
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case / Giordano, Danilo;
Giobergia, Flavio; Pastor, Eliana; La Macchia, Antonio; Cerquitelli, Tania; Baralis, Elena; Mellia, Marco; Tricarico,
Davide. - In: COMPUTERS IN INDUSTRY. - ISSN 0166-3615. - ELETTRONICO. - 134:(2022), p. 103554.
[10.1016/j.compind.2021.103554]

Original

Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.compind.2021.103554

Terms of use:

Publisher copyright

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.compind.2021.103554

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2937019 since: 2021-11-17T10:19:51Z

Elsevier



Data-Driven Strategies for Predictive Maintenance:
Lesson Learned from an Automotive Use Case

Danilo Giordanoa,∗, Flavio Giobergiaa, Eliana Pastora, Antonio La Macchiaa,
Tania Cerquitellia, Elena Baralisa, Marco Melliaa, Davide Tricaricob

a Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy
danilo.giordano@polito.it, eliana.pastor@polito.it, flavio.giobergia@polito.it,

antonio.lamacchia@studenti.polito.it, tania.cerquitelli@polito.it, elena.baralis@polito.it,
marco.mellia@polito.it

bPunch Torino, Turin, Italy davide.tricarico@punchtorino.com

Abstract

Predictive maintenance is an ever-growing topic of interest, spanning different

fields and approaches. In the automotive domain, thanks to on-board sensors

and the possibility to transmit collected data to the cloud, car manufacturers can

deploy predictive maintenance solutions to prevent components malfunctioning

and eventually recall to the service the vehicle before the customer experiences

the failure. In this paper we present PREPIPE, a data-driven pipeline for

predictive maintenance. Given the raw time series of signals recorded by the

on-board engine control unit of diesel engines, we exploit PREPIPE to predict

the clogging status of the oxygen sensor, a key component of the exhaust sys-

tem to control combustion efficiency and pollutant emissions. In the design of

PREPIPE we deeply investigate: (i) how to choose the best subset of signals to

best capture the sensor status, (ii) how much data needs to be collected to make

the most accurate prediction, (iii) how to transform the original time series into

features suitable for state-of-art classifiers, (iv) how to select the most important

features, (v) how to include historical features to predict the clogging status of

the sensor. We thoroughly assess PREPIPE performance and compare it with

state-of-art deep learning architectures. Our results show that PREPIPE cor-

∗Corresponding author
Email address: danilo.giordano@polito.it (Danilo Giordano)

Preprint submitted to Elsevier November 11, 2021



rectly identifies critical situations before the sensor reaches critical conditions.

Furthermore, PREPIPE supports domain experts in optimizing the design of

data-driven predictive maintenance pipelines with performance comparable to

deep learning methodologies while keeping a degree of interpretability.

Keywords: predictive maintenance; data-driven; machine learning;

time series; automotive

1. Introduction

Before introducing the Internet of Things paradigm, data in vehicles were

collected and processed locally by the Engine Control Unit (ECU) for routine

operations, management and monitoring. However, the limited storage and the

little computational capabilities of the ECU made the collection and the analysis

of a massive amount of data infeasible. Currently, thanks to connected vehi-

cles, these limitations vanished. Indeed on-board data can be sent to a remote

storage location for later analysis with better tools. Hence, automotive manu-

facturers have started leveraging the data collected by on-board systems to offer

additional services and deploying predictive maintenance solutions. Predictive

maintenance, or prognostics, aims to identify possible malfunctions ahead of

time, allowing a prompt intervention before the actual problem arises. Both

manufacturers and customers can benefit from this kind of prediction. The

former can issue vehicle service calls only when needed and before irreversible

damage occurs. The latter will not experience unexpected vehicle malfunctions

and will perform maintenance operations only when needed. For these reasons,

automotive companies are actively investing in effective predictive maintenance

solutions.

This paper focuses on studying predictive maintenance solutions for the oxy-

gen sensor (also known as lambda sensor). This sensor, placed on the exhaust

system of combustion engines, measures the fraction of oxygen in the output

gas. This information allows the ECU to optimally regulate the ratio of fuel

and combustion air for the catalyst, reduce the emission of pollutants, and op-

2



timize the injection system’s performance. Due to the imperfect burning of the

combustion, the engine ejects some soot, which accumulates and clogs the oxy-

gen sensor. As a result of clogging, slower and incorrect oxygen measurements

cause a sub-optimal performance of the injection system and increase harmful

emissions. Some engine operations can clean the oxygen sensor. These could

be triggered periodically or when a pre-alarm status is identified. If not cor-

rectly handled, the oxygen sensor gets too clogged, and the ECU turns the check

engine light on, forcing the driver to go to the service for costly maintenance

operations. Hence, the early prediction of the pre-alarm status of the oxygen

sensor clogging is fundamental to trigger the cleaning operations. Unfortunately,

measuring or predicting the oxygen sensor status is a complex task due to the

many factors that drive the soot accumulation process, including driving style,

engine age, vehicle load, fuel quality, weather conditions, etc.

Here, we propose a generic data-driven approach and apply it to detect the

clogging status of the oxygen sensor. We exploit a dataset collected by General

Motors (GM1), in a test bench environment where a diesel engine runs for one

hour while on-board and bench sensors collect data in the form of time series.

With the help of an accurate procedure designed by domain experts, we get

accurate labels for all the 388 experiments (Giobergia et al., 2018) that we use

to design PREPIPE.

Based on the preliminary results presented in (Giobergia et al., 2018), in

this paper we complete the design of PREPIPE (PREdictive maintenance

PIPEline). It automatically takes the signals collected from on-board sensors

and leverages a machine learning pipeline to predict the current status of the

oxygen sensor. This research work provides the following main contributions.

• In-depth analysis of the preprocessing steps. We (i) evaluate and compare

different methodologies to select the most important signals to model the

status of the sensor, (ii) verify how much data and time are needed before

1GM is a leader in the application of automotive prognostics.

3



making a new reliable prediction, (iii) investigate different strategies to

transform the monitored signals into features suitable for training state-

of-art classifiers, (iv) select the best subset of features to model the status

of the oxygen sensor, and (v) augment the model with previous obser-

vations to evaluate the possibility to improve the predictive maintenance

capabilities of the framework.

• Real-world data analysis application. We thoroughly compare state-of-the-

art classifiers ranging from decision trees to neural networks with different

characteristics to process on-board data in the cloud with satisfactory

results.

• Time Dependence. We check if the cumulative nature of the clogging

phenomenon calls for methodologies that explicitly take into account the

temporal sequence of the engine observations.

Our results show that accurate preprocessing is fundamental to achieve good

predictive capability. Furthermore, we show how keeping track of the engine

status for a long time is unnecessary, thus allowing a practical and scalable

implementation even in a cloud environment. Finally, we compare our perfor-

mance with state-of-art deep learning architectures to verify their applicability

in our case study. We show that PREPIPE offers performance comparable

to deep learning methodologies while offering domain experts an interpretable

pipeline.

While we focus on a specific use case, we believe that our framework is

general-purpose and adapted to other use cases. For this reason, we make

available the code of PREPIPE as open-source at (Giordano et al., 2021b).

The rest of the paper is organized as follows. Sec. 2 compares our method-

ology with similar research activities, Sec. 3 defines our case study, the dataset,

and the labeling procedure. Sec. 4 overviews PREPIPE framework while Sec. 5

gives an in-depth view of it. Sec. 6 describes the modeling and prediction

activities and discusses the importance of the time sequence in the modeling

phase. Sec. 7 presents the experimental results based on PREPIPE while Sec. 8

4



presents results based on state-of-art deep learning architectures. Finally, Sec. 9

presents the main takeaways and future directions.

2. Related Work

This section outlines related predictive maintenance works in the automotive

domain, highlighting common challenges of such domain and the proposed so-

lutions. We deepen the discussion on deep learning approaches, which recently

are gaining momentum. Finally, we analyze specific studies facing the oxygen

sensor diagnosis.

Predictive Maintenance in Automotive. The increasing capability to collect vehi-

cles data has fostered many studies to monitor, detect, and define predict main-

tenance operations in the automotive industry. The authors of (Mesgarpour

et al., 2013) present a complete overview of prognostics and health management

in transportation and the automotive industry.

Due to ECU’s limited memory, modest computational capability, and band-

width constraints, automotive application multiple approaches tackle the prob-

lem by leveraging data dimensionality reduction techniques. Similarly to our

proposed pipeline, some works focus on the feature selection step for machine

learning techniques using approaches such as multiway partial least squares (Choi

et al., 2008), common factor analysis (Jun et al., 2006), a combination of do-

main expertise and PCA (Shafi et al., 2018), wrapper feature selection, and

filter method based on the Kolmogorov-Smirnov test (Prytz et al., 2015), or

minimum redundancy maximum relevance algorithms (Giordano et al., 2021a).

Differently from these works, here we tackle the problem of feature engineering

by integrating and evaluating a wide range of signal selection, feature extrac-

tion, and feature selection approaches, generalizing the problem. Compared to

previous works, we aim to offer interpretable results to the domain experts who

double-check the process with their domain expertise and improve the under-

standing of the phenomenon under study.

To complete the predictive maintenance pipeline, we rely on well-established

5



machine learning algorithms commonly used in the predictive maintenance con-

text (Carvalho et al., 2019).

Deep Learning Predictive Maintenance. Recently, deep learning models are get-

ting popular for fault diagnosis and prognosis. Such shift is driven by the

generally superior classification performance and their capability of handling

high-dimensional data in predictive maintenance and health management sce-

narios (Ran et al., 2019; Khan & Yairi, 2018; Zhang et al., 2019). These ap-

proaches directly work on the raw input data without the need for any feature

engineering.

Restricting to automotive applications, the authors of (Wolf et al., 2018) pro-

pose a data-driven deep learning diagnostic approach based on a combination

of convolutional (CNN) and long short-term memory (LSTM) neural networks.

They use ECU data to detect pre-ignition, i.e., ignitions before the spark plug

fires. The authors in (Luo et al., 2019), instead, introduce a combination of the

dual-tree complex wavelet transform, coupled again with CNN and LSTM, to

monitor the health status of a vehicle suspension. Given the need for domain

experts to understand both the prediction process and the phenomenon char-

acteristics, we prefer to follow a well-designed predictive maintenance pipeline.

We show it offers performance comparable with state-of-art deep learning ar-

chitectures while satisfying the interpretability requirements.

