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Gianluigi Rozza, Wil Schilders, and Luís Miguel Silveira
1 Model order reduction: basic concepts
and notation

Abstract: This is the first chapter of a three-volume series dedicated to theory and ap-
plication of Model Order Reduction (MOR). We motivate and introduce the basic con-
cepts and notation, with reference to the two main cultural approaches to MOR: the
system-theoretic approach employing state-space models and transfer function con-
cepts (Volume 1), and the numerical analysis approach as applied to partial differen-
tial operators (Volume 2), for which projection and approximation in suitable function
spaces provide a rich set of tools for MOR. These two approaches are complementary
but share the main objective of simplifying numerical computations while retaining
accuracy. Despite the sometimes different adopted language and notation, they also
share the main ideas and key concepts, which are briefly summarized in this chapter.
The material is presented so that all chapters in this three-volume series are put into
context, by highlighting the specific problems that they address. An overview of all
MOR applications in Volume 3 is also provided.

Keywords:model order reduction, (Petrov–)Galerkin projection, snapshots, paramet-
ric operator equation, transfer function

MSC 2010: 35B30, 37M99, 41A05, 65K99, 93A15, 93C05

1.1 Overview
The ever-increasing demand for realistic simulations of complex products and pro-
cesses places a heavy burden on the shoulders of mathematicians and, more gen-
erally, researchers and engineers working in the area of computational science and
engineering (CSE). Realistic simulations imply that the errors of the virtual models
should be small, and that different aspects of the product or process must be taken
into account, resulting in complex coupled simulations.
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Often, there is a lot of superfluous detail in these simulations that is not needed
to provide accurate results. With the current advances in new computer architectures,
viz. the availability ofmanyprocessors, onemight be tempted to just use the abundant
computational resources. However, this could lead to enormous energy consumption
for the simulations, which should be avoided if possible. Besides, it could still lead
to very lengthy and time-consuming simulations. Hence, it seems wise to use meth-
ods that can reduce the size of such huge problems, and which are able to get rid
of the superfluous and unnecessary detail, still guaranteeing the accuracy of solu-
tions.

An example is provided by the co-simulation of an electronic circuit with the in-
terconnect structure that is mounted on top of the circuit to provide all desired con-
nections. The metallic interconnect structure causes electromagnetic effects that may
influence the behavior of the underlying circuit. There is no need, however, to solve
theMaxwell equations for this complex three-dimensional structure in full detail, only
themost dominant effects causing delays need to be included. This is wheremodel or-
der reduction (MOR) comes into play; MOR methods are able to extract the dominant
behavior by reducing the size of the system to be solved.

To explain what MOR is, we often use the following picture:

If we showed the picture on the right, everyone would recognize that this is a rab-
bit. Hence, we do not need the detailed representation in the left picture to describe
the animal. Maybe we would need a slightly more detailed description as shown in
the middle picture, depending on the demands.1 MOR works in the same way: the
original problem is reduced, the representation of the solution is given with far less
variables, and the hope is that this is sufficient to guarantee an accurate solution. If
more accuracy is needed, clearly the problem size should be reduced to a lesser ex-
tent.

1 Disclaimer: though our picture might indicate this, note that simply using a coarser mesh in a dis-
cretization of a continuous model is not a competitive MOR technique in general!
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Bynow,MOR is a very active and relativelymature field of research.Muchprogress
has been made in the past 40 years, and in many different directions. The seminal
papers by Feldmann and Freund (1994/95) [9, 10], simultaneously with [12], sparked
many development in the area of Krylov-type methods, strongly related to the field
of numerical linear algebra. Mimetic elements were considered, leading to passivity-
preserving and structure-preserving methods, necessary to retain vital properties of
the original system of equations in electronics and electromagnetics. First textbooks
appeared with a special focus on applications in this area, [11] even before the above
papers, and after the field hadmatured, new textbooks [13, 22] and several collections
[3, 5] were published.

