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Machine Learning (ML) is currently being investigated as an emerging technique to automate Quality
of Transmission (QoT) estimation during lightpath deployment procedures in optical networks. Even
though the potential network-resource savings enabled by ML-based QoT estimation has been confirmed
in several studies, some practical limitations hinder its adoption in operational network deployments.
Among these, the lack of a comprehensive training dataset is recognized as a main limiting factor, es-
pecially in the early network deployment phase. In this study we compare the performance of two ML
methodologies explicitly designed to augment small-sized training datasets, namely, active learning (AL)
and domain adaptation (DA), for the estimation of the signal to noise ratio (SNR) of an unestablished
lightpath. This comparison also allows us to provide some guidelines for the adoption of these two
techniques at different life stages of a newly-deployed optical-network infrastructure. Results show that
both AL and DA permit, starting from limited data sets, to reach a QoT-estimation capability similar to
that achieved by standard supervised-learning approaches working on much larger datasets. More specif-
ically, we observe that few dozens of additional samples acquired from selected probe lightpaths already
provide significant performance improvement for AL, whereas few hundreds of samples gathered from a
external network topology are needed in the case of DA. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Several supervised Machine Learning (ML) algorithms for Qual-
ity of Transmission (QoT) estimation of unestablished lightpaths
have recently been investigated [1] to offer alternatives to tra-
ditional QoT-estimation methods. In fact, traditional methods,
typically based on approximated mathematical models (such as
the Gaussian Noise model in [2]) or on direct simulation of the
optical signal propagation, present some limitations. Approx-
imated mathematical models usually introduce conservative
design margins to compensate for uncertainties on input param-
eters and/or to account for simplifying modeling assumptions,
whereas directly simulating optical signal propagation along
the fiber core is typically unaffordable if applied in real-time
operational scenarios due to its computational complexity. Su-
pervised learning algorithms for QoT estimation leverage a set
of historical training samples, which are constituted by a vec-
tor of features characterizing the lightpath (e.g. path length, the

amount of served traffic, the adopted modulation format, etc.)
associated with a target variable that measures a lightpath’s QoT
metric, such as the signal to noise ratio (SNR) or the bit error
rate (BER). Unfortunately, supervised algorithms require a very
large set of training samples, at least in the order of hundreds or
even of a few thousands of lightpaths’ observations [3], to learn
an accurate prediction model. SNR and/or BER are assumed
to be measured at the receiver and then collected via telemetry
equipment [4]. However, in real installations, the collection of
training samples is often hindered by practical limitations such
as absence of optical monitors in some network nodes or scarcity
of monitorable lightpaths in the case of networks in their early
deployment phase.

When the number of available training samples is limited,
two solutions can be applied to enlarge the training dataset and
improve the prediction capability of a ML-based QoT estimator.

The first approach consists in acquiring a limited number of
additional samples via dedicated probe lightpaths, i.e., light-

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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paths that do not transport user traffic and are deployed with
the only objective of monitoring their QoT. In this case, one can
leverage the so called Active Learning (AL), a special ML tech-
nique in which the learning algorithm can explicitly request the
labeling of new data points to optimize performance. Hence,
in our context, AL algorithms can be used to cleverly select the
training instances (route and transmission configurations of the
probe lightpaths) to be acquired to improve the model predic-
tion capability, as done in our previous work [5]. To the best of
our knowledge, the only other study [6] adopting AL for optical
network management compares three pool-based AL selection
processes for collecting training data points of an Erbium Doped
Fiber Amplifier (EDFA) model aimed at estimating the gain of a
single channel, given a set of binary features indicating whether
each input channel is in use. In this paper, we work with both
continuous and discrete features in small to moderate training-
set dimensions, and we use Gaussian processes as predictor.
Such predictor is a more powerful non-parametric method than
the linear models used for example in [6]. Indeed, the new train-
ing instances are selected by minimizing an acquisition function
tailored on the Gaussian process model, which is not analytical
as in [6], but that can be easily optimized.

The second viable solution consists in exploiting additional
“external” training data collected from a different network, and
use Trasfer Learning (TL) [7] to extract new knowledge from such
data. Also TL is a special case of ML that permits to improve
the performance of a ML model by training it with samples
gathered from a source domain that is different from the target do-
main where the model is actually tested and used. In the context
of QoT estimation, a few recent papers applied TL methodolo-
gies to shorten the training time of (deep) neural networks, by
initializing their weights with values acquired from a model
previously trained with data extracted from a different network
[8–12]. In this paper we focus on a specific subset of TL named
Domain Adaptation (DA) [13, 14], in which the source and tar-
get domains share the same feature space. In particular, we
use a DA technique [15] which operates a domain-dependent
transformation of the features in a pre-processing phase.

In both AL and DA, acquiring additional samples comes at a
price, because i) AL needs lightpath probes which require ded-
icated transmission equipment and occupy spectral resources,
and ii) DA implies acquiring external samples from another
network, possibly managed by a different operator. Hence, the
choice among the two approaches is driven both by performance
criteria such as QoT-prediction accuracy, and by the cost of col-
lecting data.

