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Abstract: The present work aims to demonstrate how machine learning (ML) techniques can be used
for automatic feature detection and extraction in fluvial environments. The use of photogrammetry
and machine learning algorithms has improved the understanding of both environmental and
anthropic issues. The developed methodology was applied considering the acquisition of multiple
photogrammetric images thanks to unmanned aerial vehicles (UAV) carrying multispectral cameras.
These surveys were carried out in the Salbertrand area, along the Dora Riparia River, situated in
Piedmont (Italy). The authors developed an algorithm able to identify and detect the water table
contour concerning the landed areas: the automatic classification in ML found a valid identification
of different patterns (water, gravel bars, vegetation, and ground classes) in specific hydraulic and
geomatics conditions. Indeed, the RE+NIR data gave us a sharp rise in terms of accuracy by about
11% and 13.5% of F1-score average values in the testing point clouds compared to RGB data. The
obtained results about the automatic classification led us to define a new procedure with precise
validity conditions.

Keywords: photogrammetry; UAV; multispectral data; fluvial environment; machine learning

1. Introduction

Automatic detection is one of the primary challenges in fluvial environments, espe-
cially where spatio-temporal coverage and recognition of fluvial and aquatic topography,
hydraulics, geomorphology, and habitat quality are required. Mapping flood water using
remote sensing observation technologies is a common practice today, assisting emergency
services as well as informing flood mitigation strategies, especially when Sentinel satellite
images [1] or synthetic aperture radar (SAR) data [2–5] are considered. Satellite data are
very useful resources for extracting information on very large areas and, when neces-
sary, analysing phenomena that cannot be studied using only contemporary data (e.g.,
anthropogenic impacts or effects of climate change) and which cause fluvial adjustment [6]
but are not sufficient to provide information necessary for high-resolution applications
(centimetre scale).

The use of unmanned aerial vehicles (UAVs) has completely changed monitoring
approaches and is quite common today due to their low cost, ease of use, and strong
performance. As widely described in the literature [7,8], these instruments make it possible
to assemble different sensors (such as LiDAR or digital cameras) in order to obtain high-
resolution imagery (up to centimetre resolution) and/or dense 3D point clouds. UAVs are
quite interesting because they can cover a large area in a very short time (ca. 40 ha/h) and
acquire data more rapidly and less expensively than typical airborne surveys, even if the
amount of data acquired and their resolution strictly depend on the used UAV platform,
the camera sensors on board, as well as the flight height and speed.
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Although the use of LiDAR aerial data is rather limited due to the cost of this tech-
nology, the recent large-scale diffusion and use of UAVs in various geoscience disciplines
has been facilitated by the rapid progress in photogrammetric processing methods without
sacrificing accuracy in the final product. In most cases, UAVs are equipped with RGB [9]
sensors, sometimes associated with sensors working on different wavelengths, such as
near-infrared (NIR) ones, enabling it to obtain images [10]. Then, using a photogrammet-
ric approach, three-dimensional (3D) point clouds can be automatically generated. This
approach allows the production of several digital surface models (DSMs), digital terrain
models (DTMs) [11], orthophotos [12], and vegetation indices. Thus, fluvial environment
monitoring is often possible, as these outcomes enable not only the detection of different
environments (such as flooded or aquatic areas as well as vegetation or sandy/rocky
regions) [8] but also the classification of different types of soils, vegetation detection [13],
and feature extraction, such as tree height, canopy area and diameter [14], and individual
tree counting [15].

In the last decade, these tools have gained widespread application. UAVs were
originally mainly used for regional research, such as territory analysis, landslide mon-
itoring [16,17], geothermal environments [18], geomorphological studies [19–21], and
sedimentation [22].

One of the main applications of UAVs in hydrological research is in stream and
riverscape mapping due to their ability to rapidly acquire accurate and detailed spatial
data, represented by orthophotos and DSMs [23,24]. Detailed mapping of stream properties
using UAVs is of special importance for hydromorphological research because objective
spatial information can be obtained, particularly for the classification of physical river
habitat applications [25] or the analysis of the dynamics of water stages [26]. Moreover, UAV
technology can be considered efficient (even if slightly limited) for hydromorphological
feature detection [27] (i.e., as described in Langhammer (2018) [28]).

The importance of 3D reconstruction using UAV-based photogrammetry is increasing
in fluvial geomorphology, as it allows both quantitative analysis of changes in stream and
riparian zones at multitemporal scales and volumetric analyses of bank erosion and fluvial
deposition [29,30]. In order to achieve these goals and to be able to analyse medium-scale
products, it is necessary to ensure the acquisition of aerial images with a ground sample
distance (GSD) of a few centimetres, which affects the generated 3D point clouds and,
consequently, the other products [31]. Therefore, careful acquisition planning is required, as
the GSD is affected by the image resolution, the camera characteristics, and the acquisition
distance from the studied object.