Within the systems and control area, one concentrates mainly on balancing tech-
niques, involving the solution of Lyapunov equations. The main ideas center on pre-
serving those states in a dynamical system that can be reached with the least amount
of energy, and on the other hand, those states that provide themost informationwhen
observed. In balanced coordinates, both sets of states coincide. Here, the seminal
paper of [16] has to be mentioned which rendered these ideas computationally fea-
sible. A first textbook in this area was published in 2001 by Obinata and Anderson
[17].

Also, the need for MOR was already discussed in the 1960s in mechanical engi-
neering, fromwhich the technique ofmodal truncation emerged, in combinationwith
substructuring andwith further developments like componentmode synthesis. These
are nowadays standard techniques, found inmany variants in structural analysis soft-
ware, and covered bymany textbooks in numerical mechanics. A comprehensive text-
book focusing on this area is [18].

First textbooks and collections of tutorials that made connections between the
MOR techniques developed mainly in the above-mentioned application areas started
appearing in the mid-2000s, including the fundamental textbook [1] by Antoulas in
2005, and the edited volumes [6, 21].

Later, researchers started to consider parametric model order reduction, espe-
cially within the area of reduced basis methods, focusing on the fast solution of para-
metric partial differential equations (PDEs) [14, 19, 20]. A related, but somewhat dif-
ferent approach to parametric PDEs was developed in the framework of the proper
generalized decomposition [8]. One can also find a collection of articles on MOR for
parametric problems in [7].

Methods for nonlinear problems were also considered, important developments
being the empirical interpolation methods and other so-called hyperreduction tech-
niques. But also methods like proper orthogonal decomposition (POD), where snap-
shots of the solution of a nonlinear problem are used to create a basis for solutions,
became popular for nonlinear problems. Basic concepts of these approaches, includ-
ing also the MOR techniques already mentioned above, also with some historical per-
spectives, can be found in the collection of tutorials [4].
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The demand for more realistic simulations led to the development of MOR meth-
ods for interconnected and coupled systems. Extensions to descriptor systems, or al-
ternatively differential-algebraic systems, led to the creationof index-preservingmeth-
ods and to the development of an interpolatory projection framework formodel reduc-
tion of descriptor systems. An entirely different approach is provided by data-driven
methods, in which the Loewner framework plays an important role; see the recent
textbook on the interpolatory framework including the Loewner framework for more
details [2].

Most recently, focus also turned to data-driven and non-intrusive MOR methods,
requiring no or only incomplete knowledge of the physical model, but merely relying
on tools or software to produce relevant data from which a model description can be
inferred. One prominent technique in this area is dynamic mode decomposition [15],
with many new methods emerging even more recently, often making connections to
techniques from machine and deep learning.

The three volumes constituting this handbook of Model Order Reduction discuss
many of the aforementioned developments and methods. This first volume contains
theoretical expositions of system-theoretic, interpolatory, and data-driven methods
andalgorithms. The secondvolume treats snapshot-basedmethods andalgorithms for
parametric PDEs. Themathematical strategy behind thesemethods relies on Galerkin
projection on finite-dimensional subspaces generated by snapshot solutions corre-
sponding to a specific choice of parameters. The third volume contains a large variety
of applications of MOR. Originally, the fields of mechanical engineering, automation
and control, as well as the electronics industry were themain driving forces for the de-
velopments of MOR methods, but in recent years, MOR has been introduced in many
other fields (not all covered in Volume 3, though), like chemical and biomedical en-
gineering, life sciences, geosciences, finance, fluid mechanics and aerodynamics, to
name a few. Moreover, Volume 3 also provides a chapter surveying the landscape of
existing MOR software.

1.2 A quick tour
MOR is a multidisciplinary topic, which has been developed over the last decades
by mathematicians, scientists and engineers from widely different communities. Al-
though the main ideas in MOR can be classified in a relatively small set of fundamen-
tal problem statements and related reduction approaches, these ideas have been de-
veloped by different communities with different languages, notation, and scope. One
of the purposes of the Model Order Reduction handbook project is in fact to provide
a comprehensive overview of MOR approaches, hopefully forming bridges that cross
different disciplines.
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Several classifications can be attempted in the world of MOR. Probably the most
natural high-level classification distinguishes between the two main cultural ap-
proaches of system theory on one side, and numerical analysis as applied to solving
PDEs on the other. Other classifications may be considered, for instance based on the
various classes of reduction approaches, which may be model-driven or data-driven,
optimal or heuristic, deterministic or stochastic, or alternatively on the type of the
system being addressed, which can be linear or nonlinear, uniquely defined or pa-
rameterized by some geometrical or material variable, deterministic or stochastic,
finite- or infinite-dimensional. The specific methods that apply in each of these cases
will be discussed in detail in the various chapters of this three-volume series. In this
initial chapter we mainly distinguish the two major cultural approaches to MOR, for
which reductionmethods, notation and language are sometimes quite different in the
existing literature.

