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1 Introduction

Supersymmetry has been playing a special role in the study of quantum properties of
gravity, mainly because of its beneficial effects in taming ultraviolet divergences in the
quantum theory. Related to this, the existence of an amount of supersymmetry preserved
by a supergravity vacuum solution was shown to imply the stability of the latter, by virtue
of positive-energy theorems [1–3].

An open question arises as to whether, in a theory with a maximally-supersymmetric
vacuum, supersymmetry of a non-vacuum solution can prevent it from decaying into a non-
supersymmetric one. A necessary condition for this to occur is that the free-energy of the
former exceeds that of the latter. Remarkably, in this letter, we find that, for a specific class
of supergravity theories [4], a supersymmetric hairy black hole whose thermodynamic free
energy exceeds that of a non-supersymmetric Reissner-Nordström-AdS extremal solution
within the same canonical ensemble, defined by fixed common values of their charges.

Phase transitions between different gravitational solutions are well known to take place
and date back to the article of Hawking and Page [5]. Theories with scalars are particularly
suited to provide a setup where second order phase transitions can occur. This happens
because the scalar field does not provide an extra conserved charge, while, at the same
time, it modifies the space of solutions in such a way as to allow a hairy black hole config-
uration [6–9]. Hence, for the same values of the charges, there are at least two solutions,
the hairy and the bald black hole. A second order phase transition can take place if these
phases can coexist, and a first order phase transition would happen whenever they feature
different free energies. The main objective of this paper is to apply these concepts to the
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stability of supersymmetric solutions. We would like to remark that the coexistence of
supersymmetric phases was recently spotted in the absence of scalar fields in [10].

The class of models that will be considered here belongs to four-dimensional, N = 2
gauged supergravity coupled to one vector multiplet in the presence of an abelian Fayet-
Iliopoulos dyonic gauging. These models differ in the geometry of the scalar manifold,
whose prepotential depends on the complex scalar through a power-law defined by a pa-
rameter ν [4, 11].1 Static hairy single-scalar black holes within these models were recently
constructed and studied in [4, 11, 17]. In the BPS limit [4], such solutions are related to the
class of black holes considered in [18–32]. Hairy black hole solutions in higher dimensions
were considered in [33], generalizing those found in [34].

In this work, we consider the electrically-charged, single-scalar BPS black holes of [4],
as well as extremal Reissner-Nordström-AdS black holes [35], characterized by the same
values of the charges. Therefore, our set-up can support both supersymmetric and SUSY
broken phases and so it is suitable for investigating possible quantum phase transitions.
We show that for certain values of the parameters defining the model under consideration,
for hyperbolic horizons the free-energy of the hairy solution exceeds the one of the (non-
supersymmetric) extremal Reissner-Nordström-AdS. This hints towards an instability of
the former supersymmetric solution, unless some kind of selection rule is at work to prevent
its decay. We will also briefly discuss the existence of asymptotic Killing spinors, which
could define an underlying supersymmetry algebra, depending on the global geometry of the
horizon of the solution. This would be instrumental for the discussion of the thermodynamic
stability of the backgrounds.

2 The model

We are going to consider the simplest supersymmetric model with electromagnetic fields
that would allow to have more than one black hole solution for the same boundary con-
ditions. To this end, we need one scalar field and, therefore, supersymmetry requires the
introduction of two gauge fields. Furthermore, in order to make contact with M-theory, we
need the model to be a subsector of the maximal supergravity in four dimensions.

A minimal model that satisfies the above requirements was found in [4]. The framework
under consideration is an N = 2 supergravity theory with no hypermultiplets and a single
vector multiplet containing a complex scalar field z. The geometry of the special Kähler
manifold is characterized by a prepotential of the form:

F(XΛ) = − i4
(
X 0
)n (
X 1
)2−n

, (2.1)

XΛ(z) being components of a holomorphic section of the symplectic bundle over the mani-
fold. The coordinate z is identified with the ratio X 1/X 0, in a local patch in which X 0 6= 0.

