the model parameters, patients
who have not progressed are right censored.

3. Generate n2 dose combinations from the standardized density Med(z) =
λ(z;ψ)(log 2)

1
k , and assign them to the next n2 patients.

4. Repeat steps 2 and 3 until a total of n patients have been enrolled in the trial
subject to pre-specified stopping rules.

Decision Rule: At the end of the trial, we reject the null hypothesis if
Maxz{P(Med(z;ψ i ) > Med0|Dn,i)} > δu, where δu is a design parameter.

Stopping Rule (Safety): For a prospective trial, a separate stopping rule for safety
using, for example, a Bayesian continuous monitoring for toxicity (see e.g., [66])
should be implemented as discussed in [47].

Stopping Rule (Futility): For ethical reasons and to avoid treating patients at sub-
therapeutic dose levels, we will stop the trial for futility if there is strong evidence
that none of the dose combinations are promising, i.e., Maxz{P(Med(z;ψ i ) >

Med0|Dn,i)} < δ0, where δ0 is a design parameter.
Stopping Rule (Efficacy): For ethical reasons, if the investigator considers

there is enough evidence in favor of one or more dose combinations being
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tested, and no further patients need to be enrolled, the trial can be terminated if
Maxz{P(Med(z;ψ i ) > Med0|Dn,i)} > δ1, where δ1 ≥ δu is a study parameter and
the dose combination zopt = arg maxv{P(Med(v;ψ i ) > Med0|Dn,i)} is selected for
further randomized phase II or phase III clinical trials.

The rational for this approach is based on the rejection-sampling principle, which
can be used to generate observations from a target distribution (in our case (38)).
Hence, if we generate data from (38), we will be allocating patients to dose
combinations that are more likely to have higher TTP according to the current
estimation of (38) (i.e., the shape of (38) will be updated as patients enroll).

Results

An extensive simulation with several scenarios was performed by Jiménez et al.
[21]. For illustration purposes, in Fig. 7, we show one scenario that summarizes the
main conclusions of this chapter.

In Fig. 7A, we show the dose–efficacy relationship within the MTD curves
selected in stage 1. For this particular case, this curve represents a scenario where
high levels of drug Y and low levels of X are more efficacious. In Fig. 7B, we
observe how the proposed design identifies lower levels of z, which represents high
levels of drug Y and low levels of X as the more efficacious dose combinations.

In Table 5, we observe the corresponding Bayesian power, type-I error proba-
bility, and type-I + type-II error probability with effect sizes of 1.5 and 2 months
and accrual rates of 1 and 2 patients per month. Additional results are presented
in the supplementary material of [21] such as average bias and percentage of
correct recommendation. These results allow to conclude that this design has, in
general, good operating characteristics allowing to identify the dose combination
that maximizes the efficacy.
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Fig. 7 Median TTP (A) and posterior probability of having Med(z, ψ) >null Median TTP (B) for
different dose combinations (z) under H0 and H1, with effect sizes (ES) of 1.5 and 2 months and
accrual rates (AR) of 1 and 2 patients per month
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Table 5 Bayesian power, type-I error probability, and type-I + type-II error probability with effect
sizes of 1.5 and 2 months and accrual rates of 1 and 2 patients per month

Power
(effect
size of
1.5
months)

Power
(effect
size of 2
months)

Probability
of type-I
error

Probability of type-I
+ type-II errors
(effect size of 1.5
months)

Probability of type-I
+ type-II errors
(effect size of 2
months)

δu δu δu δu δu

Accrual rate 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9

1 0.924 0.844 0.971 0.927 0.227 0.121 0.303 0.277 0.256 0.194

2 0.824 0.674 0.920 0.829 0.107 0.048 0.283 0.374 0.187 0.219

4 Discussion

The use of drug combinations in early phase cancer clinical trials has been
extensively studied over the last decade. The overall goal of early phase clinical
trials in oncology is to find a set of one or more safe dose combinations that
maximize efficacy. To achieve this goal, we propose that, in the first step, a phase
I trial is designed to identify one or more maximum tolerated doses (MTDs).
Following this step, a phase II trial is designed to search for a combination that
maximizes efficacy within the set of MTDs. It is worth noting that the main objective
of the majority of phase I designs is to identify a single MTD. We recommend the
use of designs that select more than one MTD for efficacy trials as this may result
in less failed phase II trials.

In this chapter, we focused on dose-finding methods tailored for drug combi-
nations with continuous dose levels. The use of continuous dose levels is very
common in clinical oncology research, especially in early phase trials where the
existing or first-in-human drugs are delivered as infusions intravenously. In addition,
discretizing the dose levels may lead to a recommended phase 2 dose that has
either a small or high probability of DLT relative to the target risk of DLT, if
the true MTD is not part of the discrete set of doses. As showed by Diniz et al.
[13], continuous dose schemes generally have equal or better safety and efficiency
results than the discrete dose schemes, although alternative approaches to improve
efficiency of discrete dose schemes have been recently published where new doses
are added during the trial into the original discrete set [18]. In cases where there
is no information about the location of the MTD, a continuous dose scheme would
certainly be much more appealing. Furthermore, although the seminal CRM design
and several related dose-finding methods are based on regression models, their
dose escalation algorithms are based on pre-specified skeletons to incorporate prior
information, which cannot be adapted to continuous doses.

