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Preface to the first volume ofModel Order Reduction

This is the first of the three-volume set Model Order Reduction intended to be used
as a handbook in partial fulfilment of the goals of the COST Action EU-MORNET. The
first two volumes deal with methods and algorithms, while the third and final volume
is devoted to specific applications. Before discussing the contents of Volume 1 (for
the contents of Volumes 2 and 3, see the respective editorials there), we would like to
explain the background of this project.

EU-MORNET: Model Order Reduction in Europe
European researchers have realized the importance of Model Order Reduction (MOR)
and reduced-order modeling already since the 1990s, in the scientific computing
and computational engineering communities as well as in the area of systems and
control. Since then, the interest has grown steadily, with many workshops and con-
ferences having been organized, and several MOR research groups emerging. In the
early 2000s, the first workshops were organized that brought researchers from these
various areas together. This includes the 2003 workshop on “Dimension Reduction
of Large-Scale Systems” at the Mathematical Research Center Oberwolfach and the
2005 workshop “Model Order Reduction – Coupled Problems and Optimization” at
the Lorentz Center in Leiden. Both inspired the publication of tutorial-style collec-
tions, leading to two of the first books on MOR.1,2 At the same time, the first research
monograph fully dedicated to MOR appeared.3 In addition, comprehensive European
projects like CODESTAR (“Compact modelling of on-chip passive structures at high
frequencies”, 2002–2004), CHAMELEON-RF (“Comprehensive High-Accuracy Mod-
elling of Electromagnetic Effects in Complete Nanoscale RF Blocks”, 2004–2006),
and O-MOORE-NICE! (“Operational MOdel Order REduction for Nanoscale IC Elec-
tronics”, 2007–2010) made abundant use of MOR. The European Research Training
Network COMSON (“Coupled Multiscale Simulation and Optimization in Nanoelec-
tronics”, 2007–2009) also had a major task on MOR, and organized an autumn school
on the Dutch island of Terschelling. It is still remembered by many participants, due
to the nice food and luxurious accommodation, but also because many leading MOR
researchers from all over the world were present. During this autumn school, there

1 Peter Benner, Volker Mehrmann, and Danny C. Sorensen (Eds.), Dimension Reduction of Large-
Scale Systems, Lecture Notes in Computational Science and Engineering, Vol. 45, Springer-Verlag,
Berlin/Heidelberg, 2005.
2 Wilhelmus H. Schilders, Henk van der Vorst, and Joost Rommes (Eds.),Model Order Reduction: The-
ory, Research Aspects and Applications, Mathematics in Industry, Vol. 13, Springer-Verlag, Berlin/Hei-
delberg, 2008.
3 Athanasios C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia,
2005.

Open Access. © 2021 with the authors, editing © 2021 Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni,
Gianluigi Rozza, Wil Schilders, Luís Miguel Silveira, published by De Gruyter. This work is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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was a first discussion on starting a European network on MOR, but due to the lack of
funding opportunities, there was no immediate follow-up.

In 2013, Peter Benner, chair of one of the MOR centers in Europe (the Max Planck
Institute for Dynamics of Complex Technical Systems in Magdeburg), together with
Albert Cohen (Paris), Mario Ohlberger (Münster), and Karen Willcox (then at MIT) or-
ganized a workshop in the Luminy mathematics research centre CiRM, located beau-
tifully off the coast in the south of France, and this turned out to be the ideal setting
for the preparation of a so-called COST Action on MOR. The lectures during the day
and the very pleasant atmosphere in the evenings put us in the right mood for writ-
ing. The aimof the proposalwas to “bring together allmajor groups in Europeworking
on a range of model reduction strategies with applications in many of the COST do-
mains”. The proposal survived the first round, and was admitted to the second round,
which meant going to Brussels for an interview with a very broad and general com-
mittee. The overall chances of success were approximately 4%, but we succeeded and
hence EU-MORNET was born. The first management committee meeting took place in
Brussels in April 2014, and since thenmany activities have been organized and under-
taken. Highlights were the MoRePaS conferences in Trieste and Nantes, the Durham
workshop in August 2017, organized jointly with the London Mathematical Society,
and MODRED held 2017 in Odense. The network was growing constantly, and when
the funded period of EU-MORNET ended in April 2018, more than 300 researchers
had joined the network. We hope to sustain this network, e. g., via its webpage eu-
mor.net, as coordination of activities has turned out to be very fruitful, it has put MOR
in the spotlights, and we observe that the interest in MOR is only growing: many Eu-
ropean projects make use of it, or emphasize its importance like the recently ended
ECSEL project Delphi4LED. A glimpse at some of the various applications encompass-
ing MOR in its computational workflows is provided in Volume 3 of this handbook
project. We are very grateful to the COST Organization for supporting this initiative,
thereby bringing MOR in Europe to the next level. This handbook also serves as the
ultimate dissemination effort of EU-MORNET and will hopefully help generations of
new researchers and practitioners to get a gentle introduction into the field and to find
inspiration for their own development and research work.

Introduction to Volume 1
This first volume starts with an introductory chapter toMOR in general as a very broad
field of research, encompassing multiple techniques with applications in a wide va-
riety of fields. This chapter serves two main purposes. On the one hand, it provides
an introduction to the handbook project itself, helping the reader navigate through
the three volumes, explaining their organization, providing pointers into the various
chapters where specific methods are presented or where particular applications are
further explored. Additionally, this first chapter also serves as a conduit to introduce
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concepts and notation used throughout the various chapters and volumes, in an at-
tempt to support, simplify and enrich the reader’s experience when probing the infor-
mation provided in the three volumes of “Model Order Reduction”.

After this initial, introductory chapter, all chapters of this first volume mostly
focus on the concept of MOR applied in a system-theoretical context. The common
principle among methods and algorithms in this setting is the basic assumption that
there is an underlying system descriptionwhose behavior can be determined from the
knowledge of the dynamics of a set of state variables. Specific developments both in
theory and applications, including deployment in commercial CAD tools, took place
over the years in specific settings and disciplines, sometimes using different language
and notation. However, all such methods share a common framework, which we
attempted to capture in this book.

The second chapter in this volume, by T. Breiten and T. Stykel, is devoted tometh-
ods associated with the concept of energy of a system and with the problem of how to
represent it in balanced coordinates. This enables discarding the least relevant states
from an input-output perspective. The resulting truncated system has several very in-
teresting properties, which are discussed in the context of linear and nonlinear reduc-
tion.

The third chapter by L. Feng and P. Benner delves into the realm of moment-
matching methods (also known as Padé-type approximations, relating to rational in-
terpolation) as a metric for reduction, and details methods based on projection tech-
niques for compressing linear, nonlinear and parametric systems.

The next chapter of P. Tiso et al. is devoted to modal truncation applied to lin-
ear and nonlinear systems. This chapter discusses techniques based on analysis of
the system dynamics, in particular the observation of its eigenmodes and consequent
truncation leading to reduced-order models.

Enforcing specific desirable or required system properties after reduction is the
target of the next chapter, by S. Grivet-Talocia and L. M. Silveira, which is devoted
to post-processing techniques. In particular, the most prominent techniques for en-
forcing passivity of linear systems via perturbation approaches are introduced and
discussed.

The following chapter serves as an interesting bridge between moment-matching
methods described as rational interpolation, to data-driven interpolation techniques
connecting to approaches that start from measurements of the system. This chapter,
by D. Karachalios, I. V. Gosea and A. C. Antoulas, introduces the Loewner framework
for system reduction and connects tomomentmatching, interpolation and projection.

The seventh chapter, by R. Zimmermann, continues the trend of discussing inter-
polationmethods, but it introduces manifold interpolation as a supporting tool in the
reduction framework of parameterized systems.

The final three chapters are entirely dedicated to exploring model reduction tech-
niques fueled by data obtained from system behavior.
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The eighth chapter, byP. Triverio, discussesVector Fitting, a data-drivenalgorithm
where samples or measurements of the system response are used to construct a re-
duced representation.

The ninth chapter, by G. Santin andB. Haasdonk, stays in the realmof data-driven
reduction and introduces kernel methods as surrogate systemmodels. It introduces a
series of methods where the system representation is unknown or eschewed and a
reduced representation is constructed or estimated from the information garnered by
sampling the system or its outputs.

Last but not the least, the tenth and final chapter, by J. Kleijnen, presents Krig-
ing techniques: a set of data-driven interpolation techniques for generating a reduced
model through kernel regression assuming an underlying Gaussian distribution.

At this point, wewould like to thank also all the contributing authorswho brought
this project to life, the numerous anonymous reviewers who ensured the quality of the
30 chapters of the three volumes of the Model Order Reduction handbook series, and
last but not least Harshit Bansal, who helped with producing the index for every of
the three volumes. Our gratitude also goes to the De Gruyter staff, and in particular to
Nadja Schedensack, for accompanying this project constructively over more than four
years, with unprecedented patience.

Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza,
Wil Schilders, Luìs Miguel Silveira

Magdeburg, Germany
Torino, Milano, Trieste, Italy
Eindhoven, The Netherlands
Lisbon, Portugal

December 2020
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Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni,
Gianluigi Rozza, Wil Schilders, and Luís Miguel Silveira
1 Model order reduction: basic concepts
and notation

Abstract: This is the first chapter of a three-volume series dedicated to theory and ap-
plication of Model Order Reduction (MOR). We motivate and introduce the basic con-
cepts and notation, with reference to the two main cultural approaches to MOR: the
system-theoretic approach employing state-space models and transfer function con-
cepts (Volume 1), and the numerical analysis approach as applied to partial differen-
tial operators (Volume 2), for which projection and approximation in suitable function
spaces provide a rich set of tools for MOR. These two approaches are complementary
but share the main objective of simplifying numerical computations while retaining
accuracy. Despite the sometimes different adopted language and notation, they also
share the main ideas and key concepts, which are briefly summarized in this chapter.
The material is presented so that all chapters in this three-volume series are put into
context, by highlighting the specific problems that they address. An overview of all
MOR applications in Volume 3 is also provided.

Keywords:model order reduction, (Petrov–)Galerkin projection, snapshots, paramet-
ric operator equation, transfer function

MSC 2010: 35B30, 37M99, 41A05, 65K99, 93A15, 93C05

1.1 Overview
The ever-increasing demand for realistic simulations of complex products and pro-
cesses places a heavy burden on the shoulders of mathematicians and, more gen-
erally, researchers and engineers working in the area of computational science and
engineering (CSE). Realistic simulations imply that the errors of the virtual models
should be small, and that different aspects of the product or process must be taken
into account, resulting in complex coupled simulations.

Peter Benner,Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg,
Germany
Stefano Grivet-Talocia, Dipartimento di Elettronica, Politecnico di Torino, Turin, Italy
Alfio Quarteroni, Politecnico di Milano, Milan, Italy; and EPFL Lausanne, Lausanne, Switzerland
Gianluigi Rozza, SISSA, Trieste, Italy
Wil Schilders, TU Eindhoven, Eindhoven, The Netherlands
Luís Miguel Silveira, INESC ID/IST Técnico Lisboa, Universidade de Lisboa, Lisbon, Portugal

Open Access. © 2021 Peter Benner et al., published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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Often, there is a lot of superfluous detail in these simulations that is not needed
to provide accurate results. With the current advances in new computer architectures,
viz. the availability ofmanyprocessors, onemight be tempted to just use the abundant
computational resources. However, this could lead to enormous energy consumption
for the simulations, which should be avoided if possible. Besides, it could still lead
to very lengthy and time-consuming simulations. Hence, it seems wise to use meth-
ods that can reduce the size of such huge problems, and which are able to get rid
of the superfluous and unnecessary detail, still guaranteeing the accuracy of solu-
tions.

An example is provided by the co-simulation of an electronic circuit with the in-
terconnect structure that is mounted on top of the circuit to provide all desired con-
nections. The metallic interconnect structure causes electromagnetic effects that may
influence the behavior of the underlying circuit. There is no need, however, to solve
theMaxwell equations for this complex three-dimensional structure in full detail, only
themost dominant effects causing delays need to be included. This is wheremodel or-
der reduction (MOR) comes into play; MOR methods are able to extract the dominant
behavior by reducing the size of the system to be solved.

To explain what MOR is, we often use the following picture:

If we showed the picture on the right, everyone would recognize that this is a rab-
bit. Hence, we do not need the detailed representation in the left picture to describe
the animal. Maybe we would need a slightly more detailed description as shown in
the middle picture, depending on the demands.1 MOR works in the same way: the
original problem is reduced, the representation of the solution is given with far less
variables, and the hope is that this is sufficient to guarantee an accurate solution. If
more accuracy is needed, clearly the problem size should be reduced to a lesser ex-
tent.

1 Disclaimer: though our picture might indicate this, note that simply using a coarser mesh in a dis-
cretization of a continuous model is not a competitive MOR technique in general!
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Bynow,MOR is a very active and relativelymature field of research.Muchprogress
has been made in the past 40 years, and in many different directions. The seminal
papers by Feldmann and Freund (1994/95) [9, 10], simultaneously with [12], sparked
many development in the area of Krylov-type methods, strongly related to the field
of numerical linear algebra. Mimetic elements were considered, leading to passivity-
preserving and structure-preserving methods, necessary to retain vital properties of
the original system of equations in electronics and electromagnetics. First textbooks
appeared with a special focus on applications in this area, [11] even before the above
papers, and after the field hadmatured, new textbooks [13, 22] and several collections
[3, 5] were published.

Within the systems and control area, one concentrates mainly on balancing tech-
niques, involving the solution of Lyapunov equations. The main ideas center on pre-
serving those states in a dynamical system that can be reached with the least amount
of energy, and on the other hand, those states that provide themost informationwhen
observed. In balanced coordinates, both sets of states coincide. Here, the seminal
paper of [16] has to be mentioned which rendered these ideas computationally fea-
sible. A first textbook in this area was published in 2001 by Obinata and Anderson
[17].

Also, the need for MOR was already discussed in the 1960s in mechanical engi-
neering, fromwhich the technique ofmodal truncation emerged, in combinationwith
substructuring andwith further developments like componentmode synthesis. These
are nowadays standard techniques, found inmany variants in structural analysis soft-
ware, and covered bymany textbooks in numerical mechanics. A comprehensive text-
book focusing on this area is [18].

First textbooks and collections of tutorials that made connections between the
MOR techniques developed mainly in the above-mentioned application areas started
appearing in the mid-2000s, including the fundamental textbook [1] by Antoulas in
2005, and the edited volumes [6, 21].

Later, researchers started to consider parametric model order reduction, espe-
cially within the area of reduced basis methods, focusing on the fast solution of para-
metric partial differential equations (PDEs) [14, 19, 20]. A related, but somewhat dif-
ferent approach to parametric PDEs was developed in the framework of the proper
generalized decomposition [8]. One can also find a collection of articles on MOR for
parametric problems in [7].

Methods for nonlinear problems were also considered, important developments
being the empirical interpolation methods and other so-called hyperreduction tech-
niques. But also methods like proper orthogonal decomposition (POD), where snap-
shots of the solution of a nonlinear problem are used to create a basis for solutions,
became popular for nonlinear problems. Basic concepts of these approaches, includ-
ing also the MOR techniques already mentioned above, also with some historical per-
spectives, can be found in the collection of tutorials [4].



4 | P. Benner et al.

The demand for more realistic simulations led to the development of MOR meth-
ods for interconnected and coupled systems. Extensions to descriptor systems, or al-
ternatively differential-algebraic systems, led to the creationof index-preservingmeth-
ods and to the development of an interpolatory projection framework formodel reduc-
tion of descriptor systems. An entirely different approach is provided by data-driven
methods, in which the Loewner framework plays an important role; see the recent
textbook on the interpolatory framework including the Loewner framework for more
details [2].

Most recently, focus also turned to data-driven and non-intrusive MOR methods,
requiring no or only incomplete knowledge of the physical model, but merely relying
on tools or software to produce relevant data from which a model description can be
inferred. One prominent technique in this area is dynamic mode decomposition [15],
with many new methods emerging even more recently, often making connections to
techniques from machine and deep learning.

The three volumes constituting this handbook of Model Order Reduction discuss
many of the aforementioned developments and methods. This first volume contains
theoretical expositions of system-theoretic, interpolatory, and data-driven methods
andalgorithms. The secondvolume treats snapshot-basedmethods andalgorithms for
parametric PDEs. Themathematical strategy behind thesemethods relies on Galerkin
projection on finite-dimensional subspaces generated by snapshot solutions corre-
sponding to a specific choice of parameters. The third volume contains a large variety
of applications of MOR. Originally, the fields of mechanical engineering, automation
and control, as well as the electronics industry were themain driving forces for the de-
velopments of MOR methods, but in recent years, MOR has been introduced in many
other fields (not all covered in Volume 3, though), like chemical and biomedical en-
gineering, life sciences, geosciences, finance, fluid mechanics and aerodynamics, to
name a few. Moreover, Volume 3 also provides a chapter surveying the landscape of
existing MOR software.

1.2 A quick tour
MOR is a multidisciplinary topic, which has been developed over the last decades
by mathematicians, scientists and engineers from widely different communities. Al-
though the main ideas in MOR can be classified in a relatively small set of fundamen-
tal problem statements and related reduction approaches, these ideas have been de-
veloped by different communities with different languages, notation, and scope. One
of the purposes of the Model Order Reduction handbook project is in fact to provide
a comprehensive overview of MOR approaches, hopefully forming bridges that cross
different disciplines.
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Several classifications can be attempted in the world of MOR. Probably the most
natural high-level classification distinguishes between the two main cultural ap-
proaches of system theory on one side, and numerical analysis as applied to solving
PDEs on the other. Other classifications may be considered, for instance based on the
various classes of reduction approaches, which may be model-driven or data-driven,
optimal or heuristic, deterministic or stochastic, or alternatively on the type of the
system being addressed, which can be linear or nonlinear, uniquely defined or pa-
rameterized by some geometrical or material variable, deterministic or stochastic,
finite- or infinite-dimensional. The specific methods that apply in each of these cases
will be discussed in detail in the various chapters of this three-volume series. In this
initial chapter we mainly distinguish the two major cultural approaches to MOR, for
which reductionmethods, notation and language are sometimes quite different in the
existing literature.

System-theoretic approaches usually deal with a system under investigation de-
scribed as a large-scale set of Ordinary Differential Equations (ODEs) or Differential-
Algebraic Equations (DAEs), whose dynamics is expressed in terms of a set of state
variables. The main objective is to derive some compact Reduced-Order Model (ROM)
with the same structure, characterized by a significantly smaller number of states, and
whose response approximates the true system response according to well-defined cri-
teria. Very often the ROM represents a component of a larger system that is impos-
sible or impractical to solve in its full-size formulation. In this setting, reduction is
required in order to replace the original large-scale description of individual compo-
nents with accurate and robust ROMs, so that a global system-level numerical simu-
lation becomes feasible.

A second major approach to MOR addresses fast numerical solution of PDEs. In
this setting, the field problem of a PDE is taken as the starting point. In the snapshot-
based methods, the full-order variational form is often retained by the MOR process.
This allows projection-based methods to utilize the parametric operator equations
and define a reduced-order operator of the same parametric dependency. Since the
starting point is the PDE form, a discretization in space and time is required, leading
to a large-scale discretizedmodel. Variousmethods exist to control the approximation
error, often balancing rigorousness with computability.

We see that the above two approaches share their main objective of speeding up
numerical computationswith control over approximation errors, although the starting
points are different.We should, however, consider that the two approaches practically
coincide once a field problem described in terms of PDEs is discretized in its space
variables in terms of suitable coefficients, which basically play the same role of the
state variables in system-theoretical approaches.

We address the two approaches in Sections 1.2.1 and 1.2.2, by introducing basic
notation and concepts that will be used extensively throughout Volumes 1 and 2 of
this book series. Section 1.2.3 provides a glimpse at the MOR applications that are ex-
tensively discussed in Volume 3.



6 | P. Benner et al.

1.2.1 The system-theoretic approach

System-theoretic approaches consider models whose dynamics is expressed in terms
of internal state variables, which in the finite-dimensional setting are denoted as x(t) ∈
𝒳 ⊂ ℝn. These states evolve with time t ∈ [t0,T] according to dynamic equations
which are driven by some inputs or control signals u(t) ∈ 𝒰 ⊂ ℝm, whereas the quan-
tities of interest or outputs are y(t) ∈ 𝒴 ⊂ ℝq, usually with q ≪ n. Denoting the “true”
system as 𝒮, the MOR objective is to obtain an approximate system 𝒮 with a small
number r ≪ n of internal states x̂(t) ∈ 𝒳 ⊂ ℝr . Reduction is conducted by enforcing
appropriate approximation conditions such that, given input signals u(t), the ROM 𝒮
provides an output ŷ(t) that is “close” in some sense to the corresponding output y(t)
of the original system 𝒮.

1.2.1.1 Standard system descriptions: the LTI case

The simplest system description assumes Linearity and Time-Invariance (LTI) and is
provided by a set of ODEs in state-space form

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) + Du(t),

(1.1)

where ẋ(t) denotes the time derivative of x(t), A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝq×n, D ∈
ℝq×m are constant matrices, and x0 is a prescribed initial condition. A more general
formulation of LTI system dynamics can be expressed in descriptor form,

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) + Du(t),

(1.2)

where an additional and possibly singular matrix E ∈ ℝn×n enters the state equations.
Casting (1.2) in the Laplace domain and assuming vanishing initial conditions, x0 = 0,
leads to

Y(s) = H(s)U(s), H(s) = C(sE − A)−1B + D, (1.3)

where H(s) is the transfer function of the system and s ∈ ℂ is the Laplace variable.
Well-posedness of (1.3) requires that det(sE − A) ̸= 0 for some s, i. e., that the pen-
cil (A,E) is regular. In most cases also an (asymptotic) stability requirement is estab-
lished, so that all finite eigenvalues of the pencil (A,E) have a (strictly) negative real
part.

This system description forms the basis of most of the following chapters in this
volume.
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1.2.1.2 Approximation criteria

Some common approximation criteria that are appropriate for LTI systems are listed
now:
– The quantities of interest of both full-scale system 𝒮 and reduced system 𝒮 are

the outputs y(t) and ŷ(t), respectively. Therefore, it is natural to bound the output
error defined as ‖ŷ−y‖ℒwithin a suitable function spaceℒ, with the natural choice
being the Hilbert space of square integrable signals L2(t0,T), with

‖y‖2L2(t0 ,T) =
T

∫
t0

‖y(t)‖22 dt. (1.4)

– An alternative is to control the error of the ROM transfer function Ĥ(s) by min-
imizing ‖Ĥ − H‖ℋ, where ℋ is an appropriate function space. Common choices
are the Hardy spacesℋ2 andℋ∞, which are adequate under asymptotic stability
assumptions, for which

‖H‖2ℋ2
=

1
2π

+∞

∫
−∞

‖H(𝚥ω)‖2F dω, ‖H‖ℋ∞ = sups∈ℂ+‖H(s)‖2, (1.5)

where F denotes the Frobenius norm and 𝚥 = √−1. We refer to Chapter 2 in this
volume for more precise definitions and for an introduction of the main system-
theoretic properties that are relevant for error control in MOR.

– Data-driven approaches aim at enforcing suitable interpolation or approximation
conditions starting from available samples of the original transfer function Hk =
H(sk) at a set of complex frequencies sk for k = 1, . . . , k̄. Interpolationmethods (see
Chapter 6, where the Loewner framework is introduced and discussed) enforce

Ĥ(sk) = Hk , ∀k = 1, . . . , k̄, (1.6)

possibly extending this exact matching also to higher derivatives

dνĤ
dsν
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sk
= H(ν)k , ∀ν = 0, . . . , ν̄k , ∀k = 1, . . . , k̄, (1.7)

giving rise to so-calledmoment-matchingmethods (see Chapter 3). In some cases,
the point and moment matching is performed at adaptively selected frequencies
sk ∈ ℂ; see, e. g., the IRKA algorithm in Chapter 3. Moments can also be matched
implicitly through projection of the original system onto suitably-defined Krylov
subspaces, also discussed in Chapter 3.

– A relaxed version of the above matching conditions involves minimization of the
least squares error,

k̄
∑
k=1
‖Ĥ(sk) − Hk‖

2
F . (1.8)



8 | P. Benner et al.

Curve fitting approaches, including the Vector Fitting (VF) methods (see Chap-
ter 8) fall into this class. When data Hk come from measurements, only purely
imaginary frequencies sk = 𝚥ωk are available and used.

– A fundamental class of system-theoretic approaches for MOR are based on trun-
cation of state-space or descriptor systems, where those state variables that are
poorly coupled to the inputs or which provide negligible contribution to the out-
puts are discarded. Balanced truncationmethods (seeChapter 2) andmodalmeth-
ods (Chapter 4) belong to this class.

– Some applications require additional constraints to be enforced during reduction.
A notable case is enforcements of passivity and of dissipativity, which are appro-
priate for systems that are unable to generate energy on their own. Dissipativity
conditions for state-space systems are reviewed in Chapters 5 and 2, together with
appropriatemethods for their enforcement, either as a feature of theMOR scheme
or as a postprocessing.

1.2.1.3 Parameterized LTI systems

An additional layer of complexity is introduced by allowing the system 𝒮 to be param-
eterized by some deterministic and/or stochastic variables μ ∈ 𝒫 ⊂ ℝp. Assuming that
the input signals u are not parameter-dependent, we can write (1.2) in the parameter-
ized form

E(μ)ẋ(t, μ) = A(μ)x(t, μ) + B(μ)u(t), x(t0, μ) = x0(μ),
y(t, μ) = C(μ)x(t, μ) + D(μ)u(t),

(1.9)

with the corresponding transfer function

H(s, μ) = C(μ)(sE(μ) − A(μ))−1B(μ) + D(μ). (1.10)

In this parameterized setting, one is usually interested in preserving a closed-form
parameterization also in the ROM, so that the corresponding transfer function must
match (1.10) not only throughout the frequency band of interest, but also throughout
the parameter space. Chapter 3 provides an overview of moment-matching parame-
terized MOR (PMOR) in the case of affine dependence of E(μ) and A(μ) on the param-
eters. The so-called reduced basis methods discussed in Chapter 4 of Volume 2 would
provide the counterpart of PMOR in the PDE reduction setting, which is extensively
treated in all chapters of Volume 2.

1.2.1.4 Nonlinear systems

Generalization to nonlinear systems is also possible, although effectiveness of MOR
strongly depends on the class of systems being considered. Several results are avail-
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able for systems that can be cast in the form

ẋ(t) = f (x(t)) + g(x(t)) u(t),
y(t) = h(x(t)),

(1.11)

where f : ℝn → ℝn, g : ℝn → ℝn×m and h : ℝn → ℝq are smooth functions. A no-
table particular case is the quadratic-bilinear form, for which the nonlinear functions
can be written and/or approximated as quadratic polynomials in their variables and
compactly expressed, e. g., as

f (x) = f (0) + A1x + A2(x ⊗ x), (1.12)

where ⊗ is the Kronecker product and f (0) ∈ ℝn, A1 ∈ ℝn×n, A2 ∈ ℝn×n
2
are constant

matrices. A discussion of methods applicable to MOR of such systems is available in
Chapters 2 and 3.

In more general settings, supporting algorithms providing interpolation/approx-
imation of high-dimensional nonlinear multivariate functions are indeed available.
We mention the Empirical Interpolation Methods in their various formulations intro-
duced in Chapter 1 of Volume 2 andmanifold interpolation (Chapter 7 in this volume),
which provides a general framework for interpolation of orthogonal bases, subspaces
or positive definite systemmatrices. Both these approaches are recurrent tools in sev-
eral modern MOR frameworks.

1.2.1.5 Surrogate modeling

Extending the framework of classical MOR, which in the system-theoretic approach
is usually applied to a state-spate description, surrogate modeling approaches pro-
vide tools for processing sequences of input-output data points and constructing an
approximatemetamodel that explains and reproduces their relationship. The last two
chapters in this volume describe two alternative approaches for surrogate modeling.
Chapter 9 presents an overview of the celebrated kernel methods, an approach that
is very popular in the machine learning community, both for acceleration of complex
simulation models, but also for classification and signal processing. Chapter 10 dis-
cusses Kriging methods or Gaussian Processes (GPs), with emphasis on design and
analysis of computer experiments. These extensions of MOR bridge the gap between
control and system theory with statistics, computer science, and (big) data science,
further demonstrating how pervasive the key objectives are that characterize MOR.

1.2.2 The PDE approach

The secondmajor approach toMOR starts from a field problemdefined over a continu-
ous domainΩ. Thus, a parametric PDE is given as starting point of theMORprocedure.
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Twomain steps are performed: the numerical discretization in space and time and the
projection of the discretized form onto a reduced-order space. The projection space is
chosen such that the field variable is well approximated in a natural PDE norm or it
is chosen with respect to a given output quantity of interest. These basic tools are dis-
cussed in more detail in Chapter 1 of Volume 2.