Oxygen sensor diagnosis. The oxygen sensor plays a vital role in reducing

exhaust emissions, and it is crucial to monitor and diagnose its status and

detect and predict faults. To this extent, different works focus on the predictive

maintenance of such key elements. For instance, authors of (Moser et al., 2014)

propose a model-based solution and use the exhaust pressure pulsation to detect

deterioration of oxygen sensor dynamics caused by sensor clogging. While the

authors of (Ekinci & eniz Erturul, 2019) leverage a machine learning model to

detect faults. They leverage data collected by a UEGO (universal exhaust-gas

oxygen) sensor in a controlled environment to build a PCA methodology to

identify the most relevant signals and a feed-forward neural network to detect

if the oxygen sensor is faulty.

6



Unlike these works, we propose a data-driven approach that leverages read-

ily available sensor data recorded by the on-board ECUs. We explore both

supervised and unsupervised approaches to select the most suitable input sig-

nals to model the problem. A relevant distinction regards the target of the

works. Rather than deterioration and fault detection, we focus on predicting a

discrete status of the oxygen sensor in three health conditions. From the clean,

the partially clogged to the fully clogged status, these three operating conditions

provide a more in-depth view of the sensor diagnosis.

3. The oxygen sensor case study

The oxygen sensor is a device used to measure the proportion of oxygen in

the exhaust gas of an internal combustion engine. This information is funda-

mental to lower the exhaust gas pollutants and optimize the performance of the

injectors’ fueling system and engine in general.

Due to the accumulation of the unburnt hydrocarbon soot contained in the

exhaust gas, the oxygen sensor is subject to clogging. When the sensor is

clogged, slower and incorrect oxygen measurements cause a sub-optimal combus-

tion efficiency resulting in more harmful emissions released into the environment.

Currently, the ECU can only diagnose when very slow oxygen measurements oc-

cur, i.e., when the oxygen sensor has reached a critical state, and its readings

are unreliable. When this situation occurs, the ECU turns the check engine

light on, and the driver has to go to the service for the required maintenance

operations, i.e., a costly manual sensor cleaning operation.

While the clogging process is a known problem, its non-linear and non-

monotone trend makes its prediction a complex task. Indeed, while it is well

known that the clogging increases slowly over time due to the soot accumula-

tion, driving conditions, fuel quality, and driving styles affect this process. For

instance, sudden abrupt accelerations, vibrations, or specific engine operations

like active regeneration (Xin, 2013) can suddenly clean the sensor by burning

or detaching some soot from the oxygen sensor. Some of these operations can

be triggered by the ECU to clean the sensor before it reaches a critical status.

7



As such, an early prediction of the oxygen sensor’s clogging status is funda-

mental to run these specific engine operations and clean the sensor to avoid

malfunctioning.

3.1. Our dataset

In this paper we face a data-driven approach to predict the oxygen sensor

clogging. We employ a test bench in which an actual diesel engine equipped

with the standard on-board and some additional bench sensors allows us to

collect data. The testbed lets us emulate real driving conditions with differ-

ent vehicle loads and conditions. In detail, in each experiment called cycle,

the emulator follows a “driving cycle”, i.e., a predefined sequence of gas pedal

presses and releases coupled with different engine loads to reproduce different

driving situations (e.g., urban, extra-urban, highway). For our experiments, we

follow the driving cycle derived from the Real Driving Emissions (RDE) test

procedures (Donateo & Giovinazzi, 2017). We focus on the RDE procedures

as, currently, they are used to create the standard homologation cycles for test-

ing particles and exhaust emissions in real traffic and environmental conditions.

They are designed to represent as much as possible real driving situations.

We employ two different data loggers to monitor the engine under test,

namely Program A and Program B. They have different characteristics, and we

leverage them for similar – yet complementary – purposes. Program A monitors

the engine during the entire cycle as in a real on-board scenario. It records a

set X of 50 signals xi related to on-board and bench sensors – see Appendix A

for an overview of the signals’ categories.

Each signal xi is a time series where samples xi(t) are collected with a

frequency of 1 Hz. Program B, instead, monitors only the final 5-minute of each

cycle when a specific input sequence is imposed (described later) and provides

more details about the engine and oxygen sensor behavior by collecting hundreds

of bench signals at high frequency, i.e., 320 Hz. Guided by the domain experts,

we use the data from Program B to measure the actual clogging status of the

oxygen sensor and get thus a label for the entire cycle. Fig. 1 depicts the trace

8



0 500 1000 1500 2000 2500 3000 3500
Time [s]

0
10
20
30
40

Ac
ce

le
ra

tio
n

Pe
da

l P
os

iti
on

 [%
] Program A

Program B

Figure 1: Acceleration pedal signal, recorded with both Program A (in blue) and Program B
(in red).

of the gas pedal pressure during the entire cycle highlighting in red the part

monitored by both programs when the specific maneuver that allows measuring

the sensor clogging level. Each cycle last 62.5 (57.5+5.0) minutes. In total we

obtain a dataset D with 388 cycles. Tab. 1 reports the main characteristics of

these programs.

Program A Program B
Duration 3750 s 300 s
Sampling frequency 1 Hz 320 Hz
Number of signals 50 440
Number of cycles 388 388

Table 1: Program A and Program B characteristics.

Not all 50 signals recorded by Program A are useful to predict the clogging

status of the oxygen sensor. As such, we perform a preliminary a-priori data

selection procedure to select only those signals (i) that are available on-board,

(ii) may capture helpful information of the clogging phenomenon under study,

and (iii) are not redundant. Firstly, we remove all the test bench signals that are

not available in vehicles. Secondly, we discard signals unrelated to the problem

with the support of domain experts that properly consider the informativeness

of the signals. Next, we discard signals with constant values (e.g., alarms) that

carry no information. At last, we keep only one among possible pairs of strongly

correlated signals (having a Pearson correlation close to 1). Finally, we remove

the signal related to the oxygen sensor itself to avoid data leakage. Intuitively,

9



we remove it to avoid having any signal direct correlated with the addressed

problem. As a result of this a-priori data selection procedure, we remain with

the set X̂ of 30 signals. More details about these are available in Appendix A.

3.2. Labeling procedure

Predicting the clogging state can be seen as a classification problem where

the input consists of the engine data (as defined by the signals collected from

the sensors), and the output is the current status of the oxygen sensor. With

domain experts’ help, we assign each cycle a label based on the data collected

by Program B at the end of each cycle ends when the engine performs a short

“cut-off” maneuver. It consists of quickly bringing the engine to maximum

RPM, followed by a sudden release of the gas pedal (see last part of Fig. 1).

This maneuver is fundamental to accurately measure the Response Time, i.e.,

the time needed for the oxygen level to complete the transition from the initial

value (where little oxygen is present in the gas due to the high regime and

combustion phase) to the
2

3
of the final value where the percentage of oxygen

shall correspond to the natural atmosphere level (since no combustion happens).

Intuitively, a reliable oxygen sensor shall measure this transient time as short

as possible. Clogging makes this transition longer. In a nutshell, the longer the

Response Time, the more the oxygen sensor is clogged. Being the Response

Time in the order of the second, the high sampling frequency of Program B

is mandatory to get a correct estimation. Along with the domain experts, we

define two Response Time thresholds, 1.3 s and 1.66 s, respectively. We then

label the oxygen sensor status as:

• green: the oxygen sensor is clean if response time is shorter than 1.3 s;

• yellow: the oxygen sensor is partially clogged if response time is in the

[1.3, 1.6) s. This state corresponds to a silent check, i.e., a pre-warning,

that the ECU may use to trigger possible cleaning operations;

• red: the oxygen sensor is fully clogged if the response time exceeds 1.6 s

and the engine shall perform cleaning operations.

10



Notice that we define the oxygen sensor status based on the measurement done

at the end of each cycle and then label the whole cycle. Given the duration of

each cycle and of the soot accumulation process (which needs days to accumu-

late), the domain experts consider the labeling process consistent for the whole

experiment duration.

Tab. 2 reports the number of available cycles for each class in our dataset

D. Further details about Response Time and labeling procedure are available

in (Giobergia et al., 2018). Notice that most labels fall in the Green and Yellow

classes, while the Red class consists of only 15% of all cases. Such class imbalance

is typical of predictive maintenance use cases, where the “faulty” class is much

less frequent than the “regularly working” one. Note that the introduction

of the yellow class is instrumental both to help the classifier in training the

model, and to trigger some early cleaning operations by the ECU, e.g., the

active regeneration.

0 50 100 150 200 250 300 350
Cycles

1.00
1.25
1.50
1.75
2.00

Re
sp

on
se

Ti
m

e 
[s

]

Figure 2: Cycle labeling based on the Response Time
measure.

Class Cardinality

Green 164

Yellow 163

Red 61

Table 2: Cycle cardinalities for
the three clogging classes.

In Fig. 2 we report the Response Time measured at the end of each cycle

along with the class label. Cycles are sorted by time. In general, the response

time gradually increases over time due to soot accumulation, with labels that

move from green to yellow to red. However, the Response Time trend is not

monotonic. Occasionally it decreases for some cycles, e.g., from experiment 30

to 40, due to external conditions or drastically drops, e.g., on experiment 94 due

to the action of the active regeneration operation that the ECU typically runs

when the particulate filter is blocked. As it can be seen even in the test bench

controlled environment, the clogging phenomenon depends on many factors,

including particular engine maneuvers, regeneration operations, external condi-

11



tions (humidity, temperature, fuel quality), the time between cycles, etc. Hence,

these unpredictable factors and the impossibility of measuring the response time

on board call for ingenuity to design a proper predictive maintenance solution

that triggers those cleaning operations before the sensor gets compromised.

3.3. Problem Definition

Given all signals recorded by the ECU, our goal is to identify whether the

oxygen sensor is subject to clogging so that the car can run the required cleaning

operation before the oxygen sensor reaches an unreliable state. As such, we could

either tackle it as a remaining useful life (RUL) problem in which we predict

how long it takes until the oxygen sensor is fully clogged or as a prediction

of the current oxygen sensor status. Since we aim to forecast the state of the

oxygen sensor, we discard the RUL approach. Secondly, we could formulate the

problem either as a regression task in which we predict the response time or

as a classification task in which we predict its discrete status. Since our main

aim is to predict when the oxygen sensor status reaches a clogged situation, a

continuous regression-based prediction is not required, and a classification task

suffices. Existing lines of works in the automotive literature evaluate multi-

targets (as in Last et al. (2010)) or assign multi-labels to detect multiple and

simultaneous faults as in Vong et al. (2014)). We instead concern ourselves with

a multi-class classification scenario, targeting to predict the status of the oxygen

sensor in terms of three mutually exclusive classes. Lastly, we could either

deploy a complete predictive maintenance pipeline with an in-depth feature

extraction process or rely on the most recent deep learning solutions to build a

model directly from the raw data. Since the carmaker is ultimately interested in

better understanding the clogging phenomenon by discovering which signals and

features are the most important to predict the oxygen sensor status, we focus

on the first solution. We compare two state-of-art solutions with our pipeline to

understand the possible benefits of recent deep learning solutions. Notice that

the deep-learning solution would require either to equip the ECU with sufficient

processing capabilities either transmit all the required signals to the cloud.