1for certain values of ν, single-scalar truncations of these models are also truncations [4] of a gauged
maximal supergravity [12–16].
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If we set X 0 = 1, the holomorphic section ΩM and the Kähler potential of the model read:

ΩM =


1
z

− i4 n z
2−n

− i4 (2− n) z1−n

 , e−K = 1
4 z

1−n (n z − (n− 2) z̄
)

+ c.c. (2.2)

The theory is deformed by the introduction of abelian electric-magnetic FI terms defined
by a constant symplectic vector θM ,

θM = (θ1, θ2, θ3, θ4) , (2.3)

encoding the gauge parameters of the model. The scalar potential V (z, z̄) can be then
obtained from:

V =
(
gī UMi UN̄ − 3VM VN

)
θM θN = −1

2 θMM
MN θN − 4VM VNθM θN , (2.4)

where VM = eK/2 ΩM , UMi = Di VM and M(φ) is the symplectic, symmetric, negative
definite matrix encoding the non-minimal couplings of the scalars to the vector fields of
the theory.

The complex scalar can be expressed as z = eλφ + i χ , with λ =
√

2
n(2−n) . In

particular, we restrict to a truncation to the dilaton field φ only (χ = 0).2 We then make
the shift

φ → φ− 2 ν
λ (1 + ν) log(θ2 ξ) , (2.5)

that gives a minimum of the potential for φ = 0 (see also subsequent (2.9) and (2.13)) and
redefine the FI terms as:

θ1 = 1 + ν

−1 + ν
θ
−−1+ν

1+ν
2 ξ−

2 ν
1+ν , θ3 = 2α (ξ θ2)

−1+ν
1+ν , θ4 = 2α

θ2 ξ
, (2.6)

having introduced the quantities

ν = 1
−1 + n

, ξ = 2Lν
−1 + ν

1√
1− α2 L2

, (2.7)

L being the AdS radius and the parameter α controlling the strength of the dyonic gauging.
After the shift (2.5), the scalar field z is expressed as

z = (θ2 ξ)−
2 ν

1+ν eλφ , (2.8)

and the potential (2.4) explicitly reads [4]

V (φ)=−α
2

ν2

((−1+ν)(−2+ν)
2 e−φ`(1+ν)+2(−1+ν2)e−φ`+(1+ν)(2+ν)

2 eφ`(−1+ν)
)

(2.9)

+α2−L−2

ν2

((−1+ν)(−2+ν)
2 eφ`(1+ν)+2(−1+ν2)eφ`+(1+ν)(2+ν)

2 e−φ`(−1+ν)
)
,

where ` = λ
ν = 1

ν

√
2 ν2

−1+ν2 and having disposed of θ2 by the above redefinitions.
2It is possible to explicitly verify that the truncation to the dilaton field is consistent by inspecting the

consistency of the axion field equation after the χ = 0 truncation [4].
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After the restriction to the dilaton truncation, the action takes the form

S = 1
8πG

∫
d4x ed

(
−R2 + ∂µφ∂

µφ

2 − 1
4 e

(−1+ν)`φ
(
F 1
)2
− 1

4 e
−(1+ν)`φ

(
F 2
)2
− V (φ)

)
,

(2.10)
in terms of canonically normalized field strengths expressed as

FΛ
µν = ∂µA

Λ
ν − ∂νAΛ

µ . (2.11)

The ν parameter, |ν| > 1, is a real parameter that interpolates between all the single dilaton
truncations of the maximal SO(8) supergravity in four dimensions. These truncations break
SO(8) as follows [4]:

ν = 4
3 → SO(7) ,

ν = 2 → SO(6)× SO(2) ,
ν = 4 → SO(5)× SO(3) ,
ν =∞ → SO(4)× SO(4) ,

(2.12)

while all the other values of |ν| > 1 are N = 2 supergravity theories.
The scalar field potential satisfies