The variational or weak form of a parametric linear PDE in the continuous setting
is posed over a suitable Hilbert space V(Ω) and given as

a(u(μ), v;μ) = f (v;μ) ∀v ∈ V , (1.13)

with bilinear form a : V × V × 𝒫 → ℝ and linear form f : V × 𝒫 → ℝ. The parameter
vector is denoted μ and is an element of the parameter space 𝒫. In many application
scenarios, a particular output of interest s : 𝒫 → ℝ is sought, given by the linear form
l : V × 𝒫 → ℝ as

s(μ) = l(u(μ);μ). (1.14)

The case of a coercive and continuous bilinear form is the setting for many intro-
ductory examples but does not cover all PDE settings. E. g., in electromagnetics, i. e.,
when solving Maxwell’s equations, an inf-sup stable sesquilinear form is often con-
sidered. In unsteady problems, the time-dependence is often made explicit and time
is treated differently from other parameters in the ROM setting; see the POD-greedy al-
gorithm for example. Nonlinear problems require particular care andmethods, which
are often adapted to the particular type of nonlinearity.

A suitable discretization method is chosen to approximate the field variable u,
defining a corresponding discrete space Vh. The method of weighted residuals is in-
voked to turn the continuous form (1.13) into a discrete variational formulation.

The weak form in the discrete setting is given as

a(uh(μ), vh;μ) = f (vh;μ) ∀vh ∈ Vh, (1.15)

with bilinear form a : Vh × Vh × 𝒫 → ℝ and linear form f : Vh × 𝒫 → ℝ. The space of
all vh is the test space, while the space of uh is the trial space.

A discrete solution is found by invoking Galerkin orthogonality, by enforcing that
the test space is orthogonal to the residual. In Ritz–Galerkin methods, the residual is
tested against the same set of functions as the ansatz functions, i. e., the test space is
the same as the ansatz or trial space. In a more general Petrov–Galerkin method, test
space and trial space are chosen as different spaces.

Starting from the discrete high-fidelity formulation (1.15), another Galerkin pro-
jection is invoked to arrive at the reduced-order formulation. A set of solutions is com-
puted at parameter values SNmax

= {μ1, . . . ,μNmax }, either by pre-specifying SNmax
or

using an iterative algorithm such as the greedy sampling. These solutions are often
called ‘snapshots’. A projection space VN is determined by a suitable method. The dif-
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ferentmethods are briefly introducedbelowanddiscussed inmuchdetail in dedicated
chapters of Volume 2.

The reduced-order variational formulation is to determine uN (μ) ∈ VN , such that

a(uN (μ), vN ;μ) = f (vN ;μ) ∀vN ∈ VN . (1.16)

With matrix 𝔸h assembling the bilinear form and the load vector fh, let 𝕍 ∈
ℝNh×N denote the matrix of basis vectors, derived from the snapshot solutions and
project (1.15) onto the reduced-order space as

𝕍T𝔸h𝕍uN = 𝕍
T fh. (1.17)

The high-order solution is then approximated as

uh ≈ 𝕍uN . (1.18)

Typical ROM ingredients are an affine parameter dependency, an offline–online
decomposition and error bounds, which are explained in Chapter 1 of Volume 2.

Pointers to subsequent chapters for accurate ROMs in the PDE setting are given in
this section for Volume 2. Each chapter explains in a detailedway adifferentmethodof
how to obtain the projection spaces or follows an alternate route altogether. Numerical
examples can be found in the respective chapters.
– Proper Orthogonal Decomposition

In the Proper Orthogonal Decomposition (POD), the projection space is deter-
mined from the principal modes of the singular value decomposition of sampled
field solutions. The sampling is uniform over the parameter domain in many
cases. POD is covered in depth in Chapter 2 of Volume 2.

– Proper Generalized Decomposition
The Proper Generalized Decomposition (PGD) assumes a separated representa-
tion, in which all variables, i. e., space, time and parameters, can be treated in
the same way; see Chapter 3 of Volume 2. Error indicators and error bounds serve
to iteratively build the approximation spaces.

– Reduced Basis Method
ReducedBasis (RB)MORuses residual-based error indicators and error estimators
to determine theprojection spaceby agreedy sampling; seeChapter 4 ofVolume 2.
It is not uncommon in the literature to consider POD as a RB method.

– Hyperreduction
Hyperreduction techniques are related to the Empirical Interpolation Method
(EIM) which generally aims to approximate an affine parameter dependency for
an originally non-affine problem. The EIM is introduced in Chapter 1 of Volume 2
while the chapter on hyperreduction (Chapter 5 of Volume 2) details how these
techniques can be used for ROM generation.
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– Localized Model Order Reduction
The localized model reduction aims to determine local ROMs valid over parts of
the computational domain and construct a global approximation through suitable
couplings of local ROMs. The localized ROMs are usually generated with POD and
RB techniques; see Chapter 6 of Volume 2.

– Dynamic Mode Decomposition
The Dynamic Mode Decomposition (DMD) is also based on the singular value de-
composition; see Chapter 7 of Volume 2. The starting points are measurements
of the time-trajectory which aim to approximate the time-advancement operator.
The DMD is thus understood as a data-driven approach, since it does not project
an affinely expanded system matrix.

1.2.3 Applications

In this section, we briefly introduce the several MOR applications that are collected
in the third volume of this book series. Several early developments in MOR originated
in the exponentially growing field of microelectronics during the last few decades of
the 20th century. The enormous growth in complexity in designing microprocessors
and computing systems was requiring scalable, efficient, and especially automated
design and verificationmethods. This necessity provided a fertile ground for research
onMOR, so thatmany contributors frommathematics, system and control theory, and
electronics engineering proposed several key ideas and algorithms that are still widely
adopted in modern tools. Chapter 4 of Volume 3 reviews some of these steps and pro-
vides an overview of MOR applications in microelectronics. It is not a surprise that
MOR proves very successful also in electromagnetics, since electric/electronic circuits
are just a lumped approximation of themore generalMaxwell’s field formulations. Ap-
plications ofMOR in electromagnetics are discussed in detail in Chapter 5 of Volume 3.

Not long after the initial developments, the MOR field became more and more
mature, with consolidated approaches both in the system-theoretic and in the PDE
communities. This enabled reaching cross- and multidisciplinary applications. Vol-
ume 3 of this book series reports on several such applications of MOR, in particu-
lar: chemical process optimization (Chapter 1 of Volume 3), mechanical engineering
(Chapter 2 of Volume 3), acoustics and vibration (Chapter 3 of Volume 3), computa-
tional aerodynamics (Chapter 6 of Volume 3) and fluid dynamics (Chapter 9 of Vol-
ume 3). These chapters build on the methods discussed in the first two volumes, in
some cases proposing application-driven customized versions, and testify that perva-
sivity of MOR exists in practically all fields of applied engineering.

Consolidation ofMOR theorymade algorithmsmore andmore reliable. Therefore,
unexpected applications started to be pursued even on biological systems. One of the
most striking yet successful extensions is cardiovascular modeling (Chapter 8 of Vol-
ume 3), which attempts a quantitative prediction of the behavior of the most existing
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complex “system”, the human body. The same objective is shared by Chapter 7 of Vol-
ume 3 on MOR applications to the neurosciences.

MOR continues its mainstream advancement in those areas, such asmathematics
and control, where methodological aspects have been introduced and are still contin-
uously refined. Chapter 11 of Volume 3 combines classical reduction approaches with
graph theory for the reduction of network systems. This contribution is quite timely
nowadays, when relations between distributed systems, agents, individuals at physi-
cal or social level are often described and explained based on their networked inter-
connection structure. Another timely application of MOR is described in Chapter 10 of
Volume 3, discussing the very important aspects of uncertainty quantification, which
play a fundamental role in all applications when the description of the systems in
terms of their constitutive parameters is not deterministic but subject to stochastic
variations.

Chapter 12 of Volume 3 confirms the relevance ofMOR in industrial production set-
tings. The recent paradigm shift towards “Industry 4.0” augmented the requirements
for sophisticatedpredictionmethods and tools. It is nowconceivable that suitably con-
structed abstraction layers can be devised to build so-called “digital twins”, with the
objective of mimicking the behavior of actual physical systems in real time and during
their lifetime. This chapter provides an overview of the state of the art in this respect,
where MOR plays once again a key role.

We conclude this introduction advising the reader to checkChapter 13 ofVolume3,
which provides an overview of existing MOR software. Several commercial and aca-
demic software packages are reviewed, suitably classified with respect to the type of
problems being addressed. Many of the latter packages can be freely downloaded,
used, and possibly extended by active MOR researchers with new features and func-
tionalities.
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2 Balancing-related model reduction methods

Abstract: This chapter provides an introduction to the concept of system balanc-
ing. An overview of the historical development is given, and application areas for
balancing-based model reduction are presented. Beginning with linear systems, the
idea of a balanced system is explained and illustrated by an introductory example.
A detailed description of the algorithmic realization, including implementable pseu-
docodes, is provided andnumerical challenges are pointed out. Generalizations of the
classical method of balanced truncation are reviewed. In particular, more general sys-
tem classes such as differential-algebraic equations as well as nonlinear systems are
discussed. Two numerical examples resulting from common partial differential equa-
tions are reviewed and analyzed with respect to the applicability of balancing-related
methods. Pseudocodes will allow the reader to examine the method independently.

Keywords: balanced truncation, Gramians, Lyapunov equations, Lur’e equations,
differential-algebraic equations

MSC 2010: 15A24, 34A09, 65F30, 93A15, 93C05, 93D30

2.1 Introduction

Balancing-based model reduction relies on the concept of truncating a system that is
given in so-called balanced coordinates. The obvious questions to be discussed are:
what are balanced coordinates and how do we obtain them? Regarding the first ques-
tion, we consider different Gramianmatrices that represent particular energies for the
underlying system. For the second question, we introduce suitable state-space trans-
formations based on solutions of (non-)linearmatrix equations that transform the sys-
tem into balanced coordinates. The final reduced-order models are then obtained by
discarding states from the balanced full-order model. The reasoning behind this ra-
tionale is that in balanced coordinates, we can easily find the states that contribute
least to the system energy.

2.1.1 Historical development and overview

Balancing-based model reduction has its origin in the design and synthesis of digi-
tal filters; see [90]. In their work, Mullis and Roberts study optimal and equal word

Tobias Breiten, Technical University of Berlin, Berlin, Germany
Tatjana Stykel, University of Augsburg, Augsburg, Germany

Open Access. © 2021 Tobias Breiten and Tatjana Stykel, published by De Gruyter. This work is li-
censed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/9783110498967-002



16 | T. Breiten and T. Stykel

length filters obtained by state-space transformations of discrete-time linear systems.
In [89], the method was picked up from a detailed system-theoretic point of view and
put into the context of principal component analysis. Besides relating the results from
[90] to the concepts of controllability and observability, Moore already observed that
preservation of stability is guaranteed for the reduced-order model. Together with the
preservation of controllability and observability, this was proven in [100]. Another
appealing feature of the classical balanced truncation method is the availability of
an a priori error bound with respect to the ℋ∞-norm; see [40, 48]. An efficient algo-
rithmic realization of thismethodwas developed in [79], and its numerical robustness
was enhanced in [115, 132].

Modifications of balanced truncation were proposed soon after the appearance
of the work by Mullis and Roberts [90]. Let us mention stochastic balanced trunca-
tion introduced in [38] and further investigated in, e. g., [55, 56, 140], positive real
balanced truncation [38, 63, 92] and bounded real balanced truncation [92, 94]. For
systems involving slow and fast dynamics, the method of singular perturbation ap-
proximation was suggested and analyzed in [83]. For systems operating at a known
frequency range, the method of frequency-weighted balanced truncation was intro-
duced in [40] and further refined in, e. g., [139, 143], while frequency-limited balanced
truncation was discussed in [23, 47]. In the context of designing reduced-order con-
trollers, we mention linear quadratic Gaussian (LQG) balanced truncation which goes
back to [137, 72, 93] and ℋ∞ balanced truncation [91]. Balanced truncation for pos-
itive systems was presented in [43, 110]. Most of the balancing-related methods for
standard state-space systemswere extended to differential-algebraic equations (DAEs)
[29, 87, 108, 110, 127]. Furthermore, structure-preserving balanced truncation algo-
rithms for second-order systemswere considered in [27, 33, 86, 106], whereas balanced
realizations for periodic discrete-time systems were discussed in [42, 135]. Balancing
transformations for linear time-varying systems were first introduced in [119, 138] and
further investigated in [78, 116]. The concept of balanced truncation was extended to
a class of linear infinite-dimensional systems with finite-dimensional inputs and out-
puts in [49] and further studied in a more general setting in [61, 105]. Based on appro-
priate Hamilton–Jacobi equations, Scherpen extended balancing for linear systems to
nonlinear systems in [117].

Due to the necessity of solving a set of (non-)linear matrix equations, for a long
time, balanced truncation was considered to be applicable only to small and medium
size systems. With the development of so-called low-rank methods, see, e. g., [24, 25,
80, 97], balancing-based reduced-order models nowadays can also be computed for
large-scale systems resulting from a spatial semi-discretization of multidimensional
partial differential equations. For model reduction of parametric systems, a combina-
tion of the reduced basis method for solving parameter-dependent matrix equations
and balanced truncation was presented in [118, 122]. As a further topic of recent and
ongoing research, we mention the use of other algebraic Gramians for balancing of
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certain classes of control systems, among them linear stochastic systems [13, 26], bi-
linear systems [1, 13, 16] and quadratic–bilinear systems [15].

2.1.2 Structure of this chapter

In Section 2.2, we give an introduction to the classical version of balanced trunca-
tion for linear time-invariant (LTI) control systems. We introduce the control-theoretic
notation required for understanding the steps to construct a balanced reduced-order
model. Based on an explicit minimal example with two states, we study the effect of a
balancing transformation and its consequences with respect to internal system prop-
erties such as controllability and observability. We summarize the theoretical prop-
erties of a balanced reduced-order model in Section 2.2.4 and provide a detailed self-
implementable algorithm in Section 2.2.6. This also includes a discussion on approx-
imation methods for large-scale linear matrix equations. Section 2.3 summarizes the
different classes of Gramians used in the context of positive real balancing, bounded
real balancing, LQG balancing, stochastic balancing, singular perturbation approx-
imation, and cross-Gramian-based balancing, respectively. Furthermore, Section 2.4
describes the required modifications of the method when additional algebraic con-
straints are present, i. e., the underlying dynamics is described by a DAE system. In
Section 2.5, we give an overview of different extensions of balanced truncation that
are applicable in a nonlinear setting. In Section 2.6, we briefly discuss balanced trun-
cation of (periodic) discrete-time systems and second-order systems. Section 2.7 illus-
trates possibilities and limits of balancing-basedmodel reduction bymeans of two test
examples.

2.2 Balanced truncation
The content of this section is well known in the literature and can be found similarly
in, e. g., [4, 11, 60]. For the presentation of the necessary control-theoretic concepts,
we refer to any textbook on control theory, e. g., [4, 70, 123, 144].

2.2.1 Formulation of the problem

For the remainder of this section, we consider a continuous LTI system of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,
y(t) = Cx(t) + Du(t),

(2.1)

where A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n and D ∈ ℝp×m. For fixed time t, we call x(t),
u(t) and y(t) the state, control and output of the system. Unless stated otherwise, we
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always assume that the system is asymptotically stable, i. e., the system matrix A has
no eigenvalues in the closed right half-plane ℂ+. Given the original system (2.1) of di-
mension n, the goal of model reduction is to construct a reduced-order system of the
same form

̇̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = x̂0,
ŷ(t) = Ĉx̂(t) + D̂u(t),

(2.2)

where Â ∈ ℝr×r, B̂ ∈ ℝr×m, Ĉ ∈ ℝp×r and D̂ ∈ ℝp×m. Usually, for the constructionof (2.2),
we have the two (concurrent) goals. On the one hand, the system should actually be
a reduced-order system consisting of fewer system states. Formally, we thus require
r ≪ n. On the other hand, the system should constitute an approximation of the origi-
nal system and we, therefore, also demand that the reduced output approximates the
original one, i. e., y(t) ≈ ŷ(t). For the construction of the reduced system matrices, we
employ a Petrov–Galerkin projection framework: given two subspaces 𝒱 ,𝒲 ⊂ ℝn of
dimension r and associated basis matrices V ,W ∈ ℝn×r, we approximate x(t) by Vx̂(t)
and enforce an orthogonality constraint on the residual

V ̇̂x(t) − AVx̂(t) − Bu(t) ⊥𝒲 .

Since the columns of W span the subspace 𝒲, the latter condition can equivalently
be expressed as

WT(V ̇̂x(t) − AVx̂(t) − Bu(t)) = 0. (2.3)

In case of biorthogonal matrices V ,W , we have WTV = I and (2.3) yields a reduced
system (2.2), where

Â = WTAV , B̂ = WTB, Ĉ = CV .

Since the feedthrough term D is independent of the system dimension n, we may con-
struct a reduced system with D̂ = D and thus restrict ourselves to the case D = 0.
Note, however, that, for other classes of systems and variants of balanced truncation,
choosing D̂ = D is not always appropriate.

2.2.2 Basics from LTI system theory

With regard to establishing ameasure for the approximation quality of (2.2), recall that
by means of the variation of constants formula for x0 = 0 and x̂0 = 0, the output error
is given by

y(t) − ŷ(t) =
t

∫
0

(CeA(t−τ)B − ĈeÂ(t−τ)B̂)u(τ)dτ + (D − D̂)u(t).
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An application of the Laplace transformation ℒ[⋅] allows us to rewrite the difference
in frequency domain as

ℒ[y](s) − ℒ[ŷ](s) = (G(s) − Ĝ(s))ℒ[u](s), (2.4)

where

G(s) = C(sI − A)−1B + D, (2.5)

and Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ are the transfer functions of systems (2.1) and (2.2), re-
spectively. Assuming additionally that the reduced system matrix Â is asymptotically
stable, the transfer functionsG, Ĝ: ℂ+ → ℂp×m are analytic inℂ+ and we can consider
the Hardy space

ℋ∞ = {F: ℂ
+ → ℂp×m | F is analytic in ℂ+ and ‖F‖ℋ∞ < ∞},

where

‖F‖ℋ∞ := sups∈ℂ+ ‖F(s)‖2
and ‖ ⋅ ‖2 denotes the spectral matrix norm. As a consequence of (2.4), the Plancherel
theorem implies

‖y − ŷ‖L2(0,∞;ℝp) ≤ ‖G − Ĝ‖ℋ∞‖u‖L2(0,∞;ℝm), (2.6)

where the L2(0,∞;ℝp)-norm for a time-varying function f : (0,∞) → ℝp is defined as

‖f ‖L2(0,∞;ℝp) := (
∞

∫
0

f (t)T f (t)dt)

1
2

.

Since balanced truncation yields an a priori error boundwith respect to theℋ∞-norm,
we can relate thequality of a reduced system to theL2(0,∞;ℝp)-error of theunderlying
output signals.

Let us further recall that the finite-time controllability and observability Gramians
of system (2.1) are defined as

X(t) =
t

∫
0

eAτBBTeA
Tτ dτ, Y(t) =

t

∫
0

eA
TτCTCeAτ dτ.

The relevance of these Gramians in the context of model reduction is due to their con-
nection to the input-output behavior of the system. In particular, given a reachable
state xd ∈ ℝn, using theMoore–Penrose inverse X(tf )†, we can define a control

ũ(t) = BTeA
T (tf−t)X(tf )

†xd



20 | T. Breiten and T. Stykel

that steers system (2.1) from x(0) = 0 to x(tf ) = xd in time tf . Moreover, this control is
optimal in the sense that, for an arbitrary control u steering the system from 0 to xd,
we find that

xTdX(tf )
†xd = ‖ũ‖

2
L2(0,tf ;ℝm) ≤ ‖u‖

2
L2(0,tf ;ℝm). (2.7)

Note that, for times t1 ≤ t2, we have

zTX(t2)z ≥ z
TX(t1)z for all z ∈ ℝn. (2.8)

This implies X(t2) ⪰ X(t1) or, equivalently, X(t2) − X(t1) ⪰ 0 meaning that X(t2) − X(t1)
is a positive semi-definite matrix. An analogous notation ⪯ 0 will be used for nega-
tive semi-definite matrices. The reasoning then is that the infinite-time controllability
Gramian

X =
∞

∫
0

eAtBBTeA
T t dt, (2.9)

which exists since A is asymptotically stable, encodes the minimum input energy re-
quired to reach the target state xd. On the infinite-time horizon, the asymptotic limit
of property (2.7) is usually expressed as

xTdX
†xd = min

u∈L2(−∞,0;ℝm)
x(−∞)=0,x(0)=xd

0

∫
−∞

uT (t)u(t)dt. (2.10)

A similar conclusion can be drawn by noting that Y(tf ) yields the output energy
‖y‖2L2(0,tf ;ℝp) generated by the initial condition x(0) = x0. This energy is given by

‖y‖2L2(0,tf ;ℝp) =
tf

∫
0

(CeAtx0)
T
(CeAtx0)dτ = x

T
0Y(tf )x0. (2.11)

Hence, the infinite-time observability Gramian

Y =
∞

∫
0

eA
T tCTCeAt dt (2.12)

yields a natural way of measuring the amount of energy included in given states. In
particular, it can be shown that X and Y satisfy

AX + XAT + BBT = 0, (2.13)

ATY + YA + CTC = 0. (2.14)

The above equations are linear matrix equations in the unknowns X,Y ∈ ℝn×n and are
called Lyapunov equations.
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2.2.3 The concept of balancing

We have seen that the Gramians X and Y contain information about the input and
output energy of the system. However, it remains open how this information can be
used in order to obtain a reduced-order model. In general, we cannot expect that a
state that is easy to reach produces, at the same time, a large amount of output energy.
To illustrate this further, let us consider two different LTI systems of the form (2.1),
where the system matrices are given by

A = [−2 −200
0 − 12

] , B = [ 2
0.02
] , C = [0.02 1] , D = 0, (2.15)

and

Ã = [
−2 − 200

10001

− 200
10001 − 12

] , B̃ = [ 2
0.02
] , C̃ = [2 0.02] , D̃ = 0. (2.16)

Without further knowledge, the approximability of the above two systems remains un-
clear. Let us thushave a lookat the transfer functionsGand G̃ that can (approximately)
be computed as

G(s) = 0.05s
s2 + 2.5s + 1

, G̃(s) ≈ 4s + 1.999
s2 + 2.5s + 0.9996

.

From this point of view, one can argue that a reasonable approximation of the second
system is given as

G̃(s) ≈ 4s + 2
s2 + 2.5s + 1

=
4(2s + 1)
(2s + 1)(s + 2)

=
4

s + 2
=: Ĝ(s).

In other words, we expect a one-dimensional reduced-ordermodel realized via Â = −2
and B̂ = Ĉ = 2 to yield a small approximation error. On the other hand, for the first
transfer function G, an immediate approximation is not obvious. With the previously
introduced concepts, one might ask whether there is a difference between G and G̃
from a control-theoretic point of view. In this regard, let us analyze the corresponding
controllability and observability Gramians. In our example, it is possible to obtain the
exact solutions as

X = [1 0
0 10−4

] , Y = [10
−4 0
0 1
] ,

X̃ = [1 0
0 10−4

] , Ỹ = [1 0
0 10−4

] .

From (2.7) and (2.11), for the first system, we now conclude that states of the form x =
[ α0 ] are easier to reach than those of the form x = [ 0α ] with α ∈ ℝ. On the other hand,
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the output energy associated to states of the form x = [ 0α ] is significantly larger than
the energy of the states x = [ α0 ]. The situation is different for the second system. Here,
states of the form x = [ α0 ] are comparably easy to reach and, simultaneously, yield
a large amount of output energy. It is thus natural to construct a reduced system by
keeping the first coordinate while discarding the second one. As a surprising result,
this yields the already discussed reduced transfer function Ĝ(s) = 4

s+2 . Let us further
emphasize that the Gramians X̃ and Ỹ of the second system are equal and diagonal,
they are in balanced form.

The example indicates that balanced systems significantly simplify the decision
process of which states to discard. Let us thus, for now, assume that system (2.1) is
given in balanced form such that for the Gramians

X = Y = diag(σ1, . . . , σn).

We assume without loss of generality that the diagonal entries are ordered according
to σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σn. Moreover, we focus on systems that are controllable and ob-
servable, i. e., systems that satisfy σn > 0. For obtaining a reduced-order system, we
partition the system as follows:

[
ẋ1(t)
ẋ2(t)
] = [

A11 A12
A21 A22

] [
x1(t)
x2(t)
] + [

B1
B2
] u(t),

y(t) = [C1 C2] [
x1(t)
x2(t)
] + Du(t),

(2.17)

where A11 ∈ ℝr×r, A12 ∈ ℝr×(n−r), A21 ∈ ℝ(n−r)×r, A22 ∈ ℝ(n−r)×(n−r), B1 ∈ ℝr×m,
B2 ∈ ℝ(n−r)×m, C1 ∈ ℝp×r and C2 ∈ ℝp×(n−r). The crucial observation now is that the
balanced form allows us to compare states partitioned according to (2.17). Indeed,
given unit vectors xd = ej, j ≤ r, and x̃d = ek, k > r, for the optimal controls u and ũ
that steer the system (asymptotically) to xd and x̃d in infinite time, we find that

‖u‖2L2(−∞,0;ℝm) = e
T
j X
†ej =

1
σj
≤

1
σk
= eTkX

†ek = ‖ũ‖
2
L2(−∞,0;ℝm).

At the same time, for the associated output signals y and ỹ, we have

‖y‖2L2(0,∞;ℝp) = e
T
j Yej = σj ≥ σk = e

T
kYek = ‖ỹ‖

2
L2(0,∞;ℝp).

It therefore seems natural to discard states of the form x = [ 0α ]while keeping those of
the form x = [ α0 ]. As a consequence, we obtain a reduced-order model

ẋ1(t) = A11x1(t) + B1u(t),
ŷ(t) = C1x1(t) + Du(t),

(2.18)

where ŷ is an approximation of y.
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2.2.4 Theoretical properties

Let us now summarize the most important properties of the reduced-order sys-
tem (2.18). First of all, since the originalmodelwas assumed to be balanced, from (2.13)
and (2.14) we know that the Gramians satisfy

[
A11 A12
A21 A22

] [
X1 0
0 X2
] + [

X1 0
0 X2
] [

AT11 AT21
AT12 AT22

] + [
B1
B2
] [

B1
B2
]
T

= 0,

[
AT11 AT21
AT12 AT22

] [
Y1 0
0 Y2
] + [

Y1 0
0 Y2
] [

A11 A12
AT21 AT22

] + [
CT1
CT2
][

CT1
CT2
]
T

= 0,

where X1 = Y1 = diag(σ1, . . . , σr) and X2 = Y2 = diag(σr+1, . . . , σn). The eigenvalues
σ1, . . . , σn of X and Y are called the Hankel singular values. In fact, they are singular
values of the Hankel operator of the underlying system, see, e. g., [4]. Inspection of
the (1, 1) blocks of these matrix equations immediately shows that the Gramians of
the reduced system (2.18) are given by X1 and Y1, respectively. Hence, we obtain

The reduced-order system is in balanced form.

If we additionally assume that σr > σr+1, i. e., there exists a true gap between the small-
est diagonal entry of the Gramians X1 = Y1 and the largest diagonal entry of X2 = Y2,
it can further be shown, see [100], that

the reduced-order system is asymptotically stable.

Since the original system was assumed to be controllable and observable, all entries
of X1 and Y1 are nonzero, i. e.,

the reduced-order system is controllable and observable.

Moreover, an a priori error bound with respect to theℋ∞-norm can be given.

For the original and reduced-order transfer functions G and Ĝ, we find that

‖G − Ĝ‖ℋ∞ ≤ 2 n
∑
i=r+1

σi. (2.19)

For a more detailed presentation and corresponding proofs, we refer to the original
work [40, 48, 89, 90, 100] or, e. g., [4, Chapter 7].

2.2.5 Systems with inhomogeneous initial condition

In the previous discussion, system (2.1) was assumed to have a homogeneous initial
condition x(0) = 0. If this is not the case, the Laplace transformation of the output
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contains an additional termof the formC(sI−A)−1x0.We can thusdefine anaugmented
transfer functionG(s) = C(sI −A)−1[B, x0]+[D,0] and subsequently apply the classical
balancing method to this system. Alternatively, we can interpret the inhomogeneous
system as the homogeneous one

ẋ(t) = Ax(t) + [B, x0] [
u(t)
u0(t)
] , x(0) = 0,

y(t) = Cx(t) + [D,0] [ u(t)
u0(t)
] ,

where u0 is considered to be a unit pulse input. This idea has been initially proposed
and theoretically studied in [65]; see also [9]. A variation of this approach has re-
cently been proposed in [8] and relies on the superposition principle for linear sys-
tems. Based on partitioning the system response into an uncontrolled part with inho-
mogeneous initial condition and a controlled part with homogeneous initial condi-
tion, the method reduces the associated systems individually.

2.2.6 Algorithmic realization

Up to this point, for the construction of the reduced-order model (2.18), we as-
sumed (2.1) to be in balanced form. A natural question arises how to obtain this
balanced form for a general system. In this subsection, we discuss the computation
of such a balanced realization which, subsequently, can be truncated to construct
a balanced reduced-order model.