In this study, we provide a comparison of the QoT-estimation
accuracy achieved by some AL and DA methods on two differ-
ent network topologies, as a function of the number of additional
training instances that can be acquired. A preliminary perfor-
mance comparison for AL and DA approaches appeared in our
study in [16]. In that work, we consider QoT estimation achieved
through classification, i.e., predicting whether the BER of a can-
didate lightpath exceeds a given system threshold. Differently
from that study, we now consider QoT estimation achieved
through regression on the SNR values (similarly to what already
done in [17–19]), which consists in directly estimating the value
of the SNR (and not only classifying if the SNR is above a given
threshold). We were motivated to move from classification to
regression because a direct estimation of SNR provides more
complete information regarding the QoT of a lightpath, as it
makes possible to evaluate how close that SNR is to the system
threshold. Moreover, in our study, by comparing AL and DA

on a common set of assumptions (fixing, e.g., the same network
topology and physical-layer modeling), we can also provide
guidelines for the adoption of DA and AL techniques (or even
of a combination of the two techniques) at different life stages
of a newly-deployed optical-network infrastructure. Finally, we
provide a cost-performance tradeoff analysis of the AL and DA
approaches, depending on the costs that the network operator
would incur when deploying a probe lightpath or acquiring
external samples from a different network.

The remainder of this paper is organized as follows: we
present the adopted AL and DA approaches in Sec.2. In Sec.3 we
describe the considered network scenario, highlighting the spe-
cific stages of the network life cycle when each technique finds
more useful application. An illustrative numerical evaluation is
provided in Sec.4. Sec.5 concludes the paper.

2. ACTIVE LEARNING AND DOMAIN ADAPTATION AP-
PROACHES FOR QOT ESTIMATION

In this Section we first provide some background notions on
Gaussian Processes (the ML model used throughout the entire
study) and then we discuss the approaches used to incorporate
AL and DA in a Gaussian Process model. Note that, for both
AL and DA approaches, we assume that the feature vector that
describes a lightpath in the datasets contains: total lightpath
length, maximum link length (i.e. the sum of the lengths of
the consecutive fiber spans constituting the longest link among
the ones belonging to the considered lightpath), number of tra-
versed links, amount of transmitted traffic and modulation for-
mat adopted for transmission (such end-to-end features have
been widely adopted in studies on ML approaches for QoT esti-
mation, e.g. in [3, 20, 21]). Optionally, the following additional
features can be included to characterize the lightpaths’ neighbor
channels: traffic volume, modulation format and guardband
size of the spectrally-nearest right and left adjacent channels
co-propagating along at least one of the links traversed by the
considered lightpath. Each lightpath sample is associated with
the SNR value measured at the receiver node.

A. Regression Model based on Gaussian Processes
We consider a Gaussian-Processes (GPs) model [22], a proba-
bilistic non-parametric learning algorithm which provides both
a prediction and a quantification of its uncertainty. This learn-
ing model is preferred to other models (e.g. neural networks)
because of its reliable and fast-to-compute uncertainty quan-
tification, which is necessary to implement AL approaches, as
it allows to explore the input space more efficiently. A GP
model outputs a prediction of the associated SNR value when
receiving at the input the features of a candidate lightpath
x∗ ∈ X ⊂ R5. In particular, we observe a training set of `
points X` = {x1, . . . , x`} ⊂ X, coupled with ` response values
y = (y1, . . . , y`)T ∈ R` where

yi = f (xi) + ε (1)

for xi ∈ X, i = 1, . . . , ` with a measurement error ε ∼
N(0, σ2

noise). Eq. (1) means that we assume that SNR observa-
tions are generated by a latent function f and corrupted by a
small measurement noise ε. This observation model permits to
handle data points where two observations with the same input
features produce slightly different SNR values, to increase data
set variability. We denote by f = ( f (x1), . . . , f (x`)) ∈ R` the la-
tent function values. The observation model described in Eq. (1)
can be summarized as p(y | f) = N(f, σ2

noise I`), where I` ∈ R`×`
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is the identity matrix. Note that for the problem at hand, xi
would be a vector describing the ith lightpath features in the
training set, coupled with yi, the (noisy) SNR value observed for
that lightpath. The vector xi is considered here as a vector of real
values in [0, 1]5. The j-th ordinal feature is thus transformed with
a linear transformation that maps each xj ∈ [minj, maxj] into
x̃j ∈ [0, 1] as x̃j = (xj −minj)/(maxj −minj), where minj, maxj
are the minimum and the maximum values possible for the
feature j. In particular for the modulation format the number
of constellation points are first transformed with a base two
logarithm.

GP regression assumes that the latent function f is a real-
ization of a Gaussian process. Thus, in a Bayesian sense, we
assume that the latent vector f has a prior distribution given by
p(f) = N(m(X`), K), with m(X`) = (m(x1), . . . , m(x`))T ∈ R`

and K a positive definite matrix with elements Ki,j = k(xi, xj).
The function k is a positive definite kernel which, along with m,
the mean function, defines the Gaussian process.

The GP mean function m and kernel k are chosen before
observing the data, and therefore encode our prior knowledge.
The prior mean is an arbitrary function that encodes trends of
the latent function f known before observing any data. In our
scenario, since no known trends are available, we use a zero
mean function. The kernel determines the smoothness of the
GP regression fit and can be used to encode prior knowledge on
f . For example, if the latent function is known to be periodic,
we can choose a periodic kernel and all prior realizations of the
GP will be periodic functions. However, the SNR function does
not have, a priori, specific properties; thus, we choose a kernel
from a stationary family, so as to have a dependency on a few
hyper-parameters tuned from data. In particular, we choose
a kernel from the Matérn family, with smoothness parameter
equal to ν = 3/2 (see [5] for more details on this choice and a
discussion on alternative options). The other hyper-parameters
of this kernel, such as characteristic length-scales for each input
and kernel variance, are chosen by maximizing the marginal
likelihood of the model (see [22], chapter 2).