12



Signals
Selection

Dataset

Windowing Features
extraction

Features 
selection

Model Training 
Tuning and 
Validation

PredictionHistoricization

Figure 3: The PREPIPE predictive maintenance framework.

4. The predictive maintenance pipeline

We designed the PREPIPE early prediction pipeline for the oxygen sensor

clogging represented in Fig. 3.

In the following, we summarize each step of the PREPIPE pipeline, while

a detailed description is provided in Sec. 5.

Signal selection. The input to the pipeline is the set of signals recorded in

each engine cycle by the on-board sensors. Given the large number of available

signals, we exploit different supervised and unsupervised learning algorithms to

select the best subset of signals describing the oxygen sensor status.

Windowing. We determine the correct size of the time window in which

to observe the monitored variables. The window size should allow an accurate

evaluation of the oxygen sensor status.

Feature extraction. Signals are recorded as time series representing the

variable values during the cycle. Signals are transformed into features by means

of different feature extraction strategies. These features allow us to represent

characteristics of the time series that would not be visible in a sample by sample

representation.

Feature selection. Several features represent each signal, some of them

possibly redundant or uncorrelated with the target variable. We reduce the

number of these features through a supervised feature selection stage.

Historicization. Each time window describes the current status of the

oxygen sensor, and it does not include any historical information about previous

windows and the status of the sensors. Hence, we add historical features related

to the past cycles evaluating the benefit (if any) of including past observations.

Model training, tuning and validation. To model the clogging status we

integrate four state-of-the-art classification algorithms i.e., Decision Trees (Breiman

13



et al., 1984), Random Forest (Breiman, 2001), SVM (Cortes & Vapnik, 1995)

and neural networks (Bishop et al., 1995)). Given the cumulative nature of the

clogging phenomenon, we use two validation strategies to determine whether

the temporal order plays a crucial role in the prediction of the oxygen sensor

status or each sensor status decision is independent.

At each step, we select the best option and the parameter setting through a

wrapping approach (Blum & Langley, 1997) in which a classifier is used to iden-

tify the best choice by comparing the predictive performance with the variation

of the step configurations. In a nutshell, we run the complete pipeline from the

signal selection to the model training, tuning and validation, by sequentially

optimizing one step at a time. Initially, we assign default values at each step to

identify a baseline of the performance. Then, we locally optimize the parameters

of one step per time following the sequence of steps in our learning process.

5. Pre-processing: from raw data to features

The initial steps of the processing pipeline address all the tasks required to

prepare the data of a given cycle for the model training tuning and validation

step.

5.1. Signal Selection

The first step consists of selecting the best subset of signals to feed the

classifier.

This brings several advantages: (i) improved data collection on the field

by reducing the costs required for the on-board hardware and the bandwidth

needed for the data transmission to the centralized server, and (ii) a more concise

representation of each cycle makes the entire problem easier for the classifiers,

which avoids considering useless inputs.

For signal selection, we aim at discarding the whole signal, i.e., all samples

xi(t). For this, we employ different unsupervised and supervised learning al-

gorithms. Each produces a ranked list of signals, from the most to the least

important one, that we use to decide which signal to include and discard. In

the end, starting from the set X̂ we aim to get the best possible subset X̄.

14



Unsupervised approaches

Unsupervised signal selection algorithms find the best subset of signals by an-

alyzing the hidden structure in unlabeled data (Solorio-Fernández et al., 2020).

These algorithms exploit solutions such as correlation (Giobergia et al., 2018),

similarity (Mitra et al., 2002) to reduce as much as possible data redundancy,

or data transformation (Lu et al., 2007) to identify those signals that primarily

represent the phenomenon under study. Here - we compare three approaches

that we briefly describe:

Feature Similarity (FSFS). (Mitra et al., 2002) uses a metric called maximal

information compression index to reduce redundancy in the dataset. This al-

gorithm requires a single parameter k representing the desired reduction. For

each value of k, the algorithm returns a different subset of signals. In a nutshell,

it produces the optimal subset of signals whose amount of information is k time

lower than the original complete dataset. We identify the best subset of signals

by searching which value of k maximizes the Representation Entropy (Mitra

et al., 2002). This metric represents how equally the information is distributed

among the signals.

Correlation-Based Feature Selection (CORR-FS). (Giobergia et al., 2018) re-

duces the redundancy in the data too. Unlike the FSFS, this algorithm exploits

Pearson’s correlation coefficient to identify the best subset of signals.2 This al-

gorithm requires a single parameter rmin representing the threshold above which

two signals are considered as strongly correlated. Given any pair of signals xi(t)

and xj(t), we compute all correlations and iteratively remove those signals that

on average are more correlated than rmin, keeping only one representative signal

at each iteration. To find the best subset of signals, we run the algorithm with

0 ≤ rmin ≤ 1 and identify the best value by using the knee point identification

proposed by (Satopaa et al., 2011).

2We publicly release the implementation at Giordano et al. (2021b).

15



Principal Feature Analysis (PFA). (Lu et al., 2007) exploits an algorithm based

on the Principal Component Analysis (PCA) (Wold et al., 1987) and the k-

means clustering algorithm (Hartigan & Wong, 1979) to identify the subset of

signals retaining most of the dataset information. This algorithm requires two

parameters: p, the number of components used by the PCA to represent each

signal xi, and q, the desired number of clusters computed by k-means. The

algorithm selects only one signal for each cluster; hence, q also represents the

number of signals selected at the end of the selection process. We identify the

best value of p by evaluating the knee point between the number of components

used by the PCA and the Cumulative Explained Variance i.e., the total amount

of dataset variability represented by those components. Then, we find the best

value of q by optimizing the clustering quality metrics, i.e., optimizing the SSE

or the silhouette index (Han et al., 2011) which report at the end of the cluster-

ing process how points within each cluster are cohesive compared with cluster

separation.

Supervised approaches

Supervised signal selection differs from the above approaches since we use

the classification algorithm to select the subset of the most important signals.

In a nutshell, here, we exploit different classifiers, providing a different subset

of the signals. The main advantage of these solutions is that they evaluate the

combined predictive capabilities of the input variables and optimize the choice

for each classifier. On the downside, it is much more time-consuming, given the

need to build a complete pipeline.

To use these algorithms, we transform each signal xi ∈ X̂ into a set Fi of n

features, such as Fi ∈ Rn. We provide details about the transformation in the

next section. Then, each algorithm gives us information about the importance of

each feature separately, i.e., allowing us to rank signals. We use this information

to reassemble the importance of each signal and use it to select the subset of

the most important signals. Here we consider the following classifiers:

16



Random Forest (RF). (Genuer et al., 2008) exploits a ranking algorithm based

on the capability of the random forest to highlight the importance of each fea-

ture via the Feature Importance (FI) index. This metric defines how much each

feature contributes to the classification process at the end of the training pro-

cess. To extract it, we build a model by using all cycles D and all features

Fi derived from xi ∈ X̂. To then gauge the signal rather than single feature

importance, we compute the Signal Importance (SI) as the sum of all the

Feature Importance (FI) of the signal’s features as follows:

SI(xi) =

n∑
j=1

FI(Fi(j)).

Finally, we rank the signals according to SI and compute the Cumulative

Signal Importance, i.e., the sum of all signal importance while increasing the

number of signals considered. As before, we select the best subset of signals by

using the knee point identification proposed by (Satopaa et al., 2011).

Random Forest - Recursive Feature Elimination (RF-RFE). (Diaz-Uriarte &

de Andrés, 2005) is based again on the signal importance but recursively elimi-

nates the least important signals considered during the training phase.

We start from a set of signals X̄ = X̂. Then, we train a model by using all

cycles and features Fi of all signals xi ∈ X̄. At the end of the training phase,

we record the classification performance of this model. For each signal in X̄ we

compute the Signal Importance as described before, and discard the n% least

important signals, i.e., X̄ = X̄ − n%X̄. We build a new model and compute

performance and iterate until only a single signal is available in X̄. To compare

the performance of different signal subsets, we compute the difference in the

performance of two specifically trained models, i.e., the out-of-bag error. In the

end, we select the subset of signals having the lowest out-of-bag error.

SVM - Recursive Feature Elimination (SVM-RFE). (Rakotomamonjy, 2003)

leverages the same recursively eliminating algorithm but exploits a Support

Vector Machine (SVM) classifier. Similar to Random Forest, SVM returns at

17



the end of the learning process the importance of each feature utilizing the

feature weight. For each signal, we then compute the Signal Weight (SW ) as

the norm of the vector composed by the Feature Weight (FW ) of the signal’s

features as

W (xi) = ||FW (Fi(j))|| j ∈ 1, .., n.

We repeat the recursive elimination algorithm by discarding the n% least

important signals according to the Signal Weight. Since SVM does not expose

any performance metric at the end of the learning process, here we optimize the

F1-Score. At the end of the process, we select the subset of signals having the

highest F1-Score.

5.2. Windowing

Each signal xi(t) is a continuous time series. Here we consider the oppor-

tunity to split time into independent and not overlapping windows w(k) of

duration ∆T , at the end of which the classifier predicts the label. In a nutshell,

given a signal xi ∈ X̂ and a sample xi(t), the sample is assigned to a time

window w(k) such as w(k ∗∆T ) ≤ t < w((k + 1) ∗∆T ).

The rationale is that typically in predictive maintenance, one deals with

a slow process (clogging in our case), so it is useless to process data sample

by sample. Instead, it is better to observe the system’s evolution for a given

time and periodically decide. In addition, the overall evolution of the system

is affected by external variables, e.g., different driving routes, styles, external

conditions, etc., which affect the engine working points (cfr. Fig. 1). A key

decision is how frequently one should decide, i.e., how big ∆T shall be. On

the one hand, a frequent evaluation of the clogging status would speed up the

prediction’s time. On the other hand, shorter system monitoring may cause a

drop in predictive performance due to unreliable information. Here we optimize

∆T to choose the optimal performance by using the complete loop of model

training, tuning and validation step.

18



5.3. Feature Extraction

Given a window w(k) and the set of selected signals X̄, we perform different

strategies to extract a set of features Fi. We consider well-established methods

for time series, and propose a specific methodology specifically tailored to the

characteristics of our problem.