Square root balanced truncation method
The following method is typically referred to as square root balanced truncation and
goes back to [79]. Let us analyze the effect of a coordinate transform x̃ = Tx character-
ized by a regular transformationmatrixT ∈ ℝn×n. Rewriting the dynamicswith respect
to the coordinates x̃, we obtain the equivalent control system

̇x̃(t) = Ãx̃(t) + B̃u(t),
y(t) = C̃x̃(t) + Du(t),

(2.20)

with Ã = TAT−1, B̃ = TB and C̃ = CT−1. The associated infinite-time controllability and
observability Gramians are then given by

X̃ =
∞

∫
0

eÃtB̃B̃TeÃ
T t dt =

∞

∫
0

TeAtT−1TBBTTTT−TeA
T tTT dt = TXTT ,

Ỹ =
∞

∫
0

eÃ
T tC̃T C̃eÃt dt =

∞

∫
0

T−TeA
T tTTT−TCTCT−1TeAtT−1 dt = T−TYT−1.
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Hence, we seek T such that TXTT = T−TYT−1 = diag(σ1, . . . , σn). With this in mind, we
assume that the symmetric positive definite Gramians X and Y are given in Cholesky
form

X = LTXLX , Y = LTYLY ,

where LX , LY ∈ ℝn×n are not necessarily upper triangular matrices. Let us further com-
pute the singular value decomposition (SVD) of the product of the Cholesky factors,
i. e.,

LXL
T
Y = UΣZ

T ,

where U , Z ∈ ℝn×n are orthogonal matrices and Σ = diag(σ1, . . . , σn) ≻ 0 is positive def-
inite. By algebraic manipulations, the reader may verify that a balancing coordinate
transformation is given by T = Σ−

1
2 ZTLY . In particular, for the Gramians of the trans-

formed system (2.20), we find that X̃ = Ỹ = Σ. From here, it is now possible to con-
struct (2.18) by simply discarding the (n− r)-dimensional part of the balanced dynam-
ics. However, fromanumerical point of view, it is advisable to directly compute projec-
tion matrices V andW that lead to a reduced system (2.2) which coincides with (2.18).
Indeed, the balancing coordinate transformation T is ill-conditioned whenever some
of the Hankel singular values are very small. Let us thus consider a partitioning

LXL
T
Y = [U1 U2] [

Σ1 0
0 Σ2
][

ZT1
ZT2
] , (2.21)

where U1, Z1 ∈ ℝn×r and Σ1 ∈ ℝr×r . Corresponding to the Petrov–Galerkin framework,
we now set

V = LTXU1Σ
− 12
1 , W = LTYZ1Σ

− 12
1 .

Again, by algebraic manipulations it can be verified that V and W satisfy WTV = I
and that (A11,B1,C1,D) = (WTAV ,WTB,CV ,D).

Linear matrix equations
As we have seen, the square root balancing method relies on the computation of the
Cholesky factors LX and LY , which, in turn, depend on the Gramians X and Y . In order
to perform the transformation step, we thus have to compute X and Y either via their
integral representations or as the solutions to the Lyapunov equations (2.13) and (2.14).
Here,we focuson the latter approach. For approximation techniquesbasedonquadra-
ture, we refer to [113]. As a representative for both X and Y , consider a linear matrix
equation for the unknown X of the form

AX + XAT = G (2.22)
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where A,G ∈ ℝn×n. From an abstract linear algebra point of view, we can replace this
matrix equation with an ordinary linear system of dimension n2. For this purpose, we
recall the vectorization operator as well as the Kronecker product defined by

vec: ℝn×m → ℝnm, vec(A) 󳨃→ [a11, . . . , an1, a12, . . . , a1n, . . . , ann]
T
,

⊗: ℝn×m × ℝp×q → ℝnp×mq, ⊗(A,B) = A ⊗ B =
[[[

[

a11B . . . a1mB
...

. . .
...

an1B . . . anmB

]]]

]

.

For matrices A,B and C of compatible dimensions, these operators are related via the
formula

vec(ABC) = (CT ⊗ A)vec(B).

We can now apply the vectorization operator to both sides in (2.22) to obtain the equiv-
alent linear system

(I ⊗ A + A ⊗ I)vec(X) = vec(G), (2.23)

where I denotes the identity matrix of dimension n. While this yields the possibility
to compute the solution by standard solvers for linear systems, the complexity now
scales with the dimension n2, e. g., a standard LU decompositionwill have complexity
𝒪(n6). For small to medium scale systems, the Bartels–Stewart algorithm [6] can be
considered to be themethod of choice. Themain idea of this algorithm is first to trans-
form thematrixA into a real Schur formQTAQ bymeans of an orthogonal transforma-
tion Q ∈ ℝn×n. The quasi-upper triangular form of the resulting matrix QTAQ can then
be exploited to obtain a solution of (2.22). A detailed description of the method can
be found in [6]. Note that a corresponding MATLAB implementation lyap is provided
by the Systems and Control Toolbox. As a variant of the Bartels–Stewart algorithm, let
us mention Hammarling’s method [62] which directly computes a Cholesky factoriza-
tion X = LTXLX , LX ∈ ℝ

n×n, of the solution of (2.22) with G = −BBT . Again, a MATLAB
implementation lyapchol is accessible in the Systems and Control Toolbox.

For systems resulting from a spatial semi-discretization of partial differential
equations (PDEs), the previous methods are often not computationally feasible. As
a remedy, in recent years, there has been an increasing interest in finding efficient
approximation techniques for linear matrix equations of the form (2.22). Most of these
methods can be categorized into Krylov subspaces methods, alternating directions
implicit (ADI) based methods as well as iterative solvers that exploit the specific
Kronecker structure. For a recent survey of low-rank methods for large-scale ma-
trix equations, we refer to [28, 120]. A more detailed discussion with application to
model reduction by balanced truncation can be found in [11]. Common for all these
methods is that they rely on a low-rank approximation of the true solution which is
known to exist for a large class of systems including parabolic second-order PDEs; see
[5, 51, 57, 95, 98].
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Pseudocode
A pseudocode summarizing the classical balanced truncation method is shown in Al-
gorithm 2.1. For large-scale systems, steps 1 and 2 should be replaced by an approxi-
mation technique as described previously. Let us emphasize that the remaining steps
remain unchanged when

X = LTXLX ≈ L̂
T
X L̂X , Y = LTYLY ≈ L̂

T
Y L̂Y

are approximated by low-rank matrices with factors L̂X ∈ ℝk1×n and L̂Y ∈ ℝk2×n, where
k1, k2 ≪ n.

Algorithm 2.1: Balanced truncation for LTI control systems in MATLAB.
Require: Original system A, B, C, D; error tolerance tol.
Ensure: Reduced system Â, B̂, Ĉ, D̂ with ‖G − Ĝ‖ℋ∞ ≤ tol.
1: Compute the solution X = LTXLX of (2.13). ⊳ LX = lyapchol(A,B)

2: Compute the solution Y = LTYLY of (2.14). ⊳ LY = lyapchol(A',C')

3: Compute the SVD (2.21) of LXLTY , ⊳ [U,Σ,Z] = svd(LX*LY')

where r is chosen such that 2
n
∑

i=r+1
σi ≤ tol.

4: Define V = LTXU1Σ
− 12
1 andW = LTYZ1Σ

− 12
1 .

5: Define Â = WTAV , B̂ = WTB, Ĉ = CV and D̂ = D.

2.3 Variants of classical balancing
In this section, we present a brief survey on other balancing-related model reduction
techniques which have been developed for various classes of control systemswith dif-
ferent control-theoretic properties. A key idea of all thesemethods is to define a pair of
Gramianswhich characterize the inherent properties of theparticular class of systems.
Then the reduced-ordermodel is obtained by transforming the system into a balanced
form such that the Gramians of the transformed system are equal and diagonal and
truncating the state components corresponding to the small diagonal elements of the
Gramians.

We start our consideration by introducing a concept of dissipativity whichwas ex-
tensively studied byWillems [141, 142]. System (2.1) is called dissipativewith respect to
a supply rate w(u(t), y(t)) if there exists a non-negative function 𝒮 : ℝn → ℝ satisfying
the dissipation inequality

𝒮(x(t0)) +
t1

∫
t0

w(u(τ), y(τ)) dτ ≥ 𝒮(x(t1)) (2.24)
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for all t0, t1 ∈ ℝ with t1 ≥ t0 and all u ∈ L2(t0, t1; ℝm). The function 𝒮 is called the
storage function. The dissipation inequality implies that the increase in the internal
energy described by the storage function 𝒮 on the time interval (t0, t1) does not exceed
the energy supplied to the system. By choosing the quadratic supply rate

w(u(t), y(t)) = yT (t)Qy(t) + 2yT (t)Su(t) + uT (t)Ru(t) (2.25)

with Q = QT ∈ ℝp×p, S ∈ ℝp×m and R = RT ∈ ℝm×m, the dissipativity of (2.1) can be
characterized in terms of the Kalman–Yakubovich–Popov lemma [3, 32]. If system (2.1)
is minimal, i. e., it is controllable and observable, then the following statements are
equivalent:
1. System (2.1) is dissipative with respect to the supply rate w as in (2.25).
2. There exists a symmetric, positive definite matrix Y ∈ ℝn×n such that the linear

matrix inequality (LMI)

[
ATY + YA − CTQC YB − CT (QD + S)
BTY − (QD + S)TC −R − DTQD − DTS − STD

] ⪯ 0 (2.26)

is fulfilled.
3. There exists a matrix triple (Y ,K, J)with K ∈ ℝk×n, J ∈ ℝk×m and symmetric, posi-

tive definite Y ∈ ℝn×n satisfying the Lur’e matrix equation

[
ATY + YA − CTQC YB − CT (QD + S)
BTY − (QD + S)TC −R − DTQD − DTS − STD

] = − [
KT

JT
] [

KT

JT
]
T

. (2.27)

Note that, if RY = R+DTQD+DTS + STD is positive definite, then J is nonsingular and,
hence, the Lur’e equation (2.27) can equivalently be written as the Riccati equation

ATY + YA − CTQC + (YB − CT (QD + S))R−1Y (YB − C
T (QD + S))T = 0.

In general, the solution of (2.26) is not unique. There exist, however, unique solutions
Ymin and Ymax such that 0 ≺ Ymin ⪯ Y ⪯ Ymax for all symmetric solutions Y of (2.26).
These extremal solutions can be used to characterize the required supply and available
storage of system (2.1) defined as

𝒮r(x0) = inf
u∈L2(−∞,0;ℝm)
x(−∞)=0,x(0)=x0

0

∫
−∞

w(u(τ), y(τ)) dτ,

𝒮a(x0) = sup
u∈L2(0,∞;ℝm)
x(0)=x0 ,x(∞)=0

−
∞

∫
0

w(u(τ), y(τ)) dτ,

respectively. The required supply𝒮r(x0)describes theminimumamount of energy that
has to be supplied to the system to steer it from the zero state into the state x(0) = x0,
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whereas the available storage 𝒮a(x0) determines the maximum amount of energy that
can be extracted from the system starting at the initial state x(0) = x0 and reaching
the zero state. For these quadratic functionals, we find that

𝒮r(x0) = x
T
0Ymaxx0, 𝒮a(x0) = x

T
0Yminx0,

see [142]. These energy representations suggest, just as in the classical balancing ap-
proach, to take Y−1max and Ymin as a pair of Gramians and use them for balancing and
truncation. Since the numerical solution of LMIs is, in general, much more expen-
sive than that of Lur’e or Riccati equations, we restrict ourselves to the definition of
the Gramians as solutions to matrix equations. Let us further emphasize that the dual
Lur’e equation

[
AX + XAT − BQBT XCT − B(DQ + S)T

CX − (DQ + S)BT −Q − DRDT − DST − SDT] = − [
L
F
] [

L
F
]
T

(2.28)

for amatrix triple (X, L, F)withX ∈ ℝn×n, L ∈ ℝn×l and F ∈ ℝm×l is also of great interest.
One can show, e. g., [56, 92] that the extremal solutions of (2.27) and (2.28) satisfy the
relations

Ymin = X
−1
max, Ymax = X

−1
min.

Thus, to avoid the explicit inversion of Ymax, we can balance the minimal solutions
Ymin and Xmin of the Lur’e equations (2.27) and (2.28), respectively. In the following,
we show that several particular choices of Q, S and R in (2.25) correspond to various
physical properties of the control system (2.1) and lead todifferent balanced truncation
methods that preserve these properties in reduced-order models.

2.3.1 Positive real balancing

First, we consider system (2.1) withm = p and set Q = 0, S = 1
2 Im and R = 0. Then the

supply rate takes the form

w(u(t), y(t)) = yT (t)u(t).

In this case, system (2.1) satisfying the dissipation inequality (2.24) is called passive.
Such systems play an important role in circuit theory and network analysis [3]; see
also Chapter 5 of this volume. Passivity-preserving balanced truncation for such sys-
tems was considered in [63, 101]. If system (2.1) is controllable, then the dissipation
inequality (2.24) is equivalent to the condition

t

∫
0

yT (τ)u(τ) dτ ≥ 0
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which holds for all t > 0 and all u ∈ L2(0,∞;ℝm); see [142]. This condition is often
used as a definition of passivity. It is equivalent to the positive realness of the transfer
function G(s) = C(sI −A)−1B +Dmeaning that G is analytic inℂ+ and G(s) +GT (s) ⪰ 0
for all s ∈ ℂ+; see [3]. This property is, further, equivalent to the solvability of the
positive real Lur’e equations

[
AX + XAT XCT − B
CX − BT −D − DT] = − [

L
F
] [

L
F
]
T

(2.29)

and

[
ATY + YA YB − CT

BTY − C −DT − D
] = − [

KT

JT
] [

KT

JT
]
T

. (2.30)

The positive real Gramians of system (2.1) are then defined as the minimal solutions

XPR = Xmin, YPR = Ymin

of these equations. In positive real balancing, system (2.1) is transformed into the co-
ordinates such that XPR = YPR = diag(σPR1 , . . . , σ

PR
n ) with the positive real character-

istic values σPRi ordered decreasingly. Applying the square root balanced truncation
method as in Algorithm 2.1 with X and Y replaced by XPR and YPR, respectively, we get
the reduced-order system (2.2) which is passive and satisfies the error bound

‖G − Ĝ‖ℋ∞ ≤ 2‖(D + DT)
−1
‖2‖G + D

T‖ℋ∞‖Ĝ + DT‖ℋ∞ n
∑
i=r+1

σPRi

provided D + DT is nonsingular; see [60, 92].

2.3.2 Bounded real balancing

An important property of network systems in the scattering form [3] is contractivity.
This property corresponds to dissipativity with respect to the supply rate

w(u(t), y(t)) = −yT (t)y(t) + uT (t)u(t)

obtained from (2.25) by taking Q = −Ip, S = 0 and R = Im. The controllable system (2.1)
is contractive if and only if its transfer functionG is bounded real, i. e.,G is analytic in
ℂ+ and I − GT (s)G(s) ⪰ 0 for all s ∈ ℂ+; see [3]. Such systems are useful, for example,
in L2-gain constraint controller design [50]. To verify contractivity, we can also use the
bounded real Lur’e equations

[
AX + XAT + BBT XCT + BDT

CX + DBT DDT − I
] = − [

L
F
] [

L
F
]
T
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and

[
ATY + YA + CTC YB + CTD

BTY + DTC DTD − I
] = − [

KT

JT
] [

KT

JT
]
T

.

Their minimal solutions define the bounded real Gramians

XBR = Xmin, YBR = Ymin.

Transforming the LTI system (2.1) into a bounded real balanced form such that
XBR = YBR = diag(σBR1 , . . . , σ

BR
n ) and truncating the states corresponding to small

bounded real characteristic values σBRi results in a contractive reduced-ordermodel (2.2)
satisfying the error bound

‖G − Ĝ‖ℋ∞ ≤ 2 n
∑
i=r+1

σBRi .

These properties of the bounded real balanced truncationmethodwere proved in [94].
It is well known that the square transfer function G(s) is bounded real if and only

if its Moebius transform given byGM(s) = (G(s)−I)(G(s)+I)−1 is positive real [39]. Note
that this transform coincides with its inverse, i. e.,

G(s) = (GM(s) − I)(GM(s) + I)
−1
.

This relation leads to another model reduction method which preserves contractivity
(resp. passivity). It consists in computing a reduced-order system

G̃(s) = (G̃M(s) − I)(G̃M(s) + I)
−1,

where the approximation G̃M(s) is obtained by the positive real (resp. bounded real)
balanced truncation applied to the Moebius-transformed system GM(s); see [108] for
details.

2.3.3 Linear-quadratic Gaussian balancing

Although Lyapunov-based balanced truncation is a well-establishedmodel reduction
method, it suffers from some limitations when applied to controller reduction. For
such a problem, the LQG balanced truncation approach was developed in [72, 93, 137]
which can also be applied to unstable systems and guarantees closed-loop stability
with the reduced-order controller. This approach relies on the supply rate

w(u(t), y(t)) = yT (t)y(t) + uT (t)u(t)
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obtained from (2.25) by setting Q = Ip, S = 0 and R = Im. For the linear quadratic
optimal regulator problem

J(x0) = min
u∈L2(0,∞;ℝm)

x(0)=x0
lim
t→∞ x(t)=0

∞

∫
0

w(u(τ), y(τ)) dτ,

the optimal cost is given by J(x0) = xT0Y+x0, where (Y+,K+, L+) is the stabilizing solu-
tion of the Lur’e equation

[
ATY + YA + CTC YB + CTD

BTY + DTC I + DTD
] = [

KT

JT
] [

KT

JT
]
T

.

Furthermore, the stabilizing solution (X+, L+, F+) of the dual Lur’e equation

[
AX + XAT + BBT XCT + BDT

CX + DBT I + DDT ] = [
L
F
] [

L
F
]
T

can be used to describe the optimal filter cost. Note that the stabilizing solutions are
characterized by the property that all finite eigenvalues of the pencils

[
λI − A −B
−K+ −J+

] , [
λI − A −L+
−C −F+

]

have negative real part. The LQG Gramians can now be defined as

XLQG = X+, YLQG = Y+.

In LQGbalanced coordinates, it holdsXLQG = YLQG = diag(σLQG1 , . . . , σ
LQG
n ), whereσ

LQG
i

are called LQG characteristic values. The reduced-ordermodel (2.2) is then determined
by projection onto the subspace corresponding to r dominant LQG characteristic val-
ues. Since (2.1) and (2.2) are not necessarily asymptotically stable, the ℋ∞-norm of
the error G − Ĝ is generally not defined. In [91], an error bound in the gap metric was
presented. It is based on the normalized left coprime factorization G(s) = M−1(s)N(s),
where

[N(s),M(s)] = [0, −I] [sI − A −L+
−C −F+

]
−1

[
B 0
D I
]

is the stable rational function. The LQG balanced truncation can then be interpreted
as the classical balanced truncation applied to the system [N,M] ∈ ℋ∞. The result-
ing reduced-order system [N̂, M̂] is stable and provides the normalized left coprime
factorization of Ĝ, i. e., Ĝ(s) = M̂−1(s)N̂(s). Then the gapmetric error bound is given by

‖[N,M] − [N̂, M̂]‖ℋ∞ ≤ 2 n
∑
i=r+1

σLQGi

√1 + (σLQGi )
2
;

see [91] for the proof.
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2.3.4 Stochastic balancing

Stochastic balanced truncation was first introduced in [38] for stochastic processes
and further studied in [55, 56, 63, 136]. This approach belongs to a class of relative
error methods which attempt to minimize the relative error ‖G−1(G − Ĝ)‖ℋ∞ . It does
not rely on a special form of the supply rate any more but rather on spectral factors as
defined below.

LetΦ(s) = Z(s)+ZT (−s)be thepower spectrum of the positive real transfer function
Z(s) = CZ(sI − A)−1BZ + DZ with a minimal realization (A,BZ,CZ,DZ). Furthermore, we
consider the left spectral factorV(s) and the right spectral factorW(s) ofΦ(s) satisfying

Φ(s) = V(s)VT (−s) =WT (−s)W(s).

Solving the positive real Lur’e equations

[
AX + XAT XCTZ − BZ
CZX − BTZ −DZ − DT

Z
] = − [

LZ
FZ
] [

LZ
FZ
]
T

(2.31)

and

[
ATY + YA YBZ − CTZ
BTZY − CZ −D

T
Z − DZ
] = −[

KT
Z

JTZ
][

KT
Z

JTZ
]
T

(2.32)

for (X, LZ, FZ) and (Y ,KZ, JZ), respectively, the spectral factors can be realized as

V(s) = CZ(sI − A)
−1LZ + FZ, (2.33)

W(s) = KZ(sI − A)
−1BZ + JZ; (2.34)

see [56] for details. Then the balanced stochastic realization is obtained by performing
a state-space transformation of the realizations of Z(s), V(s) and W(s) such that the
controllability Gramian of V(s) is equal to the observability Gramian of W(s). These
Gramians solve the Lyapunov equations

AX + XAT = −LZL
T
Z , (2.35)

ATY + YA = −KT
ZKZ, (2.36)

respectively.
Depending onwhether the systemV(s) orW(s) has to be reduced, one obtains two

different model reduction methods: left spectral factor balanced truncation and right
spectral factor balanced truncation. In the first method, given a square nonsingular
transfer functionG(s) = V(s) as in (2.33), where all eigenvalues of A have negative real
part,wefirst calculate its controllabilityGramianX by solving (2.35). Thenusing (2.31),
we find

BZ = XC
T
Z + LZF

T
Z , DZ + D

T
Z = FZF

T
Z .
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Inserting these matrices into the Lur’e equation (2.32), we determine, finally, the min-
imal solution Ymin of (2.32). Note that this matrix is also the observability Gramian of
W since it satisfies the Lyapunov equation (2.36). We use now the stochastic Gramians

XST = X, YST = Ymin

to define the stochastic balanced realization of G(s) = V(s) such that XST and YST are
equal and diagonal, i. e., XST = YST = diag(σST1 , . . . , σ

ST
n ). Reducing this realization by

truncating the states corresponding to small stochastic characteristic values σSTi , we
obtain an approximation Ĝ(s) which satisfies the relative error bound

‖G−1(G − Ĝ)‖ℋ∞ ≤ n
∏
i=r+1

1 + σSTi
1 − σSTi

− 1,

derived in [56]. Note that the stochastic characteristic values satisfy 0 ≤ σSTi ≤ 1. More-
over, if r exceeds the number of σSTi with σSTi = 1, then Ĝ(s) preserves zeros of G(s)
inℂ+; see [55]. This property immediately implies that, ifG(s) isminimum phase, i. e.,
it has no zeros in ℂ+, then Ĝ(s) is also minimum phase.

For given G(s) = W(s) as in (2.34), the stochastic balanced realization can be de-
termined by first solving the Lyapunov equation (2.36) for Y and then computing the
minimal solution Xmin of the Lur’e equation (2.31) with

CZ = B
T
ZY + J

T
ZKZ, DT

Z + DZ = J
T
Z JZ

obtained from (2.32). Balancing the Gramian pair (Xmin,Y) and performing model re-
duction, we obtain an approximation Ĝ(s) with similar properties as in the previous
method.

The balancing-relatedmodel reductionmethods considered above require solving
Lur’e or Riccati matrix equations. Numerical methods for large-scale Lur’e equations
presented in [102, 103] are based on deflating subspaces of an associated even matrix
pencil. Furthermore, an extension of the ADImethod to Lur’e equations was proposed
in [85]. For Riccati equations,many different numericalmethods have been developed
over the last 30 years; see [30]. Let us just mention some of them relying on a low-rank
approximation: Krylov subspace methods [67, 121], Newton’s method [19, 24, 28], and
ADI-type methods [12, 81, 84].

2.3.5 Singular perturbation approximation

Another variant of classical balancing relies on partitioning the balanced system (2.17)
into slow and fast dynamics. Instead of setting x2 = 0 and obtaining the reduced-order
model via (2.18), consider the dynamics of x2 to reach a steady state such that ẋ2(t) = 0.
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As a consequence, the partitioning (2.17) allows to explicitly solve the second equation
for the variable x2. In particular, we find that

x2(t) = −A
−1
22A21x1(t) − A

−1
22B2u(t).

Inserting this expression into the first equation leads to

ẋ1(t) = (A11 − A12A
−1
22A21)x1(t) + (B1 − A12A

−1
22B2)u(t),

ŷ(t) = (C1 − C2A
−1
22A21)x1(t) − C2A

−1
22B2u(t) + Du(t)

(2.37)

from which we obtain another reduced-order model of the form

Â = (A11 − A12A
−1
22A21), B̂ = B1 − A12A

−1
22B2,

Ĉ = C1 − C2A
−1
22A21, D̂ = −C2A

−1
22B2 + D.

Let us emphasize that, for a controllable and observable linear system (2.17), the ma-
trix A22 is guaranteed to be regular if Σ1 and Σ2 have no common diagonal entries; see
[83]. It has also been shown in [83] that the reduced-order model (2.37) satisfies the a
priori error bound (2.19). Let us also mention the interesting fact that singular pertur-
bation approximation can be interpreted as classical balanced truncation applied to
the reciprocal system

Ã = A−1, B̃ = A−1B, C̃ = CA−1.

Moreover, for the transfer function of the original system, we find that

G(0) = − [C1 C2] [
A11 A12
A21 A22

]
−1

[
B1
B2
] + D

= − [C1 C2] [
Â−1 −Â−1A12A−122

−A−122A21Â
−1 A−122A21Â

−1A12A−122 + A
−1
22
] [

B1
B2
] + D

= − [C1 C2] [
Â−1B̂

−A−122A21Â
−1B̂ + A−122B2

] + D

= −ĈÂ−1B̂ + D̂ = Ĝ(0).

The above relation additionally implies that singular perturbation approximation
yields a reduced-order model that is exact at the frequency s = 0. We refer to the
original reference [83], where more details of the method can be found.

2.3.6 Cross-Gramian balanced truncation

With the intention of studying controllability and observability concepts at the same
time, in [44] the authors introduced (for the SISO case) the so-called cross-Gramian

Xc =
∞

∫
0

eAtBCeAt dt.
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Generalizations to symmetric MIMO systems were subsequently considered in [45].
Similar to the controllability and observability Gramians, the matrix Xc can be shown
to satisfy the Sylvester equation,

AXc + XcA + BC = 0.

Moreover, the eigenvalues of the cross-Gramian are invariant under state space trans-
formations and coincide with the Hankel singular values of system (2.1). As a conse-
quence, it is possible to perform the balancing step with respect to Xc instead of X
and Y . The main advantage is that only one linear matrix equation has to be solved
which allows for a computationally more tractable method; see, e. g., [7, 124]. Fur-
thermore, the cross-Gramian and some empirical variants thereof can be computed
bymeans of simulated trajectories of the system; see [68] for amore detailed overview
and comparison.

2.4 Balancing for DAEs
Control problems governed by DAEs arise in a variety of practical applications includ-
ing circuit simulation, computational electromagnetics, fluid dynamics, mechanical
and chemical engineering; see [18, Chapters 2, 4 and 5] for practical examples. Unlike
ordinary differential equations (ODEs), DAEs contain (hidden) algebraic constraints
restricting the solution to a manifold. These constraints usually result from physical
laws as, for example, conservation laws in incompressible (Navier–)Stokes equations
and Maxwell’s equations, and Kirchhoff’s laws in network problems, or from geomet-
ric and kinematic constraints in mechanical systems. For solvability of DAE control
systems, it is required that the initial values satisfy certain consistency conditions im-
posed by algebraic constraints and that the input function or some of its components
are sufficiently smooth. In [31, 76, 77], different frameworks have been presented for
structural analysis and numerical treatment of linear and nonlinear DAEs. Also, dif-
ferent index concepts have been introduced there to characterize various structural
properties of DAEs. In general, a high index characterizes the difficulty of analyzing a
DAE theoretically and numerically.

We consider a linear DAE control system,

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(2.38)

where E,A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n and D ∈ ℝp×m. If E is nonsingular, this system
can be transformed into the standard state-space form (2.1) by inversion of E. Con-
trol systems of the form (2.38) with a singular matrix E are also known as descriptor
systems, generalized state-space systems or singular systems. Model reduction of such
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systems by balanced truncation was first considered in [99] and further improved in
[82, 127]. We also refer to [29] for a comprehensive survey onmodel reduction of DAEs.

Assuming that a pencil λE − A is regular, i. e., det(λE − A) ̸= 0 for some λ ∈ ℂ,
we can introduce a transfer function for (2.38) given by G(s) = C(sE − A)−1B + D. Com-
paring it with the transfer function (2.5) of the standard-state space system (2.1), one
might think that all control-theoretic concepts and related model reduction methods
for ODEs can be extended to DAEs just by replacing the identity matrix with E. How-
ever, in practice, it does not work, since DAEs, especially higher index DAEs, exhibit
much more complex behavior than ODEs.

A useful tool for investigating the structural properties of linear DAEs is aWeier-
strass canonical form. For a regular pencil λE − A, it is given by

E = Tl [
Inf 0
0 N
]Tr , A = Tl [

J 0
0 In∞]Tr , (2.39)

where Tl, Tr ∈ ℝn×n nonsingularmatrices andN ∈ ℝn∞×n∞ is nilpotentwith nilpotency
index ν defined as a smallest integer such that Nν = 0. This quantity also defines
the (differentiation) index of the DAE system (2.38). The eigenvalues of J ∈ ℝnf×nf are
the finite eigenvalues of the pencil λE − A, and N corresponds to the eigenvalue at
infinity. Using theWeierstrass canonical form (2.39), we can decompose (2.38) into the
differential part (also called the slow subsystem) and the algebraic part (also called
the fast subsystem). The differential part is in the ODE form and, therefore, it can be
reduced in a standardway by balancing and truncation. On the contrary, the algebraic
part determines a solution manifold which has to be preserved in the reduced-order
model. This can be achieved if we only remove redundant equations and those state
components which do not contribute to the input-output energy transfer. As a result,
we get a minimal realization of the algebraic part.