The prior and the observation model in Eq. (1) can be com-
bined with Bayes theorem to obtain the posterior distribution.

p(f | y) =
p(f)p(y | f)

p(y)
.

In GP regression, the posterior distribution p(f | y) has the
remarkable property of being normally distributed, with analyt-
ical expressions for its mean and covariance (see [22], chapter 2).
This means that no sampling is needed to compute the posterior
distribution. However, because the analytical formulae have a
complexity of O(`3), they become practically infeasible for large
datasets. This issue is often not problematic in AL applications
because the size of the training set is intrinsically limited by the
cost of acquiring new samples.

In the following subsections, we describe the applied AL and
DA methods, and define baselines to be used as benchmarks.

B. Active Learning Technique
We assume that only a small training dataset T containing light-
path samples from the network under consideration (referred
to in the following as target domain) is available. AL aims at
adaptively increasing the size of the training dataset by adding
new samples that minimize a problem-specific acquisition func-
tion. We consider the Integrated Mean Squared Error (IMSE)
acquisition function introduced in [23] which associates to any

new untried input x the (integrated) posterior variance of the
GP, assuming this new point is added to the training set. Given
a training set X` and a new point x`+1, we can compute the pos-
terior variance s2

`+1(x) at any input location x with the formula

s2
`+1(x) = s2

`(x)−
k`(x, x`+1)

2

k`(x`+1, x`+1) + σ2
noise

, (2)

where σ2
noise is the variance of the measurement noise, s2

`(·) and
k`(·, ·) are the posterior variance and the posterior covariance
kernel given (X`, y`). The value of the latent function f at the
new point x`+1 is not needed to compute s2

`+1; thus, this quan-
tity can be computed before measuring any new SNR value.
Furthermore, once k` and s2

` are given, the function in Eq. (2)
is very fast to evaluate at any x ∈ X. The IMSE acquisition
function is then defined as the integral over the input domain of
the quantity in Eq. (2), i.e.

I`(x`+1) =
∫

X
s2
`+1(x)dx. (3)

The integral in Eq. (3) is computed with a Monte Carlo method
using a discretization of the integral over nint integration points
(nint = 1500, in our simulations) selected with an importance
sampling procedure (see [24] for details).

We can then select the next input location xAL
`+1 by minimizing

the function I`. We can proceed with this minimization in two
ways: i) we constrain the acquisition function to obtain only
feasible samples as in [5] and use a continuous optimizer; ii)
we pre-select a pool of possible input locations, evaluate I` at
such locations and select the minimizer. Here we select xAL

`+1
as the minimizer from a pre-selected pool of input locations to
have results comparable with those of the DA techniques. In our
experiments the pool of input location corresponds to the same
training dataset from which samples are selected to estimate the
quantities required by DA algorithms. We increase the size of
the training set T0 = T with an iterative procedure where at
each step `:

1. the GP-based model is trained with T` = T0 ∪
{(xAL

1 , y1), . . . , (xAL
` , y`)}, where y` is the SNR value ob-

tained from a probe with features xAL
` ;

2. the trained model and, in particular, the posterior variance
s` is used to build the acquisition function I` as described
in Eq. (3);

3. we minimize I` to select the next inputs xAL
`+1;

4. we estimate the SNR value y`+1 with a probe that has fea-
tures xAL

`+1 and we update the training set with T`+1 =

T` ∪ {(xAL
`+1, y`+1)};

The procedure is repeated until the number of acquirable sam-
ples is exhausted.

C. Domain Adaptation Techniques
In the case of DA techniques, in addition to the training set T of
the target domain, we leverage a second training set S obtained
from a different network (named as source domain). We consider
two supervised DA techniques (which rely on the availability
of labels for T), and one unsupervised DA technique (which
does not need labels for T). We briefly describe below the three
considered DA techniques.
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Fig. 1. Japan network topology. Nodes are labeled using inte-
ger numbers.

C.1. Bayesian updating

Bayesian Updating (BU) consists in using a model trained on
the source dataset S as prior model and updating it with the
data from the target domain T. This is a basic supervised DA
technique which is computationally reasonable with GP models
because they allow for analytical updates of the posterior distri-
bution (see, e.g., [25]), so the distribution can be updated exactly
at reasonable costs.

C.2. Feature Augmentation

Feature Augmentation (FA) [15] is a supervised DA technique
that encodes the domain of a sample by augmenting its feature
vector. More in detail, the length of each feature vector x is
tripled with a rule that depends on the domain, with the aim of
capturing both the commonalities between the two domains and
the unique characteristics of each domain. If the sample comes
from S, the tripled feature vector is defined as x′ = 〈x, x, 0〉;
whereas if the sample comes from T, x′ = 〈x, 0, x〉. This augmen-
tation is applied to all samples, both for training and inference.