However, one of the main limitations regarding hydrological applications of UAV-
based mapping is typically the use of RGB sensors, which limits possibilities to detect
and reconstruct the properties of the submerged stream channel, as was well-described
in [32,33]. Indeed, “invisible” spectral data (red-edge and near-infrared bands) represent
a tremendous step forward in defining environmental, forestry, and hydraulic problems,
as thoroughly demonstrated in [34–38]. On the other hand, the use of UAV in shallow
riverbeds has provided good performance in stream hydromorphology mapping, enabling
partial coverage of submerged zones of the channel [39].

A number of recent studies demonstrated the power of UAV for the analysis of
stream planform changes, though most were limited to detection and analysis of fluvial
morphologic changes in streams after flooding [40,41] or delimiting flood-prone areas
based on DEM analysis [42]. A different approach to detecting the refraction correction
problem in a water table was reported in [43].

As the fluvial environment is very complex and made up of different features of nature,
in recent years, the academic community has been involved in the study of methodologies
for the automatic extraction of different types of information from high resolution data [44].
The literature contains many classification studies from the environmental field using
different UAV-integrated sensors or satellite data in order to better recognise vegetation and
the water table in fluvial or lake environments, such as [45–47]. To solve the classification
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problem, several studies exploit artificial intelligence methods [48] based on machine
learning (ML) algorithms and deep learning methods, thus relying on convolutional neural
network architectures. Previous works demonstrated the ability and the good accuracy
of these approaches in the classification process, especially in extremely heterogeneous
environments [49,50], such as the fluvial ones.

Usually, the features classification in fluvial scenes is based on the exploitation of
the satellite images [51] or of orthophotos obtained from photogrammetric image process-
ing [52,53]. This technique can be more advantageous when, due to certain conditions
(for example, dense vegetation and the presence of wind during image acquisition), the
three-dimensional point cloud, generated during the photogrammetric process, is highly
noisy; on the contrary, the direct analysis of the point cloud preserves spatial and three-
dimensional information of the scene, allowing one to delimit more accurately the different
features and to obtain additional structural information [13].

From the earliest studies on the classification of river environments based on remotely
sensed data, the scientific community has highlighted the usefulness of multispectral
and hyperspectral sensors [54]. Today, small versions are widely used in the market,
even low-cost versions, and can be easily integrated into UAV to replace RGB cameras.
The spectral information made available by these sensors makes it possible to greatly
improve classification operations as reported in [55]. For example, wavelengths in the
near-infrared, not penetrating water, make watercourses easier to be identified with respect
to the terrestrial features, while changes in chlorophyll content are emphasized in the
spectral range of the red-edge band, supporting the identification of vegetated areas [56].

Thus, this paper aimed to develop an innovative methodology for automatic detection
of water table and emerged areas in fluvial environments through machine learning (ML)
techniques using UAV RE+NIR spectral data. To generate an innovative product, we
developed a script capable of identifying the water table contour with respect to the
emerged areas through the automatic classification of RE+NIR 3D point clouds as water,
vegetation, and ground/gravel bars. The code was based on a specific modified ML
algorithm: the random forest algorithm (RF). The choice of RF was due to its faster setting
and processing time, higher classification accuracy, more flexibility in different statistical
data type analysis (for example, about supervised classification and unsupervised learning),
and more efficient methodology in variable importance evaluation compared to other ML
algorithms (such as support vector machine or decision tree) or neural networks. Moreover,
it is capable of avoiding the missing values [57,58]. All these characteristics make it
preferable in environmental classification problems. Besides, the RF is based on multiple
decision trees, which makes it suitable even for large datasets as long as the data have the
variability and the diversity necessary to make the classifier transposable to numerous
situations in order to strictly reduce the overfitting problems.

2. Study Area

This research project is part of research activity on hydraulic characterisation, planned
in the Salbertrand area, to monitor the meso-habitat of aquatic plants in wetlands. The
watercourse investigated is the Dora Riparia river near the municipality of Salbertrand in
the Alta Val di Susa (also called “Alta Valle della Dora”), which belongs to the metropolitan
city of Turin. The investigated section is located between the easternmost section of the
dam on the natural course of the Dora Riparia River and the eastern limit of the Salbertrand
urban centre, including the entire alluvial plain below the viaduct of the A32–E70 Turin-
Bardonecchia highway (Figure 1).
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Figure 1. Geographical site of the covered area of the Dora Riparia river: Salbertrand area.