For the differential part, we introduce the proper controllability and observability
Gramians Xpr and Ypr as symmetric, positive semi-definite solutions of the projected
continuous-time Lyapunov equations

AXprE
T + EXprA

T = −PlBB
TPTl , Xpr = PrXprP

T
r ,

ATYprE + E
TYprA = −P

T
r C

TCPr , Ypr = P
T
l YprPl,

(2.40)

where

Pl = Tl [
Inf 0
0 0
]T−1l , Pr = T

−1
r [

Inf 0
0 0
]Tr

are the spectral projectors onto the left and right deflating subspaces of the pencil
λE − A corresponding to the finite eigenvalues. Such Gramians exist and are unique if
the DAE system (2.38) is asymptotically stable, i. e., all finite eigenvalues of λE−A have
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negative real part. The proper Gramians have a similar energy interpretation as the
Gramians in the standard state-space case [127]. For the algebraic part, we define the
improper controllability and observability Gramians Xim andYim as symmetric, positive
semi-definite solutions of the projected discrete-time Lyapunov equations

AXimA
T − EXimE

T = −QlBB
TQT

l , Xim = QrXimQ
T
r ,

ATYimA − E
TYimE = −Q

T
r C

TCQr , Yim = Q
T
l YimQl,

(2.41)

where Ql = I − Pl and Qr = I − Pr are the spectral projectors onto the left and right de-
flating subspaces of λE−A corresponding to the eigenvalue at infinity. These two pairs
of the Gramians provide two sets of Hankel singular values of the DAE system (2.38).
Let

Xpr = L
T
X,prLX,pr , Ypr = L

T
Y ,prLY ,pr ,

Xim = L
T
X,imLX,im, Yim = L

T
Y ,imLY ,im

be the Cholesky factorizations of the Gramians. Then the proper Hankel singular
values, denoted by σj, are defined as the largest nf singular values of the matrix
LX,prETLTY ,pr, and the improper Hankel singular values, denoted by θj, are defined as
the largest n∞ singular values of the matrix LX,imATLTY ,im. The SVDs of these matrices
can be used to transform (2.38) into a balanced form such that the Gramians of the
transformed system satisfy

X̃pr + X̃im = Ỹpr + Ỹim = diag(σ1, . . . , σnf , θ1, . . . , θn∞ ).
Then a reduced-order model can be computed by truncation of the state components
of the balanced system corresponding to small proper Hankel singular values and
zero improper Hankel singular values. Note that the truncation of the states corre-
sponding to non-zero improper Hankel singular values may lead to an inaccurate and
physicallymeaningless approximation; see [82, 130] for some examples. An extension
of the square root balanced truncation method to DAE control systems is presented in
Algorithm 2.2.

One can show that the resulting reduced-order system is balanced, asymptotically
stable and has an index which does not exceed the index of the original system [127].
Moreover, we have the error estimate

‖G − Ĝ‖ℋ∞ ≤ 2
nf
∑

i=rf+1
σi.

For solving the projected continuous-time Lyapunov equations (2.40), one can use the
low-rank generalized ADI method [129] or (rational) Krylov subspace methods [131].
The projected discrete-time Lyapunov equations (2.41) can be solved using the gen-
eralized Smith method [129]. The main difficulty in all these methods is the determi-
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Algorithm 2.2: Balanced truncation for DAE control systems.
Require: Original system E, A, B, C, D; error tolerance tol.
Ensure: Reduced system Ê, Â, B̂, Ĉ, D̂ with ‖G − Ĝ‖ℋ∞ ≤ tol.
1: Compute the solutions Xpr = LTX,prLX,pr and Ypr = L

T
Y ,prLY ,pr of (2.40).

2: Compute the solutions Xim = LTX,imLX,im and Yim = LTY ,imLY ,im of (2.41).
3: Compute the SVDs

LX,prE
TLTY ,pr = [Upr,1 Upr,2] [

Σ1 0
0 Σ2
][

ZTpr,1
ZTpr,2
] ,

LX,imA
TLTY ,im = [Uim,1 Uim,2] [

Θ1 0
0 0
][

ZTim,1
ZTim,2
] ,

where Σ1 = diag(σ1, . . . , σrf ) and Σ2 = diag(σrf+1, . . . , σnf ) with rf chosen such that

2
nf
∑

i=rf+1
σi ≤ tol, and Θ1 = diag(θ1, . . . , θr∞ ) is positive definite.

4: Define

V = [LTX,prUpr,1Σ
− 12
1 , L

T
X,imUim,1Θ

− 12
1 ],

W = [LTY ,prZpr,1Σ
− 12
1 , L

T
Y ,imZim,1Θ

− 12
1 ].

5: Define Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV and D̂ = D.

nation of the spectral projectors Pr and Pr . For some special classes of linear DAEs
such as semi-explicit DAEs of index 1 [46, 111], magneto-quasistatic systems of index 1
[73], Stokes-like DAEs of index 2 [66, 128], and constrained mechanical systems of in-
dex 2 and 3 [29, 114], it is possible to avoid the explicit construction of the projectors.
By making use of a special block structure of the system matrices, such systems can
be transformed into the ODE form allowing the application of standard model reduc-
tion methods. It should, however, be emphasized that the resulting ODE systems do
not preserve the sparsity in the matrix coefficients. Therefore, the ODE systems will
never be computed explicitly. Instead, again exploiting the system structure, all com-
putations can be performed in terms of the original data. For other structured DAEs
such as circuit equations of index 1 and 2, the required projectors have been derived
in [107, 109]. In numerical implementations, however, only projector-vector products
will be computed, avoiding explicitly forming the (possibly full) projector matrices
and significantly reducing computational costs.

We conclude this sectionby referring to [29, 87, 108] for an extensionof other types
of balancing-based model reduction methods to DAE control systems.
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2.5 Balancing for nonlinear systems
A generalization of the concept of balancing for the nonlinear case has been intro-
duced in [117]. For summarizing the main idea, consider a nonlinear system of the
form

ẋ(t) = f (x(t)) + g(x(t))u(t),
y(t) = h(x(t)),

(2.42)

where f : ℝn → ℝn, g: ℝn → ℝn×m and h: ℝn → ℝp are smooth functions. Additionally,
zero is assumed to be an equilibrium, i. e., f (0) = 0 and h(0) = 0. In analogy to the
linear case, Scherpen defined the energy functionals

Lc(xd) = min
u∈L2(−∞,0;ℝm)
x(−∞)=0,x(0)=xd

1
2

0

∫
−∞

uT (t)u(t)dt,

Lo(x0) =
1
2

∞

∫
0

yT (t)y(t)dt, x(0) = x0, u(t) ≡ 0, 0 ≤ t < ∞,

(2.43)

which are defined to be infinite if xd cannot be reached from 0 or if the system is un-
stable, respectively. While the Gramians X and Y of a linear system satisfy the linear
matrix equations (2.13) and (2.14), under suitable solvability assumptions Lc and Lo
solve the partial differential equations

𝜕Lc
𝜕x
(x)f (x) + 1

2
𝜕Lc
𝜕x
(x)g(x)(𝜕Lc

𝜕x
(x)g(x))

T
= 0, Lc(0) = 0,

𝜕Lo
𝜕x
(x)f (x) + 1

2
(h(x))Th(x) = 0, Lo(0) = 0,

for all x in a neighborhood of the origin; see [117, Theorem 3.2]. The idea of trans-
forming the system coordinates into balanced form and subsequently obtaining a
reduced-order system by truncation remains the same. However, in general this can
only be achieved locally (around the origin) by a nonlinear coordinate transform
x = ψ(x̃),ψ(0) = 0. For the transformed balanced functionals L̃c and L̃o, it then holds

L̃c(x̃) := Lc(ψ(x̃)) =
1
2
x̃T x̃,

L̃o(x̃) = Lo(ψ(x̃)) =
1
2
x̃Tdiag(σ1(x̃), . . . , σn(x̃))x̃,

where the so-called singular value functions σ1(x̃) ≥ ⋅ ⋅ ⋅ ≥ σn(x̃) extend the notion of
the Hankel singular values to the nonlinear setting. In particular, it can be shown that
a linearization of this approach yields the classical balancing technique applied to the
linearization (around 0) of the nonlinear system (2.42). Formore details on theoretical
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properties such as local asymptotic stability or preservation of balanced coordinates,
we refer to the original reference [117].

Since computing Lc and Lo as the solutions (or approximations thereof) of (2.43)
suffers from the curse of dimensionality, recent work has focused on replacing Lc and
Lo by algebraic approximations. Particularly for the class of bilinear control systems

ẋ(t) = Ax(t) +
m
∑
i=1

Nix(t)ui(t) + Bu(t),

y(t) = Cx(t),
(2.44)

with A,Ni ∈ ℝ
n×n,B ∈ ℝn×m and C ∈ ℝp×n, below we summarize an alternative way of

generalizing model reduction by balanced truncation. Let us emphasize that bilinear
systemsnot only arise in several practical applications such as nuclear fission, biology
[88], the Fokker–Planck equation [64] and heat transfer processes [41], but can also
be used to approximate more general nonlinear systems by a Carleman linearization;
see [112]. Controllability and observability concepts for bilinear control systems have
already been studied in [35, 71]. Their use in context of model reduction has been first
discussed in [1, 2] and is based on a generalization of the integral representations (2.9)
and (2.12). In particular, consider the following recursive series of time-dependentma-
trices:

X1(t1) = e
At1B,

Xk(t1, . . . , tk) = [eAtkN1Xk−1 . . . eAtkNmXk−1] , k = 2, 3, . . . ,

as well as

Y1(t1) = Ce
At1 ,

Yk(t1, . . . , tk) = [(Yk−1N1eAt1 )T . . . (Yk−1NmeAt1 )T]
T
, k = 2, 3, . . . ,

and define

X =
∞

∑
k=1

∞

∫
0

⋅ ⋅ ⋅
∞

∫
0

Xk(t1, . . . , tk)Xk(t1, . . . , tk)
T dt1 ⋅ ⋅ ⋅dtk ,

Y =
∞

∑
k=1

∞

∫
0

⋅ ⋅ ⋅
∞

∫
0

YT
k (t1, . . . , tk)Yk(t1, . . . , tk)dt1 ⋅ ⋅ ⋅dtk .

(2.45)

If X and Y exist, it can be shown, see, e. g., [1, Theorem 1], that they satisfy the gener-
alized Lyapunov equations

AX + XAT +
m
∑
i=1

NiXN
T
i + BB

T = 0,

ATY + YA +
m
∑
i=1

NT
i YNi + C

TC = 0.
(2.46)
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The main advantage of using these algebraic Gramians X and Y is that a global static
coordinate transform x̃ = Tx can be used to transform (2.44) into a balanced form.
The construction is completely analogous to the linear case, i. e., the transformation
matrix T ∈ ℝn×n can be obtained via T = Σ−

1
2 ZTLY , where

X = LTXLX , Y = LTYLY , LXL
T
Y = UΣZ

T .

We summarize the main steps of balanced truncation for bilinear control systems in
Algorithm 2.3.

Algorithm 2.3: Balanced truncation for bilinear control systems.
Require: Original system A,B,C and N1, . . . ,Nm.
Ensure: Reduced system Â, B̂, Ĉ and N̂1, . . . , N̂m.
1: Compute the solutions X = LTXLX and Y = L

T
YLY of (2.46).

2: Compute the SVD of LXLTY as in (2.21).
3: Define V = LTXU1Σ

− 12
1 andW = LTYZ1Σ

− 12
1 .

4: Define Â = WTAV , B̂ = WTB, Ĉ = CV and N̂i = WTNiV , i = 1, . . . ,m.

A few remarks on the properties of the method are in order. The quadratic forms
xTX−1x, xTYx and some related variants have been compared to the energy function-
als Lc and Lo defined in (2.43) in several publications, e. g., [13, 52, 53, 54]. In [13,
Propositions 3.5 and 3.8], it is shown that the input energy Lc (resp. the output en-
ergy Lo) can locally (around the origin) be bounded from below (resp. from above)
by means of xTX−1x (resp. xTYx). Similar to the linear case, preservation of system
stability is guaranteed for the reduced-order model; see [14]. Let us mention that the
notion of stability used in the latter work is based on the eigenvalues of the gen-
eralized Lyapunov operator and is stronger than asymptotic stability of the system
matrix A; see [36]. Recently, a further pair of generalized algebraic Gramians has been
suggested in [104]. These Gramians are inspired by similar quantities introduced in
the context ofmodel reduction of linear stochastic systems in [37]. In contrast to (2.46),
here nonlinear matrix inequalities have to be solved. The benefit of these Gramians
is that anℋ∞-type error bound can be shown; see [104, Theorem 4.1]. However, from
a computational point of view, even for large-scale systems, it is easier to solve gener-
alizedmatrix equations of the form (2.46). For references on (low-rank) approximation
techniques, we refer to [10, 11, 36, 75].

As a further field of current research, we mention balancing-based model reduc-
tion for quadratic–bilinear control systems of the form

ẋ(t) = Ax(t) + H(x(t) ⊗ x(t)) +
m
∑
i=1

Nix(t)ui(t) + Bu(t),

y(t) = Cx(t),
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where A,Ni,B and C are as before and, moreover, H ∈ ℝn×n
2
. The interest in such sys-

tems goes back to the results obtained in [58, 59], where the author shows that a cer-
tain class of smooth, nonlinear, control affine systems can equivalently be expressed
in such a form. In [15], the authors follow an approach that is similar to the bilinear
version described above. In particular, a pair of nonlinear coupled generalized Lya-
punov equations

AX + XAT + H(X ⊗ X)HT +
m
∑
i=1

NiXN
T
i + BB

T = 0,

ATY + YA +ℋ(2)(X ⊗ Y)(ℋ(2))T +
m
∑
i=1

NT
i YNi + C

TC = 0

is derived and also compared to the energy functionals Lc and Lo. Here,ℋ(2) denotes
the mode-2 matricization of the three-dimensional tensor ℋ ∈ ℝn×n×n associated to
the matrix H ∈ ℝn×n

2
. Moreover, an approximation procedure based on a series of

generalized linear matrix equations is discussed in [15] and numerically investigated
for several nonlinear PDEs.

2.6 Other balancing issues

2.6.1 Balanced truncation for discrete-time systems

The balanced truncationmodel reductionmethod can also be formulated for discrete-
time control systems of the form

xk+1 = Axk + Buk ,

yk = Cxk + Duk ,
(2.47)

with the state xk, controluk andoutput yk . For such systems, insteadof the continuous-
time Lyapunov equations (2.13) and (2.14), one has to solve the discrete-time Lyapunov
equations

AXAT − X = −BBT , ATYA − Y = −CTC (2.48)

for the controllability and observability Gramians X and Y provided all eigenvalues
of A lie inside the unit disc. Then the reduced-order model is computed analogously
to the continuous-time case, by balancing X and Y and truncating the states corre-
sponding to small eigenvalues of the Gramians. The preservation of stability and error
bound similar to (2.19) were proved in [69, 100]. Other balancing-related techniques
for discrete-time systems were considered in [38, 92].
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The Lyapunov-based balanced truncation approachwas also extended to periodic
discrete-time systems in [42, 133, 134, 135, 136]. The Gramians for such systems can
be determined as solutions to the periodic discrete-time Lyapunov equations. Using
a lifted representation [125] for the periodic system, these equations can be written in
the form (2.48) with block structured matrices A, B and C. Efficient numerical meth-
ods for such structured equations were presented in [74]. They exploit the block spar-
sity in the lifted systemmatrices and rely on low-rank techniques. Model reduction by
balanced truncation for (periodic) discrete-time descriptor systems was considered in
[20, 21, 34, 126].

2.6.2 Balanced truncation for second-order systems

Model reduction of second-order control systems has received a lot of attention be-
cause of their importance in structural mechanics, acoustics and vibration problems;
see [18, Chapters 2 and 3]. Balanced truncation for such systems was first considered
in [86] and then further investigated in [27, 33, 106]. We consider the second-order
system

Mq̈(t) + Dq̇(t) + Kq(t) = B2u(t),
C1q̇(t) + C0q(t) = y(t),

(2.49)

where M,D,K ∈ ℝn×n are the mass, damping and stiffness matrices. This system can
be written as a first-order system

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(2.50)

with x = [qT q̇T ]T and

E = [N 0
0 M
] , A = [ 0 N

−K −D
] , B = [ 0

B2
] , C = [C0 C1], (2.51)

where N is an arbitrary nonsingular matrix. The controllability and observability
Gramians of this system solve the generalized Lyapunov equations

EXAT + AXET = −BBT , ETYA + ATYE = −CTC. (2.52)

Applying the balanced truncation method to (2.50) as described in Section 2.2, we ob-
tain a reduced first-order model which, in general, cannot be turned into the second-
order form. Ensuring the second-order structure in the reduced model often guaran-
tees the preservation of the physical properties and allows the use of software tools
specially developed for second-order systems.
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Thus, we partition the Gramians X and Y into n × n blocks as

X = [
Xp X12
XT
12 Xv
] , Y = [

Yp Y12
YT
12 Yv
] .

Then Xp and Yp define the position controllability and observability Gramians, and Xv
and Yv define the velocity controllability and observability Gramians of the second-
order system (2.49). We refer to [33, 86] for the energy interpretation of these Grami-
ans. By balancing one of the pairs (Xp,Yp), (Xp,Yv), (Xv ,Yp) or (Xv ,Yv), we get the
position–position, position–velocity, velocity–position or velocity–velocity balanced
realizations, respectively. Considering the Cholesky factorizations

Xp = L
T
X,pLX,p, Xv = L

T
X,vLX,v , Yp = L

T
Y ,pLY ,p, Yv = L

T
Y ,vLY ,v ,

the corresponding balancing transformation matrices can be determined from the
SVD of thematrices LX,pLTY ,p, LX,pM

TLTY ,v, LX,vL
T
Y ,p and LX,vM

TLTY ,v; see [106]. This leads
to four different second-order balanced truncation approaches which provide the
reduced model in the second-order form,

M̂ ̈̂q(t) + D̂ ̇̂q(t) + K̂q̂(t) = B̂2u(t),

Ĉ1 ̇̂q(t) + Ĉ0q̂(t) = ŷ(t),

where M̂ = WTMV , D̂ = WTDV , K̂ = WTKV , B̂2 = WTB2, Ĉ0 = WTC0, and Ĉ1 = WTC1
with appropriate projection matrices W and V . Unlike the first-order balanced trun-
cation, stability is not necessarily preserved in the reduced model, see [106] for some
examples, and there exists no error bound. However, for symmetric second-order sys-
tems with M = MT ≻ 0, D = DT ≻ 0, K = KT ≻ 0, C0 = 0 and C1 = BT2 , it was
shown in [22] that choosing N = −K in (2.51) one can guarantee the preservation of
stability and symmetry for the position-position and velocity-velocity balanced trun-
cation methods. Moreover, for N = I, the position-velocity balanced truncation also
preserves stability and symmetry in the reduced-order model [106]. Finally note that
the low-rank Cholesky factors of the position and velocity Gramians can be computed
using the ADI method applied to (2.52) without explicit forming the double sized ma-
trices E, A, B and C as in (2.51); see [22, 27] for details.

2.7 Numerical examples

In this section, we present two numerical examples which illustrate the applicability
and the limitations of classical balanced truncation.
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2.7.1 Heat equation

As a first example, let us focus a one-dimensional linear heat equation with boundary
control. In particular, we consider

xt = xξξ , (ξ , t) ∈ (0, 1) × (0,T),

x(0, t) = 0, t ∈ (0,T),
xξ (1, t) = u(t), t ∈ (0,T),

x(ξ ,0) = 0, ξ ∈ (0, 1),

where x(ξ , t) describes the evolution of a temperature distribution on the interval
[0, 1]. We assume that the average temperature can be measured such that the output
variable y(t) is given by

y(t) =
1

∫
0

x(ξ , t)dξ for t > 0.

A finite difference discretization on a grid with n interior grid points and grid size h =
1

n+1 then yields a finite-dimensional control system (2.1) with system matrices

A = 1
h2

[[[[[[[[

[

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

]]]]]]]]

]

, B = 1
h

[[[[[[[[[

[

0
...
...
0
1

]]]]]]]]]

]

, CT = h

[[[[[[[[[[

[

1
...
...
...
1

]]]]]]]]]]

]

.

In our results, we have used a discretization with n = 5000. According to the pseu-
docode from Algorithm 2.1, we employed the MATLAB routine lyapchol to com-
pute the solutions X and Y of the controllability and observability Lyapunov equa-
tions (2.13) and (2.14). The numerical rank of the matrix LXLTY in this case was only
11. Hence, a numerically (up to machine precision) exact copy of the original system
can be realized by a system of dimension r = 11. This is confirmed by the results from
Figure 2.1. The so-called Bode plot of the reduced transfer function Ĝ(s) = Ĉ(sI − Â)−1B̂
cannot be distinguished from the original transfer function G(s) = C(sI − A)−1B. A
similar conclusion can be drawn for the impulse response functions h(t) = CeAtB and
ĥ(t) = ĈeÂtB̂ presented in Figure 2.2. Figure 2.3 compares theℋ∞-error corresponding
to balanced reduced-order systems of dimension r = 1, . . . , 11 with the guaranteed
error bound determined by the neglected Hankel singular values. We emphasize that
the heat equation and, more general, parabolic PDEs with finite-dimensional input
or output space are well-suited for model reduction by balanced truncation. For more
details on a functional analytic discussion, we refer to [96].
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Figure 2.1: Bode plots for the 1D heat equation.

Figure 2.2: Impulse responses for the 1D heat equation.

Figure 2.3:ℋ∞-error for varying reduced system dimensions r for the 1D heat equation.
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2.7.2 Transport equation

The second example is a one-dimensional boundary controlled transport equation
and has been discussed in more detail in [96]. Let us consider

xt = −xξ , (ξ , t) ∈ (0, 1) × (0,T),

x(0, t) = u(t), t ∈ (0,T),
x(ξ ,0) = 0, ξ ∈ (0, 1).

Weassume that the right boundary can be observed. Hence, we obtain the output vari-
able y(t) = x(1, t) for t > 0.

For the spatial discretization, we employ an upwind scheme and thus use a back-
ward finite difference for the approximation of the transport term. We consider a grid
with n grid points equally distributed over the interval [h, 1] where h = 1

n . Note that
in contrast to the first example, we only eliminate the left boundary value which is
prescribed by the dynamics. As a result, we obtain the following system of matrices:

A = 1
h

[[[[[

[

−1
1 −1

. . . . . .
1 −1

]]]]]

]

, B = 1
h

[[[[[

[

1
0
...
0

]]]]]

]

, CT =
[[[[[

[

0
...
0
1

]]]]]

]

.

As mentioned in [96], the transfer function of the above transport equation is
Gtrue(s) = e−s. Note that this irrational transfer function is approximated by rational
transfer functions of the form G(s) = C(sI − A)−1B. In Figure 2.4, the Bode plots of the
original and reduced transfer functions are shown. Note that the spatial discretiza-
tion and its realization (A,B,C) already introduces a visible error. In contrast to the
analytic expression Gtrue(s) = e−s which has constant modulus 1 along the imaginary
axis, themagnitude ofG(s) = C(sI −A)−1B decreases for increasing frequencies. Let us
emphasize that transport equations as the one from above are generally less suitable
for model reduction by balanced truncation. This is also apparent from the relatively
large reduced systemdimension (r = 180) of thenumerically (up tomachineprecision)
exact copy of the original semi-discretized system.

Since the original transfer function is given by Gtrue(s) = e−s, its underlying im-
pulse response is h(t) = δ(t−1), i. e., a unit pulsemass at 1. Again, the results presented
in Figure 2.5 underlines that the spatially discretized system only approximates the
original dynamics. Nevertheless, the impulse responses h(t) = CeAtB and ĥ(t) = ĈeÂtB̂
are almost identical. Finally, Figure 2.6 shows the decrease of theℋ∞-error for increas-
ing reduced system dimension r, together with the available a priori error bound. We
observe that the approximability is worse than in the case of the heat equation. A the-
oretical explanation can be given in terms of the decay rate of the Hankel singular
values of the system; see [96].
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Figure 2.4: Bode plots for the 1D transport equation.

Figure 2.5: Impulse responses for the 1D transport equation.

Figure 2.6:ℋ∞-error for varying reduced system dimensions r for the 1D transport equation.
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2.8 Conclusions

This chapter provided an introduction to the general concept of systembalancing. The
focus was on classical balanced truncation and some of its most common variants.
Based on an illustrative example, the main idea was derived and also shown to be ap-
plicable to spatially semi-discretized partial differential equations. While the meth-
ods were mainly discussed by means of finite-dimensional continuous-time control
systems, several generalizations to other system classes exist and can be found in the
literature.We refer to [18, Chapter 13] for a reviewof existing software tools implement-
ing balanced truncationmodel reduction algorithms.With increasing complexity and
available data, the need for efficient implementations is still an active research topic.
In particular, so-called data-driven methods as presented in [17, Chapter 7] seem to
become an indispensable part for future methods.
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Abstract: This is a survey of model order reduction (MOR)methods based onmoment-
matching. Moment-matching methods for linear non-parametric and parametric sys-
tems are reviewed in detail. Extensions of moment-matching methods to nonlinear
systems are also discussed. Efficient algorithms for computing the reduced-ordermod-
els (ROMs) are presented.
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3.1 Introduction
In this chapter, we focus on linear time-invariant (LTI) systems

E(μ)dx(t, μ)
dt
= A(μ)x(t, μ) + B(μ)u(t),

y(t, μ) = C(μ)x(t, μ) + D(μ)u(t),
(3.1)

and mildly nonlinear systems

E(μ)dx(t, μ)
dt
= f(x(t, μ), μ) + B(μ)u(t),

y(t, μ) = C(μ)x(t, μ) + D(μ)u(t),

with and without parameters. Here x(t, μ) ∈ ℝn is the state vector, and its entries
are called state variables. n is often referred to as the order of the system. The vector
μ ∈ ℝm includes all of the geometrical and physical parameters. The system matri-
ces E(μ),A(μ) ∈ ℝn×n, and B(μ) ∈ ℝn×nI , C(μ) ∈ ℝnO×n, D(μ) ∈ ℝnO×nI may depend on
the parameters. The vector f(x, μ) ∈ ℝn is a nonlinear function. The system in (3.1) is
called the state-space representation of the system. It may result from the spatial dis-
cretization of partial differential equations (PDEs) describing certain processes like
fluid dynamics, temperature distribution in devices, electric circuits, etc.

For most MORmethods, the termD(μ)u(t) remains unchanged during the process
of MOR. For simplicity, we therefore assume that D(μ) = 0, a zero matrix. There are
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nI input terminals and nO output terminals. When nI = nO = 1, the system is called
a single-input single-output (SISO) system. Otherwise, if nI , nO > 1, it is called a multi-
input multi-output (MIMO) system.

The basic idea of (P)MORmethods is as follows. Find a low-dimensional trial sub-
space S1 which well approximates the manifold where the state vector x(t, μ) resides.
x(t, μ) is approximated by a vector x̂(t, μ) in S1, which causes a residual of the state
equation. The reduced-order model (ROM) is obtained by a (Petrov)–Galerkin projec-
tion of the residual onto a test subspace S2. In particular, one computes an orthonor-
mal matrix V = (v1, v2, . . . , vr) whose columns span S1. The ROM is derived by the fol-
lowing two steps.
1. By replacing x(t, μ) in (3.1) with Vz(t, μ), we obtain

E(μ)dVz(t, μ)
dt
≈ A(μ)Vz(t, μ) + B(μ)u(t),

y(t) ≈ C(μ)Vz(t, μ).
(3.2)

2. Notice that the equations in (3.1) do not hold any longer. Therefore, we can only
use “≈” in (3.2). Denote the residual as e(t, μ) = AVz(t, μ) + B(μ)u(t) − E(μ) dVz(t,μ)dt ,
which in general is nonzero over the wole vector spaceℝn. However, it is possible
to force e = 0 in a properly chosen subspace S2 of ℝn. If we have computed a
matrixW ∈ ℝn×r, whose columns span S2, then e = 0 in S2 means e is orthogonal
to each column inW , i. e.WTe = 0 ⇐⇒ WTE dVz(t,μ)

dt = W
TAVz(t, μ) +WTBu(t).

Finally, we obtain the ROM

Ê(μ)dz(t, μ)
dt
= Â(μ)z(t, μ) + B̂(μ)u(t),

ŷ(t, μ) = Ĉz(t, μ),
(3.3)

where Ê(μ) = WTE(μ)V ∈ ℝr×r, Â(μ) = WTA(μ)V ∈ ℝr×r, B̂(μ) = WTB(μ) ∈ ℝr×nI ,
Ĉ(μ) = C(μ)V ∈ ℝnO×r . z(μ) ∈ ℝr is a vector of length r ≪ n. Then x(t, μ) can be
approximated by x(t, μ) ≈ Vz(t, μ). The system in (3.3) is referred to as the reduced-
order model (ROM), since it is of much smaller order than the original system in (3.1),
i. e. r ≪ n. The ROM can then replace the original system for fast simulation.

MORmethods differ in computing the twomatricesW andV . One common goal of
allmethods is that the input-output behavior of the ROMshould be sufficiently “close”
to that of the originalmodel. The error between the transfer functions (see (3.6)) is also
used to measure the accuracy of the ROM.