Time Series Feature Extraction (TSFEL). (Barandas et al., 2020) extracts more

than 60 features from the original time series, including the statistical, temporal

and spectral characteristics.

VEST: Automatic Feature Engineering for Forecasting (VEST). (Cerqueira et al.,

2021) employs several steps to extract features out of a time series data: it

groups observations in batches, summarizes each batch with statistical charac-

teristics, and then returns the most relevant features according to a ranking

criteria.

Tsfresh. (Christ et al., 2018) offers 63 time series characterization methods,

including continuous wavelet analysis, fast Fourier transform, time series length,

mean, max, and median, etc., to extract up to 794 time series features out of

each time series.

Ad-hoc. Guided by the rationale that the clogging process is very slow, and that

we are willing to compute simple features that could be computed on board,

we define an ad-hoc strategy that summarizes each signal xi using statistics of

samples belonging to a time window. In detail, we compute:

• Mean: as the clogging of the oxygen sensor may introduce an offset on a

signal which is proportional to clogging;

• Standard deviation: as the clogging of the oxygen sensor may slow down

the signal variability, also due to the ECU compensation;

• Percentiles: the percentiles summarize the cumulative distribution func-

tion (CDF) of the signal values over time. They allow the system to iden-

19



tify those phenomena that change the signal values distribution, possibly

at the extreme part of the CDF.

Notice that by just considering the distribution of the signal values in a

given time window, we loose the correlation over time. To then consider also

the variability of signal over short time, we compute the same features also for

the discrete derivative x′i(t) = xi(t)− xi(t− 1) of each signal xi. These features

may reintroduce useful information on the time component, e.g., defining how

fast signals change.

5.4. Feature Selection

After the feature transformation, each signal is represented by f features,

possibly some of them redundant or useless. Using all of them to train a model,

we risk the course of dimensionality, resulting in a low-quality model with poor

predictive performance. Fundamental is the feature selection stage that selects

the best subset of the features for model training.

Starting with a set F composed of all the signals’ features,

F =
⋃
i∈X̄

F (x(i)).

we rank features f ∈ F by using a supervised learning algorithm producing

a ranking R. This ranking allows us to understand the combined predictive

capability of the features without using an exhaustive search. Then, we iterate

through subsets S(j) composed by the top-j features in the ranking R:

S(j) =

j⋃
i=1

R(i) j ∈ {1, .., |R|}

At last, we select subset S(j) that produces the best performance for the

model training and validation steps.

5.5. Historicization

Given the typical cumulative effect of the predictive maintenance phenomenon

under study, the intuition suggests considering not only the information of the

current window w(k) but also of past windows w(l), l < k, i.e., also consider

20



historical features. This historicization step evaluates this aspect by including

the past features recorded in the previous time windows.

Given a window w(k), represented by the set S(j, k), we add the feature

S(j, k − h) up to h0 previous observations.

S(j, k) =

h0⋃
h=0

S(j, k − h).

When h0 = 0, only present features are considered. Notice that we include

only the features of the previous windows but not the past window labels. In-

deed, the introduction of predicted labels as input data would introduce possible

misclassified labels polluting the data itself.

While including the historicization features does not impact the complexity

of on-board computation, it increases the number of features to consider, eventu-

ally making the model training mode difficult and ultimately impact the model

performance. Thus, for each historicization h0, we run the Feature Selection

step to consider the most important ones for model training.

6. Model Training, Tuning and Validation

In this step, we compare different classification algorithms to identify the

best model to be used in practice. Here we consider off-the-shelf algorithms

and perform a thorough model validation and hyperparameter selection. We

consider the following algorithms: Decision trees (Breiman et al., 1984) and

Random Forest (Breiman, 2001) for their usual high performance and inter-

pretability features, while Support Vector Machines (SVM) (Cortes & Vapnik,

1995) and Artificial neural networks (Bishop et al., 1995) with a multilayer per-

ceptron (MLP) architecture for their capability to deal with high-dimensional

and non-linearly split data.

Since each classifier has several hyperparameters, we use an extensive grid

search to find the combination that maximizes performance. For this, we build

and assess the performance of thousands of models, trained and tested as follows.

21



6.1. Model Validation

Given the cumulative nature of the clogging phenomenon, we consider two

specific validation techniques - the traditional k-fold cross validation (Kohavi

et al., 1995) and a time series cross validation (Hart, 1994).

These techniques allow us to explore how the temporal evolution plays a

relevant role in the clogging phenomenon.

k-fold cross validation is considered the best practice, especially when the

use case has independent data instances. However, we deal with slowly deviat-

ing processes, which may introduce temporal correlation among cycles. k-fold

random split of cycles may lead in having a cycle at time i in the test set and

the cycles at time i − 1 and i + 1 in the training set. If cycles are not inde-

pendent, this may cause a data leakage, resulting in overestimating the model

performance and generating an incorrect model.

Time series cross validation is designed to overcome this problem. In this

case, we consider a continuous window of data for training and the subsequent

second window for testing (Hart, 1994). As time advances, and as long as new

labeled data is available, either both windows shift forward, or an expanding

window strategy is used to enlarge the training data window (adding the new

labeled instance) while shifting the testing window forward as well. A new

model is trained then on the new training window and validated consequently.

As in the k-fold validation, the overall performance is computed by averaging

over all experiments. This solution evaluates the performance by predicting

a fixed-size window of future data instances (the validation window). As such,

there are no direct means to evaluate whether the model can predict any further

in the future. In our case, we do not have new labeled data once in deployment.

Hence, our solution will not be practical if recent labeled data instances are

needed to rebuild a good model.

As such, we consider both validation approaches and look for the best model

that performs well in both cases. For this, we divide the available cycles D into

two parts, namely D1 and D2, following the temporal order, i.e., cycles in D1 are

recorded before cycles in D2 – see Appendix B for a complete overview on how

22



we split the cycles. Given a classifier and one combination of hyperparameters,

we first train and test its performance using D1. We consider both k-fold

cross validation and time series cross validation. Next, we perform a hold-

out validation in which we train the model using all data in D1 and validate

performance using instances in D2. Intuitively, the performance on D2 captures

the model’s ability to label the sensor status in future cycles. Finally, we choose

the classifiers that perform the best in both cases.

Intuitively, since D2 contains cycles that happen in the future with respect

to D1, we can evaluate if cycles can be considered independent or not. Due

to possible data leakage among cycles in D1, a model performing well with the

k-fold cross validation in D1 would have poor performance with D2. Similarly,

if having recent labeled data were fundamental, a model performing well with

time series cross validation in D1 will struggle with instances more in the future

(i.e., the cycles in D2).

In our use case, we implement a 10-fold cross validation. For the time series

cross validation, we consider a sliding window of step 3, with 100 cycles for

training and 100 cycles for validation.

6.2. Performance metrics

To evaluate the performance, we rely on the per-class F1-Score, and the

overall accuracy. Both are commonly accepted metrics to gauge performance

in classification problems - see Appendix C for a complete definition of these

metrics.

In this study, we are firstly interested in the best prediction performance of

the clogged class, i.e., the red class, which will cause the car to underperform.

Secondly, we are interested in the overall performance of the model. As such,

in the following, we focus on the F1-Score of the red class and then the overall

accuracy.

For each validation technique we have four independent quality metrics are

available: (i) F1-Scorered in D1, (ii) Accuracy in D1, (iii) F1-Scorered in D2,

and (iv) Accuracy in D2. Since we are interested in finding the classifier with

23



Classifier Parameter Values

Decision Trees

Impurity decrease [0, 0.02] step 0.005
Min samples leaf [5, 35] step 5
Min samples split {2, 20}

Split criterion gini
Max features {auto, log2 , None}
Max depth {30, 50 , None}

Random Forest

Impurity decrease [0, 0.02] step 0.005
Min samples leaf {1,5,10,15,20,25,30,35}
Min samples split {2, 20}

Estimators {10, 50, 100, 500, 1000, 1500}
Split criterion gini
Max features {auto, log2 , None}
Max depth {30, 50 , None}
Bootstrap {False, True}

SVM
Kernel {linear, poly, rbf}

C [10−3, 103] step 100 in a log scale
γ [10−3, 103] step 100 in a log scale

MLP

Input layer |F |
1st hidden layer {2,5,11,17,19,23,27,40,46,54}
2nd hidden layer {2,5,11,17,19,23,27,40,46,54}
Output layer 3
Activation {logistic, tanh}

Seed 100 random values
Solver Adam

Tolerance 10−4

Table 3: Grid Search hyperparameter configuration.

good performance both in D1 and D2, we summarize each metric using the

harmonic mean. Intuitively, if the validation in D1 has similar performance

with respect to D2, the harmonic mean will take a value close to the single

performance values. Otherwise, since the smallest value polarizes the harmonic

mean, the performance will drop. This validation process allows us to solve the

problems raised in Sec. 6.1.

6.3. Classifier Hyperparameter Optimization

We rely on a wrapping approach in which a classification algorithm is used

to evaluate the performance of each optimization step. For each classifier, we

compute the best performance through a grid search approach. In detail, for

the Decision Tree and Random Forest, we cover a wide range of possible hyper-

parameter configurations. Instead, given the high number of hyperparameters

24



and lengthy training time of the SVM and MLP, we reduce the time needed

to explore the hyperparameters based on (Hsu et al., 2003) for the SVM and

on (Huang, 2003; Stathakis, 2009) for MLP. For MLP, we set the number of

neurons in the input layer according to the number of features |F |, and the

output layer as the number of classes. Tab. 3 details the ranges we used for

each hyperparameter and algorithm.

To speed up the hyperparameter tuning process, we exploit a parallel com-

puting system that allows us to train and test thousands of models in parallel.

We rely on Python3.7, Pandas, and NumPy libraries for data manipulation

and the Scikit-learn machine learning library for the implementation. Code is

available at (Giordano et al., 2021b).

7. Pipeline Results

We have implemented the proposed pipeline and thoroughly tested it using

the data collected in the bench environment described in Sec. 3.1. In this section,

we present experimental results. We start from assigning to each processing

step a default value and derive the baseline performance of an not-optimized

pipeline. Then, we run the optimization steps to identify the best configuration

of each one. In the end, we summarize the contribution given by each step to

the performance improvement.

7.1. Baseline: the not-optimized pipeline

For the signal selection, we use the complete set of 30 signals that we obtain

running only the manual a-priori data cleaning. For the windowing step, we

map each cycle into one window. As features extraction, we consider the ad-hoc

Step Default Value
Signal Selection 30 signals
Windowing 1 window per cycle
Feature Extraction ad-hoc
Feature Selection all features
Historicization only current window

Table 4: Default value for each optimized step.