V (0) = − 3
L2 ,

dV (φ)
dφ

∣∣∣∣
φ=0

= 0 , d2V (φ)
dφ2

∣∣∣∣∣
φ=0

= − 2
L2 . (2.13)

and the equation for the dilaton is

−�φ+ dV (φ)
dφ

− (−1 + ν) `
4 e(−1+ν) ` φ

(
F 1
)2

+ (1 + ν) `
4 e−(1+ν) ` φ

(
F 2
)2

= 0 . (2.14)

Therefore, when φ = 0, this equation is satisfied if

F 1
µν = ±

√
1 + ν

−1 + ν
F 2
µν , (2.15)

which implies that there is a single gauge field when φ = 0. Hence, the Lagrangian (2.10)
has at least two solutions for a given set of boundary conditions which are compatible with
φ = 0.

Hairy vs. Reissner-Nordström. Let us consider the case when the system is fully
characterized by its electric charge and the total energy. In this case, when φ = 0, the
field equations are satisfied by the well known Reissner-Nordström solution, while when
φ 6= 0 one obtains the hairy black holes solutions of [4]. In the grand canonical ensemble,
when the temperature of the system vanishes, there exist two black holes for the same
chemical potential Φ. On the other side, in the canonical ensemble, there exist two black
holes for the same electric charge Q. Furthermore, the purely electrically charged, extremal
Reissner-Nordström black hole is not supersymmetric [35].

However, the black holes with φ 6= 0 can be supersymmetric [4]. Then, the study of
the phase transition between these states becomes a way to study under which conditions
supersymmetry is actually expected to be broken or unbroken. In the following sections,
we mathematically describe these two states.
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3 The extremal Reissner-Nordström black hole in AdS

This solution is extremely well-known, for a discussion within the context of the spheri-
cally symmetric case see [36, 37]. In general, the spacetime is foliated by dΣ2

k = dθ2 +
sin2(

√
k θ)

k dϕ2 , namely the metric on the 2D-surfaces Σk = {S2, H2, R2} (sphere, hyper-
boloid and flat space) with constant scalar curvature R = 2 k.3

A Reissner-Nordström black hole solution for the action (2.10) is written as:

ds2 = f(r) dt2 − 1
f(r) dr

2 − r2 dΣ2
k , f(r) = k − m

r
+ L2 q2

r2 + r2

L2 , (3.1)

with gauge fields

A1
µ =

(
Lq ν+

r
, 0, 0, 0

)
, A2

µ =
(
ε1
Lq ν−

r
, 0, 0, 0

)
, (3.2)

and a convenient parametrization, describing an extremal configuration, is given by

m =
2 r+(k L2 + 2 r2

+)
L2 , ν± =

√
1± 1

ν
, ε1 = ±1 . (3.3)

Constraint (2.15) implies that we have only one free integration constant q associated to
the electric charge of the solution. The latter can be suitably expressed as

q =
r+
L2

√
3 r2

+ + k L2 ↔ r+ = L

√
−k +

√
k2 + 12 q2

6 , (3.4)

making manifest r+ as the horizon radius, once inserted the expression for q in metric. The
physical mass and charges are given by

M = σk
8πG m , q1 = σk

8πG L ν+ q , q2 = σk
8πG ε1 L ν− q , (3.5)

where σ1 = 4π, σ−1 = 8π(g− 1) and σ0 represent the volume of a two-dimensional plane.4

The entropy and the potentials of the extremal solution then reads

S =
σk r

2
+

4G , Φ1 = Lq

ν+ r+
, Φ2 = ε1

Lq

ν− r+
, (3.6)

and the extremality condition for the first law can be directly checked as

δM = Φ1 δq1 + Φ2 δq2 , (3.7)

the charges (q1, q2) indeed satisfying constraint (2.15).
We shall be interested in the canonical ensemble, where the relevant thermodynamic

potential is the Helmholtz free energy:

F rn = E − T S = E . (3.8)
3To compare with our previous paper, [38], note that the scalar curvature of Σk has a different normal-

ization.
4A compact two-dimensional surface of genus g is locally homeomorphic to a surface of negative constant

curvature with this volume.
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For a field theory living on the three-dimensional surface

ds2 = −dt2 +R2 dΣk , (3.9)

the field theory extensive thermodynamic variables are related as

Xqft = L

R
Xsugra , (3.10)

and, for instance, the energy is

Xqft = C Np

√
6σk

72π R
kH + 12 q2
√

H
, (3.11)

with H = −k+
√
k2 + 12 q2, the extensive thermodynamic variables being the same in the

supergravity and the field theory side. Note that we have used the holographic dictionary,
which relates gravitational and field theory quantities L2

G = C Np. Here N is a large num-
ber, typically associated with the rank of a gauge group, C is a number which depends on
the theory and p a positive number. For instance, it is known that L2

G = 2
√

2
3 K1/2N3/2,

with K the level and N the rank of the gauge groups of ABJM theory [39, 40]. We make
this remark to emphasize that the supersymmetry breaking presented below is a mecha-
nism that takes place in supergravity and equivalently, via AdS-CFT correspondence, in
the dual quantum field theory.

4 The hairy black holes

Recently, we have constructed a family of electrically charged non-extremal black holes
in [4]. Here, we express the electric family solution as:5

φ = −`−1 ln(x) , (4.1a)
F 1
tx = Q1 x

−1+ν , F 2
tx = Q2 x

−1−ν , (4.1b)

f(x) = x2−ν µ2 (−1 + xν)2

ν2 k + α2L2
(
−1 + x2

ν2
(

(2 + ν)x−ν − (−2 + ν)xν + ν2 − 4
))

+ 1 + x2−ν µ2 (−1 + xν)3

ν3

(
Q2

1
(1 + ν) −

Q2
2

(−1 + ν) x
−ν
)
, (4.1c)

Υ(x) = x−1+ν ν2

µ2 (−1 + xν)2 , (4.1d)

ds2 = Υ(x)
(
f(x) dt2 − µ2L2

f(x) dx
2 − L2 dΣk

)
. (4.1e)

in terms of the integration constant parameter µ.

5The field strengths F1, F2 are the canonically normalized quantities in the action (2.10), and were
denoted by F̄1, F̄2 in [4].
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AdS boundary conditions, mass and thermodynamics. This analysis has been
done in detail in [4]. In particular, to make contact with the AdS canonical coordinates,
we consider the following fall-off:

Υ(x) = r2

L2 +O
(
r−2

)
. (4.2)

The change of coordinates that provides the right asymptotic behaviour is

x = 1±
(
L

µ r
+ L3 1− ν2

24 (µ r)3

)
+ L4 ν2 − 1

24 (µ r)4 , (4.3)

where we take µ > 0 and the ± sign depends on whether one takes the x < 1 (−) or x > 1
(+). Accordingly, the asymptotic behaviour of the scalar field is

φ = L2 φ0
r

+ L4 φ1
r2 +O

(
r−3

)
= ∓L 1

` µ r
+ L2 1

2 ` µ2 r2 +O
(
r−3

)
, (4.4)

where we have normalized φ0 and φ1 to match their conformal and engineering dimension.
In the canonical coordinates, we can now easily read off the coefficients of the leading and
subleading terms in the scalar boundary expansion

φ0 = ∓ 1
` µL

, φ1 = `

2 φ
2
0 , (4.5)

which corresponds to AdS invariant boundary conditions [4, 41], namely a triple trace
deformation in the boundary theory. Hence, the boundary conformal symmetry is preserved
and the black hole mass can be extracted from the asymptotic expansion of the spacetime [4,
11, 32, 38, 42, 43]. The expansion of metric (4.1) explicitly reads:

gtt = r2

L2 + k − µe L
4

r
+O

(
r−2

)
,

grr = −L
2

r2 − L
6 k L

−2 + 1
2 φ

2
0

r4 +O
(
r−5

)
,

(4.6)

where
µe = ν2 − 4

3µ3L
α2 − k

µL3 + Q2
2

(−1 + ν)µL3 −
Q2

1
(1 + ν)µL3 , (4.7)

and the black hole mass then reads

Mφ = σk
8πG µe L

4 . (4.8)