C.3. Correlation Alignment

Correlation Alignment (CORAL) [26] is an unsupervised DA
technique that transforms the features in S to match the second-
order statistics of the features in T. Because of the difference
in the domains, the instances in S are contained in a different
manifold of the space of features than the ones in T: a model
learned on S will therefore underperform on the target domain.
CORAL applies a transformation φ that re-colors the whitened
features of the samples in S with the covariance matrix estimated
from the feature distribution of the samples in T; the model
is learned on the transformed data. Because estimating such
covariance matrix does not require information about the labels
of samples in T, the approach is unsupervised and we use the
notation Tunlabeled.

Note that, in our application scenarios, generating Tunlabeled
simply requires to select the routes and transmission configura-
tions of a large set of potential lightpaths, without measuring
their SNR. Since generating feature vectors associated to perspec-
tive lightpath configurations comes at no cost, the cardinality of
set Tunlabeled is assumed to be large. The method estimates the
transformation φ from S to Tunlabeled, then trains the prediction
model on φ(S).

D. Benchmarks
In the result section, we will also consider the following three
baselines:

• Source Domain Baseline (SDB) trains the regressor only on S;

Fig. 2. NSF network topology. Nodes are labeled using integer
numbers.

• Reduced Target Domain Baseline (RTDB) trains the regressor
only on T;

• Large Target Domain Baseline (LTDB) trains the regressor on
T′ containing a larger number of samples from the target
domain (i.e., |T′| � |T|).

3. WHEN TO APPLY AL/DA DURING NETWORK LIFECY-
CLE

We now discuss how the DA and AL techniques described in the
previous section can be applied during the early life-stages of
an optical network. To this aim, we consider a newly deployed
optical network and we assume that at time t0 the network is
completely empty. When the first lightpath request has to be
provisioned, T = �. Hence, in this situation, the viable ML
options for QoT estimation are:

• acquire a dataset S from a different network domain and
use it to train the SNR estimator (SDB);

• acquire a dataset S from a different domain and a dataset
Tunlabeled of unlabeled data from the current network do-
main and apply Correlation Alignment (CORAL) to train
the SNR predictor (note that, as already mentioned, the
acquisition of Tunlabeled is straightforward and comes at no
cost, because it consists of a collection of lightpath configu-
rations, without need of assessing their SNR).

Furthermore, if the operator is willing to install probe lightpaths
(i.e., lightpaths that do not carry user traffic), AL can be applied
to improve the prediction model obtained by both SDB and
CORAL. This implies enlarging set S with samples indicated
by the AL algorithm and acquired by dedicated probes. The
combination of the above mentioned DA and AL approaches
will be indicated in the following as CORAL+AL or SDB+AL.

Alternatively, if an external dataset cannot be acquired (i.e.,
S = �), the first deployments must rely on traditional SNR
prediction methods (e.g., the Gaussian Noise model [27]).

Once a few lightpaths have been deployed within the net-
work, their SNR can be measured by monitors and set T starts
being populated (0 < |T| < |T0|). At this stage t1 > t0, two
additional DA options become applicable to improve the perfor-
mance of the SNR predictor:

• apply the Bayesian Update (BU) on the model previously
trained on dataset S leveraging the new samples from
dataset T;

• apply the Feature Augmentation (FA) technique on the
datasets S and T and use both of them to train the SNR
predictor.
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Table 1. Taxonomy of the use of DA/AL techniques, depend-
ing on the size of the source and target domain datasets

|S| = 0 |S| > 0

Probes No Yes No Yes

|T| = 0 - -
SDB SDB+AL

CORAL CORAL+AL

0 < |T| < |T0| - - BU, FA BU, FA

|T| ≥ |T0| RTDB RTDB+AL BU, FA BU, FA

|T| � |T0| LTDB LTDB LTDB LTDB

Fig. 3. SNR distribution for 18000 randomly selected light-
paths in Jnet and NSFnet, with SNR thresholds for the consid-
ered modulation formats

If no external dataset has been acquired (i.e., S = �), the
adoption of AL becomes nevertheless viable when set T con-
tains a sufficient number of samples (|T| ≥ |T0|) to boost an
initial model training. This case will be indicated as RTDB+AL.
Of course, nothing prevents from training the SNR predictor
exclusively on T (RTDB). This latter option can be applied if
no external dataset is available and the installation of probes is
undesired.

Finally, at time t2 > t1, when the size of T becomes large
(|T| � |T0|), it can be expected that training the SNR predictor
with dataset T yields to a sufficiently good estimation perfor-
mance (LTDB) and AL/DA techniques are no longer necessary.

Tab.1 summarizes the above mentioned scenarios.

4. RESULTS

A. Simulation Settings
We consider a 4 THz wide flexible optical grid with 12.5 GHz
slice width and adaptive transceivers operating at 28 Gbaud,
each one occupying a 37.5 GHz optical bandwidth. Transceivers
adopt a modulation format chosen among dual polarization

Dataset BPSK QPSK 8-QAM 16-QAM 32-QAM 64-QAM

Jnet 50.27 9.90 0.63 0 0 0

NSFnet 92.87 51.03 10.50 7.23 3.27 0.03

Table 2. Percentage (%) of samples exhibiting above-threshold
SNR values for each considered modulation format, computed
for 18000 randomly selected lightpaths in Jnet and NSFnet

DP-BPSK, DP-QPSK and DP-n-QAM, with n = 8, 16, 32, 64, re-
sulting in supported bit rates of 50, 100, 150, 200, 250 and 300
Gbps, respectively. Traffic demands exceeding the capacity of a
single transceiver are served by optical superchannels contain-
ing multiple adjacent transceivers, switched and filtered as a
single entity. The minimum guardband size required to separate
two spectrally adjacent (super)channels is 12.5 GHz. It follows
that the maxiumum number of channels per fiber is 80.