25



F1 Scoregreen F1 Scoreyellow F1 Scorered Accuracy

DT RF SVM MLP
0.0

0.2

0.4

0.6

0.8

1.0
Ha

rm
on

ic 
M

ea
n

(a) 10-fold cross validation

DT RF SVM MLP
0.0

0.2

0.4

0.6

0.8

1.0

Ha
rm

on
ic 

M
ea

n

(b) Time series cross validation

Figure 4: Performance of the baseline with no optimization.

approach with mean, standard deviation, and 9 deciles from the 10th up to the

90th percentile. In total, we have 11 features for the original signal and 11 more

derived from the discrete derivative. Next, for the feature selection, we keep all

the features, i.e., we do not run any selection. Finally, for the historicization

we use h0 = 0, so we use only current features. Tab. 4 summarizes the default

value for each step.

Armed with this configuration at the input, we run the hyperparameter

optimization step for each classifier. Recalling that in D1 we perform either

10-fold cross validation or time series cross validation, while in D2 we perform

the hold-out validation in both cases, here we report the performance of the

best model considering the harmonic mean of the F1−Scorered of the red class

and the overall accuracy. In detail, Fig. 4 shows results when we use the 10-fold

cross validation, while Fig. 4b reports the case when we use the time series cross

validation.

Firstly, we observe that the performance of 10-fold cross validation is higher

than the one observed for the time series cross validation. All models indeed

perform 5-10% consistently better, both when focusing on the red class and

overall accuracy.

Recalling that the performance considers both the validation strategies in

D1 and D2, this result suggests that both methodologies do not suffer from the

26



Algorithm
Input

Optimization
# Selected

Parameter Signals
U

n
su

p
er

-
v
is

ed
CORR-FS rmin Knee Point 13
FSFS k Representation Entropy 5
PFA-SSE p, q Knee Point 12
PFA-Silhouette p, q Silhouette 10

S
u
p

er
-

v
is

ed

RF RF-Config Knee Point 9
RFE-RF RF-Config OOB Error 2
RFE-SVM SVM-Config F1− Scorered 4

Table 5: Signal Selection.

temporal relationship among experiments.

Secondly, both SVM and MLP offer relatively higher performance than sim-

ple and interpretable models such as DT and RF. In more detail, both the DT

and RF exhibit higher accuracy than F1-Score, hinting that both tend to have

problems with the class imbalance (cfr. Tab. 2). Intuitively, they tend to opti-

mize the majority of correct answers at the cost of giving the wrong classification

for the minority class (the red class in our case). SVM and MLP suffer less from

this problem.

7.2. Impact of Signal Selection

Let us explore if signal selection brings benefits to the classifier performance.

Here, we evaluate the different unsupervised and supervised approaches to iden-

tify the best subset of signals to model the clogging status of the oxygen sensor.

In Tab. 5 we summarize the algorithm, the parameters, optimization criteria,

and the number of selected signals at the end of the process. Notice that each al-

gorithm can select a different subset of signals. Appendix D presents a complete

overview of the signals selected by each algorithm and their nature.

Unsupervised approaches

We can exploit the full dataset D for the unsupervised algorithms since we

do not need to run the whole pipeline with these algorithms. In the following,

we describe how we proceed with each algorithm.

Feature Similarity (FSFS). We rely on the official implementation of the algo-

rithm proposed in (Mitra, (accessed June 4th, 2020)). Firstly, we concatenate

27



1 5 10 15 20 25 30
k

0.0
0.2
0.4
0.6
0.8
1.0

Re
pr

es
en

ta
tio

n
En

tro
py

(a) FSFS

0.0 0.2 0.4 0.6 0.8 1.0
rmin

0
5

10
15
20
25

#S
ig

na
ls 

se
le

ct
ed

(b) CORR-FS

1 5 1015202530
#Components

0
20
40
60
80

100

Cu
m

ul
at

iv
e

Ex
pl

ai
ne

d 
Va

ria
nc

e

(c) PFA

1 5 10 15 20 25 30
#Signals

0
2
4
6
8

10
12

SS
E

(d) PFA SSE

1 5 10 15 20 25 30
#Signals

0.0
0.1
0.2
0.3
0.4
0.5

Si
lh

ou
et

te

(e) PFA Silhouette

Figure 5: Identification of the best number of signals with unsupervised algorithms.

the samples of each signal from all cycles following the temporal order. Notice

that this concatenation is instrumental in running the feature similarity process

and that different orders always return consistent results. Then, we run the se-

lection algorithm by varying the parameter k. For each value of k we extract the

dataset composed by the selected signals and we compute the Representation

Entropy as suggested in (Mitra et al., 2002). Fig. 5a reports the Representa-

tion Entropy value while increasing the parameter k. From this, we identify

the maximum Representation Entropy when k = 25 hence where 5 signals are

selected.

Correlation-Based Feature Selection (CORR-FS). For the correlation analysis,

we evaluate a revised version of the algorithm presented in (Giobergia et al.,

2018). In particular, at each step, we select among the remaining signals, the

one having the highest sum of the squared correlation coefficients evaluated over

all the signals available at the beginning of the algorithm. This modification

allows us to reduce signal redundancy while keeping as much information as

possible of the overall dataset. We automatically choose the best rmin based on

28



1 5 10 15 20 25 30
# Signals

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e 

Si
gn

al
 

 Im
po

rta
nc

e

(a) RF

1 5 10 15 20 25 30
# Signals

0.10
0.15
0.20
0.25
0.30

OO
B 

Er
ro

r

(b) RFE-RF

1 5 10 15 20 25 30
# Signals

0.0
0.2
0.4
0.6
0.8
1.0

F 1
-S

co
re

 R
ed

(c) RFE-SVM

Figure 6: Identification of the best number of signals with unsupervised algorithms.

the knee point identification. Fig. 5b reports the number of signals selected for

different values of rmin which suggests rmin = 0.8, corresponding to 13 signals.

Principal Feature Analysis (PFA). Similar to the FSFS algorithm, we concate-

nate all signal cycles following the temporal order to obtain a single time series

for each signal. Next, we normalize each concatenation using a z-score method-

ology, obtaining a zero mean representation. Finally, we run the PFA algo-

rithm to identify the best number of components p representing the dataset.

Fig. 5c reports the Cumulative Explained Variance while increasing the number

of components. We identify 6 components that represent most of the dataset

information by looking at the knee point. As the last step, we run the k-means

clustering algorithm to select the subset of signals. We choose k by optimizing

either the SSE or Silhouette scores. Fig. 5d and Fig. 5e reports the trend of the

SSE and Silhouette scores, respectively. We find two suggested signal subsets

composed of 12 and 10 signals, respectively.

Supervised approaches

We now run the signal selection using the supervised approaches.

Random Forest. (RF). We train a Random Forest configured with hyperparam-

eters as suggested in (Genuer et al., 2008). We train it using the whole dataset

D and all 22 features extracted from all 30 signals. At the end of the training,

we compute the Signal Importance (SI) of each signal. Fig. 6a reports the

signals ordered by their SI and the value of the Cumulative Signal Importance.

29



The knee point identification suggests selecting the first 9 signals as a possible

subset of signals.

Random Forest - Recursive Feature Elimination - RFR-RF. This is an itera-

tively eliminating algorithm. We train a new Random Forest at each iteration

by using all dataset D and all features from the signals available in the cur-

rent set (initially all of them). The RF uses default hyperparameters as in

Tab. 4, except for the number of estimators that we set to 2 000 as suggested

in (Diaz-Uriarte & de Andrés, 2005). At each iteration, we discard the 20%

least important signals according to their SI. Fig. 6b reports the value of the

out-of-bag (OOB) error for the number of remaining signals. Here we select the

subset having the lowest error, i.e., a selected subset of just 2 signals.

SVM - Recursive Feature Elimination - RFE-SVM. Similar to the previous al-

gorithm, we remove 20% of the least important signals according to the signal

weight at each iteration. Given the complexity of tuning the SVM hyperparam-

eters, we evaluate 10 different hyperparameter configurations at each iteration.

In detail, we use a linear kernel and equally sample the C space with a log-

scale. 3 At each iteration, we evaluate the classification performance of each

model with a standard 10-fold cross validation by using all experiments in D

and the features derived from the remaining signals. Fig. 6c reports the trend

of the best F1-Score of the red class with a different number of signals. The

performance is maximized when a subset of 4 signals is considered.

Benefits of Signal Selection

We now observe the impact of the signal selection stage. For this, we run

the rest of the pipeline with default values but with signals selected by each

algorithm. Fig. 7 reports the harmonic F1-Score of the red class (red bar) and

the harmonic accuracy (black bar) of the best hyperparameter configuration of

all classifiers for each signal selection algorithm. Dashed line report the best

3Feature’ weight in the Scikit-learn implementation is available only in the case of the
linear kernel.

30



F1 Scoregreen F1 Scoreyellow F1 Scorered Accuracy

DT

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

RF

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n
SVM

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

MLP

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

(a) 10-Fold Cross Validation

RF
RFE

-RF

RFE
-SV

M

CORR-FSFS
FS

PFA
-SS

E

PFA
-Si

lho
ue

tte
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ha
rm

on
ic 

M
ea

n

(b) Time Series Cross Validation

Figure 7: Performance with the different subset of signals due to signal selection algorithms.

harmonic F1-Score of the red class and harmonic accuracy of the baseline model,

which does not implement any signal selection.

We observe a very noisy picture regarding the signal selection, with some

algorithms that benefit from it and others that worsen their performance. While

DT and RF solutions tend to suffer from the lack of information caused by the

removed signals, SVM and MLP show some sizeable benefits (e.g., with RF

31



and CORR-FS signal selection policies). Overall, RF and CORR-FS algorithms

tend to show the most remarkable improvement - with the latter having more

stable performance, i.e., similar values for the harmonic accuracy and F1-Score

of the red class. Recalling that we are interested in increasing the prediction

performance on the red class while keeping good performance overall, we can

safely select the subset of CORR-FS selection.

Comparing the performance among validation strategies, 10-fold cross vali-

dation (Fig. 7a) shows higher performance than implementing time series cross

validation (Fig. 7b). To further investigate this aspect, we compare the F1-score

of the red class for all the 20 thousand models built while performing the grid

search – with the CORR-FS signals. For each of these models, we compare

the 10-fold cross performance in D1 with the hold-out performance in D2. Not

show here for the sake of brevity, the largest fraction of the models show similar

and consistent performance in D1 and D2, with a F1-score of the red class equal

centered around 0.76.