From a particle size standpoint, the alluvial plain is composed of stratified gravel and
gravelly-sandy deposits with rounded pebbles in an overlapping arrangement and subordi-
nate blocks. In particular, there are alternations in the coarser levels, from pluri-decimetric
to pluri-metric, between gravel and gravel with silty sand and finer levels of comparable
thickness composed of silty sands and sandy silts. From the geomorphological point of
view, the area is part of the Oulx-Salbertrand plain, a flat valley floor area representing a
sector of greater sedimentation by the main watercourses whose deposits are interspersed
with the imposing fans fed from the tributary basins. The riverbed in this stretch has a
braided-like fluvial pattern.

3. Materials and Methods

The methodology used and proposed here is based on consolidated geomatics tech-
nologies in the environmental field associated with the development of algorithms and
models for the wet area’s prediction using machine learning techniques (Figure 2).
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Figure 2. Methodology flowchart developed.

3.1. Field Survey

To obtain a correct definition of the automatic classification parameters in the fluvial
environment of wet areas, high-resolution RE+NIR raster data were employed. The pho-
togrammetric products used as input data for the proposed methodology were realised
employing UAV technology. The choice of the aerial platform and the optical sensor for a
specific aerial survey depends both on environmental conditions, such as the extension
of the study area, its shape, the presence of human-made objects, and other boundary
conditions, and on the resolution of the products to be generated. As stated above, ra-
diometric information relating to the visible part of the electromagnetic spectrum alone
(corresponding to red, green, and blue bands) is not sufficient to reconstruct the properties
of the submerged stream channel [32,33]. Indeed, among spectral bands, the combination
of NIR (near infrared) and RE (red-edge) information proved to be the most useful for
distinguishing bodies of water, soil, and vegetation moisture [59]. Due to the large area
involved and the need for a multispectral optical sensor, we used a Phantom 4 Multispectral
commercial multi-rotor solution. The primary feature that made this drone particularly
suitable for this research was the integrated multispectral camera equipped with five
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optical sensors corresponding to red, green, blue, red-edge, and NIR bands, respectively.
Table 1 shows the characteristics of the multispectral camera.

Table 1. Phantom 4 Multispectral characteristics.

Phantom 4 Multispectral

Optical Sensors Specifications

Sensors: CMOS 1/2.9”–2.08 MP
Images Res.: 1600 × 1300
Focal lengths: 5.74 mm

Filters
B: 450 nm ± 16 nm
G: 560 nm ± 16 nm
R: 650 nm ± 16 nm

RE: 730 nm ± 16 nm
NIR: 840 nm ± 26 nm

The Phantom 4 Multispectral has a weight of 1.487 kg and a flight autonomy of about
27 min, as specified by the manufacturer.

The entire study area was covered by six flights in clear conditions from 11:00 to 14:00
on 27 July 2020. A total number of 10,332 images (both nadir and oblique) were collected at
a height of 40 m, with an average ground resolution of 2 cm and an image overlap of 80%
in both directions.

The UAV system employed is also equipped with a multi-constellation multi-frequency
GNSS that, through the real-time kinematic (RTK) approach and together with an inertial
platform, is able to obtain an accurate position of the centre of the camera and the attitude
angles for each captured image. This information allows for direct georeferencing of the
photogrammetric block, realising the so-called direct photogrammetry [60]. In this study,
to improve the images’ alignment and georeferencing and to check the accuracy of the final
3D model punctually, a number of ground control points (GCPs) and check points (CPs)
were surveyed [61]. GCPs and CPs are points with well-known coordinates estimated
using different geomatics techniques with accuracies of a few mm or cm. To this end, before
performing flights, 38 photographic stable points spread over the study area and easily
recognisable in the pictures were identified; 25 were used as GCPs while the other 13 were
employed to evaluate georeferencing accuracy (Figure 3). Their position was measured
using Leica GS14 and GS18 receivers, exploiting the GNSS NRTK (network real time kine-
matic) positioning technique and considering the virtual reference station (VRS) correction
broadcasted by the SPIN3 GNSS network [62], as described in [63]. The coordinates of the
points were estimated with centimetre accuracy (∼=3 cm) with fixed-phase ambiguities for
all points, ensuring a high level of precision for the georeferencing process.

The GNSS-RTK technique acquires the ellipsoid heights of the measured points, which
necessarily must be converted into orthometric heights. These conversions were carried out
through the ConverGo software and the use of GK2 grids distributed by the Italian Military
Geographical Institute (IGMI), which contain the so-called “geoid undulations” according
to the ITALGEO 2005 model. The ETRF2000 (2008.0) with the UTM 32N projection was
adopted as the reference system for the project according to the Italian directives.