The temperature is given by

T = |f(x)′|
4π µL

∣∣∣∣
x=x+

, (4.9)

where f(x+) = 0, while the entropy is expressed as

Sφ = σk
8πG 2π L2 Υ(x+) . (4.10)

– 7 –
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Finally, the charges and electric potentials are

qφ1 = σk
8πG

LQ1
µ

, Φφ
1 =
−1 + xν+

ν
Q1 ,

qφ2 = σk
8πG

LQ2
µ

, Φφ
2 =

1− x−ν+
ν

Q2 .

(4.11)

One can directly check that these quantities satisfy the first law of thermodynamics

dMφ = T dSφ + Φ1 dq
φ
1 + Φ2 dq

φ
2 . (4.12)

The fundamental point for our discussion is that the boundary conditions (4.5) of this
configuration allow for the possibility of having ϕ0 = ϕ1 = 0. Indeed, the Reissner-
Nordström black hole satisfies these boundary conditions, therefore it is a state in the
same theory different than the hairy black hole.

Let us study now the extremal limit of this hairy black hole.

4.1 The supersymmetric and non-supersymmetric extremal hairy black hole

In [4] we demonstrated that there exist electrically charged BPS black holes of finite horizon
area for α2 = L−2 and, in the current parametrization, for the following values of the charge
parameters:6

Q1 = −Q2
ν−

ν+
+ k µ

ν+
, Q2 =

(
1 + ν + k µ2) ν−

2µ . (4.13)

In this case, the lapse function has a double zero as expected

f(x) = x2−2 ν

4 ν4

(
(−1 + xν)2 k µ2 +

(
2xν(−1 + ν2) + x2 ν(1− ν) + ν + 1

))2
,

f (x+) = 0 =⇒ xν± =
1 + k µ2 − ν

(
ν ±

√
−1− 2 k µ2 + ν2

)
1 + k µ2 − ν

,

(4.14)

the BPS thermodynamical quantities of [4] being expressed in our parametrization as:

qφ1 = σk
8πG

L

µ

(
1 + k µ2 − ν

) ν+

2µ , Φφ
1 =
−1 + xν+

ν

(
1 + k µ2 − ν

) ν+

2µ ,

qφ2 = ε2
σk

8πG
L

µ

(
1 + k µ2 + ν

) ν−

2µ , Φφ
2 = ε2

1− x−ν+
ν

(
1 + k µ2 + ν

) ν−

2µ ,

Mφ = σk
8πG L

−1 + ν2

3µ3 ,

(4.15)

where ε2 = ±1. In particular, these quantities characterize a supersymmetric black hole
when ε2 = 1, and an extremal non-supersymmetric hairy black hole when ε2 = −1. It is
possible to verify that x±(ν) = x±(−ν), namely, x± is an even function of ν. Hence, without
loss of generality, it is possible to assume that ν ≥ 1. The extremality condition implies now,

δMφ = Φφ
1 δq

φ
1 + Φφ

1 δq
φ
2 . (4.16)

6As discussed in appendix A of [17], this configuration is 1/4 BPS.
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5 Canonical ensemble

In order to compare the hairy black hole with the Reissner-Nordström solution in the
canonical ensemble, we set their charges (4.15) at the same value to match (3.6):

qφ1 = q1 , qφ2 = q2 . (5.1)

This yields the following relation between the parameters of the hairy solution

q1
q2

= qφ1

qφ2
⇒ ε1

ν+

ν−
= ε2

(
1 + k µ2 − ν

)
(1 + k µ2 + ν)

ν+

ν−
. (5.2)

A detailed study shows that (5.2) is a non-trivial result only when ε1 = −ε2 and k = −1.
In this case, we find that µ2 = 1. It follows from (4.14) that

xν± = ν ±
√

1 + ν2 , (5.3)

and consequently
qφ1 = q1 = − σ−1

8πG ν+ L
ν

2 , (5.4)

which implies that q = −ν
2 . This can be used to compute the difference between the free

energies of the Reissner-Nordström black hole and the hairy black hole as a function of ν:

∆(ν) =
(
F φ − F rn

) 8πG
Lσ−1

. (5.5)

We obtain that
ν = 1 ⇒ ∆(ν) = 0 ,

1 < ν < ν∗ ⇒ ∆(ν) < 0 ,
ν = ν∗ ⇒ ∆(ν) = 0 ,
ν > ν∗ ⇒ ∆(ν) > 0 ,

(5.6)

with ν∗ =
√

1 + 2√
3 . Hence, there is a set of theories where hyperbolic supersymmet-

ric black holes are unstable in the canonical ensemble, namely, whenever ν > ν∗ (see
also (2.12)).

6 Discussion

We conclude that there exists a set of supersymmetric black holes which can be unstable
in the canonical ensemble. For this to happen, it is crucial that these black holes feature a
horizon with locally hyperbolic geometry (k = −1). We would also like to remark that we
have carried out the same analysis in the grand canonical ensemble and we have obtained
that, in this case, all the supersymmetric black holes are stable, independently of the
topology. The same happens for the planar (k = 0) and spherical (k = 1) topologies in the
canonical ensemble.

Since the geometry of the horizon is locally hyperbolic, we shall further discuss the
global features of this geometry, in order to provide a sharper understanding of the phe-
nomenon. To this end, we shall divide the discussion in two cases: the compact horizon
and the non-compact one.
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6.1 Non-compact horizon

In this case, the geometries are actually asymptotic AdS. Therefore, the geometry of the
Reissner-Nordström black hole has the same asymptotic Killing spinors as the AdS4 itself.
When there is no running scalar field, the only supersymmetric solution within the class of
metrics considered here is AdS4 [44]. The hyperbolic Reissner-Nordström black hole with
non-compact horizon can be then interpreted as an excited state over this SUSY ground
state, the latter being reached in the limit of vanishing mass and charge.

The hairy supersymmetric black hole has a different set of Killing spinors that are
not those of globally AdS4, not even asymptotically. This means that the supersymmetry
algebra has a different realization for the hairy black holes and the BPS bound they satisfy
allows the mass to be larger than zero. The Killing spinors of the hairy black holes are
a function of the radial coordinate only and, therefore, the algebra has a realization that
is similar to mAdS [21, 45]. Hence, it is not unusual that the BPS solution can have a
larger energy compared with a non-BPS one, each geometry being actually connected with
a different representation of the supersymmetry algebra.

6.2 Compact horizon

In this case, the geometries are asymptotically locally AdS. The locally hyperbolic horizon
is compactified to a surface of genus g with volume σ−1. This asymptotic geometry has no
Killing spinors at all, so the electrically charged, hyperbolic Reissner-Nordström black hole
with non-compact horizon is not connected with any representation of a supersymmetry
algebra. The hairy supersymmetric black hole still has Killing spinors when the horizon is
compact. Therefore, the configuration that saturates the BPS bound can be more energetic
than other geometries, with same charges and boundary conditions, which can not be seen
as excited states over a BPS ground state.

The comparison between the two class of solutions (hairy BPS and extremal RN) in
the canonical ensemble pointed out a thermodynamic instability of the hairy supersym-
metric black hole for a certain range of parameters. We still do not know if this would also
imply a specific dynamical instability of the solution, but we expect the more favourable
Reissner-Nordström configuration as the final state of a thermodynamic phase transition
for ν > ν∗. We are not aware of any observation in the literature in which this instability
of the supersymmetric states has been reported before. We also believe that the analysis
performed here claims for a deeper understanding of SUSY algebra in the presence of elec-
tromagnetic gaugings, following the lines of [21, 45]. It also seems that the electromagnetic
gauging plays a role similar to electric and magnetic charges, yielding a new representation
of the SUSY algebra. The BPS state turns out to be solitonic in this regard. We leave the
clarification of these issues to a forthcoming work.
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