We consider the Japan (Jnet) and NSF (NSFnet) networks de-
picted in Figs.1 and 2 respectively, and evaluate the performance
of the DA and AL approaches presented in Sec.2 in terms of the
R2 metric, defined as:

R2 = 1− ∑`test
i=1(y

pred
i − yi)

2

∑`test
i=1(ȳ− yi)2

(4)

where ȳ = 1
`test

∑`test
i=1 yi and `test is the test data size, and of the

root mean square error (RMSE), defined as:

RMSE =

√√√√ 1
`test

`test

∑
i=1

(ypred
i − yi)2 (5)

The R2 metric describes the fraction of variance explained by
the model with respect to the total variance of the test data. It is
always below or equal to one: a perfect prediction achieves an
R2 equal to one, whereas a baseline model that always returns ȳ
yields R2= 0; a model with R2= 0.9 explains 90% of the variance
of the data, and is unable to capture the remaining 10%. The
RMSE is also a measure of accuracy of a model, but unlike R2 it
is dependent on the scale of the target variable, and thus more
difficult to directly relate to the quality of the model; the RMSE
is non-negative, and a perfect model achieves RMSE= 0.

For each topology, we build a dataset R including several
thousands of samples generated according to the following pro-
cedure:

1. randomly choose a source-destination node pair, a modula-
tion format and a traffic demand uniformly selected in the
range [50− 500] Gbps, with 50 Gbps granularity

2. randomly choose one out of the 3 shortest paths from source
to destination, perform random spectrum allocation and
compute the ligthpath SNR using the E-tool, then repeat
from point 1. If routing and spectrum assignment fails, halt
and restart from point 1.

3. After 10 consecutive failures in the routing and spectrum
assignment procedure, compute the feature vector associ-
ated to every deployed lightpath, clear the network from
all ligthpath allocations and restart from point 1.

Note that the above described procedure is unlikely to lead to
the most efficient lightpath allocation in terms of overall served
traffic, average spectral efficiency and spectrum fragmentation
and may lead to lightpath configurations exhibiting too high
SNR to ensure a sufficiently low BER, but allows for obtaining
more diversified feature vectors with respect to other approaches
such as choosing the modulation format based on an a-priori
estimation of its reach and on the lightpath length, or using first-
fit spectrum allocation. This ensures that the dataset generation
procedure explores the whole feature space, which is a necessary
requirement to train an unbiased prediction model. As discussed
in [3, 28], in real scenarios dedicated probe lightpaths should be
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Fig. 4. R2 (top) and RMSE (bottom) obtained by DA (left), AL (center) and DA+AL (right) approaches with target domain NSFnet
and source domain Jnet.

deployed to acquire SNR measurements configurations leading
to unacceptable BER values.

To generate synthetic SNR data we use the E-tool presented
in [3]. For a given candidate lightpath, traffic volume and mod-
ulation format (which constitute the feature vector xi), the E-
tool calculates the Signal-to-Noise ratio measured at the chan-
nel decoder via the approximated AWGN model of dispersion
uncompensated transmission over single mode fibers. In our
Signal-to-Noise calculations, we take into account the effect of
Amplified Spontaneous Emission (ASE) noise and also the Non-
linear Interference (NLI) noise generated by the Kerr effect due
to the propagation of the signal on optical fiber (as introduced
in Eqn. (5) in [29]). The SNR is defined as the ratio of the power
of the signal (Psig) and the power of the noise (Pnoise). Pnoise is
composed of the noise power due to the ASE (Pase) and the noise
power due to the NLI (Pnli), Therefore, SNR can be expressed as:

SNR =
Psig

Pase + Pnli
(6)

Note also that the nonlinear contribution considered in our E-
tool is calculated according to [30].

Therefore, the E-tool implements the function f (xi). The
E-tool also adds random penalties to account for model uncer-
tainties, according to an exponential distribution with average
of 1 dB. Such uncertainties are captured the GP model by the
term ε. We assume transparent links of dispersion uncompen-
sated standard single-mode fibers. Fiber spans are assumed to
be 100 km long in both topologies (if the length of a given link is
not an integer multiple of the span length, the last span consti-
tuting the link is assumed to be shorter). Transmission adopts
optimal launch power levels per channel (in dBmW) computed
according to [2] and the signal power is restored by identical op-
tical amplifiers with 20 dB gain, located at the end of each span.
For the Jnet topology, we adopt a fiber attenuation coefficient
of 0.25 dB/km and a 7 dB amplifier noise figure, whereas for

the NSFnet topology the two values are set to 0.2 dB/km and
5 dB, respectively. By changing the values of fiber attenuation
and amplifier noise parameters in the two topologies, we aim
at capturing the different characteristics of two networks that
leverage different transmission equipment and/or have been
differently impacted by ageing. The distribution of the obtained
SNR values is reported in Fig.3 for both topologies, as well as the
SNR thresholds for each of the considered modulation formats,
required to guarantee a pre-FEC BER lower than 4 · 10−3. In the
NSFnet, the SNR ranges between −15 and 20 dB, with a peak
around −5 dB, whereas in the Jnet the SNR range is [−10, 30]
dB, with a peak around 7 dB. In Table 2, we partition the sam-
ples based on the adopted modulation format and, for each of
the considered modulation formats, we report the percentage
of lightpaths that exhibit above-threshold SNR values in both
networks. It emerges that the vast majority of samples lever-
aging QPSK and 8-QAM and all the samples leveraging 16,34
and 64-QAM need to be acquired by means of probe lightpaths,
since such transmission parameter configuration would never
be observed in regular lightpaths carrying user traffic. Some
initial analysis on the effect of the number of probes on the final
accuracy of ML-based QoT estimation can be found in [3] and a
more comprehensive study on this topic is left as future work.