3.2. Multispectral UAV Data Processing

The aerial image acquisition aimed to produce an orthomosaic for each available band,
namely R, G, B, RE, and NIR. The raw data acquired by the multispectral camera in each
shot consisted of six images corresponding to the five bands and the RGB band composition;
thus, at the end of the acquisition operation for each band, a dataset of 1722 images
was obtained. The UAV data were processed using the structure from motion (SfM)
approach [64] with the help of commercial software. In this study, the photogrammetric
process was carried out using AMP’s commercial solution (Agisoft Metashape Professional).
The six datasets were processed in different AMP projects considering both nadir and
oblique images.
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Figure 3. The overall topographic points location (see the red dots) within the study area (see the
orange line).

In the first step of the procedure, the frames were aligned through automatic recogni-
tion of the homologous points between two or more images, which enabled the computing
of the relative position of the frames in the photogrammetric block as well as the internal
camera parameters. The output of the image alignment was a scattered point cloud gen-
erated by setting up the “high” level of accuracy of AMP. As previously mentioned, the
images were acquired through a UAV-RTK configuration and were already georeferenced.
However, in order to optimise the estimation of the camera’s interior parameters and to
improve the generation of the photogrammetric block, the coordinates of the measured
GCPs and CPs were imported and manually collimated in the images in which they were
found. The CPs were used to evaluate the accuracy achieved in the georeferencing phase,
resulting in a total residual error of less than 8 cm in each chunk, while we obtained a
residual error for the GCPs lower than 5 cm.

Subsequently, each dataset was further processed in order to compute the three-
dimensional dense point clouds. A “high” level of detail was selected to obtain products
suitable for medium/large-scale investigations (1:500), and “moderate” depth filtering was
selected to remove noise due to the presence of dense vegetation.

The next step involved generating a dense digital surface model (DDSM) of the entire
study area. We decided to create a single DDSM from the dense point cloud obtained using
only the data from the RGB dataset. In fact, this was the densest point cloud as compared
with the other datasets and described the model with the highest level of resolution. The
density of the 3D information enabled the realisation of a DDSM characterised by a pixel
size equal to 8 cm.

The final raster products (i.e., multispectral orthophotos) were generated to realise the
basic dataset for the ML detection to be described. The multispectral orthomosaics were
computed separately for each band used—red, green, blue, red-edge, and NIR—starting
from the previously computed DDSM. Based on the accuracy of the DDSM, orthomosaics
with resolutions of 8 cm were produced using the “mosaic” blending mode option on
AMP. It was then possible to obtain the composite bands orthomosaic (RE and NIR)
by combining the respective single band orthomosaics. Several representative testing
rasters were created by the multispectral-composed orthophotos mentioned above in
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order to evaluate the automatic classification methodology described in Section 3.3. The
areas to be used for producing the training (ca. 30% of the whole dataset) and the test
datasets (2 sub-datasets corresponding to the ca. 60% of the complete one) were selected
based on the areal distribution of the three main desired classes (water, vegetation, and
ground/gravel bars) through observation of the orthophotos. The purpose of this visual
analysis was to obtain datasets as homogeneous as possible that best discretised the
investigated fluvial environment. Figure 4 shows a sketch of the test raster used.

Figure 4. Instance of first testing composite bands orthophoto; these rasters were obtained merging
the red-edge and the NIR bands.

3.3. Automatic Detection of Submerged Areas Using ML Algorithm

To achieve the fundamental aim of this research work, a specific multi-step methodol-
ogy was developed to define the wet areas of the investigated watercourse.

By exploiting the rate (i.e., reflectance) existing between the incident energy from an
electromagnetic source (such as the sun) and the quantity of energy reflected by a surface
or object (i.e., radiance), it is possible to identify the spectral signature characteristic of
the object detected [65]. In the multispectral approach, different spectral signatures are
obtained for each detected band, increasing the identification capacity of the investigated
surfaces. The multispectral sensor acquires the radiance signal coming from the reflecting
surface, converting it into a digital signal and subsequently recording in the form of a
digital number (DN) matrix. Hence, the spectral signature is none other than the reflectance
extended to the entire measurable spectrum. From the analysis of the RE and the NIR
spectra, three main classes were defined: (i) water, characterized by lower reflectance;
(ii) vegetation, having higher and variable reflectance values in the two aforementioned
bands; (iii) ground and gravel bars, with medium intensity in RE-NIR spectra.

The radiance values observed allowed developing an innovative methodology for
automatic classification using ML algorithms.