Moment-matching relates to a class of methods which construct the ROM by
building the projection matrices W ,V from the system information in the frequency
domain. The early moment-matching methods are only applicable to linear non-
parametric systems. Later on, these methods were extended to linear parametric
systems. Based on nonlinear system theory [52], multi-moment-matching methods
based on variational analysis were proposed and are successful in reducing weakly
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nonlinear systems. In contrast to the snapshot based time-domain methods, e. g.,
proper orthogonal decomposition or the reduced basis method, moment-matching
methods can be considered as frequency-domain methods, and are independent of
the inputs. Therefore, these methods are robust for systems with varying inputs. The
rest of this chapter is organized as follows. In Section 3.2, we introduce moment-
matching methods for linear non-parametric systems, where methods based on ratio-
nal interpolation are particularly discussed. The extension of those methods to linear
parametric systems is introduced in Section 3.3. Methods based onmoment-matching
and multi-moment-matching for nonlinear systems are reviewed in Section 3.4, and
their extension to parametric nonlinear systems is discussed in Section 3.5. Conclu-
sions are drawn in the end.

3.2 Moment-matching for linear non-parametric
systems

This section reviews moment-matching methods for linear non-parametric systems,
so that the vector of parameters μ can be dropped from the system (3.1). Among the
early works of moment-matching MOR, the method of Asymptotic Waveform Evalua-
tion (AWE) in [48] was shown to be able to reduce large-scale interconnected electri-
cal circuit models, which stimulated broad interests in this kind of methods. The AWE
method tries to find a Padé approximation of the transfer functionH(s), which can be
computed much more quickly than computing H(s) itself.

Transfer function
For all the methods introduced in this chapter, the transfer function of the system is
used to either derive the ROM, or to perform the error estimation. The transfer func-
tion of the system in (3.1) is the input/output relation of the system in the frequency
domain. By applying the Laplace transform to both sides of the equations in (3.1), we
obtain

sEX(s) − Ex(0) = AX(s) + BU(s), (3.4)
Y(s) = CX(s). (3.5)

Here, X(s) is the Laplace transform of x(t), and x(0) is the initial state of the system.
Assuming that x(0) = 0, we obtain the expression for the transfer function

H(s) = Y(s)/U(s) = C(sE − A)−1B, (3.6)

where the right division “/” has to be understood in a formal way for MIMO systems.
For a SISO system, the transfer function H(s) is a scalar function. The Padé approxi-
mation of a scalar function can be defined as follows.
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Padé approximation
The Padé approximation of a function H(s) is a rational function Hp,q(s)whose Taylor
series at s = 0 agrees with that of H(s) in at least the first p + q + 1 terms [21].

For a MIMO system, the transfer functionH(s) is a matrix function and each entry
of it canbe approximatedby the abovePadé approximation. For clarity of explanation,
we use a SISO system as an example to briefly describe the method.

From the definition of the Padé approximation, we know that, if H(s) = Hp,q(s0 +
σ) = Pp(σ)/Qq(σ) is a Padé approximation of the transfer function H(s0 + σ), then we
have

Hp,q(s0 + σ) = H(s0 + σ) + O(σ
p+q+1). (3.7)

The derivatives of H(s0 + σ) at σ = 0 are actually the derivatives of H(s) at s = s0, they
are also the moments mi(s0), i = 0, 1, . . ., (see the definition in Section 3.2.1.1) of the
transfer function. By definition, the Padé approximationHp,q(s0 + σ)matches the first
p + q + 1 moments of the transfer function.

If the coefficients of the two polynomials Pp(σ) and Qq(σ) in Hp,q(s0 + σ) are com-
puted, then Hp,q(s0 + σ) is obtained. The coefficients can be obtained by solving two
groups of equations which are derived from equating the coefficients of the Taylor se-
ries expansion (at σ = 0) on both sides of (3.7).

Since the moments are the coefficients of the Taylor series expansion of H(s0 + σ)
at σ = 0, they are involved in solving the equations to obtain the coefficients of Pp(σ)
andQq(σ). However, in the AWEmethod, themoments are computed explicitly, which
can cause serious numerical instability.

In order to overcome the numerical instability of AWE, a more robust method
“Padé via Lanczos” (PVL) [21] (see also [32]) was proposed. PVL also computes the
Padé approximation of H(s) = H(s0 + σ), however, the moments of H(s) do not have
to be computed explicitly. Instead, an orthonormal basis of the subspace spanned by
the moment vectors is computed, which constitutes the projection matrix V , and the
projection matrixW is also computed simultaneously. Both of them are computed by
the nonsymmetric Lanczos process. It is proved in [21] that the transfer function of the
ROM produced by W and V is the Padé approximation of the original transfer func-
tionH(s). The PVLmethod avoids explicit computation of themoments, and therefore
avoids the possible numerical instability.

Unfortunately, PVL does not necessarily preserve passivity of the original system,
which is a problem in some engineering applications, especially in Integrated Cir-
cuit (IC) design. For this target, the method “Passive and Reduced-order Interconnect
Macromodeling Algorithm” (PRIMA) [45] was proposed. The resulting ROM preserves
the passivity of the original system, under certain assumptions on the system matri-
ces. The trade-off is that only half the number of moments can be matched by PRIMA
as compared to PVL, if the matrix V in both methods expands the same subspace.
Such an approximation of the transfer function is called a Padé-type approximation.
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The rational interpolation method proposed in [35] extended the Padé-approxi-
mation method and the Padé-type-approximation method based on a single expan-
sion point to the case of multiple expansion points. All these methods can be called
moment-matching methods, because all the ROMsmatch the moments of the original
system to different extents. For survey papers on moment-matching model reduction;
see [4, 31] and [3, 35].

Moment-matching MOR methods try to derive a ROM whose transfer function
matches themoments of the transfer function of the original system. Generally speak-
ing, themoremoments matched, themore accurate the ROMwill be. In the following,
we first introduce the definition of the moments and moment vectors, then we show
how to compute the matricesW and V based on moment-matching.

3.2.1 Basic idea
3.2.1.1 Moments and moment vectors

If we expand the transfer functionH(s) into its Taylor series about an expansion point
s0 so that s0E − A is a nonsingular matrix,

H(s) = CT[(s − s0 + s0)E − A]
−1B

= CT[(s − s0)E + (s0E − A)]
−1B

= CT[I + (s0E − A)
−1E(s − s0)]

−1(s0E − A)
−1B

=
∞
∑
i=0

CT[−(s0E − A)
−1E]i(s0E − A)

−1B⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:mi(s0)

(s − s0)
i, (3.8)

and if the system is a SISO system, thenmi(s0), i = 0, 1, 2, . . ., are called themoments of
the transfer function H(s). If the system is a MIMO system, then mi(s0), i = 0, 1, 2, . . .,
are matrices and they are called block moments [45]. In the field of circuit design,
the entry in the jth row, kth column of mi(s0) is called the ith moment of the current
that flows into port jwhen the voltage source at port k is the only nonzero source [45].
Analogies exist for other application areas, suchasmechanics. In this chapter,weonly
consider mi(s0) as a whole, and do not consider its entries individually. This means,
when we talk about moments of the transfer function, we mean mi(s0), i = 0, 1, . . .,
which refers either to the moments of a SISO system or to the block moments of a
MIMO system.

From (3.4) and (3.8), it is straightforward to obtain the corresponding Taylor series
expansion of X(s),

X(s) =
∞
∑
i=0
[−(s0E − A)

−1E]i(s0E − A)
−1BU(s)(s − s0)

i. (3.9)

Here,we call the vectors [−(s0E−A)−1E]i(s0E−A)−1B, i = 0, 1, . . .,moment vectorswhich
are to be used to compute the projection matricesW , V . Notice that when the system
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in (3.1) has multiple inputs, i. e. nI > 1, then [−(s0E − A)−1E]i(s0E − A)−1B, i = 0, 1, . . .,
are matrices rather than vectors. For simplicity, we still call them moment vectors.

3.2.1.2 Computation of the projection matricesW and V

Computation of V
Approximating X(s) by the truncated series in (3.9) means that X(s) ≈ VZ(s). The
columns of V ∈ ℝn×r constitute an orthonormal basis of S1, which is a subspace
spanned by the moment vectors in the truncated series. After inverse Laplace trans-
form,we obtain the corresponding approximation of x(t) in S1, i. e. x(t) ≈ Vz(t), where
z(t) is the inverse Laplace transform of Z(s). This means that x(t) in the time domain
can be approximated by Vz(t). Usually, the more moment vectors included in S1, the
more accurate the approximation Vz(t) will be. However, in order to keep the ROM
small, we usually choose a small number of moment vectors starting from i = 0, i. e.
the columns of the orthonormal matrix V span the subspace

range{V} = span{B̃(s0), Ã(s0)B̃(s0), . . . , Ã
q−1(s0)B̃(s0)}, (3.10)

where Ã(s0) = (s0E − A)−1E, B̃(s0) = (s0E − A)−1B and q ≪ n.

Computation ofW
To obtain the ROM, we also need to compute the (Petrov-)Galerkin projection ma-
trixW . The columns of the matrixW span the subspace below, i. e.

range{W} = span{C̃(s0), Ãc(s0)C̃(s0), . . . , Ã
q−1
c (s0)C̃(s0)}, (3.11)

where Ãc(s0) = (s0E − A)−TET , C̃(s0) = (s0E − A)−TCT . Note that the two sub-
spaces in (3.10) and (3.11) are actually two Krylov subspaces Kq(Ã(s0), B̃(s0)) and
Kq(Ãc(s0), C̃(s0)), respectively. Moment-matching methods based on computingW ,V
from Krylov subspaces are often called Krylov-based methods. If the above two ma-
trices W and V are used to obtain the ROM (3.3), the transfer function of the ROM
matches the first 2q moments of the transfer function of the original model [35]. We
summarize this in the following theorem.

Theorem 3.1. If V and W span the subspaces in (3.10) and (3.11), respectively, then the
transfer function Ĥ(s) = Ĉ(sÊ + Â)−1B̂ of the ROM (3.3)matches the first 2q moments of
the transfer function of the original system, i. e.

mi(s0) = m̂i(s0), i = 0, 1, . . . , 2q − 1,

where m̂i(s0) = Ĉ[−(s0Ê − Â)Ê]−i(s0Ê − Â)−1B̂, i = 0, 1, . . . , 2q − 1, are the ith-order
moments of Ĥ.

Note that in order to ensure the projector property of VWT , one also needs to enforce
the bi-orthogonality conditionWTV = I (assuming here that the subspace basis ma-
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trices V ,W are formed over ℝ). The moment-matching MOR method PRIMA [45] uses
W = V . In this case, only qmoments of the transfer function are matched.

The orthonormal matrices W and V in (3.10), (3.11) can be computed by ratio-
nal Krylov subspace algorithms (rational Lanczos algorithm, rational Arnoldi algo-
rithm) [35]. Only (sparse) matrix factorizations, (sparse) forward/backward solves,
and matrix-vector multiplications are used in these algorithms, such that the com-
plexity of the moment-matching MOR is in O(nq2) for sparse matrices E,A.

3.2.2 Stability
In general, the moment-matching methods do not preserve stability of the original
system. Only for systemswith special structures, there exist several approaches based
on Galerkin projection where the ROM are guaranteed to be stable and passive; see,
e. g., [45]. For details on passivity of LTI systems, we refer to Chapter 5 of this volume.
The passivity preservation of the moment-matching method for RLC circuits can be
mathematically described as follows [45].

Theorem 3.2. If the systemmatrices E and A satisfy ET + E ≥ 0 and AT +A ≤ 0, respec-
tively, and if C = B, then the ROM obtained by Galerkin projection, i. e., W = V preserves
the passivity of the original system in (3.1).

Stability is naturally guaranteed by passivity, therefore the ROM obtained by
moment-matching with Galerkin projection preserves stability as well. Benefiting
from the preservation of passivity and low computational complexity, the moment-
matchingmethod is verypopular in circuit simulationand inmicro-electro-mechanical
systems (MEMS) simulation as well.

3.2.3 Multiple expansion points
The accuracy of the moment-matching methods depends not only on the number
of moments matched, but also on the expansion points. Since the Taylor expansion
in (3.8) is only accurate within a certain radius around the expansion point s0, the
ROM becomes inaccurate beyond this radius.

To increase the accuracy of a single-point expansion, one may use more than one
expansion point. Moment-matching by multi-point expansion is also known as ra-
tional interpolation [35]. For example, if using a set of q distinct expansion points
{s1, . . . , sq}, the ROM obtained by, e. g.,

range{V} = span{B̃(s1), . . . , B̃(sl)},
range{W} = span{C̃(s1), . . . , C̃(sl)},

matches the first two moments m0(si),m1(si) at each si, i = 1, . . . , l [35]. Here, B̃(si) =
(siE − A)−1B, C̃(si) = (siE − A)−TCT , i = 1, . . . , l.
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More generally, if we use

range{V} = span{B̃(s1), . . . , Ã
q1−1(s1)B̃(s1), . . . , B̃(sl), . . . , Ã

ql−1(sl)B̃(sl)}, (3.12)

range{W} = span{C̃(s1), . . . , Ã
q1−1
c (s1)C̃(s1), . . . , C̃(sl), . . . , Ã

ql−1
c (sl)C̃(sl)}, (3.13)

where Ã(sk) = (skE − A)−1E, Ãc(sk) = (skE − A)−TET , k = 1, . . . , l, then we have the
following moment-matching property.

Theorem 3.3 ([35]). If

range{V} ⊇ span{B̃(s1), . . . , Ã
q1−1(s1)B̃(s1), . . . , B̃(sl), . . . , Ã

ql−1(sl)B̃(sl)},

and

range{W} ⊇ span{C̃(s1), . . . , Ã
q1−1
c (s1)C̃(s1), . . . , C̃(sl), . . . , Ã

ql−1
c (sl)C̃(sl)},

then the transfer function Ĥ(s) = Ĉ(sÊ + Â)−1B̂ of the ROM (3.3) matches the first 2qk
moments of the transfer function of the original system at each expansion point sk , i. e.

mi(sk) = m̂i(sk), i = 0, 1, . . . , 2qk − 1, , k = 1, . . . , l,

where m̂i(sk) = Ĉ[−(skÊ − Â)Ê]−i(skÊ − Â)−1B̂, i = 0, 1, . . . , 2qk − 1, are the ith-order
moments of Ĥ at sk .

Given expansion points s1, . . . , sl, Algorithm 3.1 presents a procedure for comput-
ing the projection matrix V in (3.12).

The matrixW can also be computed using Algorithm 3.1, only by replacing B̃(sk)
with C̃(sk), and Ã(sk) with Ãc(sk). Algorithm 3.1 is also applicable to SISO systems, as
we can see fromStep 7. However, for SISO systems, the algorithmcanbe further simpli-
fied, and the two matricesW , V can be easily computed in parallel. Algorithm 3.2 is a
version for SISO systems. In fact, the computed V ,W ∈ ℝn×r from either Algorithm 3.1,
orAlgorithm3.2, arenot bi-orthogonal,which is not requiredby themoment-matching
Theorem 3.3. However, for systems with E = I, the identity matrix, it is preferred that
the reduced matrix Ê = Ir, the identity matrix of dimension of r. Then we can use the
transform W ← W(VTW)−1 to obtain a new W , so that Ê = WTEV = WTV = Ir . In
the final steps of both algorithms, we need to orthogonalize the columns of the inter-
mediate matrices using the modified Gram–Schmidt process, which is an algorithm
for orthogonalizing any given group of vectors. The details of the algorithm are given
in Algorithm 3.3. The finally obtained orthogonal vectors are actually orthonormal,
i. e., their norms are all 1. The number of orthogonal vectors are ̃l ≤ l, because once
deflation (‖ak‖2 ≤ ε) in Step 7 occurs, ̃l will not be increased.

Remark 3.1. Let size(M, 2) be the MATLAB notation for the number of columns in a
matrix M. Then it could happen that size(V , 2) ̸= size(W , 2). In this situation, more
computations should be done as follows. Denote rW = size(V , 2), rW = size(W , 2), if
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Algorithm 3.1: Compute V in (3.12) for a non-parametric MIMO system (3.1).
Input: System matrices E,A,B,C, expansion points s1, . . . , sl.
Output: Projection matrix V .
1: Initialize a1 = 0, a2 = 0, sum = 0, col = 0.
2: for k = 1, . . . , l do
3: if (multiple input) then
4: Orthogonalize the columns in B̃(sk) using the modified Gram–Schmidt pro-

cess: [v1, v2, . . . , vmk
] = orth{B̃(sk)},

5: sum=mk . (mk is the number of remaining columns after deflation.)
6: else
7: Compute the first column in V: v1 = B̃(sk)/||B̃(sk)||2,
8: sum = 1.
9: end if
10: Orthogonalize the columns in Ã(sk)B̃(sk), . . . , Ã(sk)qk−1B̃(sk) iteratively as fol-

lows:
11: for i = 1, 2, . . . , qk − 1 do
12: a2 = sum.
13: if a1 = a2 then
14: break; go to Step 2
15: else
16: for j = a1 + 1, . . . a2 do
17: w = Ã(sk)vj, col = sum + 1.
18: for d = 1, 2, . . . , col − 1 do
19: h = vTdw, w = w − hvd.
20: end for
21: if ‖w‖2 > ε (ε > 0 is a small value indicating deflation,

e. g., ε = 10−7) then
22: vcol =

w
‖w‖2

, sum = col.
23: end if
24: end for (j)
25: end if
26: a1 = a2.
27: end for (i)
28: Vk = [v1, . . . , vsum],
29: end for (k)
30: Orthogonalize the columns in [V1, . . . ,Vl] by the modified Gram–Schmidt process

to obtain V , i. e. V := orth{V1, . . . ,Vl}.

rV < rW , then add rW − rV random orthogonal columns to V , and vice versa. This way,
the moment-matching property of the ROM remains unchanged due to the definitions
of V ,W in Theorem 3.3.
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Algorithm 3.2: Compute V in (3.12) andW in (3.13) for a non-parametric SISO system
(3.1).
Input: System matrices E,A,B,C, expansion points s1, . . . , sl.
Output: Projection matrices V ,W .
1: Initialize col = 0, colv = 0, colw = 0.
2: for k = 1, . . . , l do
3: Compute the first column of Vk: v1 = B̃(sk)/||B̃(sk)||2.
4: Compute the first column ofWk: w1 = C̃(sk)/||C̃(sk)||2.
5: col = col + 1.
6: Orthogonalize the vectors Ã(sk)B̃(sk), . . . , Ã(sk)qk−1B̃(sk) against v1 it-

eratively, orthogonalize the vectors Ãc(sk)C̃(sk), . . . , Ãc(sk)qk−1C̃(sk)
against w1 iteratively, as follows:

7: for i = 1, 2, . . . , qk − 1 do
8: v = Ã(sk)vi,
9: w = Ãc(sk)wi
10: for j = 1, 2, . . . , col do
11: h = vTj v, v = v − hvj.
12: h = wT

j w, w = w − hwj.
13: end for
14: col = col + 1.
15: if ‖v‖2 > ε (ε > 0 is a small value indicating deflation, e. g., ε = 10−7) then
16: vcol =

v
‖v‖2

,
17: else
18: colv = col − 1, stop updating Vk .
19: end if
20: if ‖w‖2 > ε then
21: wcol =

w
‖w‖2

,
22: else
23: colw = col − 1, stop updatingWk .
24: end if
25: end for
26: Vk = [v1, . . . , vcolv ],Wk = [w1, . . . ,wcolw ].
27: end for
28: Orthogonalize the columns in [V1, . . . ,Vl] by the modified Gram–Schmidt process

to obtain V , i. e. V := orth{V1, . . . ,Vl}.
29: Orthogonalize the columns in [W1, . . . ,Wl] by themodifiedGram–Schmidt process

to obtainW , i. e.W := orth{W1, . . . ,Wl}.

The issue is then how to (adaptively) choose the multiple expansion points. Many
adaptive techniques have been proposed during the last years [8, 14, 25, 40, 39, 38, 30,
28, 56],where somearemore or less heuristic [8, 14, 25, 40]. Basedon system theory, an
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Algorithm 3.3:Modified Gram–Schmidt process.
Input: A group of nonzero vectors a1, . . . , al, a deflation tolerance ε > 0.
Output: A group of orthogonalized vectors v1, . . . , v ̃l, ̃l ≤ l.
1: v1 = a1/||a1||2, ̃l = 1.
2: for k = 2, . . . , l do
3: for i = 1, . . . , ̃l do
4: h = vTi ak,
5: ak = ak − hvi.
6: end for
7: if ‖ak‖2 > ε then
8: ̃l = ̃l + 1,
9: v ̃l =

ak
‖ak‖2

,
10: end if
11: end for

error bound is derived in [56], but it faces high computational complexity. The resid-
ual of the state vector is simply used in [39] as the error estimator of the ROM. In the
next subsection, we introduce several typical techniques of adaptivity [38, 25, 30, 28].

3.2.4 Selection of expansion points

3.2.4.1 ℋ2-optimal iterative rational Krylov algorithm

The iterative rational Krylov algorithm (IRKA) is proposed in [38]. Given a group of
initial expansion points, IRKA adaptively updates the expansion points, and upon
convergence, IRKA produces a ROM satisfyingℋ2-optimal necessary conditions. (See
Equation (5) in Chapter 1 of this volume for the definition of theℋ2-norm.) The expan-
sion points are selected as the mirror images of the poles of the updated ROM at each
iteration. The algorithm is presented as Algorithm 3.4.

Moment-matching property
For single-input single-output (SISO) systems, IRKA leads to the following interpola-
tion property upon convergence:

Ĥ(−λ̂i) = H(−λ̂i),

𝜕Ĥ(−λ̂i)
𝜕s
=
𝜕H(−λ̂i)
𝜕s
.

(3.14)

Here λ̂i, i = 1, . . . , r, are the eigenvalues of theROMdefined inStep 3(b) ofAlgorithm3.4.
They are also the poles of the reduced transfer function Ĥ(s).
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Algorithm 3.4: Iterative Rational Krylov Algorithm (IRKA).
1: Make an initial selection of the expansion points closed under conjugation, i. e.
s1, . . . , si, ̄si, . . . , sr, if si is a complex variable. Fix a tolerance ϵ for the accuracy of
the ROM. Choose initial directions b̃1, . . . , b̃r, c̃1, . . . , c̃r .

2: Choose Vr,Wr so that

range(Vr) = span{B̃(s1)b̃1, . . . , B̃(si)b̃i, B̃( ̄si)b̃i+1, . . . , B̃(sr)b̃r},
range(Wr) = span{C̃(s1)c̃1, . . . , C̃(si)c̃i, C̃( ̄si)c̃i+1, . . . , C̃(sr)c̃r},

andWr = Wr(VT
r Wr)
−1. Here B̃(si) = (siE −A)−1B, C̃(si) = (siE −A)−TCT , i = 1, . . . , r.

3: While (maxj=1,...,r{
sj−soldj
sj
} > ϵ)

(a) Ê = WT
r EVr, Â = W

T
r AVr, B̂ = W

T
r B, Ĉ = CVr .

(b) Compute eigenvalues, -vectors of λE −A so that (λiÊ − Â)yi = λiyi, i = 1, . . . , r.
(c) Assign si ← −λi for i = 1, . . . , r, Y = (y1, . . . , yr).
(d) B̃ = B̂TY−T , C̃ = ĈY , (b̃1, . . . , b̃r) ← B̃, (c̃1, . . . , c̃r) ← C̃.
(e) Update Vr andWr:

range(Vr) = span{B̃(s1)b̃1, . . . , B̃(sr)b̃r},

range(Wr) = span{C̃(s1)c̃1, . . . , C̃(sr)c̃r},

andWr = Wr(VT
r Wr)
−1.

4: Ê = WT
r EVr , Â = W

T
r AVr , B̂ = W

T
r B, Ĉ = CVr .

It is easy to see that the images of the poles of the ROM are selected as the expansion
points, and are updated every time the ROM is updated. In IRKA, ̄si is the conjugate
of si. From the definition of the moments of the transfer function, we know that the
first-order derivative of the transfer function at si is the first-order momentm1(si). The
value of the transfer function at si is the zeroth-order momentm0(si). Therefore, IRKA
generates ROMs matching the first two moments of the transfer function at each ex-
pansion point si, i = 1, . . . , r.

Optimality property [38]
TheROMcomputed by IRKA satisfies the following necessary conditions of optimality.

Theorem 3.4. Let H(s) be the transfer function of a stable SISO system, and Ĥ be a local
minimizer of dimension r for the optimalℋ2-model reduction problem

‖H − Ĥ‖ℋ2
= min

dim(H̃)=r,H̃ :stable
‖H − H̃‖ℋ2

,
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and suppose that Ĥ(s) has simple poles at λ̂i, i = 1, . . . , r, then Ĥ(s) interpolates H(s) and
its first derivative at λ̂i, i = 1, . . . , r:

Ĥ(−λ̂i) = H(−λ̂i),
𝜕Ĥ(−λ̂i)
𝜕s
=
𝜕H(−λ̂i)
𝜕s
.

Comparing Theorem 3.4 with themoment-matching property in (3.14), we see that
IRKA constructs a ROM that satisfies the necessary condition of the local optimal prop-
erty in Theorem 3.4.

3.2.4.2 A heuristic technique

In [25], an adaptive scheme for both choosing expansion points anddeciding the num-
ber of moments is delineated. Generally speaking, the expansion points are chosen
basedonabinaryprinciple. Thenumber ofmomentsmatchedat eachexpansionpoint
is determined by a tested point which is known to cause the largest error in the inter-
val of each pair of neighboring expansion points. Using this technique, the projection
matrixV in (3.12) is adaptively computed, and the ROM is obtained by Galerkin projec-
tion usingW = V . The only inputs of the algorithm are an acceptable dimension of the
ROM, say rmax, as well as the acceptable accuracy of the ROM, tol. rmax will be adjusted
to a proper number during the adaptive scheme if it was selected too small. The details
of the algorithm can be found in [25]. From the numerical examples in [25], themethod
shows its success in automatically obtaining ROMs for several circuit examples. It is
nevertheless clarified in [25] that the proposed method has difficulty in dealing with
multi-input and multi-output (MIMO) models with many resonances in the output re-
sponses. The proposed method may obtain good results for a single-input and single-
output (SISO) system with many resonances in the output, but it will fail when the
system is MIMO and possesses multiple resonances in all the output responses of all
the I-O ports. For such systems, an efficient error estimation may help to construct
more robust and reliable ROMs. In the next subsection, we introduce a greedy-type
algorithmwhich adaptively selects the expansion points using a recently developed a
posteriori error bound.

3.2.4.3 Scheme based on a posteriori error estimation

In [28], an a posteriori error bound Δ(μ̃) for the transfer function of the ROM is pro-
posed. This will be discussed in Section 3.3.4, where the error bound is defined for
linear parametric systems, and can straightforwardly treat linear non-parametric sys-
tems as a special case. For linear non-parametric systems, the error bound Δ(μ̃) actu-
ally depends only on s, i. e. μ̃ = s. Δ(s) can be computed following (3.25) and (3.26),
except that μ̃ is replaced by s.
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Similar to the reduced basis method (see Chapter 4 of Volume 2), the next expan-
sion point si is iteratively selected as the point at which the error bound is maximized.
Using the error bound, the ROM can be automatically generated by Algorithm 3.5. The
projection matricesW and V for constructing the ROM are extended iteratively by the
matricesW ̂s and V ̂s generated at the selected expansion point ̂s, until the error bound
is below the error tolerance ϵtol. The so-called training set Ξtrain is a set of samples of
s, which is given by the user, and which should cover the interesting range of the fre-
quency axis. The expansion points are selected from Ξtrain. The matricesWdu and Vdu

are used to compute the error bound; see (3.25).

Algorithm 3.5: Automatic generation of a reduced model by adaptively selecting ex-
pansion points ̂s for non-parametrized LTI systems.
Input: Systemmatrices E,A,B,C, ϵtol > 0, Ξtrain: a large set of samples of s, taken over

the interesting range of the frequency.
Output: The projection matricesW ,V .
1: W = [],V = [], set ϵ = ϵtol + 1.
2: Initial expansion point: ̂s ∈ Ξtrain.
3: while ϵ > ϵtol do
4: range(V ̂s) = span{B̃( ̂s), Ã( ̂s)B̃( ̂s), . . . , Ãq−1( ̂s)B̃( ̂s)},
5: range(W ̂s) = span{C̃( ̂s), Ãc( ̂s)C̃( ̂s), . . . , Ãq−1c ( ̂s)C̃( ̂s)}.
6: V = orth{V ,V ̂s},Wdu = V .
7: W = orth{W ,W ̂s}, Vdu = W .
8: ̂s = argmaxs∈Ξtrain Δ(s).
9: ϵ = Δ( ̂s).
10: end while

Either V ̂s in Step 6 orW ̂s in Step 7 in Algorithm 3.5 can be computed by Step 1, Steps
3–29 plus Step 31 in Algorithm 3.1. Step 6 or Step 7 of Algorithm 3.5 implements the
modified Gram–Schmidt process, Algorithm 3.3.

3.2.4.4 Complex expansion points

Note that the projection matrices V ,W computed by the moment-matching method,
as well as the multi-moment-matching method in the next section, could be complex,
if the expansion point for the variable s is taken as a complex number. The ROM then
has complex system matrices, even if the original system matrices are real.