This result is consistent with the previous observation for the baseline case,

strengthening the observation that experiments can be considered independent,

and considering the time evolution does not bring any benefit.

At last, considering classification algorithms, the MLP classifier confirms the

best performance almost with all subset of signals in both validation techniques,

with typically much better performance on the F1-Score of the red class. As

such, from now on, we compute the performance only for the MLP classification

algorithm and by using in D1 only the 10-fold cross validation technique.

7.3. Windowing

We now investigate the impact of different windowing policies, i.e., the ∆T

parameter. For this, we divide each cycle (approximately 60 minutes long) into

independent time windows having different duration ∆T : from 60 minutes (1

window per cycle) down to 2 minutes (30 windows per cycle). We label each

window as the cycle it belongs to (assuming the clogging status is consistent

through all the 60 min of the cycle).

32



F1 Scoregreen F1 Scoreyellow F1 Scorered Accuracy

60 30 20 12 9 5 2
T [min]

0.0
0.2
0.4
0.6
0.8
1.0

Ha
rm

on
ic 

M
ea

n

Figure 8: Performance improvement due to windowing.

Fig. 8 reports the MLP classifier performance using, as usual, the harmonic

mean F1-Score of the red class and the harmonic mean of accuracy versus the

number of cycles. A clear trend emerges: the shorter the cycle, the worst

the performance. This trend is particularly true for the F1-Score of the red

class, whose performance degrades quite sizeably when we extract features using

shorter time windows.

In our specific use case, the best choice is to monitor the clogging status every

60 minutes, hinting that the clogging phenomenon is better observed on long

time scales rather than frequently. This result is also beneficial in deployment.

Indeed the ECU can reduce the amount of data to transmit, and the cloud

would have fewer classification decisions to take per unit of time.

7.4. Feature Extraction

Next, we move to the feature extraction step. Here, starting from the 13

signals collected with a ∆T = 60min, we extract one set of features for tsfresh;

a second set for VEST ; 4 sets for TSFEL; one set for Ad-hoc. For TSFEL we

consider i) All the possible features; ii) All-corr all those not strongly correlated

features; iii) Statistical features only; and iv) Temporal features only. Tab. 6

reports the number of features extracted by each strategy. Since the tsfresh

library returns more than 10 000 features, we discard it given the small number of

experiments we have which would make the model training cumbersome. Fig. 9

summarizes the performance obtained by each strategy - with a MLP classifier

after the grid search. Interestingly, the variety of features exposed by the Vest

33



and the TSFEL packages does not help to describe the clogging phenomenon.

The higher the number of features, the lower the performance with respect to the

Ad-hoc features, which consistently outperform other strategies. We consider

thus the Ad-hoc feature strategy in the following.

Approach #Features
Ad-hoc 286
Tsfresh 10231
VEST 640

T
S
F

E
L All 5070

All-corr 3964
Statistical 468
Temporal 234

Table 6: Number of
features per feature ex-
traction strategy.

F1 Scoregreen F1 Scoreyellow F1 Scorered Accuracy

Ad-hoc Vest All All-corr Stastitical Temporal
Feature Extraction

0.0
0.2
0.4
0.6
0.8
1.0

Ha
rm

on
ic 

M
ea

n

Figure 9: Performance per feature extraction strategy.

7.5. Feature Selection

Let us move to the feature selection step. Here we exploit the RF algorithm

to rank the features according to their Feature Importance (FI). As before,

we compare the performance of different feature combinations by running the

training tuning and validation step for each model. Given the large number

of training and testing operations, this step results in a very CPU-expensive

phase. Specifically, we rank features according to their FI. Let R(j) the j − th

ranked feature. We start with an initial subset S(1) = R(1) comprising the

most important feature only. Then we incrementally add to the current subsets

S(j) one feature at a time, i.e., S(j+1) = S(j)∪R(j+1). Then, we train, tune

and validate the model using all features in S(j).

1 50 100 150 200 250 286
Number of Features

0.0
0.2
0.4
0.6
0.8
1.0

Ha
rm

on
ic 

M
ea

n

F1-Scorered

Accuracy

Figure 10: Performance improvement due to Feature Selection.

34



F1 Scoregreen F1 Scoreyellow F1 Scorered Accuracy

0 1 2 3 4 5 6 7 8 9 10
h0

0.0
0.2
0.4
0.6
0.8
1.0

Ha
rm

on
ic 

M
ea

n

Figure 11: Performance improvement brought by historicization.

Fig. 10 reports the performance achieved by the best MLP when fed with

the subset S(j). Initially, adding more features improves the performance -

especially for the F1-Score of the red class. With 85-95 features, we obtain

the best performance on the red class. After this, enlarging S(j) causes a

significant decrease in the F1-Score of the red class, while the accuracy tends to

be less affected. As such, we select the value of j ∈ [85−95] that maximizes the

accuracy. We select 91 features out of the initial 286. This reduction exemplifies

the curse of dimensionality. Furthermore, by reducing the features, we simplify

the model training which has to explore a smaller space.

Notice that the feature selection step improves the performance quite signif-

icantly w.r.t. the baseline. For example, the F1-Score for the red class is now

up to 0.9 from the 0.74, and accuracy tops 0.8 from 0.71. This improvement

also includes the benefit of the signal selection step.

7.6. Historicization

Finally, we evaluate the impact of including past information. For this,

we enrich each time window w(k) with the features of previous time windows

S(j, k − h0). We next run the feature selection step and, for each value of

h0 ∈ [0, hmax], we train, tune and validate a MLP model to find the best

possible performance.

Fig. 11 reports results. We observe minor changes in the F1-Score when

increasing h0 while the accuracy drops. In detail, we observe the best F1-Score

when h0 = 7 with an increment of 3%; however, the accuracy drops by −12%,

35



Step
F1− Score

Accuracy
Green Yellow Red

Original 0.78 0.62 0.75 0.72
Signal Selection 0.82 0.72 0.79 0.78
Windowing 0.82 0.72 0.79 0.78
Feature Extraction 0.82 0.72 0.79 0.78
Feature Selection 0.83 0.81 0.91 0.83
Historicization 0.83 0.81 0.91 0.83

Table 7: Wrap-up of the best performance per optimization step.

while the number of features rises to 436. With larger h0, the accuracy keeps

dropping, eventually due to the difficulties of the model to handle the increased

number of features that past windows add as input. In a nutshell, in our use

case, historicization brings no benefits.

7.7. Wrap-up

To wrap-up the contribution of each step in the optimization pipeline, Tab. 7

summarizes results obtained by optimizing each step. We consider the MLP

and the k-fold cross validation only. For completeness, we report the harmonic

mean of the F1-Score of the green and yellow classes too. In our use case,

the signal selection and feature selection are the two steps that significantly

improve the F1-Score of the red class - our optimization target. Due to this,

accuracy improves as well. Interestingly, the performance of the green and

yellow classes (not specifically targeted) remains stable and sizeably improves

for green and yellow classes, respectively. This secondary effect may help the

ECU in the identification of the clogging status by triggering a silent check

highlighting the need for future cleaning operations. Furthermore, we observe

that the optimization also eases the MLP hyperparameter tuning as discussed

in Appendix E.

8. Comparison with deep learning methodologies

In the last decade, deep learning (DL) methodologies have gained momen-

tum, thanks to the increase in computing capabilities and data availability, and

have led to breakthroughs in many machine learning tasks (LeCun et al., 2015).

36



Indeed, deep learning methodologies have been helpful in several fields such as

image classification (Rawat & Wang, 2017; Ciregan et al., 2012), time-series

prediction (Fawaz et al., 2019), and prognostics as well (Wang et al., 2020; Li

et al., 2018). Such increase in popularity is driven by the capability of deep learn-

ing solutions to abstract the data without complex feature engineering (LeCun

et al., 2015), and their good performance, e.g., high accuracy in classification

problems.

Here, starting from the set of 34 signals4 after the domain experts’ signal

selection, we apply a light preprocessing step to normalize the signals using

a z-score normalization process and split our data following two alternative

approaches:

• Training on the whole cycles (Whole): we use each of the 388 cycles as

a separate input for the model, i.e., we train the model using the entire

cycle at each step.

• Time windows (Windowing): as in Sec. 5.2, we divide each experiment

into independent time windows, setting ∆T = 100 seconds, i.e., 14 356

inputs. Then, we feed each window separately to the model. Each window

is labeled with the same cycle label it belongs to (assuming the clogging

status is consistent through all the 60 min of the cycle).

Finally, we validate the pipeline following the 10-fold cross validation in D1

and the hold-out technique in D2. In the case of windowing, we avoid data

leakage by using all the windows of the same cycle either for training or for

validation. Then, for each cycle, we decide the label following a majority voting

scheme on its windows.

4This includes the 30 signals that have been retained after the domain-driven selection,
plus an additional 4 that were removed in the proposed pipeline because correlated with a
coefficient ≈ 1 with other signals since the goal of these experiments is to assess how well DL
methodologies fare with as little feature engineering/selection as possible.

37



dr
op

ou
t

fu
lly

 c
on

ne
ct

ed

input output
probabilities

sig
na

ls

time

Re
LU

1d
 c

on
v 

(1
0@

3)

Re
LU

1d
 c

on
v 

(1
0@

3)

Re
LU

1d
 c

on
v 

(1
0@

3)

Re
LU

1d
 c

on
v 

(1
0@

3)

1d
 c

on
v 

(1
@

3)

so
ftm

ax

Figure 12: Convolutional neural network architecture based on (Li et al., 2018).

Classifier Parameter Values

CNN

# of conv layers 5
kernel size (all conv layers) 3

stride (all conv layers) 1
output channels (conv layers 1-4) 10

output channels (conv layer 5) 1
dropout probability 0.5

LSTM
hidden state dimensionality 32

# of recurrent layers 1

Table 8: Configuration used for the proposed deep learning architectures.

8.1. Convolutional Neural Network

In the prognostics field, authors in (Li et al., 2018) proposed to use a Con-

volutional Neural Network (CNN) architecture to approach a remaining useful

life (RUL) task for a turbofan engine degradation problem. Here we use it as

a first state-of-art architecture. Fig. 12 reports the complete DL architecture.

Tab. 8 highlights the main hyperparameters used for the training of the model.

Since we tackle a classification problem instead of a regression one, we insert a

fully connected network with a softmax activation function as the last layer.