System-theoretic approaches usually deal with a system under investigation de-
scribed as a large-scale set of Ordinary Differential Equations (ODEs) or Differential-
Algebraic Equations (DAEs), whose dynamics is expressed in terms of a set of state
variables. The main objective is to derive some compact Reduced-Order Model (ROM)
with the same structure, characterized by a significantly smaller number of states, and
whose response approximates the true system response according to well-defined cri-
teria. Very often the ROM represents a component of a larger system that is impos-
sible or impractical to solve in its full-size formulation. In this setting, reduction is
required in order to replace the original large-scale description of individual compo-
nents with accurate and robust ROMs, so that a global system-level numerical simu-
lation becomes feasible.

A second major approach to MOR addresses fast numerical solution of PDEs. In
this setting, the field problem of a PDE is taken as the starting point. In the snapshot-
based methods, the full-order variational form is often retained by the MOR process.
This allows projection-based methods to utilize the parametric operator equations
and define a reduced-order operator of the same parametric dependency. Since the
starting point is the PDE form, a discretization in space and time is required, leading
to a large-scale discretizedmodel. Variousmethods exist to control the approximation
error, often balancing rigorousness with computability.

We see that the above two approaches share their main objective of speeding up
numerical computationswith control over approximation errors, although the starting
points are different.We should, however, consider that the two approaches practically
coincide once a field problem described in terms of PDEs is discretized in its space
variables in terms of suitable coefficients, which basically play the same role of the
state variables in system-theoretical approaches.

We address the two approaches in Sections 1.2.1 and 1.2.2, by introducing basic
notation and concepts that will be used extensively throughout Volumes 1 and 2 of
this book series. Section 1.2.3 provides a glimpse at the MOR applications that are ex-
tensively discussed in Volume 3.
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1.2.1 The system-theoretic approach

System-theoretic approaches consider models whose dynamics is expressed in terms
of internal state variables, which in the finite-dimensional setting are denoted as x(t) ∈
𝒳 ⊂ ℝn. These states evolve with time t ∈ [t0,T] according to dynamic equations
which are driven by some inputs or control signals u(t) ∈ 𝒰 ⊂ ℝm, whereas the quan-
tities of interest or outputs are y(t) ∈ 𝒴 ⊂ ℝq, usually with q ≪ n. Denoting the “true”
system as 𝒮, the MOR objective is to obtain an approximate system 𝒮 with a small
number r ≪ n of internal states x̂(t) ∈ 𝒳 ⊂ ℝr . Reduction is conducted by enforcing
appropriate approximation conditions such that, given input signals u(t), the ROM 𝒮
provides an output ŷ(t) that is “close” in some sense to the corresponding output y(t)
of the original system 𝒮.

1.2.1.1 Standard system descriptions: the LTI case

The simplest system description assumes Linearity and Time-Invariance (LTI) and is
provided by a set of ODEs in state-space form

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) + Du(t),

(1.1)

where ẋ(t) denotes the time derivative of x(t), A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝq×n, D ∈
ℝq×m are constant matrices, and x0 is a prescribed initial condition. A more general
formulation of LTI system dynamics can be expressed in descriptor form,

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) + Du(t),

(1.2)

where an additional and possibly singular matrix E ∈ ℝn×n enters the state equations.
Casting (1.2) in the Laplace domain and assuming vanishing initial conditions, x0 = 0,
leads to

Y(s) = H(s)U(s), H(s) = C(sE − A)−1B + D, (1.3)

where H(s) is the transfer function of the system and s ∈ ℂ is the Laplace variable.
Well-posedness of (1.3) requires that det(sE − A) ̸= 0 for some s, i. e., that the pen-
cil (A,E) is regular. In most cases also an (asymptotic) stability requirement is estab-
lished, so that all finite eigenvalues of the pencil (A,E) have a (strictly) negative real
part.