In order to obtain real reduced system matrices, each complex matrix should be
separated into its real part and its imaginary part, which should then be combined
to obtain a real projection matrix for MOR, i. e. we need to do the following extra
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step:

V ← orth{Re(V), Im(V)}.
W ← orth{Re(W), Im(W)}.

Here and below, Re(⋅) and Im(⋅) is the real and imaginary part of a complex variable,
respectively. Since, in ℂn,

range{V} = colspan{Re(V), Im(V)}, range{W} = colspan{Re(W), Im(W)},

over ℂ, the moment-matching property in Theorem 3.3 remains unchanged.
The algorithm IRKA in Section 3.2.4.1 can also introduce complex interpolation

points si and ̄si, where ̄si is the conjugate of si. If si is complex, then in Step 2 of IRKA,
(siE −A)BB̃i and ( ̄siE −A)BB̃i+1 are both complex vectors, whichmay produce complex
matricesVr ,Wr . It is nevertheless not difficult to verify that the conjugate of (siE−A)BB̃i
is ( ̄siE − A)BB̃i+1, so that they have the same real and imaginary (up to the sign) parts.
Therefore, in Step 2, we can replace (siE−A)BB̃i and ( ̄siE−A)BB̃i+1 with Re[(siE−A)BB̃i]
and Im[(siE − A)BB̃i] for any complex si, without changing the subspace.

3.3 Multi-moment-matching for linear parametric
systems

Some parametric model order reduction (PMOR) methods are basically extensions of
MOR methods for non-parametric systems. PMOR methods can be used to compute
the ROM of the parametric system in (3.1), where the vector of parameters μ should be
symbolically preserved in the ROM as follows:

Ê(μ)dz(t, μ)
dt
= Â(μ)z(t, μ) + B̂(μ)u(t),

ŷ(t, μ) = Ĉ(μ)z.

Here Ê(μ) = WTE(μ)V , Â(μ) = WTA(μ)V , B̂(μ) = WTB(μ) and Ĉ(μ) = C(μ)V . A survey
of PMOR methods can be found in [13].

3.3.1 A robust algorithm

Multi-momentmatching PMORmethods are reported in [17, 24], which are generaliza-
tions of themoment-matchingmethod [35]. In this section, the robust PMORalgorithm
proposed in [24] is reviewed. For ease of notation,we call thismethodPMOR-MM.Both
methods in [17, 24] are based on Galerkin projection, i. e.W = V . Note that themethod
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in [24] is already extended to Petrov–Galerkin in [2]. For clarity and simplicity, we use
Galerkin projection to explain the idea and the algorithm. Assume that E(μ), A(μ) are
either in the affine form defined as

E(μ) = E0 + E1μ1 + ⋅ ⋅ ⋅ + Emμm,
A(μ) = A0 + A1μ1 + ⋅ ⋅ ⋅ + Amμm,

or can be approximated in the affine form above.
To compute thematrixV , a series expansionof the statex in the frequencydomain

is used. After Laplace transform (with zero initial condition), the original parametric
system in (3.1) can be written as

G(μ̃)X(μ̃) = B(μ̃)U(μ̃),
Y(μ̃) = C(μ̃)X(μ̃),

(3.15)

where the entries in μ̃ = (μ̃1, . . . , μ̃p) are sufficiently smooth functions of the parameters
μ1, . . . , μm and the Laplace variable s. U(μ̃) is the Laplace transform of u(t). Due to the
affine form of E(μ) and A(μ), G(μ̃) can also be written in affine form as

G(μ̃) = G0 + G1μ̃1 + ⋅ ⋅ ⋅ ,Gpμ̃p.

As a result, the state vector in the frequency domain can be written as

X(μ̃) = [G(μ̃)]−1B(μ̃)U(μ̃)

= [G0 + G1μ̃1 + ⋅ ⋅ ⋅ + Gpμ̃p]
−1B(μ̃)U(μ̃). (3.16)

Given an expansion point μ̃0 = [μ̃01 , . . . , μ̃
0
p], X(μ̃) in (3.16) can be expanded as

X(μ̃) = [I − (σ1M1 + ⋅ ⋅ ⋅ + σpMp)]
−1B̃MU(μ̃)

=
∞
∑
i=0
(σ1M1 + ⋅ ⋅ ⋅ + σpMp)

iB̃MU(μ̃), (3.17)

where B̃M = [G(μ̃0)]−1B(μ̃), Mi = −[G(μ̃0)]−1Gi, i = 1, 2, . . . , p, and σi = μ̃i − μ̃0i , i =
1, 2, . . . , p. We call the coefficients in the above series expansion the moment vectors
(matrices)of theparametrized system. The correspondingmulti-moments of the trans-
fer function are those moment vectors multiplied by C from the left.

To obtain the projection matrix V , instead of directly computing the moment vec-
tors [17], a numerically robust method is proposed in [29], and a detailed algorithm is
presented in [24]. Themethod combines the recursions in (3.18), with a repeatedmod-
ified Gram–Schmidt process so that the moment vectors are computed implicitly. We
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have

R0 = BM ,

R1 = [M1R0, . . . ,MpR0],

R2 = [M1R1, . . . ,MpR1],

...

Rq = [M1Rq−1, . . . ,MpRq−1],

...

(3.18)

Here, BM = B̃M , if B(μ̃) does not depend on μ, i. e. B(μ̃) = B. Otherwise, BM =
[B̃M1
, . . . , B̃Mp

], B̃Mi
= [G(μ̃0)]−1Bi, i = 1, . . . , p, if B(μ̃) can be approximated in affine

form, e. g., B(μ̃) ≈ B1μ̃1 + ⋅ ⋅ ⋅ + Bpμ̃p.
Then V := Vμ̃0 is computed as

range(Vμ̃0 ) = span{R0,R1, . . . ,Rq}μ̃0 , (3.19)

with the sub-index denoting the dependance on the expansion point μ̃0. It is proved
in [24] that the leadingmulti-moments of the original systemmatch those of the ROM.
The accuracy of the ROM can be improved by increasing the number of terms in (3.19),
whereby more multi-moments can be matched. To be self-contained, we present the
method in Algorithm 3.6.

It is noticed that the dimensions of Rj, j = 1, . . . , q, increase exponentially. If the
number p of the parameters is larger than 2, it is advantageous to use multiple point
expansion, such that only the low order moment matrices, e. g., Rj, j ≤ 1, have to be
computed for each expansion point. As a result, the order of the ROM can be kept
small. Given a group of expansion points μ̃i, i = 0, . . . , ℓ, a matrix Vμ̃i can be computed
from (3.19) for each μ̃i as

range(Vμi ) = span{R0,R1, . . . ,Rq}μ̃i , (3.20)

where Rj, j = 1, . . . , q, are defined as in (3.18), with R0 = BM ,BM = [G(μ̃i)]−1B, or BM =
[B̃M1
, . . . , B̃Mp

], B̃Mj
= [G(μ̃i)]−1Bj,Mj = −[G(μ̃i)]−1Gj, j = 1, 2, . . . , p. The final projection

matrix V is a combination (orthogonalization) of all the matrices Vμ̃i ,

V = orth{Vμ0 , . . . ,Vμ̃ℓ }. (3.21)

The multi-moment-matching PMORmethod is very efficient for linear parametric sys-
tems, especially for systems with affine matrices E(μ), A(μ) [22]. The method also per-
forms well if the matrices are not affine, but it can be well approximated in affine
form [13, 30].
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Algorithm 3.6: Compute V = [v1, v2, . . . , vq] for a parametric system (3.1), where B(μ)
is generally considered as a matrix.

Input: Expansion point μ̃0, moment vectors in R1,R2, . . . ,Rq.
Output: Projection matrix V .
1: Initialize a1 = 0, a2 = 0, sum = 0.
2: if (multiple input) then
3: Orthogonalize the columns in R0 using the modified Gram–Schmidt

process: [v1, v2, . . . , vq1 ] = orth{R0},
4: sum = q1. (q1 is the number of remaining columns after orthogonalization.)
5: else
6: Compute the first column in V: v1 = R0/||R0||2, sum = 1.
7: end if
8: Orthogonalize the columns in R1,R2, . . . ,Rq iteratively as follows:
9: for i = 1, 2, . . . , q do
10: a2 = sum;
11: for d = 1, 2, . . . , p do
12: if a1 = a2 then
13: stop
14: else
15: for j = a1 + 1, . . . a2 do
16: w = G̃−1(μ̃0)Gdvj, col = sum + 1.
17: for k = 1, 2, . . . , col − 1 do
18: h = vTkw, w = w − hvk .
19: end for
20: if ‖w‖2 > ε (a small value indicating deflation, e. g., ε = 10−7) then
21: vcol =

w
‖w‖2

, sum = col.
22: end if
23: end for (j)
24: end if
25: end for (d)
26: a1 = a2;
27: end for (i)
28: Orthogonalize the columns in V by the modified Gram–Schmidt process.

3.3.2 Applicability to steady systems

The above PMOR method computes ROMs of the dynamical systems in (3.1). It is easy
to see that the method can be naturally applied to steady systems:

(E0 + E1μ1 + ⋅ ⋅ ⋅ + Emμm)x(μ) = B(μ)u(μ),
y(μ) = C(μ)x(μ).

(3.22)
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Comparing (3.22) with the Laplace transformed system (3.15), we see that they have
an identical form. Consequently, the series expansion of x in (3.22) can be obtained
similarly to (3.17). The corresponding moment vectors can also be defined according
to (3.18). Algorithm 3.6 can then be used to compute a projection matrix V . Then the
ROM of (3.22) is constructed by a Galerkin projection,

(VTE0V + V
TE1Vμ1 + ⋅ ⋅ ⋅ + V

TEmVμq)x(μ) = V
TB(μ)u(μ),

ŷ(μ) = C(μ)Vx(μ).

3.3.3 Structure-preserving (P)MOR for second-order systems
For the second-order systems

M(μ)d
2x(t, μ)
dt2
+ D(μ)dx(t, μ)

dt
+ K(μ)x(t, μ) = B(μ)u(t),

y(t, μ) = C(μ)x(t, μ),
(3.23)

often arising from, e. g., mechanical engineering, it is desired that the ROM preserves
the second-order structure, i. e.,

WTM(μ)V d2z(t, μ)
dt2
+WTD(μ)V dz(t, μ)

dt
+WTK(μ)Vz(t, μ) = WTB(μ)u(t),

y(t, μ) = C(μ)Vz(t, μ).
(3.24)

Note that PMOR-MM computes the projection matrix using the series expansion of
the state vector x in the frequency domain. After a Laplace transformation (assume
x(t = 0, μ) = 0), the first equation in (3.23) becomes

s2M(μ)X(s, μ) + sD(μ)X(s, μ) + K(μ)X(s, μ) = B(μ)U(s),
Y(s, μ) = C(μ)X(s, μ).

Thus

[s2M(μ) + sD(μ) + K(μ)]X(s, μ) = B(μ)U(s),

where U(s) is the Laplace transform of the input signal u(t). Defining G(μ̃) := s2M(μ) +
sD(μ) + K(μ), μ̃ = (μ̃1, μ̃2, μ̃3) := (s2, s, μ), a projection matrix V can be computed
following (3.15)–(3.21) in Section 3.3.1. Applying a Petrov-Galerkin projection to the
second-order system, we can obtain a second-order ROM as in (3.24). Note that with a
Galerkin projection, also the symmetry and definiteness properties of the coefficient
matrices can be preserved in the ROM.

3.3.4 Selecting expansion points based on a posteriori error
estimation

Note that the projection matrix V in (3.21) depends on the multiple expansion points
μ̃i, i = 1, . . . , ℓ.
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In this section, we introduce an a posteriori error bound proposed in [28], which is
an error bound for the transfer function Ĥ(μ̃) of the ROM. Given the error bound Δ(μ̃)
for the ROM, the expansion points μ̃i can be adaptively selected, and the projection
matrix V can be automatically computed as shown in Algorithm 3.7.

Algorithm 3.7: Adaptively selecting expansion points μ̃i, and automatically comput-
ing V .
Input: εtol, set ε = εtol+1, Ξtrain: a set of samples of μ̃ covering the interesting domain.
Output: V .
1: V = [],Vdu = [].
2: Choose an initial expansion point: μ̃0 ∈ Ξ, i = 0.
3: while ε > εtol do
4: range(Vμ̃i ) = span{R0,R1, . . . ,Rq}μ̃i . (By applying Algorithm 3.6 at expansion

point μ̃i.)
5: range(Vdu

μ̃i ) = span{R
du
0 ,R

du
1 , . . . ,R

du
q }μ̃i . (By applying Algorithm 3.6 at expansion

point μ̃i, and replacing R0,R1, . . . ,Rq with Rdu0 ,R
du
1 , . . . ,R

du
q in (3.27).)

6: V = orth{V ,Vμ̃i },W = V .
7: Vdu = orth{Vdu,Vdu

μ̃i },W
du = Vdu.

8: i = i + 1.
9: μ̃i = argmaxμ̃∈Ξtrain Δ(μ̃).
10: ε = Δ(μ̃i).
11: end while.

For a MIMO system, the error bound Δ(μ̃) is defined as

Δ(μ̃) = max
ij

Δij(μ̃).

Here Δij(μ̃) is the error bound for the (i, j)th entry of the transfer function (it is a matrix
for MIMO systems) of the ROM, i. e.,

|Hij(μ̃) − Ĥij(μ̃)| ≤ Δij(μ̃).

For a SISO system, there is no need to take the maximum. Δij(μ̃) can be computed as

Δij(μ̃) =
||rdui (μ̃)||2||r

pr
j (μ̃)||2

β(μ̃)
+ |(x̂du)∗rprj (μ̃)|. (3.25)

Here and below, (⋅)∗ is the conjugate transpose of a vector or a matrix. Let ci be the ith
row of C(μ̃) and bj be the jth column of B(μ̃) in (3.15),

rprj (μ̃) = bj − G(μ̃)x̂
pr
j ,

x̂prj = V[W
TG(μ̃)V]−1WTbj, (3.26)
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rdui (μ̃) = −c
T
i − G
∗(μ̃)x̂dui ,

x̂dui = −V
du[(Wdu)TG∗(μ̃)Vdu]−1(Wdu)TcTi ,

where x̂prj is the approximate solution to the primal system

G(μ̃)xprj = bj,

and can be computed from the ROM of the primal system obtained with the projection
matricesW ,V . x̂dui is the approximate solution to the dual system

G∗(μ̃)xdui = −c
T
i ,

and can be computed from the ROM of the dual system obtained with the projection
matricesWdu,Vdu. The variable β(μ̃) is the smallest singular value of the matrix G(μ̃).
The matrix Vdu can be computed, for example, using (3.20) and (3.21), by replacing
R0, . . . ,Rqr withRdu0 ,R

du
1 , . . . ,R

du
qr , where thematricesG(μ̃i) inR0, . . . ,Rqr are substituted

by G∗(μ̃i), and B is replaced with −CT . More specifically,

Rdu0 = C
du
M ,

Rdu1 = [M
du
1 Rdu0 , . . . ,M

du
p Rdu0 ],

Rdu2 = [M
du
1 Rdu1 , . . . ,M

du
p Rdu1 ],

...,

Rduq = [M
du
1 Rduq−1, . . . ,M

du
p Rduq−1],

...,

(3.27)

Rdu0 = C
du
M = −[G

∗(μ̃i)]−1CT , Mj = [G∗(μ̃i)]−1GT
j , j = 1, 2, . . . , p. We can takeWdu = Vdu.

The derivation of Δ(μ̃) is detailed in [28].
It is worth pointing out that, although the error bound is dependent on the pa-

rameter μ̃, many μ̃-independent terms constituting the error bound need to be pre-
computed only once, and they are repeatedly used in Algorithm 3.7 for the many sam-
ples of μ̃ in Ξtrain. For example, when computing x̂prj in rprj , W

TGkV , k = 1, . . . ,m, are
μ-independent, and need to be computed only once,WTG(μ̃)V is then derived by as-
semblingWTGkV for any value of μ̃.

Algorithm 3.7 is similar to Algorithm 3.5, except that the projection matrix V is
constructed for system (3.1) in the parametric case using Algorithm 3.6. At the ith iter-
ation step, the expansion point μ̃i is selected as the one maximizing the error bound
Δ(μ̃). The projection matrix V is enriched by the matrix Vμ̃i corresponding to μ̃

i. The
matrix Vdu aids in computing the error bound. Themost costly part of the error bound
is β(μ̃), since we need to compute the smallest singular value of the matrix G(μ̃) of
full dimension. The smallest singular value of the projectedmatrixWTG(μ̃)V could be
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heuristically used to approximate β(μ̃). In [44], a method of interpolation is proposed
to compute anapproximationof β(μ̃),whichhas been shown tobe accurate and cheap.

At the end of this section, we mention a method from [9], which deals with lin-
ear parametric systems with time-varying parameters. There, it is shown that these
parametric systems can be equivalently considered as bilinear systems. Then suitable
MOR methods for bilinear systems can be applied. MOR for bilinear systems will be
discussed in the next section, where MOR based on multi-moment matching or bilin-
ear IRKA (BIRKA) [9, 10, 12] are introduced.

3.4 Moment-matching MOR for nonlinear systems

In this section we consider mildly nonlinear systems without parameter variations,

Edx(t)
dt
= f(x(t)) + Bu(t),

y(t) = Cx(t),
(3.28)

where x(t) ∈ ℝn and f (⋅) ∈ ℝn is a nonlinear, vector-valued function depending on
x(t). These nonlinear systems usually come from spatial discretizations of nonlinear
PDEs. The ROM via Petrov–Galerkin projection is obtained as follows:

WTEV dz(t)
dt
= WT f(Vz(t)) +WTBu(t),

whereW ∈ ℝn×r and V ∈ ℝn×r withWTV = I.
In the literature, someMORmethods for nonlinear systems are based onmoment-

matching. The quadratic method [16] is the simplest one. The bilinearization method
[5, 46] is more accurate than the quadratic method. Methods based on variational
analysis [11, 27, 37, 47, 52], in general, yield smaller errors than the previous two. A
method based on a piece-wise linear approximation of the nonlinear function f (⋅) [50]
could be usedwhen dealingwith strong nonlinearities. Thesemethods are extensions
of the moment-matching methods for linear systems.

3.4.1 Quadratic method

We first analyze the quadratic MOR method proposed in [16]. This method approxi-
mates the nonlinear function f(⋅) by its power series expansion at, e. g., x(0) = 0,
which can be rewritten into a Kronecker product formulation of x(t) [52],

f(x(t)) = f(0) + A1x(t) + A2(x(t) ⊗ x(t))
+ A3(x(t) ⊗ x(t) ⊗ x(t)) + ⋅ ⋅ ⋅ ,

(3.29)



3 Model order reduction based on moment-matching | 79

whereA1 ∈ ℝn×n is the Jacobian of f and, in general,Aj ∈ ℝn×n
j
denotes amatrix whose

entries correspond to the jth-order partial derivatives of fi w. r. t. x1, . . . , xn, 1 ≤ i ≤ n.
Here fi, xk are the ith and kth entry of f and x(t), respectively. A quadratic system can
be obtained by a truncation of (3.29),

Edx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t)) + Bu(t) + f(0),

y(t) = Cx(t).
(3.30)

If f(0) = 0, the projection matrix V is computed as an orthonormal basis of the Krylov
subspace Kq(A−11 ,A

−1
1 B) as follows:

range(V) = span{A−11 B,A−21 B, . . . ,A−q1 B}.

Note thatV is constructed only byuse of the linear part of the quadratic system.AROM
is derived as

VTEV dz(t)
dt
= VTA1Vz(t) + V

TA2(Vz(t) ⊗ Vz(t)) + V
TBu(t),

y(t) = CVz(t).

It can be seen that the idea of the quadraticmethod comes from themoment-matching
method for linear systems. The projection matrix V is computed in the same way as in
the previous moment-matching methods, but is applied to the quadratic system.

If f(0) ̸= 0, then the system in (3.30) can be reformulated into

Edx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t)) + [B, f(0)][u(t), 1]

T ,

y(t) = Cx(t).

The input matrix B in (3.30) is replaced by the matrix [B, f(0)], which means f(0) can
always be treated as a part of the input matrix of the system, therefore, for simplicity,
we assume below that f(0) = 0.

3.4.2 Bilinearization method

For a nonlinear system with E = I, and with single input, i. e. B is a vector b, a bi-
linear system can be obtained by applying the Carleman linearization process to the
nonlinear system (3.28) [52]. In [5, 46], the bilinear system is derived by approximating
f(x(t))with a degree-2 polynomial in the Carleman linearization process. More specif-
ically, by use of the first three terms in (3.29), we obtain the following approximation
of f(x(t)):

f(x(t)) ≈ A1x(t) + A2(x(t) ⊗ x(t)).
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With the definitions

x⊗ = (
x(t)

x(t) ⊗ x(t)
) , B⊗ = (

b
0
) , C⊗ = (C,0),

A⊗ = (
A1 A2
0 A1 ⊗ I + I ⊗ A1

) ,

N⊗ = (
0 0

b ⊗ I + I ⊗ b 0
) ,

the nonlinear system (3.28) (E = I) can be approximated by the following bilinear
system:

dx⊗
dt
= A⊗x⊗ + N⊗x⊗u(t) + B⊗u(t),

y(t) = C⊗x⊗.
(3.31)

The derivation can be easily extended to multi-input systems with B ∈ ℝn×nI being
a matrix. After a few more calculations, the following bilinear system with multiple
inputs can be obtained:

dx⊗
dt
= A⊗x⊗ +

nI
∑
i=1

N (i)⊗ x⊗ui(t) + B⊗u(t),

y(t) = C⊗x⊗,

(3.32)

where u(t) := (u1(t), . . . , unI (t))
T , B := (b1, . . . ,bnI ) and

B⊗ = (
B
0
) , N (i)⊗ = (

0 0
bi ⊗ I + I ⊗ bi 0

) .

Given a bilinear system with E singular, several modified MOR schemes are pro-
posed in [1, 12, 33, 34], but will not be discussed in this chapter due to space limita-
tions. We can see that the above bilinear system is of much larger state-space dimen-
sion than the original nonlinear system (3.28). In the following we will introduce the
process of constructing the projection matrix V for MOR.

Once the nonlinear system is approximated by the bilinear system (3.31) or (3.32),
there are several choices for applying MOR. Multi-moment-matching methods extend
the moment-matching methods for linear systems to bilinear systems by studying the
transfer function of the bilinear system. Gramian-based bilinear MOR methods con-
struct thematricesW andV by exploring theGramianmatrices of the bilinear systems.
We focus on multi-moment-matching methods in this chapter.
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3.4.2.1 ConstructingW and V

Multivariate transfer functions and multi-moment-matching
The bilinearization MORmethods in [5, 46, 23] construct the matricesW ,V ,W = V by
approximating the transfer function of the bilinear system. Note that only SISO sys-
tems are considered in [5, 46]. For MIMO systems, the expression of the transfer func-
tion will be different; see [43]. In [43], a method similar to that in [46] was extended to
MIMO systems. In the following description, we consider only SISO bilinear systems.

Under the assumption E = I, the identity matrix, the output response of the bilin-
ear system (3.31) can be expressed by a Volterra series [52],

y(t) =
∞
∑
k=1

yk(t),

where yk(t) is described in (3.33) and (3.34). In (3.34),h
(reg)
k is called the regular kernel of

degree k. Themultivariate Laplace transformof this kernel defines the kthmultivariate
transfer function H(reg)k in (3.35). We have

yk(t) =
t

∫
0

t1

∫
0

. . .
tk

∫
0

h(reg)k (t1, . . . , tk)u(t − t1 − ⋅ ⋅ ⋅ − tk) ⋅ ⋅ ⋅ u(t − tk) dtk . . . dt1,

(3.33)

h(reg)k (t1, . . . , tk) = C⊗e
A⊗tkN⊗eA⊗tk−1 ⋅ ⋅ ⋅N⊗eA⊗t1B⊗, (3.34)

H(reg)k (s1, . . . , sk) = C⊗(skI − A⊗)
−1N⊗(sk−1I − A⊗)

−1 . . .N⊗(s1I − A⊗)
−1B⊗. (3.35)

By using the Neumann expansion,

(I − sA−1⊗ )
−1 = I + sA−1⊗ + s

2A−2⊗ + s
3A−3⊗ + ⋅ ⋅ ⋅ ,

H(reg)k (s1, s2, . . . , sk) can be expanded into a multivariable Maclaurin series in (3.36),
with the so-called kth-order multi-moments m(l1, . . . , lk) being defined in (3.37). We
have

H(reg)k (s1, . . . , sk) =
∞
∑
lk=1
. . .
∞
∑
l1=1

m(l1, . . . , lk)s
l1−1
1 sl2−12 ⋅ ⋅ ⋅ s

lk−1
k , (3.36)

m(l1, . . . , lk) = (−1)
kC⊗A
−lk
⊗ N⊗ ⋅ ⋅ ⋅A

−l2
⊗ N⊗A

−l1
⊗ B⊗, l1, . . . , lk = 1, 2, . . . . (3.37)

DerivingW and V
In [23, 7], the BICOMB method constructs the projection matrix V from a series of
Krylov subspaces in the following steps:

range(V (1)) = Kq1(A
−1
⊗ ,A
−1
⊗ B⊗), (3.38)

and for j > 1

range(V (j)) = Kqj(A
−1
⊗ ,A
−1
⊗ N⊗V

(j−1)). (3.39)
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The final projection matrix V is

range(V) = orth{V (1), . . . ,V (J)}. (3.40)

Here,

Kqj(A
−1,R) := {R,A−1R, . . . ,A−qj+1R}

is a block Krylov subspace generated by R = A−1⊗ B⊗, j = 1, or R = A
−1
⊗ N⊗V

(j−1), j >
1. Note that each V (k) actually tries to match the multi-moments of the kth transfer
function H(reg)k ; the multi-moment-matching property of the ROM can be found in,
e. g., [23]. Applying x⊗ ≈ Vz⊗ to (3.31), the ROM of the nonlinear system (3.28) is given
by

dz⊗
dt
= Â⊗z⊗ + N̂⊗z⊗u(t) + B̂⊗u(t),

ŷ(t) = Ĉ⊗z⊗,
(3.41)

where Â⊗ = VTA⊗V , N̂⊗ = VTN⊗V , B̂⊗ = VTB⊗, Ĉ⊗ = C⊗V . For simulation results of the
BICOMBmethod, we refer to [7]. Algorithm 3.1 can bemildly modified to Algorithm 3.8
to compute V (j) in (3.38)–(3.40). Algorithm 3.8 computes a matrix V from the block
Krylov subspaces defined as follows:

range(V (j)) = Kqj(M
−1,Rj), j = 1, . . . , J. (3.42)

The final projection matrix V is computed as in (3.40). Let M = A⊗, R1 = A−1⊗ B⊗ and
Rj = A−1⊗ N⊗V

(j−1) for j > 1, Algorithm 3.8 can be used to compute the matrix V in (3.40)
for the ROM (3.41) of the bilinear system.

3.4.3 Variational analysis method

The third set of nonlinear MOR methods [11, 27, 37, 42, 47] originates from variational
analysis of nonlinear system theory [52].

3.4.3.1 Methods using polynomial approximation

In [27, 42, 47], the original nonlinear system is first approximated by a polynomial sys-
tem, then variational analysis is applied to the polynomial system to obtain a reduced
polynomial system. In the following, we describe the method developed in [27]. Its
main difference from the method in [47] is the construction of the projection matrices
V2 and V3, and will be explained later.
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Algorithm 3.8: Compute V in (3.40).
Input: Matrices of the block Krylov subspace in (3.42):M,Rj, j = 1, 2, . . . , J.
Output: Matrix V in (3.40) with orthonormal columns.
1: Initialize a1 = 0, a2 = 0, sum = 0.
2: for j = 1, . . . , J do
3: if Rj is a matrix then
4: Orthogonalize the columns in Rj using a modified Gram–Schmidt

process: [v1, v2, . . . , vmj
] = orth{Rj}.

5: sum = mj. (mj is the number of remaining columns after deflation.)
6: else
7: Compute the first column in Vj: v1 = Rj‖Rj|‖2. (Rj is a vector.)
8: sum = 1.
9: end if
10: for i = 1, 2, . . . , qj − 1 do
11: a2 = sum.
12: if a1 = a2 then
13: break, go to 2.
14: else
15: for d = a1 + 1, . . . , a2 do
16: w = Mvd, col = sum + 1.
17: for k = 1, 2, . . . , col − 1 do
18: h = vTkw, w = w − hvk .
19: end for
20: if ‖w‖2 > ε (a small value indicating deflation, e. g., ε = 10−7) then
21: vcol =

w
‖w‖2

, sum = col.
22: end if
23: end for (d)
24: end if
25: a1 = a2.
26: end for (i)
27: Vj = [v1, . . . , vsum],
28: end for (j)
29: Orthogonalize the columns in [V1, . . . ,VJ] by the modified Gram–Schmidt process

to obtain V , i. e. V := orth{V1, . . . ,VJ}.

With the power series expansion of f(x(t)) in (3.29), the original nonlinear system
(3.28) is first approximated by a degree-2 polynomial system

dx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t)) + Bu(t),

y(t) = Cx(t),
(3.43)
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or by a degree-3 polynomial system

dx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t))

+ A3(x(t) ⊗ x(t) ⊗ x(t)) + Bu(t),
y(t) = Cx(t).