8.2. Long Short-Term Memory

For the Recurrent neural networks (RNN), we use a second state-of-art ar-

chitecture, i.e., a bidirectional long short-term memory (LSTM) (Wang et al.,

2018), which introduces a gating mechanism for retaining and discarding infor-

mation. The bidirectionality of the LSTM implies that two LSTMs are trained

simultaneously, using the signal in positive and negative time directions (Wang

et al., 2018). This has been shown to provide better results in both regres-

sion and classification problems. Tab. 8 lists the hyperparameters used for the

38



Architecture Preprocess
F1-Score

Accuracy
Green Yellow Red

CNN Whole 0.792 0.571 0.587 0.680
CNN Windowing 0.846 0.784 0.562 0.791

LSTM Whole 0.775 0.526 0.360 0.654
LSTM Windowing 0.861 0.812 0.817 0.836

Table 9: Wrap-up of the performance based on preprocessing methodology and deep learning
architecture.

proposed LSTM model.

8.3. Results and discussion

Tab. 9 reports the results for each DL architecture and preprocessing ap-

proach. As in Tab. 7, we report the results in terms of the harmonic mean of

the 10-fold cross validation and the hold-out validation techniques. Consider

the CNN architecture first, in which both preprocessing approaches do not pro-

vide satisfying results on the red class. Interestingly, although we target the

red class, we achieve the worst performance in it. Instead, on the LSTM ar-

chitecture, we see how lightweight preprocessing plays a fundamental role, with

the worst performance given by the whole approach. We believe this is due to

the length of the signals (more than 3700 samples) raising the backpropagation

problem. On the other hand, with the windowing approach, we obtain the best

performance.

Comparing the best deep learning performance with the best one of our

pipeline, we can see how only the bidirectional LSTM, with windowing, gets

comparable results. The reason for this is the limited size of our dataset, which

reduces the deep learning capability to extract general features. With additional

data and with a more thorough fine-tuning, one may achieve better performance.

In a nutshell, while deep learning solutions may be considered, our pipeline

reaches comparable, if not better, results. In addition, it allows us to keep

a degree of interpretability required to provide feedback to domain experts.

Moreover, the feature extraction process limits the amount of data the classifier

needs, enabling us to deploy the classification process in the cloud, with only

39



the feature extraction performed on-board. On the contrary, deep learning

approaches would require transferring much more data to the cloud, resulting

in an unfeasible solution.

9. Discussion and Conclusions

We presented PREPIPE, a data-driven framework to perform predictive

maintenance in a case study for the automotive field. In particular, we exploited

our pipeline to predict the clogging status of the oxygen sensor in the automotive

sector. Starting from a large number of time series reporting the car sensors’

data, we extensively evaluate each preprocessing step to optimize the predictive

performance of the framework. Our results show how domain experts can take

advantage of our framework to select the best subset of signals and features to

predict the system’s status under analysis.

While the focus of this work was on a specific case study, the lessons we

learned can be generalized to other real cases facing similar industrial prob-

lems. Besides the optimal configuration of the data-driven analytics pipeline,

the proposed framework addressed the following relevant research issues.

• Importance of signal and feature selection. Interpretable results of the sig-

nal and feature selection algorithm (e.g., to check if the essential features

for the classifier are identified) allow the domain experts to better under-

stand the critical aspects of the clogging phenomenon by identifying the

most important signals describing it. Furthermore, the interpretability of

the process allows the manufacturer to understand how the data-driven

algorithm works and trust its predictions.

The feature selection algorithm narrows down the amount of data to be

collected and computed on-board before transmitting data over the net-

work. Thus, the amount of memory and computational capability required

on the vehicle is reduced, as well as the bandwidth needed to transfer the

data.

40



Considering the overall results of the pipeline, the signal and feature se-

lection algorithm yielded better performance than the data augmentation

(historicization). In our case, selecting the correct signals and features

plays a more strategic role in performance improvement rather than in-

creasing the amount of information available for the classification step. Fi-

nally, our pipeline demonstrates performance comparable with black-box

state-of-art deep learning architectures but offering higher interpretability

and lower resource requirements.

• Evaluation of the temporal component of the problem. In a wide range of

real-world settings, the input data may include temporal patterns leading

to possible data-leakage problems while building the data-driven model.

We defined two validation strategies to assess whether we can consider

independent input data (cycle) to address this issue. The validation of

both strategies automatically unveils possible hidden dependence in the

input data, helping the domain expert correctly select the best strategy to

treat new data in a deployment scenario. The results obtained in the use

case under analysis show that choosing the right strategy is fundamental

to ensure reliable performance estimation of the deployed solution and

suitability of the presented approach to deal with time-dependent data.

As future works, we aim to (i) validate the proposed data-driven method-

ology in different application scenarios to demonstrate its general-purpose fea-

tures; (ii) enrich the proposed strategy with a specific solution to automatically

detect when the prediction model must be rebuilt to properly predict the new

unseen data (i.e., a concept-drift detection methodology).

41



Appendix A. Signal categories

To gain a better understanding of the types of signals that have been col-

lected during the experiments, we group them into different categories based on

which part of the engine they monitor. In detail, Tab. A.10 reports, for each

category, the number of all signals exposed by Program A, after the a-priori

signal selection and after the final signal selection by the CORR-FS algorithm.

These signals are normally available at the on-board ECU, sampled with a 1 Hz

frequency.

Category
Initial a-priori Final (CORR-FS)

X X̂ X̄
Fuel injection 12 10 4
Test bench 8 0 0
Exhaust gas temperature 5 3 2
Engine airflow 4 3 0
Catalytic converter 3 2 2
Exhaust manifold 3 3 1
Torque control 3 1 0
Diagnostic Trouble Codes (DTC) 2 0 0
Accelerator 1 1 0
Engine temperature 1 1 1
Pressure 1 1 0
Fuel rail 1 1 1
NOx emissions 1 1 1
Oxygen sensor 1 0 0
Combustion mode 1 0 0
Other 3 3 1
Total 50 30 13

Table A.10: Signal categories.

Appendix B. Cycle Division

To split D into D1 and D2 we first have to perform a stratified division, i.e.,

we do not want a class being highly represented in D1 and underrepresented in

D2. Secondly, since D1 is used to perform both k-fold cross validation and time

series cross validation, we need D1 to be larger than D2.

42



0 50 100 150 200 250 300 350 400
Number of Cycles

0.0

0.5

1.0

1.5

CA
I

Figure B.13: CAI trend for cycle split.

To join these two constraints we evaluate the class imbalance of D1 and D2

respectively while increasing the number of cycles in D1. We use the cumulative

absolute imbalance (CAI) as measure. Given the i-th iteration, the set of cycles

D1i composed by the first i cycles from D, we evaluate for each class c ∈ C =

{green, yellow, red} the class representation CRi(c) as the fraction of cycles of

class c ∈ D1i with respect to the number of cycles c ∈ D.

CRi(c) =
|D1i(c)|
|D(c)|

, c ∈ C, i ∈ [1, |D|].

Intuitively, CRi(c) give us an indication of how well the class c is represented

in D1i. Next, we evaluate the cumulative absolute imbalance (CAI) as the sum

of the absolute difference between each class representation with respect to all

the classes.

CAIi =

∞∑
c1∈C

∞∑
c2∈C\{c1}

|CRi(c1)− CRi(c2)|.

The higher the CAIi, the more the classes in the i-th split are imbalanced.

When all classes are equally represented, we have CAI = 0, which tops to 4

when only one class is represented. Here we choose the best split seeking for the

trade-off between lowering as much as possible the CAI index and keep enough

cycles in D2.

Fig. B.13 reports the value of the CAI while increasing the number of cycles

in D1 in our use case. The red area highlights the minimum size for D1 to run

a reliable cross validation (at least 2/3 of D in D1). After the red area ends,

43



the CAI has a decreasing trend up to 300 cycles, suggesting us to split D with

300 cycles in D1 and the remaining 88 cycles in D2.

Appendix C. Classification Metrics

Firstly, to compute these metrics in for multi-class classification problems

(Sokolova & Lapalme, 2009) we need to find for each class c the:

• True Positives (TPc): the number of instances belonging to c, correctly

labeled in the c class;

• False Positives (FPc): the number of instances not belonging to class c,

wrongly labeled in the c class;

• False Negatives (FNc): the number of instances belonging to c, wrongly

labeled in a different class.

Then we derive:

• Precisionc: is a measure of exactness. It represents the percentage of in-

stances labeled as belonging to class c that actually belong to it (Sokolova

& Lapalme, 2009).

Precisionc =
TPc

TPc + FPc

• Recallc: is a measure of completeness. It captures the percentage of in-

stances of class c that are labeled as such (Sokolova & Lapalme, 2009).

Recallc =
TPc

TPc + FNc

• F1-Scorec: is used to summarize precision and recall metrics. It is defined

as the harmonic mean of precision and recall.

F1− Scorec = 2 ∗ Precisionc ∗Recallc
Precisionc + Recallc

• Accuracy: is used to summarize overall classification performance. It

represent the percentage of instanced correctly labeled with respect to all

the instances.

Accuracy =

∑
c∈C TPc∑

c∈C TPc + FPc

44



Appendix D. Signals Selection Importance

Fig. D.14 reports, for each signal on the x-axis, the algorithms that select

it on the y-axis. Signals are sorted according to the number of algorithms that

select them. It is clear from the bar plot that some signals are selected more often

than others. The domain experts confirmed that the most commonly selected

signals are the most relevant for the problem at hand. More specifically, these

include all signals related to the combustion process, i.e., they monitor the fuel,

the oxidant, and the exhaust gases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

SignalID

0

2

4

6

#S
ig

na
l S

el
ec

tio
n RF

RFE-RF
RFE-SVM

CORR-FS
FSFC

PFA-SSE
PFA-Silhouette

Figure D.14: Signals selected by the various signal selection algorithms.

Appendix E. MLP Stability

The optimization process brings also benefit in the MLP hyperparameter

tuning. In particular, one is interested in checking how complex and robust

hyperparameter optimization is. In a nutshell, if only one or few combinations

result in optimal, then the model is not robust, and the search is difficult.

Contrarily, if a considerable interval of parameters results in a good model, the

choice is both robust and simple. Fig. E.15 highlights this. The x-axis and y-

axis report the number of neurons in the first and the second hidden layers of the

MLP. The cell color shows the F1-Score for the red class. Two considerations

hold: First, we notice a consistent improvement from Fig. E.15a to (Fig. E.15b)

and to Fig. E.15c. This result reflects the benefits of the signal and feature

selection as seen in 7. Secondly and more interestingly, we observe that there is

45



a larger interval of hyperparameters for which performance are in the top values

- as reflected by the more homogeneous coloring in Fig. E.15c.

In detail, the number of neurons in the first hidden layer needs to be large

enough, i.e., at least 40. Then - any number of neurons at the second hid-

den layer provides performance higher than 0.84, peaking at more than 0.90.