To obtain strong results in classifying fluvial environments, we were properly focalised
on the river system, which is composed of a water table, gravel bars, and wide wooded
areas. Thus, the datasets were buffered 50–75 m from the watercourse. In order to evaluate
the RE + NIR classification goodness, we compared the RE + NIR and the RGB band
classified clouds, as shown in the Results section. The following ML steps were carried out
on both types of spectral data.
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The first step was the conversion of the orthophotos into points, extracting the
RE + NIR data. The use of open and free GIS platforms is important to this process due to
their widespread application in a variety of professional and academic fields and is a key fac-
tor in reducing costs. The last stable release of QGIS software–3.16.1 “Hannover” [66]—was
used with the integrated Grass 7.8.4 module. Data preparation processing was developed
to obtain three representative test datasets, described below:

• First, for every dataset, a composite orthophoto was built, merging together the RE
and NIR bands, and grouped into a single composite orthophotos using a specific
command in QGIS software called “Merge”.

• Second, the composite orthophotos were converted in point clouds and assigned the
RE-NIR true values at each point. To realized it, we used the “Raster pixels to points”
command, obtaining some representative clouds of the Salbertrand area. Additionally,
longitude and latitude coordinates were assigned and set to the ETRF2000-UTM32N
coordinates system. Then, we assigned at the clouds the RE-NIR values extracting
the information by the stacked pixels of the composite orthomosaics using a specific
plugin in QGIS software (Point Sampling tool).

• Finally, the test datasets generated were exported in text format with integer values.

Next, to obtain an accurate training dataset, a segmentation step was required in
addition to those described above. Three specific groups of points (named ROI—region
of interest) were manually noted. The obtained ROIs represent the three desired classes:
water [11], vegetation [22], and ground/gravel bars [33], as shown in Figure 5.

Figure 5. Training ROIs selection: water in blue, vegetation in green, and ground/gravel bars in red.

The automatic classification proposed here focused on developing all-encompassing
ML code through the free programming language Python (latest version 3.9.1) [67]. This
particular code-writing platform implements many different free and open problem-solving
scripts and libraries available online, which are used to read several kinds of formats (such
as text or shapefile) or conduct various mathematical and logical processes. For our
purposes, we chose various logical classification libraries (i.e., NumPy, Pandas, SciPy, and
Matplotlib) [68–71] to achieve a complete ML codebase. The random forest (RF) algorithm
was chosen from the ScikitLearn Python library [72]. The RF algorithm comprises a list of
exchanging multiple defined decision trees, which minimise overfitting errors.

First, the CV modules were run using cross_val_score [73] and GridSearchCV [74]
from Python’s libraries to measure and improve the generalisation capacity performance
of the RF algorithm. Figure 6 shows a representative sketch on raw data preparation,
cross-validation processing, and optimal parameter evaluation.
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Figure 6. Cross-validation splitting on RE+NIR training dataset.

Next, the raw data were split into 80% training and 20% test datasets using the
train_test_split() function [75], applying the cross_val_score module, which subdivided
the training dataset into specified folds (i.e., 4 folds). The function used three folds to train
the model (training set) and the fourth for validation (validation set), iterating this process
four times (iterations 1,2,3,4) while changing the pairs of training–validation folds.

As shown in Figure 6, four CV accuracy values were calculated on the validation
set—one for each iteration. Additionally, the statistical parameters of precision, recall, and
F1-score were computed [76] to obtain an overview of the initial generalisation power of
the chosen RF algorithm. These parameters were based on the relationships between true
positive (Tp), false positive (Fp), true negative (Tn), and false negative (Fn) values obtained
from the confusion matrix. These accuracy parameters are shown below:

Accuracy Score =
ytesting
ytraining

Precision =
tp

tp + ff

Recall = tp
tp + fn

F1 − score = 2 ∗ Precion ∗ Recall
Precision + Recall

(1)

where ytesting and ytraining contain the predicted and the ground-truth data, respectively.
The developed code computes the CV standard deviation as well, returning a very

low variance value (<1%). Table 2 summarises the results obtained.

Table 2. Parameters obtained during the CV iterations.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Accuracy 0.98 0.98 0.98 0.98
Precision 0.97 0.96 0.96 0.96

Recall 0.97 0.97 0.97 0.97
F1-score 0.97 0.97 0.97 0.97
Standard
deviation 0.0000992

Time (mm:ss) 7:18

It was then possible to evaluate the optimal combination of RF algorithm hyperparam-
eters to perform the classification as best as possible. The GridSearchCV module tests every
combination of values of the defined hyperparameters, training the model and calculating
the accuracy of the test dataset. Through the functions best_params_ and best_score_, we
printed the best combination of hyperparameters and its accuracy score. More information
regarding the RF hyperparameters can be found in [77]. Table 3 shows the chosen hyperpa-
rameters and their assigned values as well as the ideal combination (subsequently used to
classify the second and the third point clouds) and its accuracy score.
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Table 3. GridSearchCV proceeding for RF best parameter’s evaluation.