(3.44)

Consider the response of (3.28) to a variation of the input αu(t),

dx(t)
dt
= f (x(t)) + B(αu(t)),

y(t) = Cx(t),
(3.45)

where α is an arbitrarily small-valued variable. Assuming that the response to u(t) = 0
is x(t) = 0 (in [52], it is called a forced response), then x(t), as a function of α, can be
expanded into a power series of α around α0 = 0,

x(t) = αx1(t) + α
2x2(t) + α

3x3(t) + ⋅ ⋅ ⋅ , (3.46)

where the first term of the series is x0(t) = x(t, α0 = 0) = 0, since when α0 = 0,
α0u(t) = 0. The corresponding response x(t, α0 = 0) = 0 is then removed from the
above expansion. Substituting both (3.46) and (3.29) into the right hand side and (3.46)
into the left hand side of (3.45), we get

αdx1(t)
dt
+ α2 dx2(t)

dt
+ α3

dx3(t)
dt
+ ⋅ ⋅ ⋅ = αA1x1(t)

+ α2[A1x2(t) + A2(x1(t) ⊗ x1(t))] + ⋅ ⋅ ⋅ + B(αu(t)).

Since this equation holds for all α, coefficients of powers of α can be equated. This
gives the variational equations:

dx1(t)
dt
= A1x1(t) + Bu(t), (3.47)

dx2(t)
dt
= A1x2(t) + A2(x1(t) ⊗ x1(t)), (3.48)

dx3(t)
dt
= A1x3(t) + A2(x1(t) ⊗ x2(t) + x2(t) ⊗ x1(t))

+ A3(x1(t) ⊗ x1(t) ⊗ x1(t)), (3.49)
...

It is worth pointing out that the assumptions on the forced response can be relaxed,
and similar variational equations of xδ = x(t) − x̂(t) can be derived. Here, x̂(t) is the
response to a certain input û(t) for a fixed initial state x(t = 0) = x∗0. For a detailed
discussion; see Section 3.4 in [52].
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DerivingW and V
We notice that all of these variational equations are linear systems of order n for the
vectors of the unknownsx1(t),x2(t), . . ., respectively. Sincex(t) is a linear combination
of x1(t), x2(t), . . . (see (3.46)), it is in the subspace spanned by x1(t), x2(t), . . .. The
projection matrix V can be computed from the subspace containing x1(t), x2(t), . . ..

Building upon this observation, the method in [27] constructs V based on the lin-
ear variational equations (3.47)–(3.49) rather than from the nonlinear system. From
the moment-matching MOR for linear systems, a projection matrix V1 for x1(t) of the
first linear system (3.47) is constructed as

range(V1) = span{A
−1
1 B,A−21 B, . . . ,A−q11 B}. (3.50)

Then x1(t) can be approximated by x1(t) ≈ V1z1(t). A projection matrix V2 for x2(t) of
the second linear system (3.48) is similarly constructed by

range(V2) = span{A
−1
1 A2,A

−2
1 A2, . . . ,A

−q2
1 A2}, (3.51)

such that x2(t) ≈ V2z2(t). A projection matrix V3 for x3(t) in (3.49) can be derived in a
similar way. From (3.46), we have

x(t) ≈ αV1z1(t) + α
2V2z2(t),

or

x(t) ≈ αV1z1(t) + α
2V2z2(t) + α

3V3z3(t),

which indicates that the solutionx(t) to (3.43) or (3.44) canbe approximatedby a linear
combinationof the columnsofV1,V2 orV1,V2,V3. Therefore thefinal projectionmatrix
V can be computed as

range(V) = orth{V1, . . . ,VJ}, J = 2 or 3. (3.52)

The ROM is thus derived from the polynomial system (3.43) or (3.44) as follows:

dz(t)
dt
= VTA1Vz(t) + V

TA2(Vz(t) ⊗ Vz(t)) + V
TBu(t),

y(t) = CVz(t),
(3.53)

or

dz(t)
dt
= VTA1Vz(t) + V

TA2(Vz(t) ⊗ Vz(t))

+ VTA3(Vz(t) ⊗ Vz(t) ⊗ Vz(t)) + V
TBu(t),

y(t) = CVz(t).

(3.54)
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The advantage of this method is that it has the flexibility of using a more accurate
polynomial system (3.44) to approximate the original nonlinear system. It is possible
that for the quadratic method, the system (3.30) can also be replaced by a more accu-
rate polynomial system. However, the projection matrix V computed by the quadratic
methodmight be less accurate than thematrixV in (3.52), because it is computedusing
only the linear part of the nonlinear system. For an approximation of the original non-
linear system (3.28), the bilinear system is less accurate than the polynomial system
(3.44). Moreover, since the bilinear system is derived by approximating the nonlinear
function f(x) by its power series expansion up to second order, the projection matrix
V also only uses the information of the series expansion of f(x) at most to the second
order, which is less accurate than the matrix V computed by the variational analysis
method.

Again, letM = A1, R1 = A−11 B, R2 = A−11 A2 in (3.50), (3.51), then Algorithm 3.8 can
be used to compute V in (3.52). Since there are many columns in A2, it is not possible
to use all the columns. Instead, onemay take only the first several columns, e. g., R2 =
A−11 A2(:, 1 : q), q ≪ n, where MATLAB notation is used.

In [47], the second projection matrix Ṽ2 is constructed from the approximate sys-
tem by replacing x1 with V1z1 in (3.48) to get

dx2(t)
dt
= A1x2(t) + A2(V1z1(t) ⊗ V1z1(t)).

Then

range(Ṽ2) = span{A
−1
1 A2(V1 ⊗ V1),A

−2
1 A2(V1 ⊗ V1), . . . ,A

−q2
1 A2(V1 ⊗ V1)}. (3.55)

The advantage of this approach is that there are much fewer columns in A2(V1 ⊗ V1)
than in A2 in (3.51). Thus, Ṽ2 matches more moments than V2 in (3.51) if the matrices
have the same number of columns. However, Ṽ2 only matches approximate moments
because the input matrix A2 in (3.48) is approximated by A2(V1 ⊗ V1) in (3.55). There-
fore, although Ṽ2matchesmoremoments, its accuracy is impaired by the approximate
moments. The accuracy of the two methods is compared in [7].

At the end of this subsection, we would like to mention another method [42]
which is based on both the Volterra series expansion of the output response and
variational analysis. In [42], the original system (3.28) is approximated by the polyno-
mial system in (3.44). Then the Volterra series representation of the output response
of the polynomial system is employed to introduce the nonlinear transfer functions
of (3.44). The kth-order nonlinear transfer function is similar to the kth transfer func-
tionH(reg)k (s1, s2, . . . , sk) for the bilinear system. The projection matrix V is constructed
based on the moments of the nonlinear transfer functions. Instead of performing the
Laplace transform of the Volterra kernels as in (3.35), the nonlinear transfer func-
tions are computed from the variational linear systems (3.47)–(3.49), whose transfer
functions are equivalent with the first-order, second-order and third-order nonlinear
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transfer functions, respectively. The basic idea of [42] is quite similar to the methods
in [5] and [46]. The main difference is that [5] and [46] are based on a bilinear approx-
imation of the original nonlinear system, whereas [42] is based on the more accurate
approximation (3.44).

3.4.3.2 Methods based on quadratic–bilinearization

All those previous nonlinear model reduction methods first approximate the nonlin-
ear function f(x(t)) by a polynomial, then reduce the approximate polynomial system
to a small dimension.When the function f(x(t)) is weakly nonlinear, it is usually suffi-
cient to approximate it by a degree-2 polynomial or degree-3 polynomial. Meanwhile,
when f(x(t)) is strongly nonlinear, the low-degree polynomial approximation is not
accurate. It is possible to employ higher order polynomials to improve the accuracy,
but with much more complexity. Furthermore, the storage requirement for higher or-
der polynomials is prohibitive if the matrix dimension is very large. Therefore, these
methods are more suitable for weakly nonlinear systems.

The methods based on quadratic–bilinearization provide a solution to the above
issues of polynomial approximation. Instead of approximating the nonlinear part f(x)
by apolynomial function, equivalent transformations are applied to thenonlinear sys-
tem in (3.28). The nonlinear system is first “lifted” to a polynomial system by adding
polynomial algebraic equations or by taking Lie derivatives and addingmore differen-
tial equations. The polynomial system is then transformed into a quadratic–bilinear
system by either adding quadratic algebraic equations or taking Lie derivatives again.
No accuracy is lost during the transformations. The detailed explanation can be found
in [36, 37].

The equivalent quadratic–bilinear system is

G0x̃ = G1x̃ + G2(x̃ ⊗ x̃) + D1x̃u + D2(x̃ ⊗ x̃)u + B̃u(t), (3.56)

where x̃ is the lifted state vector after more state variables are added to the state vec-
tor x. Notice that in [36, 37], the system (3.56) is called quadratic-linear differential
algebraic equation (QLDAE). However, the system above obviously includes the bi-
linear term D1x̃u and the quadratic–bilinear term D2(x̃ ⊗ x̃)u. Therefore, the notion
quadratic–bilinear differential algebraic equations (QBDAEs) introduced in [11] is
used in this paper.

Once the QBDAEs are derived after several steps of transformations, the varia-
tional analysis (3.45)–(3.49) in the previous subsection can be applied to the QBDAEs.
The projection matrix V can also be computed likewise. Then a Galerkin projection
can be applied to (3.56) to get the reduced QBDAEs, which is considered as the ROM
for the original nonlinear system in (3.28).

Recall that, from the second variational equation (3.48), the input matrix has
many vectors, which makes the computation of the projection matrix V2 tricky.
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In [36, 37], a different way of computing the projection matrix V is proposed based on
the transfer functions of the QBDAEs (3.56). The expression of the transfer functions
of the QBDAEs can be originally found in [52]. For example, assuming for simplicity
G0 = I, the first two transfer functions are

H1(s) = L
T (sI − G1)

−1B,

H2(s1, s2) =
1
2!
LT[(s1 + s2)I − G1]

−1

× {G2[H1(s1) ⊗ H1(s2) + H1(s2) ⊗ H1(s1)] + D1[H1(s1) + H2(s2)]}.

(3.57)

Using Taylor series expansions of the transfer functions, the matrix V can be recur-
sively computed from the coefficients of the series expansions. The series expansions
of H1 and H2 about zero (adaptation to nonzero expansion points is straightforward)
are given as

H1(s) = L
T
∞
∑
k=0

AkB̃sk ,

H2(s1, s2) =
1
2!
LT

k
∑
i=0

Ak+1(s1 + s2)
k{G2[(

∞
∑
k=0

AkB̃sk1) ⊗ (
∞
∑
k=0

AkB̃sk2)

+ (
∞
∑
k=0

AkB̃sk2) ⊗ (
∞
∑
k=0

AkB̃sk1)]

+ D1[
∞
∑
k=0

AkB̃sk1 +
∞
∑
k=0

AkBsk2]},

where A = G−11 , B̃ = −G−11 B. In [36, 37], the projection matrix V is constructed as

range(V1) = span{A
iB̃, i ≤ q},

range(V2) = span{A
i+1D1A

jB̃, i + j ≤ q},

range(V3) = span{A
i+1G2(A

jB̃) ⊗ (AkB̃), i + j + k ≤ q, k ≤ j},
range(V) = span{V1,V2,V3}. (3.58)

It can be seen that, if the system matrix B is a vector, the Kronecker product (AjB̃) ⊗
(AkB̃) is also a vector so that the construction of V3 is easy. In general, if B has m
columns, (AjB̃) ⊗ (AkB̃) has m2 columns. The number of columns in (AjB̃) ⊗ (AkB̃) is
still moderate ifm is small. This is an advantage over the way of computing V through
variational analysis.

Algorithm3.8 canalsobeused to computeV in (3.58),whereweneed to letM = G1,
R1 = B̃, R2 = D1V1, R3 = G2AjV2 ⊗ V2. Note that in order to compute V2, we use V1
instead ofAjB̃ inR2, sinceV1 is already the basis of the subspace spanned byAjB̃, j ≤ q.
Similarly, we useV2⊗V2 rather thanAjB̃⊗AkB̃. This way, we avoid the issues of how to
choose proper values of j, k. When AjB̃ is replaced by V1 in R2, V1 is a matrix instead of
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a vector. However, usually there are a few columns in V1, which still keeps the column
dimensions of R2,R3 moderate.

In [11], themethod is extended to two-sided projection based on the transfer func-
tions (3.57) of the QBDAEs. It is proved that by using two-sided projection, the re-
duced transfer function matches almost twice as manymoments of the original trans-
fer functions as with the one-sided projection used in [36, 37]. Simulation results also
show better accuracy than the one-sided projection. However, the two-sided projec-
tion sometimes causes numerical instability, which may produce unstable reduced
models [11].

Note that the subspace dimension in (3.58) will grow exponentially if the coeffi-
cients of the series expansion of the higher order transfer functions, e. g. H3(s1, s2, s3),
are also included to compute the projection matrix V . This easily leads to a ROMwith
no reduced number of equations. In [58], the higher order multivariate transfer func-
tions H2(s1, s2), H3(s1, s2, s3), . . ., are transformed to single-s transfer functions H2(s),
H3(s), . . . by association of variables without losing accuracy. The series expansion of
H2(s) orH3(s) only depends on the single variable s, such that the exponential growth
of the subspace dimension can be avoided. Compared with the method in [37], a more
compact ROM with the same accuracy can be obtained. The theory on association of
variables can be found in [52].

Recall that, if the original nonlinear system is a system of ODEs, the QBDAEs usu-
ally constitute a systemof differential-algebraic equations after quadratic–bilineariza-
tion, i. e.,G0 could be singular. In general, it is still unclear how to determine the index
of the QBDAEs which may cause problems when the ROM is solved.

3.4.3.3 Other variants

Algorithm IRKA has been extended to the bilinear iterative rational Krylov algorithm
(BIRKA) in [10] to compute the ROMs of bilinear systems, which iteratively updates
a set of interpolation points such that the ROM satisfies the necessary conditions of
ℋ2-optimality. Upon convergence, the BIRKAmethod produces a ROMwhose Volterra
series interpolates that of the original bilinear system at themirror images of the poles
of the ROM. However, the computational cost of BIRKA for large-scale systems is high
and it is also not possible tomatch higher-order derivatives. Regarding computational
cost of BIRKA, efforts have been done in [12] to reduce the computational cost for some
special systems.

3.4.4 Trajectory piece-wise linear method

The trajectory piece-wise linear method in [49, 50] is proposed to deal with strongly
nonlinear systems. An error bound for this method is proposed in [51], where the
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stability and passivity of the ROM are also discussed. The trajectory piece-wise linear
method first linearizes the nonlinear function f(x(t)) at a number of linearization
points xi, i = 0, 1, 2, . . . , k, then approximates f(x(t)) by the weighted sum of these
linearizations, f(xi)+Ai(x−xi). Finally, the original nonlinear system is approximated
by the following weighted sum of linear systems:

dx(t)
dt
=

s−1
∑
i=0

w̃i(x)f(xi) +
s−1
∑
i=0

w̃i(x)Ai(x − xi) + Bu(t),

y(t) = Cx(t).

Once a projection matrix V is obtained, the ROM can be obtained using a Galerkin
projection. In [49, 50], V is obtained by applying the moment-matching method to
each linearized system.

The linearization points are chosen by selecting a training input and simulating
the original nonlinear system. The procedure is simply as follows: (1) A linearized
model around state xi (initially i = 0) is generated. (2) The original nonlinear system
is simulated while min0≤j≤i ‖x − xi‖ < δ, i. e. while the current state x is close enough
to any of the previous linearization points. (3) A new linearization point xi+1 is taken
as the first state violating ‖x − xi‖ < δ, then return to step (1). Note that in order to
get the linearization points, the original full system has to be simulated. Instead of
simulating the full system, a fast algorithm for computing an approximate trajectory
is also proposed in the paper.

The weak point of this method is that training inputs have to be chosen. In gene-
real, it is unclear how to choose the optimal training inputs so that the trajectory rep-
resents the behavior of the state vector x(t). If the training inputs are chosen far away
from theactual inputs, then the computed trajectory of theunknownvectorwill depart
from the real behavior of the state vector x(t) and the ROMwill lose accuracy. Compu-
tation of the weight functions w̃i in the above linear system is alsomore or less heuris-
tic. Some related papers based on piece-wise linear ideas are [15, 18, 19, 20, 53, 54, 55].

3.5 Extension to parametric nonlinear systems

Some of the above nonlinearMORmethods could be extended to deal with parametric
nonlinear systems, though little relevant work has been done. Often the nonlinear
system also involves parameter variations, i. e.,

E(μ)dx(t, μ)
dt
= f(x(t, μ), μ) + B(μ)u(t),

y(t, μ) = C(μ)x(t, μ),
(3.59)
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where μ ∈ ℝp is the vector of geometrical or physical parameters. When f(x(t, μ), μ)
is mildly nonlinear, many of the above introduced methods can be extended to solv-
ing (3.59).

The nonlinear system in (3.59) can be transformed to a parametric bilinear system
using the same technique as introduced in Section 3.4.2, so the resulting system could
be considered as a linear parametric system, where the input u(t) could be taken as
an extra parameter. The PMOR-MM method can then be applied to obtain the ROM.
Extension of both the quadratic method and the variational analysis approach intro-
duced in Section 3.4.1 and Section 3.4.3 is straightforward. In the following, we discuss
these extensions in more detail.

3.5.1 Quadratic PMOR

The quadratic method in Section 3.4.1 depends on the power series expansion of the
nonlinear function f(x(t)). For parameter dependent f(x(t, μ), μ), the corresponding
power series expansion may be written as

f(x(t, μ), μ) = f(0) + A1(μ)x(t, μ) + A2(μ)(x(t, μ) ⊗ x(t, μ))
+ A3(μ)(x(t, μ) ⊗ x(t, μ) ⊗ x(t, μ)) + ⋅ ⋅ ⋅ (3.60)

The approximated quadratic system is

E(μ)dx(t, μ)
dt
= A1(μ)x(t, μ) + A2(μ)(x(t, μ) ⊗ x(t, μ)) + B̃(μ)ũ(t),

y(t, μ) = C(μ)x(t, μ),
(3.61)

where B̃(μ) = [B(μ), f(0)], ũ(t) = (u(t)T , 1)T . We seek a projection matrix V , which is
used to reduce the linear parametric system

E(μ)dx(t, μ)
dt
= A1(μ)x(t, μ) + B̃(μ)ũ(t),

y(t, μ) = C(μ)x(t, μ).
(3.62)

Once V is computed from the linear system in (3.62), the ROM is then obtained by
applying a Galerkin projection with V to the quadratic system in (3.63), i. e. the ROM
of (3.59) is

VTE(μ)V dz(t, μ)
dt
= VTA1(μ)Vz(t, μ) + V

TA2(μ)V(z(t, μ) ⊗ z(t, μ))

+ VT B̃(μ)ũ(t),
y(t, μ) = C(μ)Vz(t, μ).

(3.63)

Since V is computed from (3.62), the PMOR-MM method can be directly used to
compute V . PMOR-MM is shown to be accurate for MOR of quadratic parametric sys-
tems [6, 26, 57], when the magnitude of the input signal is relatively small. The exten-
sion to two-sided (Petrov-Galerkin) projection is straightforward.
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3.5.2 PMOR after bilinearization

Following the bilinearizationmethod introduced in Section 3.4.2, the parametric non-
linear system in (3.59) can be approximated by a parametric bilinear system as

dx⊗
dt
= A⊗(μ)x⊗ + N⊗(μ)x⊗u(t) + B⊗(μ)u(t),

y(t, μ) = C⊗(μ)x⊗.

By considering u(t) associated with the bilinear term N⊗(μ)x⊗u(t) to be an extra pa-
rameter, say u(t) = μm+1(t), the above system can be viewed as a linear parametric
system,

E⊗(μ)
dx⊗
dt
= A⊗(μ)x⊗ + N⊗(μ)x⊗μm+1(t) + B⊗(μ)u(t),

y(t, μ) = C⊗(μ)x⊗.
(3.64)

Note that the parameter μm+1(t) is time-varying. Strictly speaking, the PMOR-MM
method in Section 3.3 cannot be directly used, since the Laplace transform of (3.64)
cannot be applied as in (3.15). However, it is found that directly applying PMOR-MM to
some systems with time-varying parameters [24, 41] or to the bilinear system [2] may
also produce accurate results.

3.5.3 PMOR based on variational analysis

The variational analysis method in Section 3.4.3 can easily be extended to deal with
parametric nonlinear systems. It can be seen that from the power series expansion of
f(x(t,μ), μ) in (3.60), one can obtain the parametric variational equations

dx1(t, μ)
dt
= A1(μ)x1(t, μ) + B(μ)u(t), (3.65)

dx2(t, μ)
dt
= A1(μ)x2(t, μ) + A2(μ)(x1(t, μ) ⊗ x1(t, μ)), (3.66)

dx3(t, μ)
dt
= A1(μ)x3(t, μ) + A2(μ)(x1(t, μ) ⊗ x2(t, μ) + x2(t, μ) ⊗ x1(t, μ))

+ A3(μ)(x1(t, μ) ⊗ x1(t, μ) ⊗ x1(t, μ)), (3.67)
...

For each linear parametric system in (3.65)–(3.67), the PMOR-MMmethod can be used
to compute the projection matrices V1,V2,V3 corresponding to (3.65)–(3.67), respec-
tively. The final projection matrix V for the parametric nonlinear system is then the
combination of V1,V2,V3, and can be computed following (3.52). The ROM is of a form
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similar to (3.54):

dz(t, μ)
dt
= VTA1(μ)Vz(t, μ) + V

TA2(μ)(Vz(t, μ) ⊗ Vz(t, μ))

+ VTA3(μ)(Vz(t, μ) ⊗ Vz(t, μ) ⊗ Vz(t, μ)) + V
TB(μ)u(t),

y(t, μ) = C(μ)Vz(t, μ).

3.6 Conclusions
This chapter reviews moment-matching methods for MOR of a wide range of sys-
tems, including standard linear time-invariant (LTI) systems, parametric LTI systems,
nonlinear non-parametric and nonlinear parametric systems. Sufficient algorithms
are provided to enable most of the methods to be realizable and the results in the
literature to be reproducible. Some algorithms, e. g., Algorithms 3.1–3.2 and Algo-
rithm 3.8 have not appeared elsewhere. The discussions in some sections, e. g. Sec-
tions 3.3.2, 3.3.3, and 3.5 are also new. It has been demonstrated in numerous publica-
tions that moment-matching methods are powerful MOR tools for many systems and
are useful in many application areas.
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4 Modal methods for reduced order modeling

Abstract: In this chapter, we present an overview of the so-called modal methods for
reduced ordermodeling. The naming is loosely referring to techniques that aimat con-
structing the reduced order basis for reduction without resorting to data, typically ob-
tained by full order simulations. We focus primarily on linear and nonlinear mechan-
ical systems stemming from a finite element discretization of the underlying strong
form equations. The nonlinearity is of a geometric nature, i. e. due to redirection of in-
ternal stresses due to large displacements. Intrusive vs non-intrusive techniques (i. e.
requiring or not access to the finite element formulation to construct the reduced order
model) are discussed, and an overview of the most popular methods is presented.

Keywords: Galerkin projection, geometric nonlinearities, modal derivatives, non-
intrusive reduction, nonlinear manifolds
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4.1 Introduction

Structural dynamics often relies on Finite Element (FE)models leading to large system
of equations, which need to be integrated in time to predict time histories of displace-
ments, strain and stresses. Even in the case of linear models, this task is often pro-
hibitive in a design context, as the large size of the systems and the large number of
simulations required result in excessive time and storage requirements. This situation
is exacerbated by the presence of nonlinearities, which essentially implies the eval-
uation and factorization of configuration-dependent residuals and Jacobians, and an
iterative process for convergence at each time step. Clearly, model order reduction is
a must in these cases.

Historically, linear structural dynamics have been resorting to modal decomposi-
tion since its dawn. Essentially, the displacement field is approximated as a superpo-
sition of few eigenmodes of the system to achieve reduction.

When nonlinearities are present, a plethora of phenomena might occur, namely
a richer harmonic spectrum in the response than that of the applied forcing, internal
resonances, bifurcation, etc. The challenge for a nonlinear reduced order model (NL-
ROM) is to efficiently capture all these phenomena.As the type of nonlinearity strongly
affects the response, it would make sense to use all the knowledge of the FE model,
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usually referred to as the High Fidelity Model (HFM) to devise methods to construct
the NLROM. This strategy, which we name here model-driven or system-driven, is in
some sense opposed to a data-driven approach, which constructs the NLROM essen-
tially from data coming from simulations of the HFM. This chapter attempts to give
an overview to methods belonging to the former category, and focuses on structural
systems featuring geometric nonlinearities.

Essentially, a NLROM technique tackling such systems faces two challenges. First,
the derivation of a compact reduction basis on which to project the HFM. Second, an
efficient calculation of the projected nonlinear terms. As we will discuss, the nonlin-
ear terms of a FE based HFM are never available in an explicit form at system level,
and therefore their reduction and projection face some computational bottlenecks
that need to be addressed.

Anoften employed categorization ofNLROMsdistinguishes between intrusive and
non-intrusivemethods. Respectively, the construction of the NLROM requires, or not,
the access to element level formulation, and FE assembly. Clearly, a non-intrusive
technique is preferable when one has only the availability of a commercial FE pro-
gram, which typically only release forces and, in some cases, Jacobians, at the assem-
bled level. On the other hand, intrusive methods are typically more systematic and
theoretically sound, at the price of the mentioned need to access codes at the element
level.

In this contribution, we discuss the main methods and point out recent develop-
ments and trends. We first recap the main concepts applicable to linear systems, and
then tackle the relevant cases of geometric nonlinearities.

4.2 Linear systems
Let us first consider the linear system resulting from a FE discretization of second-
order ordinary differential equations describing an elastic continuum. This can be
written

Mü(t) + Cu̇(t) + Ku(t) = p(t), (4.1)

where u ∈ ℝn is the vector of nodal generalized displacements,M ∈ ℝn×n is the mass
matrix, C ∈ ℝn×n is the damping matrix, K is the stiffness matrix and p(t) ∈ ℝn is a
forcing vector. The system (4.1) implies a linearization about an equilibrium point. For
many structural dynamics applications, n is typically very large due to a required fine
discretization.

A well established reduction technique in linear structural dynamics is based on
the so-called vibration modes, i. e. eigenvectors associated to the free undamped vi-
bration problem, obtained by setting C = 0 and p(t) = 0 in (4.1),

Mü(t) + Ku(t) = 0. (4.2)
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The solution of (4.2) reads

u(t) = ϕeiωt . (4.3)

When (4.3) is inserted in (4.2), we obtain the eigenvalue problem

(K − ω2M)ϕ = 0, (4.4)

which admits eigenpairs ωj, ϕj, j = 1, . . . , n as solutions. Physically, each mode ϕj
represents the shape at which the system freely vibrates at a frequency ωj. It can be
easily shown that the vibrationmodes are orthogonal with respect to themass and the
stiffness matrices. Compactly, we can write

ϕT
j Mϕk = δjk , ϕT

j Kϕk = ω
2
j δjk , (4.5)

where δjk = 1 for j = k, and zero otherwise. In the above, we also use a so called
mass normalization for the vibration mode, i. e. a scaling ϕj that guarantees that
ϕT
j Mϕj = 1, j = 1, . . . , n. Since the eigenmodes of the system constitute an orthonor-

mal basis spanning ℝn, we can operate the following coordinate transformation,
known asMode Superposition:

u(t) =
n
∑
k=1

ϕkqk(t) = Φq(t), (4.6)

whereΦ = [ϕ1, . . . ,ϕn] is amatrix containing all the eigenmodes andq(t) = [q1(t), . . . ,
qn(t)]T is the vector of modal coordinates. By substituting (4.6) in (4.1) and projecting
ontoΦ, we obtain

ΦTMΦq̈ +ΦTCΦq̇ +ΦTKΦq = ΦTp. (4.7)

It is often the case, in structural dynamics applications, that the damping matrix C is
given as linear combination of K andM,

C = αK + βM, (4.8)

where α and β are user defined coefficients. This is done for two reasons. First, the ac-
tual damping is due to severalmechanisms (joint friction, internal heating, interaction
with surrounding fluid, etc.) which cannot be physically described by a simple viscous
term as in (4.1), but rather by much more complex, nonlinear laws. The term Cu̇(t) is
then designed to provide a velocity dependent linear term in (4.1) by globally repre-
senting the dissipation occurring during motion. Second, the form (4.8), also known
as Rayleigh Damping, allows one to make use of the orthogonality property (4.5), and
yields a decoupled set of equations. By virtue of mode orthogonality and mass nor-
malization of modes, (4.7) becomes

q̈ + Dq̇ + Ω2q = Θ, (4.9)
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where Θ = [ϕT
1 p, . . . ,ϕ

T
np]

T ∈ ℝn is the load participation vector,

Ω2 =
[[[

[

ω2
1

. . .
ω2
n

]]]

]

(4.10)

is a diagonal matrix containing the eigenvalues ω2
j , j = 1, . . . n along its diagonal, and

D = ΦTCΦ = ΦT (αK + βM)Φ =
[[[

[

2ξ1ω1
. . .