Compared to the other two cases, one can observe more scattered bad config-

urations. This result confirms how the proper selections of the input features

ease the classification task.

2 5 11 17 19 23 27 40 46 54
1st layer

2
5

11
17
19
23
27
40
46
54

2n
d 

la
ye

r

0.60

0.66

0.72

0.78

0.84

0.90

Ha
rm

on
ic 

F1
-R

ed

(a) Baseline

2 5 11 17 19 23 27 40 46 54
1st layer

2
5

11
17
19
23
27
40
46
54

2n
d 

la
ye

r

0.60

0.66

0.72

0.78

0.84

0.90

Ha
rm

on
ic 

F1
-R

ed

(b) Signal Selection

2 5 11 17 19 23 27 40 46 54
1st layer

2
5

11
17
19
23
27
40
46
54

2n
d 

la
ye

r

0.60

0.66

0.72

0.78

0.84

0.90

Ha
rm

on
ic 

F1
-R

ed

(c) Feature Selection

Figure E.15: Improvement in MLP parameter tuning.

References

Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu,

H., Schultz, T., & Gamboa, H. (2020). Tsfel: Time series feature extraction

library. SoftwareX , 11 , 100456.

Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford

university press.

46



Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples

in machine learning. Artificial intelligence, 97 , 245–271.

Breiman, L. (2001). Random forests. Machine Learning , 45 , 5–32.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification

and regression trees. CRC press.

Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., da P. Francisco, R., Basto,

J. P., & Alcal, S. G. S. (2019). A systematic literature review of machine

learning methods applied to predictive maintenance. Computers & Industrial

Engineering , 137 , 106024.

Cerqueira, V., Moniz, N., & Soares, C. (2021). Vest: Automatic feature engi-

neering for forecasting. Machine Learning , (pp. 1–23).

Choi, K., Singh, S., Kodali, A., Pattipati, K. R., Sheppard, J. W., Namburu,

S. M., Chigusa, S., Prokhorov, D. V., & Qiao, L. (2008). Novel classifier fusion

approaches for fault diagnosis in automotive systems. IEEE Transactions on

Instrumentation and Measurement , 58 , 602–611.

Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time se-

ries feature extraction on basis of scalable hypothesis tests (tsfresh–a python

package). Neurocomputing , 307 , 72–77.

Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural

networks for image classification. In Proceedings of the 2012 IEEE conference

on computer vision and pattern recognition.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning ,

20 , 273–297.

Diaz-Uriarte, R., & de Andrés, S. A. (2005). Variable selection from ran-

dom forests: application to gene expression data. ArXiv preprint. https:

//arxiv.org/abs/q-bio/0503025.

47

https://arxiv.org/abs/q-bio/0503025
https://arxiv.org/abs/q-bio/0503025


Donateo, T., & Giovinazzi, M. (2017). Building a cycle for real driving emissions.

Energy Procedia, 126 , 891–898.

Ekinci, K., & eniz Erturul (2019). Model based diagnosis of oxygen sensors. In

Proocedings of the 9th IFAC Symposium on Advances in Automotive Control

AAC .

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019).

Deep learning for time series classification: a review. Data Mining and Knowl-

edge Discovery , 33 , 917–963.

Genuer, R., Poggi, J.-M., & Tuleau, C. (2008). Random forests: some method-

ological insights. ArXiv preprint. https://arxiv.org/abs/0811.3619.

Giobergia, F., Baralis, E., Camuglia, M., Cerquitelli, T., Mellia, M., Neri, A.,

Tricarico, D., & Tuninetti, A. (2018). Mining sensor data for predictive main-

tenance in the automotive industry. In Proceedings of the 5th International

Conference on Data Science and Advanced Analytics.

Giordano, D., Pastor, E., Giobergia, F., Cerquitelli, T., Baralis, E., Mellia, M.,

Neri, A., & Tricarico, D. (2021a). Dissecting a data-driven prognostic pipeline:

A powertrain use case. Expert Systems with Applications, 180 , 115109.

Giordano, D. et al. (2021b). PREPIPE. https://github.com/SmartData-

Polito/PREPIPE.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques.

Elsevier.

Hart, J. D. (1994). Automated kernel smoothing of dependent data by using

time series cross-validation. Journal of the Royal Statistical Society: Series

B (Methodological), 56 , 529–542.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering

algorithm. Journal of the royal statistical society. series c (applied statistics),

28 , 100–108.

48

https://arxiv.org/abs/0811.3619
https://github.com/SmartData-Polito/PREPIPE
https://github.com/SmartData-Polito/PREPIPE


Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to sup-

port vector classification. Techical Report. https://www.csie.ntu.edu.tw/

~cjlin/papers/guide/guide.pdf.

Huang, G.-B. (2003). Learning capability and storage capacity of two-hidden-

layer feedforward networks. IEEE transactions on neural networks, 14 , 274–

281.

Jun, H.-B., Kiritsis, D., Gambera, M., & Xirouchakis, P. (2006). Predictive

algorithm to determine the suitable time to change automotive engine oil.

Computers & Industrial Engineering , 51 , 671–683.

Khan, S., & Yairi, T. (2018). A review on the application of deep learning in

system health management. Mechanical Systems and Signal Processing , 107 ,

241–265.

Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai . volume 14.

Last, M., Sinaiski, A., & Subramania, H. S. (2010). Predictive maintenance with

multi-target classification models. In N. T. Nguyen, M. T. Le, & J. Świkatek

(Eds.), Intelligent Information and Database Systems.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 ,

436–444.

Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining useful life estimation in

prognostics using deep convolution neural networks. Reliability Engineering

and System Safety , 172 , 1–11.

Lu, Y., Cohen, I., Zhou, X. S., & Tian, Q. (2007). Feature selection using princi-

pal feature analysis. In Proceedings of the 15th ACM international conference

on Multimedia.

Luo, H., Huang, M., & Zhou, Z. (2019). A dual-tree complex wavelet enhanced

convolutional lstm neural network for structural health monitoring of auto-

motive suspension. Measurement , 137 , 14–27.

49

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


Mesgarpour, M., Landa-Silva, D., & Dickinson, I. (2013). Overview of

telematics-based prognostics and health management systems for commer-

cial vehicles. In J. Mikulski (Ed.), Activities of Transport Telematics (pp.

123–130). Berlin, Heidelberg.

Mitra, P. ((accessed June 4th, 2020)). Pabitra Mitra personal webpage. http:

//cse.iitkgp.ac.in/~pabitra/paper/fsfs.tar.gz.

Mitra, P., Murthy, C., & Pal, S. K. (2002). Unsupervised feature selection

using feature similarity. IEEE transactions on pattern analysis and machine

intelligence, 24 , 301–312.

Moser, M. M., Onder, C. H., & Guzzella, L. (2014). Using exhaust pressure

pulsations to detect deteriorations of oxygen sensor dynamics. Sensors and

Actuators B: Chemical , 191 , 384–395.

Prytz, R., Nowaczyk, S., Rgnvaldsson, T., & Byttner, S. (2015). Predicting

the need for vehicle compressor repairs using maintenance records and logged

vehicle data. Engineering Applications of Artificial Intelligence, 41 , 139–150.

Rakotomamonjy, A. (2003). Variable selection using svm-based criteria. Journal

of machine learning research, 3 , 1357–1370.

Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive

maintenance: Systems, purposes and approaches. ArXiv preprint. https:

//arxiv.org/abs/1912.07383.

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image

classification: A comprehensive review. Neural computation, 29 , 2352–2449.

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011). Finding a “kneedle”

in a haystack: Detecting knee points in system behavior. In proceedings of the

31st international conference on distributed computing systems workshops.

Shafi, U., Safi, A., Shahid, A. R., Ziauddin, S., & Saleem, M. Q. (2018). Vehicle

remote health monitoring and prognostic maintenance system. Journal of

advanced transportation, 2018 .

50

http://cse.iitkgp.ac.in/~pabitra/paper/fsfs.tar.gz
http://cse.iitkgp.ac.in/~pabitra/paper/fsfs.tar.gz
https://arxiv.org/abs/1912.07383
https://arxiv.org/abs/1912.07383


Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance

measures for classification tasks. Information Processing & Management , 45 ,

427–437.

Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Mart́ınez-Trinidad, J. F. (2020).

A review of unsupervised feature selection methods. Artificial Intelligence

Review , 53 , 907–948.

Stathakis, D. (2009). How many hidden layers and nodes? International Journal

of Remote Sensing , 30 , 2133–2147.

Vong, C. M., Wong, P. K., & Wong, K. I. (2014). Simultaneous-fault detection

based on qualitative symptom descriptions for automotive engine diagnosis.

Applied Soft Computing , 22 , 238–248.

Wang, B., Lei, Y., Yan, T., Li, N., & Guo, L. (2020). Recurrent convolutional

neural network: A new framework for remaining useful life prediction of ma-

chinery. Neurocomputing , 379 , 117–129.

Wang, J., Wen, G., Yang, S., & Liu, Y. (2018). Remaining useful life estimation

in prognostics using deep bidirectional lstm neural network. In Proceedings

of Prognostics and System Health Management Conference.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis.

Chemometrics and intelligent laboratory systems, 2 , 37–52.

Wolf, P., Mrowca, A., Nguyen, T. T., Bäker, B., & Günnemann, S. (2018). Pre-

ignition detection using deep neural networks: A step towards data-driven

automotive diagnostics. In Proceedings of the 21st International Conference

on Intelligent Transportation Systems.

Xin, Q. (2013). Diesel aftertreatment integration and matching. In Diesel

Engine System Design (pp. 503–525).

Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive

maintenance of industrial equipment: a survey. IEEE Systems Journal , 13 ,

2213–2227.

51


	Introduction
	Related Work
	The oxygen sensor case study
	Our dataset
	Labeling procedure
	Problem Definition

	The predictive maintenance pipeline
	Pre-processing: from raw data to features
	Signal Selection
	Windowing
	Feature Extraction
	Feature Selection
	Historicization

	Model Training, Tuning and Validation
	Model Validation
	Performance metrics
	Classifier Hyperparameter Optimization

	Pipeline Results
	Baseline: the not-optimized pipeline
	Impact of Signal Selection
	Windowing
	Feature Extraction
	Feature Selection
	Historicization
	Wrap-up

	Comparison with deep learning methodologies
	Convolutional Neural Network
	Long Short-Term Memory
	Results and discussion

	Discussion and Conclusions
	Signal categories
	Cycle Division
	Classification Metrics
	Signals Selection Importance
	MLP Stability