Note that in the learning procedures, the SNR values of each
topology are standardized to obtain a distribution with zero
mean and unitary variance. The mean and standard deviation
are computed here from a dataset that does not include test data
but includes all data used in the different procedures compared
in the benchmark. This choice allows for a comparison that does
not depend on the standardization procedure.

Each method is evaluated by computing the R2 and RMSE
metrics on 6000 test data which are chosen at random from the
original full datasetRtarget before any training. The remaining
part of Rtarget, denoted Rtrain

target (12000 points), is used to select
points for the training sets and as the pool of pre-selected points
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for the acquisition function optimization. The AL and DA meth-
ods are validated against the RTDB and LTDB baselines, where
LTDB assumes |T′| = 1000 and RTDB assumes |T| = 50 (where
T, T′ ⊂ Rtrain

target). We assume |S| = 75, 125, 250, 500, 750, 1000
(where S ⊂ Rsource). For CORAL only, we assume Tunlabeled =
1000 (where Tunlabeled contains the feature vectors of 1000 ele-
ments in Rtrain

target). For the AL algorithm, we start from RTDB
and add up to 750 new samples and we evaluate R2 and RMSE
every 100 iterations. Experiments are repeated 10 times, with
random extraction of elements of S (resp. T) from set Rsource
(resp. Rtrain

target). If not differently stated, the feature vector of each
sample includes the five features associated to the lightpath (i.e.,
total lighpath length, longest link length, number of traversed
link, traffic volume and modulation format).

B. Comparison of Prediction Performance
Fig. 4 shows on the top left the R2 values obtained by applying
DA techniques versus the cardinality of S, when the target do-
main is the NSFnet and the source domain is the Jnet. Recall that
the average lightpath length in the Jnet is much smaller than in
the NSFnet. To correctly interpret Fig.4, keep in mind that: i)
RTDB (on the extreme left) represents a low performance bound,
as it is obtained with limited data from target domain; ii) LTDB
(on the extreme right) represents a high performance bound, as it
is obtained with a large training dataset from target domain; iii)
all the approaches in the middle represent the possible increase
in performance obtained thanks to DA (where DA includes BU,
FA and CORAL approaches) w.r.t. the benchmark constituted by
SDB. We start by noticing that the R2 median achieved by SDB
ranges from 0.816 (when |S|=75) to 0.847 (when |S|=1000). Using
the same amount of samples, CORAL outperforms SDB, with
a R2 median in the range [0.835-0.856], showing an increase of
R2 as the cardinality of S raises. When |S|=75, the performance
of CORAL is comparable to that of RTDB (median 0.833). Thus,
with only 75 samples gathered from the Jnet domain (and no
samples from the NSFnet domain), CORAL permits to achieve
the same prediction capabilities that would be obtained training
the GP with 50 samples collected from the NSFnet. Moreover,
when |S| is low, BU shows comparable performance w.r.t. RTDB,
showing that, when a simple Bayesian model update is applied,
the benefit derived from dataset |S| is marginal once T is at
disposal, but improvements are visible for higher cardinalities
of |S|, with an ascending trend comparable to that of CORAL.
Indeed, samples coming from Jnet help the NSFnet dataset to be
complemented of useful information on the SNR of short paths.
Conversely, FA appears not to bring significant benefits in this
scenario: it is always below CORAL and it slightly outperforms
RTDB only when |S| ≥ 500.

On the top center, Fig 4 shows the results obtained with a
pure AL procedure. Here the x-axis denotes the size of T. The
reference in this case is RTDB, i.e. |T0| = 50, and we show the AL
results every 100 newly added points. After 100 AL iterations, i.e.
for |T| = 100, AL obtains a median R2 score of 0.859, which is
comparable to the best performance obtained by DA techniques
(i.e., by CORAL with 1000 source domain samples). With |T| =
200, AL achieves a median R2 score of 0.866, higher than any
DA procedure. This shows that AL is generally much more data
efficient than DA procedures. However, note that generating the
initial training set could be more costly than in a DA method,
so a pure AL procedure might not be always feasible from an
economical perspective.

On the top right, Fig. 4 reports the results obtained combining
AL with either SDB or CORAL, assuming that set |S| consists of

Method RMSE ε < 0.5 0.5 ≤ ε < 1 1 ≤ ε < 2 ε ≥ 2

RTDB 0.9522 0.4598 0.2910 0.2087 0.0405

BU (1000) 0.8885 0.4164 0.3343 0.2239 0.0254

CORAL (1000) 0.8899 0.4632 0.3059 0.1939 0.0370

FA (1000) 0.9501 0.4618 0.2932 0.1989 0.0461

SDB (500) 0.8905 0.4018 0.3352 0.2449 0.0181

LTDB 0.8367 0.5152 0.3184 0.1448 0.0216

AL (800 its) 0.8260 0.5090 0.3143 0.1492 0.0275

Table 3. Target NSFnet. Percentage of absolute errors, ε,
smaller than thresholds in dB.