In phase I trial designs, consecutive cohorts of two patients were treated
simultaneously with different dose combinations to better explore the space of
doses. The method was studied extensively by Tighiouart et al. [50, 51, 53] under
the EWOC criterion and by Diniz et al. [12] and Jimenez et al. [22] using the
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CRM principle via simulations. Comparisons of EWOC and CRM in the settings
of dichotomous DLTs and ordinal toxicity grades can be found in [11].

Most drug combination designs assume that the binary DLT is attributable to
either one of the drugs or both. This is a reasonable assumption because of the
rarity of cancer drugs with non-overlapping toxicities of any grade. However, certain
combinations may lead to some non-overlapping toxicities. For instance, when
combining taxotere with metformin, an occurrence of a grade 4 neutropenia can only
be attributed to taxotere and not to metformin. This event will guide the clinician to
hold the current dose of metformin and decrease the taxotere dose for the next cohort
of patients, even if the statistical algorithm recommends a dose decrease for both
agents. We described the work developed by Jimenez et al. [22], where a clinician
can attribute the DLT to one or more drugs in an unknown fraction of attributable
DLTs by extending the previous statistical models. This is useful in a situation where
the two drugs do not have many overlapping toxicities (see, e.g. [28]). However, it
is also important to note that this method relies on clinical judgment regarding DLT
attribution.

Another approach reviewed in this chapter is the inclusion of a baseline covariate
to estimate patient-specific MTD curves [10]. We found that in the presence of a
clinically significant baseline covariate, the design with a covariate had a smaller
pointwise average bias and a higher percent of MTD recommendation relative to a
design that ignores the covariate. Moreover, we stand to lose little in terms of safety
of the trial and efficiency of the estimated MTD curve, if we include a practically
not important covariate in the model.

In the second part of this chapter, we described two-stage designs developed by
Tighiouart [47] and Jiménez et al. [21] where the estimated MTD curve from a
phase I trial is used as input to a phase II efficacy trial using Bayesian adaptive
randomization. Two-stage designs are required when it takes several cycles of
therapy to resolve treatment efficacy or patient characteristics in phases I and II
are clinically different. For instance, efficacy in the cisplatin–cabazitaxel trial that
was described in [47] is resolved after three cycles of treatment, and patients in
stage I must have metastatic, castration resistant prostate cancer, whereas patients in
stage II must have visceral metastasis. As mentioned in these articles, these designs
can be viewed as an extension of the Bayesian adaptive design comparing a finite
number of arms [3] to that with an infinite number of arms. In particular, when the
dose levels of the two agents are discrete, methods such as the ones described in
[45, 59, 62] can be used to identify a set of MTDs in stage I, and the trial in stage
II can select the most efficacious dose by adaptive randomization. One limitation of
these two-stage approaches is that uncertainty of the estimated MTD curve in stage I
is not taken into account in stage II of the design, which implies that the MTD curve
is not updated as a result of observing DLTs in stage II. However, this problem
is also inherent to single-agent two-stage designs where the MTD from the phase
I trial is used in phase II studies. In both cases, safety is monitored continuously
during the second stage of the design. A potential alternative design would account
for first-, second-, and third-cycle DLT in addition to efficacy outcome at each cycle.
In addition, the nature of DLT (reversible vs. non-reversible) should be taken into



Designs of Early Phase Cancer Trials with Drug Combinations 157

account since patients with a reversible DLT are usually treated for that side effect
and kept in the trial with dose reduction in subsequent cycles. These topics are the
subject of future research.

Successful implementation of these designs requires active involvement and
collaboration between the clinicians and the biostatisticians in many situations. This
includes the design stage, prior distribution calibration, specification of scenarios
with various locations of the true MTD set of doses or safe and efficacious doses,
and computations of sequential posterior probabilities for dose allocation. This
process may be challenging since it requires special expertise of biostatisticians
who can program MCMC algorithms, adapt the existing computer codes to their
trial, and modify them as needed since every trial is unique. The process is also
time-consuming at the design stage to derive the operating characteristics. An R
package EWOC2 for designing the trials in [51] can be found in [25], and R codes
for deriving the operating characteristics of the trials in [21, 22, 47] can be found in
the supplementary material of the corresponding journal web site. An application of
the phase I–II design in Sect. 3.1 is described in [47] where the clinician Dr. Posadas
worked with Dr. Tighiouart in calibrating the prior distributions of the model
parameters of the phase I part using preliminary data from a similar phase I trial,
using the same combination of cabazitaxel and cisplatin. Operating characteristics
were derived based on scenarios elicited by the clinician regarding the location of
the true MTD curve and expected clinical benefit rate. Other recent applications of
these methods for single-agent trials were designed by Drs. Tighiouart and Rogatko
and published in [36, 57].
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