RF Hyperparameters Value 1 Value 2 Value 3 Best_Params_ Best_Score Time (hh:mm)

n_estimators 10 25 50 criterion: ‘gini’
criterion Gini entropy - max_features: ‘auto’

max_features Auto Log2 - min_samples_leaf: 10
min_samples_split 5 7 10 min_samples_split: 10
min_samples_leaf 4 6 10 n_estimators: 50

random_state None 0 42 random_state: None

It is important to note the lengthy processing time and the computational load (core
running at 100% of CPU for nearly 10 h) of this cross-validation step due to the high number
of tested combinations (324) and the large size of the trained dataset (over 2,500,000 points).

The step-by-step ML classification procedure is briefly summarised below. For further
information, please reference the GitHub repository [78] available online and reported in
the Supplementary Materials Section.

• Importing and organizing training/test datasets. To organise a proof-reading ML
algorithm, training and test datasets were imported into Python script. If the datasets
were large, it was possible to toggle off the low_memory function (see the Pandas
libraries for more detailed information at [69]). The training dataset was then split into
RE-NIR feature columns and a labelled class through a proper expression, recalling
and assigning them in Features and Labels subfolders. Moreover, the test dataset
contained only the RE+NIR spectral features; thus, it was possible to call them into
the script.

• Preprocessing of the training dataset. In order to improve classification accuracy, the
training dataset was processed, setting the threshold affected by the minimum number
of the points value of the classes (11, 22, and 33 in this paper) to obtain more balanced
datasets [79,80]. Furthermore, the balanced training dataset was randomised [81,82].

• Model’s training and classification of test dataset. The random forest algorithm,
comprising the RandomForestClassifier module [77], was chosen to classify the ex-
ternal test dataset. The optimal hyperparameters obtained during the GridSearchCV
processing were set.

• Saving and exporting the test dataset. Finally, the classified test datasets were exported,
assigning the points’ coordinates again to the resulting class itself (water, vegetation,
and ground/gravel bars, respectively). The classified dense point clouds obtained are
shown in Figure 7.

The ML classification code was not complete; it was necessary to run several func-
tions to evaluate the classification’s goodness. For testing classified clouds (second and
third clouds), accuracy score, precision, recall, F1-score, and confusion matrix parameters
were computed, comparing the obtained values from the RE+NIR classification with those
of the RGB visible spectrum.

The innovative ML data processing above described, classified, and returned the dense
point clouds, assigning a specific value at every output point (water {11}, vegetation {22}, or
ground/gravel bars {33}). Another procedure was developed using free and open-source
GIS software, such as QGIS, to obtain a more suitable product. First, the classified point
clouds were rasterised in order to select and extract only the water class value. Next, to
filter and delete eventual erroneous classification points, a polygonisation function was
used in order to calculate the wet area of every polygon and eliminate the undesired
polygons, with a threshold based on the representative value of the calculated area (i.e.,
<1 sqm). The final product was a polygon shapefile of the water table enclosed in very
precise wet contours in the fluvial environment that was suitable for hydraulic and safety
plan purposes, as shown in Figure 8.
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Figure 7. Overall overview obtained in ML automatic classification: (a) represents the 8-bit SfM generated orthophotos of
second and third testing dataset; (b) RGB classified datasets of second and third clouds, where shown are the incorrect and
the noisy water classifications; (c) shows the RE+NIR classified clouds with the better results obtained in water, vegetation,
and ground/gravel bars classes. The classes reported are water (blue), vegetation (green), and ground/gravel bars (red).
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Figure 8. Example of polygonised water contour on third classified cloud (areas > 1 sqm).

4. Results

The identification of wet areas through automatic classification is not a novel concept,
as reported by previous studies carried out using different types of instruments, such
as radar and satellite [1–5]. The development of UAV-integrated sensor technology has
enabled a sharp reduction in the cost of data acquisition [83], making UAV accessibility in
environmental monitoring valuable to professionals and organisations.

The drones can be equipped with various sensors capable of better defining the
investigated objects. The use of sensors linked to the visible spectrum (RGB) has constituted
a major development in recent decades, becoming the standard in photogrammetric data
production. However, these sensors may not be accurate enough in specific cases; therefore,
UAVs with sensors of different wavelength ranges, such as infrared bands, were used. The
use of these bands in the environmental field has grown in recent years, particularly in the
monitoring of wooded areas or regions subject to flooding [35,38–40].