500 source domain data points. For |T| = 50, the performance of
RTDB is reported as a reference. SDB+AL has a slightly higher
median than CORAL+AL, but with marginal differences from
a practical perspective. The AL method on top of both DA
techniques results in a marginally increased R2 score: from
0.844 (|T| = 0) to 0.850 (|T| = 100) for CORAL and from 0.849
(|T| = 0) to 0.852 (|T| = 100) for SDB. Note that a pure AL
approach outperforms any of the cases tested for DA+AL when
the number of iterations is 50 or higher. The initial training set
plays a crucial role when selecting the next few samples in the
AL procedure. In CORAL+AL or SDB+AL the initial model of
the AL procedure is built on many (500) source domain samples
and achieves better scores than RTDB, however the increase in
R2 obtained there after adding 25 new samples is much smaller
(median increase 0.001) than the improvement obtained in the
pure AL case (median increase 0.02). This is due to the fact that
the initial model of the DA+AL methods does not build a very
reliable uncertainty quantification, as opposed to RTDB.

At the bottom left, Fig. 4 reports the RMSE calculated com-
paring SNR predictions to the ground truth values. CORAL and
BU exhibit a median RMSE in the range [0.889− 0.946] dB and
show a noticeable decrease w.r.t. SDB which ranges from 0.913 to
0.988 dB, thus both techniques reduce the gap from the reference
value reached by LTDB (0.837 dB). RTDB shows a median RMSE
of 0.952 dB, close to the top of the range spanned by CORAL
and BU. The most consistent RMSE reduction is obtained by AL,
which exhibits an RMSE as low as 0.872 using 100 probes (bot-
tom center). The combination of AL with SDB or CORAL yields
an RMSE in the range [0.887− 0.910] dB (bottom right), thus
reducing the values obtainable by the two techniques without
AL.

In order to give an intuition on the practical relevance of these
results, we report in Table 3 the percentage (averaged over 10
repetitions) of test data that recorded an error below 0.5 dB, 1
dB and 2 dB in the best scenario for each method. Note that for
AL with 800 iterations more that 50% of the errors are below 0.5
dB, and more than 97% are below 2 dB.

We now focus on a different scenario, where the NSFnet is
considered as the source domain and the Jnet as the target do-
main. As reported at the the top left of Fig. 5, SDB performs
much worse than RTDB, showing that knowledge about short
lightpaths carried by the samples from NSFnet is not sufficient
to achieve good prediction capabilities. Indeed, even when
|S| = 1000, the R2 values obtained by SDB is below those
obtained by RTDB with only 50 samples gathered from Jnet.
CORAL outperforms SDB when the cardinality of S is low and
RTDB when the number of samples from the source domain
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Fig. 5. R2 (top) and RMSE (bottom) obtained by DA (left), AL (center) and DA+AL (right) approaches with target domain Jnet and
source domain NSFnet.

increases, reaching 0.888 for |S| = 1000. Using BU appears not
to bring additional benefits in this scenario. Indeed, BU does
not outperform RTDB, hinting that the samples gathered from
the NSFnet (which exhibits a much larger range of lightpath
lengths w.r.t. Jnet) do not bring significant improvements on
the predictive capabilities of a GP model, when a few samples
gathered from Jnet are available. Conversely, FA outperforms
RTDB when |S| is large, showing the advantage of leveraging
a more advanced domain adaptation mechanism w.r.t. BU. FA
outperforms the other techniques when |S| ≥ 250.

At the top center,Fig. 5 shows the performance of an AL
procedure trained with starting training set RTDB. After 50 AL
iterations, i.e. with a training set of size |T| = 100, we obtain a
median R2 value of 0.895 which is higher than any DA technique.
Especially in this scenario, where the source domain NSFnet is
not too informative w.r.t. the target domain Jnet, an AL proce-
dure could achieve better results than DA methods with few
samples.

The top right graph in Fig. 5 reports the performance of com-
bining AL with either SDB or CORAL. As already observed in
the DA methods comparison, SDB+AL performs much worse
than CORAL+AL. Furthermore, this difference is preserved even
after adding samples from the target domain with AL. SDB does
not reach the performance of RTDB even when 100 samples from
T are added by means of the AL procedure, showing that the ini-
tial training set used for the AL procedure is important. On the
other hand, CORAL with |S| = 500 and |T| ≥ 50 outperforms
RTDB and with |T| = 100 has performance comparable with any
DA method with |S| = 1000. However, after 100 iterations, none
of the combined techniques outperforms the pure AL approach.

The bottom part of Fig. 5 reports the RMSE achieved by DA
and AL techniques. In this scenario results are on average lower
than in the previous one and confirm that the pure AL approach
yields to the lowest RMSE (0.821 dB when |T| = 100).