This system description forms the basis of most of the following chapters in this
volume.
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1.2.1.2 Approximation criteria

Some common approximation criteria that are appropriate for LTI systems are listed
now:
– The quantities of interest of both full-scale system 𝒮 and reduced system 𝒮 are

the outputs y(t) and ŷ(t), respectively. Therefore, it is natural to bound the output
error defined as ‖ŷ−y‖ℒwithin a suitable function spaceℒ, with the natural choice
being the Hilbert space of square integrable signals L2(t0,T), with

‖y‖2L2(t0 ,T) =
T

∫
t0

‖y(t)‖22 dt. (1.4)

– An alternative is to control the error of the ROM transfer function Ĥ(s) by min-
imizing ‖Ĥ − H‖ℋ, where ℋ is an appropriate function space. Common choices
are the Hardy spacesℋ2 andℋ∞, which are adequate under asymptotic stability
assumptions, for which

‖H‖2ℋ2
=

1
2π

+∞

∫
−∞

‖H(𝚥ω)‖2F dω, ‖H‖ℋ∞ = sups∈ℂ+‖H(s)‖2, (1.5)

where F denotes the Frobenius norm and 𝚥 = √−1. We refer to Chapter 2 in this
volume for more precise definitions and for an introduction of the main system-
theoretic properties that are relevant for error control in MOR.

– Data-driven approaches aim at enforcing suitable interpolation or approximation
conditions starting from available samples of the original transfer function Hk =
H(sk) at a set of complex frequencies sk for k = 1, . . . , k̄. Interpolationmethods (see
Chapter 6, where the Loewner framework is introduced and discussed) enforce

Ĥ(sk) = Hk , ∀k = 1, . . . , k̄, (1.6)

possibly extending this exact matching also to higher derivatives

dνĤ
dsν
sk
= H(ν)k , ∀ν = 0, . . . , ν̄k , ∀k = 1, . . . , k̄, (1.7)

giving rise to so-calledmoment-matchingmethods (see Chapter 3). In some cases,
the point and moment matching is performed at adaptively selected frequencies
sk ∈ ℂ; see, e. g., the IRKA algorithm in Chapter 3. Moments can also be matched
implicitly through projection of the original system onto suitably-defined Krylov
subspaces, also discussed in Chapter 3.

– A relaxed version of the above matching conditions involves minimization of the
least squares error,

k̄
∑
k=1
‖Ĥ(sk) − Hk‖

2
F . (1.8)
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Curve fitting approaches, including the Vector Fitting (VF) methods (see Chap-
ter 8) fall into this class. When data Hk come from measurements, only purely
imaginary frequencies sk = 𝚥ωk are available and used.

– A fundamental class of system-theoretic approaches for MOR are based on trun-
cation of state-space or descriptor systems, where those state variables that are
poorly coupled to the inputs or which provide negligible contribution to the out-
puts are discarded. Balanced truncationmethods (seeChapter 2) andmodalmeth-
ods (Chapter 4) belong to this class.

– Some applications require additional constraints to be enforced during reduction.
A notable case is enforcements of passivity and of dissipativity, which are appro-
priate for systems that are unable to generate energy on their own. Dissipativity
conditions for state-space systems are reviewed in Chapters 5 and 2, together with
appropriatemethods for their enforcement, either as a feature of theMOR scheme
or as a postprocessing.