At the same time, it was necessary to develop an innovative classification methodology
based on ML algorithms, which was built by writing a specific script in Python in order to
guarantee its complete open access and free availability. The application of this code to the
RE+NIR spectral data made it possible to compute statistical parameters regarding model
accuracy and generalisation. In order to evaluate the accuracy parameters, we ran the
ML classification script on the RGB test datasets as well and obtained the same accuracy
parameters. Tables 4 and 5 and Figure 9 show the main statistical parameters obtained for
the second and the third classified clouds (accuracy score, precision, recall, F1-score, and
confusion matrix), comparing the RGB and the RE+NIR dataset results.

Table 4. Second classified cloud accuracy parameters obtained.

Water [11] Vegetation [22] Gr_Gb [33] TOT

RGB accuracy score - - - 0.905
RE+NIR accuracy score - - - 0.987

RGB precision 1.00 0.98 0.60 0.86
RE+NIR precision 0.99 0.99 0.99 0.99

RGB recall 0.74 0.99 0.90 0.88
RE+NIR recall 0.99 1.00 0.93 0.97
RGB F1-score 0.85 0.99 0.72 0.85

RE+NIR F1-score 0.99 0.99 0.96 0.98
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Table 5. Third classified cloud accuracy parameters obtained.

Water [11] Vegetation [22] Gr_Gb [33] TOT

RGB accuracy score - - - 0.934
RE+NIR accuracy score - - - 0.953

RGB precision 0.93 0.99 0.72 0.89
RE+NIR precision 0.90 0.98 0.89 0.92

RGB recall 0.79 0.98 0.88 0.89
RE+NIR recall 0.97 0.99 0.77 0.91
RGB F1-score 0.85 0.99 0.80 0.88

RE+NIR F1-score 0.93 0.99 0.83 0.91

Figure 9. Confusion matrixes obtained about second and third testing classified clouds, respectively. In orange are reported
the RGB confusion matrix graphs; in blue are the RE+NIR ones.

The spatial distribution data and its percentage were computed to represent the
obtained RE-NIR accuracy improvement, as shown in Tables 6 and 7.
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Table 6. Geometrics values observed, corresponding at RGB and RE+NIR classifications processing.

Water’s Area
(m2)

Vegetation’s
Area
(m2)

Ground/Gravel
Bars
(m2)

TOT
(m2)

Second cloud:
10,991.67RGB 1447.57 7213.11 2250.98

RE-NIR 2233.18 7020.49 1657.99
Third cloud:

RGB 2750.87 11,923.27 4727.61
19,361.75RE-NIR 3872.98 12,006.93 3491.84

Table 7. Percentages related on RGB and RE+NIR classifications processing.

Water’s Classified
Points (%)

Vegetation’s
Classified Points (%)

Ground/Gravel Bars
Classified Points (%)

Second cloud:
RGB 13.26 66.10 20.64

RE-NIR 20.46 64.34 15.20
Third cloud:

RGB 14.05 61.65 24.3
RE-NIR 19.99 61.98 18.02

In Table 8, we attempted to identify the estimates of the errors that occurred in terms of
square metres, expressed for each class, multiplying the percentage values of the statistical
parameters reported in Tables 4 and 5 by the classes’ areas shown in Table 6. It is important
to note that these values are reported in absolute values.

Table 8. Overview about square meters errors for every classes: RGB and RE+NIR datasets.

Water’s Area Error
(m2)

Vegetation’s Area
Error (m2)

Ground/Gravel Bars
Area Error (m2)

Second cloud:
RGB 376.37 72.13 900.39

RE-NIR 22.33 70.2 16.58
Third cloud:

RGB 577.68 112.24 1323.73
RE-NIR 116.34 120.07 384.11

5. Discussion

The analysis of the results in Tables 4 and 5 put in evidence large differences in terms
of precision and recall regarding the water and the ground/gravel bar. Comparing the
classified clouds (second and third, respectively), a significant contamination between the
two classes was shown in the RGB datum due to the similarity between their spectral values
in semi-submerged areas. Indeed, precision values of 60% and 72% for the ground/gravel
bar class and recall percentages equal to 74% and 79% for the water class were obtained. As
can be seen in Figure 7, in the watercourse areas that had strong solar reflections or were
semi-submerged, the water points were very similar to those of gravel bars in terms of
RGB values and were consequently labelled as gravel bars instead of water. This problem
did not arise when the RE-NIR bands were used due to the well-defined water ranges of
values (as previously described). This was demonstrated by the much higher precision
values in the ground/gravel bar class (99% and 89% for the second and the third classified
clouds, respectively), while the values assumed by the recall in the water class also showed
better percentages (99% and 97%, respectively), verifying the improvement of the water
table identification by means of RE+NIR data.