Table 4 shows the distribution of absolute errors for Jnet. All

Method RMSE ε < 0.5 0.5 ≤ ε < 1 1 ≤ ε < 2 ε ≥ 2

RTDB 0.8813 0.4646 0.3144 0.1908 0.0302

BU (125) 0.8594 0.4939 0.2929 0.1773 0.0359

CORAL (1000) 0.8536 0.4649 0.3213 0.1924 0.0214

FA (1000) 0.8474 0.4808 0.3157 0.1736 0.0299

SDB (1000) 0.9454 0.4499 0.2990 0.2112 0.0399

LTDB 0.7724 0.5412 0.3213 0.1228 0.0147

AL (800) 0.7680 0.5268 0.3138 0.1335 0.0259

Table 4. Target Jnet. Percentage of absolute errors, ε, smaller
than thresholds in dB.

methods achieve here better results compared to the NSFnet, in
particular in the case of AL, after 750 iterations, 53% of the errors
are below 0.5 dB and 97% are below 2 dB.

The methods have all reasonable computational costs, how-
ever the GP algorithm scales cubically in the training size, so it
is not recommended for large datasets. In the examples above,
training a GP model with 800 data points takes about 190 sec-
onds on a regular laptop. This cost is mainly driven by the
hyper-parameter optimization and it strongly depends on the
implementation of such optimization. The AL part requires an-
other optimization (minimization of I`) which costs on average
76 seconds. Here we use the R package DiceKriging [31] for
fitting the GP and KrigInv [32] for the AL part.

Based on the results discussed above, it emerges that com-
parable R2 improvements over RTDB can be obtained either
with a few additional samples acquired from the target domain
by means of an AL approach, or with some hundreds of sam-
ples gathered from another network topology. The decision on
which approach to adopt depends both on the availability and
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Fig. 6. R2 obtained by DA (left) and AL (right) approaches with target domain Jnet (top) and target domain NSFnet (bottom).

acquisition costs of external samples or probe. Therefore, in the
following subsection we explore this aspect by conducting a
performance-cost trade-off analysis.

C. Impact of the neighbor channel features

We now partially replicate the experiments of the previous sub-
section with samples that includes 6 features in addition to the
already available features, i.e. guardband, modulation format
and traffic volume of the nearest left and right neighbor ligth-
paths. The setup is identical to the one used in the previous
section, except for AL where we add only 450 new samples here.

Figure 6 shows on the top the R2 values obtained by DA
and AL with target domain Jnet and source domain NSFnet.
On the bottom we report the R2 values with target domain
NSFnet and source domain Jnet. The performances in this case
are overall slightly worse: for example, when considering Jnet
as target target domain, AL achieves a R2 higher than 0.9 only
after 450 iterations, training size of 500, while in the 5 feature
cases the value was achieved already 150 iterations, i.e. training
size 200 achieves R2 above 0.9. This is due to the increase in the
number of dimensions of the feature space. The conclusion of the
comparison developed in the previous subsection, however, still
hold. In particular, note how AL achieves better results than all
DA techniques tested after 150 iterations (i.e. training size 200)
in both cases. Moreover, CORAL generally outperforms both FA
and SDB as in the 5 features case. Interestingly, as opposed to
the 5 features case, BU shows an improvement in performance
with target domain NSFnet as we increase the source domain
size.

D. Evaluation of Costs/Benefits Trade-off

We now discuss the trade-off between prediction performance
achieved by the considered DA/AL approaches and the costs
incurred by each of them. We assume that acquiring one sam-
ple from an external domain has unitary cost and that the ratio
between the cost required to deploy a probe in the considered
domain and the cost to acquire a sample from an external do-
main is a = 1, 10, 100 (the computation of such amounts may
also consider the costs incurred for the installation of the nec-
essary telemetry equipment). Fig.7 plots the median R2 versus
the total cost required to obtain the samples in sets S and T, for
all techniques reported in Tab.1 and different cardinalities of the
two sets (where |S| ranges from 0 to 1000 and |T| ranges from
0 to 150), under the same scenarios explored in Figs.4 and 5. In
both cases, AL achieves the highest R2 median values. Therefore,
if a = 1 (i.e., acquiring a sample from the source domain costs
as much as deploying a probe in the target domain) AL turns
out to be the preferable approach. Conversely, if a = 10, the
cost of acquiring hundreds of samples from the source domain
becomes comparable to that of installing some tens of probes
in the target domain. Therefore, AL and DA techniques span
the same cost region. In this case, though AL still provides the
highest R2, a performance close to that of AL could be obtained
by DA approaches such as CORAL (when the target domain is
NSFnet, see Fig.7, left) and FA (when the target domain is Jnet,
see Fig.7, right), with approximately the same cost. The added
benefits would be to avoid reserving network resources to probe
lightpaths. Finally, if a = 100, AL techniques become far more
expensive than DA techniques, therefore their slight increase
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Fig. 7. R2 vs. cost trade-off obtained with target domain NSFnet (left) or Jnet (right), for various DA/AL techniques and sample
cost ratios.

in R2 w.r.t. FA and CORAL may not be worth the sheer cost
increase.

5. CONCLUSION

We studied the performance of AL (Active Learning) and DA
(Domain Adaptation) techniques for SNR estimation in flexi-
ble grid networks. We showed that both AL and DA provide
estimation capabilities similar to those of classical supervised ap-
proaches, without requiring a large data set that may be difficult
and costly to obtain, particularly for recently deployed optical
networks. Depending on the relative costs of acquiring available
data from an existing source network or obtaining instances
via lightpath probes in the target network, AL or DA may be
preferred. We also discuss the opportunity to jointly exploit AL
and DA approaches to enhance the ONSR estimation capability.
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