1.2.1.3 Parameterized LTI systems

An additional layer of complexity is introduced by allowing the system 𝒮 to be param-
eterized by some deterministic and/or stochastic variables μ ∈ 𝒫 ⊂ ℝp. Assuming that
the input signals u are not parameter-dependent, we can write (1.2) in the parameter-
ized form

E(μ)ẋ(t, μ) = A(μ)x(t, μ) + B(μ)u(t), x(t0, μ) = x0(μ),
y(t, μ) = C(μ)x(t, μ) + D(μ)u(t),

(1.9)

with the corresponding transfer function

H(s, μ) = C(μ)(sE(μ) − A(μ))−1B(μ) + D(μ). (1.10)

In this parameterized setting, one is usually interested in preserving a closed-form
parameterization also in the ROM, so that the corresponding transfer function must
match (1.10) not only throughout the frequency band of interest, but also throughout
the parameter space. Chapter 3 provides an overview of moment-matching parame-
terized MOR (PMOR) in the case of affine dependence of E(μ) and A(μ) on the param-
eters. The so-called reduced basis methods discussed in Chapter 4 of Volume 2 would
provide the counterpart of PMOR in the PDE reduction setting, which is extensively
treated in all chapters of Volume 2.

1.2.1.4 Nonlinear systems

Generalization to nonlinear systems is also possible, although effectiveness of MOR
strongly depends on the class of systems being considered. Several results are avail-
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able for systems that can be cast in the form

ẋ(t) = f (x(t)) + g(x(t)) u(t),
y(t) = h(x(t)),

(1.11)

where f : ℝn → ℝn, g : ℝn → ℝn×m and h : ℝn → ℝq are smooth functions. A no-
table particular case is the quadratic-bilinear form, for which the nonlinear functions
can be written and/or approximated as quadratic polynomials in their variables and
compactly expressed, e. g., as

f (x) = f (0) + A1x + A2(x ⊗ x), (1.12)

where ⊗ is the Kronecker product and f (0) ∈ ℝn, A1 ∈ ℝn×n, A2 ∈ ℝn×n
2
are constant

matrices. A discussion of methods applicable to MOR of such systems is available in
Chapters 2 and 3.

In more general settings, supporting algorithms providing interpolation/approx-
imation of high-dimensional nonlinear multivariate functions are indeed available.
We mention the Empirical Interpolation Methods in their various formulations intro-
duced in Chapter 1 of Volume 2 andmanifold interpolation (Chapter 7 in this volume),
which provides a general framework for interpolation of orthogonal bases, subspaces
or positive definite systemmatrices. Both these approaches are recurrent tools in sev-
eral modern MOR frameworks.

1.2.1.5 Surrogate modeling

Extending the framework of classical MOR, which in the system-theoretic approach
is usually applied to a state-spate description, surrogate modeling approaches pro-
vide tools for processing sequences of input-output data points and constructing an
approximatemetamodel that explains and reproduces their relationship. The last two
chapters in this volume describe two alternative approaches for surrogate modeling.
Chapter 9 presents an overview of the celebrated kernel methods, an approach that
is very popular in the machine learning community, both for acceleration of complex
simulation models, but also for classification and signal processing. Chapter 10 dis-
cusses Kriging methods or Gaussian Processes (GPs), with emphasis on design and
analysis of computer experiments. These extensions of MOR bridge the gap between
control and system theory with statistics, computer science, and (big) data science,
further demonstrating how pervasive the key objectives are that characterize MOR.

1.2.2 The PDE approach

The secondmajor approach toMOR starts from a field problemdefined over a continu-
ous domainΩ. Thus, a parametric PDE is given as starting point of theMORprocedure.
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Twomain steps are performed: the numerical discretization in space and time and the
projection of the discretized form onto a reduced-order space. The projection space is
chosen such that the field variable is well approximated in a natural PDE norm or it
is chosen with respect to a given output quantity of interest. These basic tools are dis-
cussed in more detail in Chapter 1 of Volume 2.

The variational or weak form of a parametric linear PDE in the continuous setting
is posed over a suitable Hilbert space V(Ω) and given as

a(u(μ), v;μ) = f (v;μ) ∀v ∈ V , (1.13)

with bilinear form a : V × V × 𝒫 → ℝ and linear form f : V × 𝒫 → ℝ. The parameter
vector is denoted μ and is an element of the parameter space 𝒫. In many application
scenarios, a particular output of interest s : 𝒫 → ℝ is sought, given by the linear form
l : V × 𝒫 → ℝ as

s(μ) = l(u(μ);μ). (1.14)

The case of a coercive and continuous bilinear form is the setting for many intro-
ductory examples but does not cover all PDE settings. E. g., in electromagnetics, i. e.,
when solving Maxwell’s equations, an inf-sup stable sesquilinear form is often con-
sidered. In unsteady problems, the time-dependence is often made explicit and time
is treated differently from other parameters in the ROM setting; see the POD-greedy al-
gorithm for example. Nonlinear problems require particular care andmethods, which
are often adapted to the particular type of nonlinearity.