This evidence was also numerically confirmed by the confusion matrices analysis, as
shown in Figure 9: over 60,000 and 58,000 wrongly classified points (upper right boxes)
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from the second and the third RGB datasets, respectively, were reported. Specifically, these
points were classified as gravel bars even if submerged. Comparing the same data on the
RE+NIR confusion matrices obtained, the values slightly exceeded 6000 units in the worst
case, recognising a significant decrease of wet areas classification errors.

Furthermore, in the third classified point cloud, the presence of a dried and vegetated
channel tended to increase the value of the false negative of the ground/gravel bars class
during classification with RE+NIR data (recall equal to 77%). This suggests that identifying
emerging areas should be further investigated, though they were not the main focus
of this study.

Next, observing the F1-score harmonic values between RGB and RE+NIR data, in-
creases of 14% and 8% on the second and the third clouds, respectively, were seen. This
constitutes further evidence of superior recognition of the water table using RE+NIR data.

From the comparison of the two different classification approaches, as reported in
Tables 6 and 7, in both classified clouds, a significant difference in water’s area coverage
was evident, with a lower value from the RGB classifications (1447.57 m2 and 2750.87 m2)
than from the RE+NIR spectral ones (2233.18 m2 and 3872.98 m2). Additionally, analysing
the data obtained for the ground/gravel bars class, higher values for the RGB bands
(2250.98 m2 and 4727.61 m2) as compared to the RE+NIR ones (1657.99 m2 and 3491.84 m2)
were observed.

The water class identified using the RE+NIR spectral approach had lower areal errors
(22.33 m2 and 116.34 m2) than the RGB method (376.37 m2 and 577.68 m2) for both the
second and the third tested datasets. Moreover, the same trend could be observed in
ground/gravel bars errors: the RE-NIR classification produced 16.58 m2 and 384.11 m2

error, an improvement on the 900.39 m2 and 1323.73 m2 obtained for the RGB classified
clouds. Finally, the vegetation class represents an equilibrium between the two, with no
substantial variations in areal extensions.

The spatial data reported in Tables 6–8, associated with the statistical parameters
described in Tables 4 and 5, suggest an underestimation of the water class using RGB bands,
an error that is associated with an overestimation of the ground/gravel bars class. These
classification errors were overcome using infrared spectral data, leading to a substantial
improvement in the identification of wet areas [84].

The combination of recall and precision values as well as the areal errors described
above show how RE and NIR bands greatly reduced underestimation of the wet areas
obtained with the RGB bands while, at the same time, correcting the overestimation of the
gravel bars.

In conclusion, the results reported here suggest that UAVs equipped with multispectral
sensors are preferable to those equipped with cheaper RGB sensors alone, although this
upgrade comes with a higher cost.

6. Conclusions

Obtaining an automatic classification in fluvial environments is a major challenge,
especially where spatio-temporal coverage and recognition of fluvial and aquatic topog-
raphy, hydraulics, geomorphology, and habitat quality are needed. Since these changes
occur rapidly, it is important to use highly productive and powerful instruments for data
acquisition and to develop algorithms to extract information automatically. This paper
demonstrated the importance of using multispectral images collected from UAVs for the
classification of fluvial environments using ML algorithms. The RE and the NIR bands’
reflectance values seemed to overcome the limitations of the standard RGB radiometry,
improving the accuracy of wet area detection. Automatic classification was achieved by
developing an innovative methodology based on ad-hoc Python code. The described
procedure was applied to alpine watercourses and showed excellent result accuracy and
ease of use, as detailed in the Results section. The application of this ML script on RE+NIR
spectral point clouds in the Salbertrand region led to a sharp improvement in water table
recognition, as shown by the decrease in false positive and false negative values (precision
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and recall percentages) and the lower errors (in square metres) as compared to the RGB
classification. For these reasons, we can assert that RE+NIR data are more discerning than
RGB data in identifying wet areas in an alpine watercourse.

The innovation about our ML model is focused on its ease of use and its suitability for
every professional and environmental expert for monitoring purposes. Moreover, the code
is completely free and open to modify, available online in GitHub repository.

Given the alpine nature of the investigated watercourse, at present, it is appropriate to
point out that the predictive model developed is to be tested in the future on larger rivers
in order to observe possible limitation in water table detection. Thus, we aim to test the
developed methodology in other fluvial environment case studies to validate its usefulness.
Furthermore, we would add other features to the training test datasets, such as textures,
height values, and specific index (such as that described in [85]) in order to improve our
classification results and limit the “projected shadows” as much as possible. The possibility
to apply this method in several fluvial environment case studies would represent a great
advantage in support of the operations monitoring these areas and preventing catastrophic
events that more and more often follow each other because of climate change.

Supplementary Materials: The following GitHub repository is available online at https://github.c
om/MLfluvialenvironmentrep/ML_fluvial_detection.git [78].
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