A suitable discretization method is chosen to approximate the field variable u,
defining a corresponding discrete space Vh. The method of weighted residuals is in-
voked to turn the continuous form (1.13) into a discrete variational formulation.

The weak form in the discrete setting is given as

a(uh(μ), vh;μ) = f (vh;μ) ∀vh ∈ Vh, (1.15)

with bilinear form a : Vh × Vh × 𝒫 → ℝ and linear form f : Vh × 𝒫 → ℝ. The space of
all vh is the test space, while the space of uh is the trial space.

A discrete solution is found by invoking Galerkin orthogonality, by enforcing that
the test space is orthogonal to the residual. In Ritz–Galerkin methods, the residual is
tested against the same set of functions as the ansatz functions, i. e., the test space is
the same as the ansatz or trial space. In a more general Petrov–Galerkin method, test
space and trial space are chosen as different spaces.

Starting from the discrete high-fidelity formulation (1.15), another Galerkin pro-
jection is invoked to arrive at the reduced-order formulation. A set of solutions is com-
puted at parameter values SNmax

= {μ1, . . . ,μNmax }, either by pre-specifying SNmax
or

using an iterative algorithm such as the greedy sampling. These solutions are often
called ‘snapshots’. A projection space VN is determined by a suitable method. The dif-



1 Model order reduction: basic concepts and notation | 11

ferentmethods are briefly introducedbelowanddiscussed inmuchdetail in dedicated
chapters of Volume 2.

The reduced-order variational formulation is to determine uN (μ) ∈ VN , such that

a(uN (μ), vN ;μ) = f (vN ;μ) ∀vN ∈ VN . (1.16)

With matrix 𝔸h assembling the bilinear form and the load vector fh, let 𝕍 ∈
ℝNh×N denote the matrix of basis vectors, derived from the snapshot solutions and
project (1.15) onto the reduced-order space as

𝕍T𝔸h𝕍uN = 𝕍
T fh. (1.17)

The high-order solution is then approximated as

uh ≈ 𝕍uN . (1.18)

Typical ROM ingredients are an affine parameter dependency, an offline–online
decomposition and error bounds, which are explained in Chapter 1 of Volume 2.

Pointers to subsequent chapters for accurate ROMs in the PDE setting are given in
this section for Volume 2. Each chapter explains in a detailedway adifferentmethodof
how to obtain the projection spaces or follows an alternate route altogether. Numerical
examples can be found in the respective chapters.
– Proper Orthogonal Decomposition

In the Proper Orthogonal Decomposition (POD), the projection space is deter-
mined from the principal modes of the singular value decomposition of sampled
field solutions. The sampling is uniform over the parameter domain in many
cases. POD is covered in depth in Chapter 2 of Volume 2.

– Proper Generalized Decomposition
The Proper Generalized Decomposition (PGD) assumes a separated representa-
tion, in which all variables, i. e., space, time and parameters, can be treated in
the same way; see Chapter 3 of Volume 2. Error indicators and error bounds serve
to iteratively build the approximation spaces.

– Reduced Basis Method
ReducedBasis (RB)MORuses residual-based error indicators and error estimators
to determine theprojection spaceby agreedy sampling; seeChapter 4 ofVolume 2.
It is not uncommon in the literature to consider POD as a RB method.

– Hyperreduction
Hyperreduction techniques are related to the Empirical Interpolation Method
(EIM) which generally aims to approximate an affine parameter dependency for
an originally non-affine problem. The EIM is introduced in Chapter 1 of Volume 2
while the chapter on hyperreduction (Chapter 5 of Volume 2) details how these
techniques can be used for ROM generation.
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– Localized Model Order Reduction
The localized model reduction aims to determine local ROMs valid over parts of
the computational domain and construct a global approximation through suitable
couplings of local ROMs. The localized ROMs are usually generated with POD and
RB techniques; see Chapter 6 of Volume 2.

– Dynamic Mode Decomposition
The Dynamic Mode Decomposition (DMD) is also based on the singular value de-
composition; see Chapter 7 of Volume 2. The starting points are measurements
of the time-trajectory which aim to approximate the time-advancement operator.
The DMD is thus understood as a data-driven approach, since it does not project
an affinely expanded system matrix.

1.2.3 Applications

In this section, we briefly introduce the several MOR applications that are collected
in the third volume of this book series. Several early developments in MOR originated
in the exponentially growing field of microelectronics during the last few decades of
the 20th century. The enormous growth in complexity in designing microprocessors
and computing systems was requiring scalable, efficient, and especially automated
design and verificationmethods. This necessity provided a fertile ground for research
onMOR, so thatmany contributors frommathematics, system and control theory, and
electronics engineering proposed several key ideas and algorithms that are still widely
adopted in modern tools. Chapter 4 of Volume 3 reviews some of these steps and pro-
vides an overview of MOR applications in microelectronics. It is not a surprise that
MOR proves very successful also in electromagnetics, since electric/electronic circuits
are just a lumped approximation of themore generalMaxwell’s field formulations. Ap-
plications ofMOR in electromagnetics are discussed in detail in Chapter 5 of Volume 3.

Not long after the initial developments, the MOR field became more and more
mature, with consolidated approaches both in the system-theoretic and in the PDE
communities. This enabled reaching cross- and multidisciplinary applications. Vol-
ume 3 of this book series reports on several such applications of MOR, in particu-
lar: chemical process optimization (Chapter 1 of Volume 3), mechanical engineering
(Chapter 2 of Volume 3), acoustics and vibration (Chapter 3 of Volume 3), computa-
tional aerodynamics (Chapter 6 of Volume 3) and fluid dynamics (Chapter 9 of Vol-
ume 3). These chapters build on the methods discussed in the first two volumes, in
some cases proposing application-driven customized versions, and testify that perva-
sivity of MOR exists in practically all fields of applied engineering.

Consolidation ofMOR theorymade algorithmsmore andmore reliable. Therefore,
unexpected applications started to be pursued even on biological systems. One of the
most striking yet successful extensions is cardiovascular modeling (Chapter 8 of Vol-
ume 3), which attempts a quantitative prediction of the behavior of the most existing
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complex “system”, the human body. The same objective is shared by Chapter 7 of Vol-
ume 3 on MOR applications to the neurosciences.

MOR continues its mainstream advancement in those areas, such asmathematics
and control, where methodological aspects have been introduced and are still contin-
uously refined. Chapter 11 of Volume 3 combines classical reduction approaches with
graph theory for the reduction of network systems. This contribution is quite timely
nowadays, when relations between distributed systems, agents, individuals at physi-
cal or social level are often described and explained based on their networked inter-
connection structure. Another timely application of MOR is described in Chapter 10 of
Volume 3, discussing the very important aspects of uncertainty quantification, which
play a fundamental role in all applications when the description of the systems in
terms of their constitutive parameters is not deterministic but subject to stochastic
variations.

Chapter 12 of Volume 3 confirms the relevance ofMOR in industrial production set-
tings. The recent paradigm shift towards “Industry 4.0” augmented the requirements
for sophisticatedpredictionmethods and tools. It is nowconceivable that suitably con-
structed abstraction layers can be devised to build so-called “digital twins”, with the
objective of mimicking the behavior of actual physical systems in real time and during
their lifetime. This chapter provides an overview of the state of the art in this respect,
where MOR plays once again a key role.

We conclude this introduction advising the reader to checkChapter 13 ofVolume3,
which provides an overview of existing MOR software. Several commercial and aca-
demic software packages are reviewed, suitably classified with respect to the type of
problems being addressed. Many of the latter packages can be freely downloaded,
used, and possibly extended by active MOR researchers with new features and func-
tionalities.
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