2ξnωn

]]]

]

, (4.11)

with the damping ratios ξj found as

ξj =
1
2
(αωj +

β
ωj
). (4.12)

Equation (4.9) indicates that the response of a damped linear system to a given ex-
citation can be computed from a set of n uncoupled single DOF equations. Each of
theseuncoupled equations canbe separately integratedusing for instance the Laplace
transform and convolution products (see [18]). However, the computation of all eigen-
modes for a large dynamical system with several DOFs is computationally expensive
in practice. It is anyway possible to approximate the response of the systemusing only
few modes in (4.6), as explained in the next section.

Modal displacement method
To reduce the computational costs for obtaining the response of a system using mode
superposition, one could only include the modes in (4.6) which effectively participate
in the response. This technique is knownasModalDisplacementMethod (MDM). If this
strategy holds, not only just a few eigenmodes of the system have to be calculated, but
also the number of uncoupled modal equations that need to be solved is significantly
reduced with respect to the size n of the original problem (4.1).

Let us first decompose the applied external load to a spatial distribution vector
and a time-varying function as

p = P0g(t), (4.13)

where P0 ∈ ℝn×p is a matrix containing p spatial distributions of the applied load and
g(t) ∈ ℝp represents their time-varying functions. According to the MDM, the motion
of the system (4.1) can be approximated as a superposition of truncated number of
modes by

u(t) ≈
m
∑
k=1

ϕk q̃k(t) = Φ̃q̃(t), (4.14)
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where Φ̃ ∈ ℝn×m is a matrix containing the truncated set ofm ≪ n kept eigenmodes of
the system, and q̃(t) are the corresponding modal amplitudes. By substituting (4.14)
in (4.1) and projecting onto Φ̃, the reduced set of modal equations reads

̈q̃ + D̃ ̇q̃ + Ω̃2q̃ = Φ̃TP0g(t) = P̃0g(t), (4.15)

where D̃ = Φ̃TDΦ̃ and Ω̃2
= ΦTKΦ̃. Once the reduced system in (4.15) is integrated,

the approximate displacement ũ is recovered as

ũ(t) =
m
∑
k=1

ϕk q̃k(t). (4.16)

The MDM can significantly reduce the computational cost of time integration. Typ-
ically, the eigenmodes that are used for the reduction are those whose frequencies
spans the frequency content of g(t). While representing the spectral content of g(t),
one should also strive for an accurate projection of the spatial distribution of the
load P̃0. If this is not guaranteed, a significant error can arise. To quantify this error,
let us define the residual spatial distribution vector, Pr, as the portion of the load
distribution vector P0, which is neglected after projecting it on the truncation modes
basis. This residual can be obtained:

Pr = P0 − Pt , (4.17)

where

Pt = MΦ̃Φ̃TP0; (4.18)

see [14] for details of the derivation. Note that, as m increases, Φ̃Φ̃T
→ ΦΦT = M−1

and thereforePr → 0, but the required computational effort increases aswell. In order
to keep m low and compensate for the effect of modal truncation onto the load, two
main methods are outlined here.

Mode acceleration correction
The MDM is based on the assumption that the reduction basis spans the whole fre-
quency content of the applied load. Therefore, the modes that are left out would con-
tribute to the solution in a quasi-static manner, i. e. without changing the velocity and
the acceleration of the full response appreciably. The Mode Acceleration Correction
(MAC)method computes the quasi-static effect of truncatedmodes and augments it to
the displacement response obtained from reduced system using the Modal Displace-
ment method. This is done as follows. From (4.1) we can write

Ku = p −Mü − Cu̇. (4.19)
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Since the acceleration of the system is assumed not to be affected bymodal reduction,
we substitute (4.16) into (4.19) and solve it for the displacement, giving

u ≈ ū = K−1p −
m
∑
k=1

ϕk q̈k(t)
ω2
k
−

m
∑
k=1

2ξkϕk q̇k(t)
ωk
. (4.20)

The acceleration of the kth generalized coordinate can be calculated from (4.9) as

q̈k = ϕ
T
kp − ωk

2qk − 2ξkωk q̇k . (4.21)

Equation (4.21) is then introduced to (4.20), and rearranged to introduce the final form
of the displacement:

ū =
m
∑
k=1

ϕkqk + (K
−1 −

m
∑
k=1

ϕkϕ
T
k

ω2
k
)p. (4.22)

The last term in (4.22) represents a quasi-static correction of the displacement using
MAC. In other words, MAC represents a statically complete alternative for the MDM
by augmenting the static response of the deleted modes to the system. Note that the
missingmodes in the truncation are never computed; simply, their static contribution
is added a posteriori.

Modal truncation augmentation
The inaccuracies of the applied load’s spatial distribution, caused by mode displace-
ment projection, can be also improved by adding few correction vectors to the reduc-
tion basis. This technique goes under the name of Modal Truncation Augmentation
(MTA) [15]. Let us first compute the static response of the system due to the residual
spatial forces, which is simply

KX = Pr , (4.23)

where X is a matrix collecting Ritz vectors columnwise. This matrix is then employed
to reduce the mass and stiffness matrices of the system as

M̂ = XTMX, K̂ = XTKX. (4.24)

Here, M̂ and K̂ are the reduced mass and stiffness matrices projected onto the space
spanned by the columns of X. In the next step, an eigenvalue problem of the form

(K̂ − ω2
kM̂)wk = 0 (4.25)

is solved to obtain the eigenvectors wk . Finally, the modal truncation augmentation
vectors are found by projecting the Ritz vectors onto the space spanned by the eigen-
vectors calculated from (4.25). This is simply

Φmt = XW, (4.26)
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whereW = [w1, . . . ,wp] is a matrix containing the eigenvectors obtained from (4.25)
in its columns. The final step is to append themodal truncation augmentation vectors
to the reduction basis of truncated eigenmodes as

Ψ = [Φ̃ Φmt], (4.27)

where Ψ is the enrichment to the basis of mode displacement method. From here,
the MTA procedure follows the MDM, namely, the matrix Ψ can be used instead of
Φ̃ in (4.14) to reduce the size of the system to also take into account the quasi-static
contribution of the truncated mode in the system.

Once the response of the generalized coordinates q is obtained the physical dis-
placement can be retrieved as

û ≈ Ψq̂. (4.28)

Likewise, the physical acceleration is

̈û = Ψ ̈q̂. (4.29)

As can be seen from (4.29), the effect of truncated modes is also reflected on the
acceleration of the system through the basisΨ. This is different from theMACmethod,
which attempts only to correct for the displacement of themodedisplacement reduced
system in a strictly static manner.

4.3 Substructuring and component mode synthesis
Before discussingnonlinear problems, it isworth to brieflymentionhere another prac-
tical strategy for model reduction, namely substructuring. A thorough discussion of
this topic is beyond the scope of this chapter, and the interested reader should re-
fer to [1] for a comprehensive overview. The reduction methods discussed in this con-
tribution tackle the whole high fidelity model monolithically, meaning that only one
reduction basis is constructed to reduce the full solution. It is possible, however, to de-
compose the system into substructures, which communicate with each other through
common interfaces. Then each substructure could be reduced independently from the
others, while preserving the interface DOFs to allow for assembly. This approach was
originated by the seminal work of Hurty in [25] and then later developed by Craig and
Bampton in [12].

The division of the system into substructures is often dictated by the practical
reason of dealing with the detailed design and the analysis of single components in-
dependently. The assembledmodel will then feature common interface DOFs and few,
reduced generalized coordinates relative to each substructure, thus achieving model
order reduction. All techniques aiming at reducing the substructures are based on
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what discussed in the previous section. However, significant differences will arise de-
pending on how the interface compatibility across substructures is enforced, namely
whether a primal or dual assembly is adopted. In the former, common interface de-
grees of freedom are eliminated, and therefore the interface forces are not present in
the assembled system. In the latter case, interface forces appear as Lagrange’s multi-
pliers, and thus compatibility is not a priori satisfied. For primal assembly, the Hurty–
Graig–Bampton method [12, 25] achieves reduction for each substructure with a ba-
sis formed by static modes obtained by applying unit displacements at the interface,
and vibration modes relative to the substructure clamped at the interface. In the case
of dual assembly, it is natural to resort to the method of McNeal [42] and Rubin [56],
which construct a reduction basis using vibrationmodes of the free substructure com-
plemented with so-called attachment modes obtained by applying unit forces at the
interface DOFs.

In case of several substructures featuring interfaceswithmanyDOFs, the resulting
assembled reduced order model could still be of large size. Then a second reduction
could be performed on the interface DOFs, which could be applied before assembly
to each component independently, or on the global interface after assembly. A recent
review of the available methods can be found in [39].

4.4 Geometrically nonlinear structural dynamics

When the displacements about the equilibrium point cannot be considered as small,
nonlinear geometrical effectsmight arise and (4.1) loses its validity. Inparticular, inter-
nal stresses due to deformations are rotatedwith respect to the reference, undeformed
configuration. Typical engineering applications prone to geometric nonlinearities are
thin-walled structures, where low-frequency and bending-dominatedmodes cause in-
plane stretching when the displacements are in the order of the thickness of the struc-
ture. Then the system (4.1) is modified as

Mü(t) + Cu̇(t) + f(u(t)) = p(t), (4.30)

where f : ℝn → ℝn is the function of internal nodal forces. The nonlinearity here
included can take various forms, depending on the kinematic and material model
adopted. For instance, for linear elastic constitutive law and Green–Lagrange strain
tensor, the resulting internal forces are linear, quadratic and cubic in u [43]. The same
holds for the approximate kinematic model due to von Karman, which captures the
behavior of beams and plates undergoing out-of-plane deflections in the order of one
thickness of the structure [54]. Other kinematic descriptions, i. e. obtained by means
of the co-rotational formulation, lead to more complex forms of f(u) [10, 13].
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4.4.1 Galerkin projection

In order to achieve a low order version of (4.30), the generalized displacement vector
u(t) canbe approximatedby a linear combination of vectors, contained in the columns
of the matrix V, as

u(t) ≈ Vq(t) (4.31)

where q(t) are the generalized modal amplitudes, unknowns of the Nonlinear Re-
duced Order Model (NLROM). By substituting (4.31) in equation (4.30), we get

MVq̈(t) + CVq̇(t) + f(Vq(t)) − p(t) = r(t), (4.32)

where r(t) is the residual resulting from the approximation. We can enforce this resid-
ual to be orthogonal to the reduction subspace, by requiring that

VTr = 0. (4.33)

This implies

M̃q̈(t) + C̃q̇(t) + ̃f(Vq(t)) = p̃(t), (4.34)

where

M̃ = VTMV, C̃ = VTCV, p̃(t) = VTp(t) (4.35)

and

̃f(t) = VT f(Vq(t)). (4.36)

The above technique is known as Galerkin projection, according to which the sub-
spaces onwhich the solution is sought andonwhich the residual is projected coincide.
This preserves the symmetry—and thus stability—properties of the structural dynam-
ics equations. In other cases, when symmetry is not featured in the full model, the
right and left subspaces do not have to be equal. This latter procedure goes under the
name of Petrov–Galerkin projection. Note that the reduced operators M̃, C̃ and p̃(t)
can be pre-computed offline before time-integrating the ROM. The nonlinear reduced
force ̃f, however, still requires evaluation over thewholemesh, and hinders any signif-
icant speed-up that may be achieved from the ROM. In short, an accurate and efficient
reduction relies on
1. a good choice of V, and
2. an efficient computation of ̃f.

There is a variety of methods that aim at constructing a proper basis V. In general, V
should fulfill the following, in some sense related, features:
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1. Span the HFM solution subspace. The choice of the reduction basis vectors is usu-
ally based on the expected spectrum of the response with respect to the spectrum
of the excitation. While in the linear case, because of the superposition principle,
this is an easily fulfilled requirement, nonlinear systems pose several challenges
related to the raise of sub and super-harmonics in the response.

2. Can be cheaply computed, in terms of computational time.
3. Can handle different cases. It is for instance desirable to construct a NLROM able

to provide accurate responses for different forcing amplitudes and frequencies, or
different material and geometric parameters.

4.4.1.1 Evaluation of nonlinear terms

For FE applications, the nonlinear forces are evaluated as follows:

̃f(q(t)) =
ne
∑
e=1

VT
e fe(Veq(t)) (4.37)

where fe(ue) ∈ ℝNe is the contribution of the element e for the vector f(u) (Ne being
the number of DOFs for the element e), Ve is the restriction of V to the rows indexed
by the DOFs corresponding to element e, and ne is the total number of elements of the
mesh. Since the reduced nonlinear term ̃f(q(t)) is evaluated in the space of full vari-
ables, the computational cost associated to its evaluation does not scale withm alone.
Indeed, (4.37) shows that this cost scales linearly with the number of elements in the
structure, and can hence be high for large systems. Thus, despite the reduction in di-
mensionality achieved in (4.34), the evaluation of ̃f(q(t)) hinders any fast prediction
of system response using the NLROM. Different strategies are available to overcome
this problem.

4.4.1.2 Exact reduced forces

In the case of polynomial nonlinearities, as the one arising from von Karman kine-
matic model of linear elastic bodies, or solid continuum FE described in a total La-
grangian framework, the ith component of theHFMnonlinear force f(u) canbewritten
as

fi = Kijuj + Bijkujuk + Cijklujukul, i, j, k, l = 1, . . . , n, (4.38)

where Kij, Bijk and Cijkl are constant tensors of second, third and fourth order, respec-
tively. Note that the form (4.38) is never available as written, i. e. the tensors Bijk and
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Cijkl are typically never assembled within a FE model, while Kij is the linear stiffness
matrix. When a reduction u ≈ Vq is inserted in (4.38) and a projection on V is per-
formed, then ̃fi can be expressed exactly by

̃fi = K̃ijuj + B̃ijkqjqk + C̃ijklqjqkql, i, j, k, l = 1, . . . ,m. (4.39)

Once (4.39) is available, no connection to the HFM is needed any longer. For details of
the computation of the reduced tensors K̃ij, B̃ijk and C̃ijkl see for instance [66].

4.4.1.3 Approximate reduced forces

When the nonlinearity is not polynomial, for instance because of a nonlinearmaterial
law, or geometric nonlinearities described by a co-rotational formulation [13], one is
facing essentially two possibilities:
1. assuming a certain form of ̃f(q) and identifying its coefficients, or
2. trying to compute ̃f(q) affordably, but still querying the underlying HFM mesh.

This strategy is addressed by the so-called hyper-reduction methods, which are
discussed, at least to some extent, in Section 4.4.1.4.

For option 1., in the case of NLROMs addressing geometrically nonlinear problems, a
typical choice is

̃fi = K̃
(1)
ij qj + K̃

(2)
ijk qjqk + K̃

(3)
ijklqjqkql, i, j, k, l = 1, 2, . . . ,m, (4.40)

where K̃(1)ij , K̃
(2)
ijk and K̃(3)ijkl are two, three and four dimensional matrices, respectively.

Note the formal equivalence between (4.40) and (4.39). However, (4.40) is simply a
pre-defined, convenient model of something which is essentially unknown. We will
discuss in the following that this form is typically used in non-intrusive methods, in
which the access to element information (which would enable (4.39)) is not possible.
The problem then shifts to designing an efficient identification technique for the coef-
ficients K̃(2)ijk and K̃(3)ijkl, as the reduced stiffness matrix K̃(1)ij is typically available.

4.4.1.4 Hyper-reduction

In the cases described before, the nonlinear term is written directly with respect to
the modal reduced coordinates, in order to avoid any element level function evalua-
tions during the numerical time integration of the NLROM. Another option is possible,
which aims at scaling the computation of the nonlinear reduced terms with the size of
the reduced coordinate vectorm, rather than with n (size of the HFM). This is achiev-
able only if the nonlinear terms are evaluated in a sparse manner, and if the missing
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contributions are in some sense compensated for. Methods pursuing this strategy go
under the name of hyper-reduction, meaning with this that they introduce a further
reduction upon the one arising from projection. Among the various proposals, two
methods (and numerous variants) are gaining popularity, namely the Discrete Empir-
ical Interpolation Method (DEIM) [11] and the Energy Conserving Sampling andWeight-
ing (ECSW) [16]. These two methods are briefly outlined now.

ECSW
In ECSW, the nonlinear projected terms are approximated as

̃f(t) =
ne
∑
e=1

VT
e fe(Veq(t)) ≈ ∑

e∈E
ξeV

T
e fe(Veq(t)), (4.41)

where ξe ∈ ℝ+ are positive weights, and |E| < ne. In other words, (4.41) weights the
element forces of the element set E in order to match the work done by the internal
forces onto the displacements induced by the reduction basisV. This procedure shows
striking similarities with Gauss quadrature, where a defined integral is approximated
by the evaluation of the integrand function at specific points, and weighted with pre-
defined coefficients. In ECSW, the weights are determined by matching the work done
by the nonlinear forces onto the reduction basis for a set of nt sampled training forces.
This translates into the minimization problem

ξ : arg min
̃ξ∈ℝne , ̃ξ≥0
‖G ̃ξ − b‖2, (4.42)

where

G =
[[[

[

g11 . . . g1ne
...

. . .
...

gnt1 . . . gntne

]]]

]

(4.43)

and

gie = V
T
e fe(Veq

(i)), bi = ̃fi(q
(i)) =

ne
∑
e=1

gie, (4.44)

where i = 1, . . . , nt, e = 1, . . . , ne. A sparse solution to (4.42) returns a sparse set of el-
ements E : {e : ξe > 0}. An optimally sparse solution to (4.42) can be obtained by
using a greedy-approach-based algorithm [50]. For the sake of compactness, this al-
gorithm is not reported here. As an illustrative example, Figure 4.1 shows the ECSW
hyper-reduction of the dynamic response of a slightly curved panel, subjected to a by-
harmonic loading (for details, refer to [29]). The ECSWselects only 19 elements out of a
mesh of 400, thus decreasing the evaluation cost of the nonlinear terms significantly.
The resulting speed-up (ratio between the computing time of the full and reduced so-
lution) is about 50 in this example.
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Figure 4.1: (Hyper-)reduction on a simply supported slightly curved panel subject to a time-varying
load; see [29] for the details. On the left, the full response (thick black line) is compared to two
Proper Orthogonal Decomposition (POD) reductions with 5 and 4 modes in the reduction basis, re-
spectively for POD-1 and POD-2, and to the ECSW response. On the right, corresponding elements
and their weights selected by the ECSW. In this case, 19 elements (out of 400) are picked. For a brief
discussion of the POD method, see Section 4.5.4.

DEIM
The idea underlying the DEIM is somewhat different. Here, the nonlinear force f is
approximated as a superposition of few force modes collected into the matrix U ∈
ℝn×m as

f ≈ Uc, (4.45)

where c ∈ ℝm are unknown factors. Then a Boolean matrix P selectsm rows of (4.45),
so that the factors c can be found as

PT f = PTUc⇒ c = (PTU)−1PT f. (4.46)

The force vector f can be then approximated as

f ≈ U(PTU)−1PT f, (4.47)

and therefore the reduced forces are

̃f = VTU(PTU)−1(PT f). (4.48)

Note that, in the above, the term PT f is grouped within brackets, to highlight that
only the components of f picked by P have to be computed. Moreover, the matrix
VTU(PTU)−1 can be pre-computed offline once for all. The issue then shifts to find-
ingU and P. Typically,U is formed by the left vectors of a Single Value Decomposition
(SVD) of sampled training forces, i. e.

UΣWT = F, (4.49)
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where F = [f1, . . . , fnt ] contains columnwise all the sampled nt forces, while P is se-
lected via a greedy procedure; see [11] for details.

While ECSW and DEIM aim both at reducing the evaluation cost of the nonlinear
terms, they differ significantly. ECSW operates directly on elements, while DEIM picks
DOFs. This feature could lead to a decrease of efficiency for DEIM, as the computa-
tion of a specific component of f requires the evaluation of all the elements connected
to such a DOF. A workaround has been proposed in [65], where DEIM is applied on
the unassembled mesh. In this manner, each DOF picked by the algorithm maps to
one element only. To counteract the increased cost of the SVD of training forces (now
unassembled), it is shown that a surrogate quantity per element is sufficient to re-
produce the nonlinear costribution. This variant goes under the name of Surrogate
Unassembled DEIM (SU-DEIM). Note that both methods rely on training data from the
HFM. As such, the hyper-reduced NLROM is optimal with respect to the training set
used for its generation. At the same time, there is no guaranty that the same NLROM
provides an accurate response for a set of parameter values (i. e. load, material prop-
erties, etc.) far from those related to the training set. For this reason, hyper-reduction
is typically employed to generate NLROM which are local with respect to parameter
values. Then there exist techniques that interpolate such NLROM over the domain of
the parameters. This topic is the subject of other contributions in this book. In any
case, we outline the most common strategies in Section 4.6.

4.5 Reduction methods for geometrically nonlinear
systems

As briefly discussed above, geometric nonlinearities induce stretching for bending
and twisting deformations. Think of the beam, pinned at both ends (i. e. the extrem-
ities of the beam cannot move, both axially and transverse) depicted in Figure 4.2. If
it is bent by a pressure load, the bending will cause axial stretching. This effect is not
present when the displacements are assumed infinitesimal. As such, a good reduction
basis should also include vectors able to produce such effects in the reduced solution.
This fact is exemplified when considering the discretized equation of a flat structure,
made of linear elastic and isotropic material, as discussed in the next section.

4.5.1 Static condensation

For thin-walled structures excited in the nonlinear range, one can argue that the dom-
inant behavior is still represented by the low-frequency dynamics spanned by bend-
ing/twisting vibration modes. Also, the eigenfrequency associated to axially domi-
nated modes is typically of much higher frequency, as the axial to bending stiffness
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Figure 4.2: Illustration of the bending–stretching coupling due to geometric nonlinearity for a planar
beam. An out-of-plane displacement w(x, t) causes the beam to stretch, and induce an in-plane
displacement field v(x, t).

ratio scales with h−2, h being the thickness of the component. As such, axial modes
are likely not to be excited dynamically, but rather have a nonlinear contribution to
the overall displacement. In many cases indeed, it is possible to identify slow and fast
DOFs and have an effective reduction of the problem size. As an example, consider
here the discretized FE equations for an Euler–Bernoulli beammodeled with von Kar-
man kinematics. The equations of motion read

[
Mww 0
0 Mvv

] [
ẅ
v̈
]+[

Kww 0
0 Kvv

] [
w
v
]+[2

fw(w, v)
2fv(w,w)

]+[3
fw(w,w,w)

0
] = [

pw
0
] , (4.50)

where v and w denote the in-planes (axial) and the out-of-plane (bending) displace-
ments. The order of the nonlinear forces 2fw, 2fv and 3fw is denoted by the left sub-
script. As is well known, the in-plane and out-of-plane dynamics is not coupled
through the linear operators (Muw = MT

wu = 0, Kvw = KT
wv = 0). Moreover, for many

structural applications, the load is applied only in the transverse direction, i. e.pv = 0.
For slender structures like the beam under consideration, the in-plane dynamics is
characterized by much higher frequencies than the bending dynamics. This allows
one to neglect the inertial term of the in-plane block, and define v as a function ofw
as

v̈ ≈ 0⇒ v = −K−1vv 2fv(w,w). (4.51)

In other words, the in-plane DOFs v are a quadratic function of the out-of-plane gen-
eralized DOFs w. (4.51) is usually referred to as static condensation. When (4.51) is
inserted into (4.50) one obtains

Mwwẅ + Kwww + 2fw(w,K
−1
vv 2fv(w,w)) + 3fw(w,w,w) = pw . (4.52)

Note that the static condensation of v goes into forming a third-order term which
“corrects” the cubic stiffness term 3fw. This physically corresponds to allow the beam
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to properly compensate for the correct in-plane displacements arising from finite dis-
placements. Clearly, this simple procedure is only effective when one could identify
the slow and fast DOFs from the full order model—something possible only in the
case of simple geometries [30]. For more complex thin-walled structural components,
as curved stiffened panels, the dynamics is still characterized by some low-frequency
modes, which statically trigger geometrically nonlinear coupling effects. In these
cases, however, it is in general not possible to detect slow and fast DOFs directly from
the governing discretized equation. More general methods to tackle these cases are
discussed next.

4.5.2 Modal derivatives

Note that equation (4.51) implies a nonlinear (in this case quadratic) constraint be-
tween master (i. e. kept) coordinates w and slave (i. e. condensed) coordinates v. On
the contrary, what proposed in Section 4.4.1 relies on a linear combination of modes
over the entire set of DOFs, without partitioning them into slow and fast, which can be
difficult for complex geometries. As already discussed, the reduction basis V should
span the solution accurately. For the cases we are tackling, this would mean to prop-
erly represent the stretching induced by the out-of-plane dominatedmodes. One could
then think of introducing in V high-frequency axial modes to enrich the subspace.
While straightforward, this strategy presents two issues, namely: (i) ideally, all modes
of the system need to be computed, this is computationally very intensive for large
systems, (ii) there is no criterion to select the proper vibrationmodes to reproduce the
nonlinear coupling effectively. Typically, a reduction basis of large size results from
this approach; see for instance [19].

One alternative way to achieve reduction and properly account for nonlinear
stretching effects is through the use ofModal Derivatives (MDs) in the reduction basis.

MDs were originally proposed in [26] and [27], and more recently in [67]. Essen-
tially, the MDs are modes shapes stemming from a pre-selected basis of vibration
modes, assumed to accurately represent the dynamics of the underlying linearized
system. The MDs reproduce the most important deformation shapes resulting from
finite deflections in the direction of the dominant vibration modes. As such, they
complement the set of vibration modes initially selected in the MDM. At first, MDs
are computed by differentiating the eigenvalue problem (4.4) with respect to modal
amplitudes, as

(K − ω2M)
𝜕ϕi
𝜕qj
+ (
𝜕K
𝜕qj
−
𝜕ω2

𝜕qj
M − 𝜕M
𝜕qj

ω2)ϕi = 0, (4.53)

where θij =
𝜕ϕi
𝜕qj

is the “MD of vibration modeϕi with respect to modeϕj”. The above
definition requires the computation of the derivative of the eigenfrequency. Moreover,
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the system (4.53) is singular and requires special treatment to be solved; see [31] for a
detailed discussion. Regardless of the method adopted to solve (4.53), a high dimen-
sionalmatrix needs to be factorized for eachMD, and this leads to high computational
cost. A computationally cheaper and more theoretically sound definition of MDs re-
sort to a static version of (4.53), where all the mass related contributions are ignored;
see [67] and [69] for details. When the inertial terms are ignored, (4.53) becomes

K
𝜕ϕi
𝜕qj
= −
𝜕K
𝜕qj

ϕi. (4.54)

Note that the coefficient matrix K is already available and therefore each MDs re-
quires only a new right-hand side. MDs computed according to (4.54) are usually re-
ferred to as static MDs (SMDs). It can be proven that SMDs are symmetric, i. e.

𝜕ϕi
𝜕qj
=
𝜕ϕj

𝜕qi
. (4.55)

The first five vibration modes and the corresponding MDs for a flat rectangular plate
are shown in Figures 4.3 and 4.4, taken from [31]. Note that, while the vibrationmodes
(associated with the lowest eigenfrequencies) feature out-of-plane displacements
only, the MDs are in-plane, and represent the displacement field that one has to add
to a given vibration mode to account for the geometric nonlinearity. This separation
is of course due to the flatness of the system. For more complex systems for which it
is not possible to distinguish between in-plane and out-of-plane DOFs, however, the
interpretation ofMDs still holds. For instance, one could look at [62] for an application
of MDs to the case of a shallow arch structure.

Figure 4.3: First three vibration modes of a rectangular plate, simply supported at its short edges
[31]. Note that all modes feature out-of-plane displacement components only.

Once a set ofm dominant vibrationmodes is selected, and the correspondingMDs are
computed, the reduction basis V can be formed as

V = [ϕ1, . . . ,ϕi, . . . ,ϕm, θ11, . . . , θij, . . . , θmm], (4.56)

with i = 1, . . . ,m, j = i, . . . ,m. Due to the symmetry property (4.55), the number of MDs
that can be generated is m(m + 1)/2. Therefore, the size of the reduction basis grows
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Figure 4.4:Modal derivatives corresponding to the first five vibration modes depicted in Figure 4.3
[31]. Due to the flatness of the structure, the MDs feature in-plane displacements only, and bring the
displacement field necessary to account for the geometric nonlinearity.

with m2. However, there are heuristic criteria to select the most relevant MDs and re-
duce the associatedNLROMsize significantly; see [64] and [31]. Note also that the com-
putation of the MDs requires the Hessian of the stiffness matrix in the direction of the
vibration modes. In case the element formulation is accessible, this can be computed
at element level analytically and then assembled. This would then classify the MDs
method as intrusive. However, it is also possible to compute MD through a finite differ-
ence procedure (and therefore non-intrusively) only by using FE assembly level infor-
mation typically made available in commercial codes, as outlined in [61]. As a note,
MDs have been successfully used for flexiblemultibody applications, where nonlinear
elastic deflections are superimposed to large rigid body motions [68, 69].

4.5.3 Dual modes

Another way to account for the transverse-membrane coupling is by appending the so
called Dual Modes (DMs) to the dominant linear vibration modes in the reduction ba-
sis [38]. The main idea of DMs is based on applying a series of nonlinear static forces
to the HFM to obtain related nonlinear displacements. These displacements are then
orthogonalized with respect to the linear vibration modes, to yield shapes that repre-
sent the nonlinear contribution. The most common procedure for computing the DMs
is described in [47, 52] and it is here briefly outlined.
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We start from a set of mass normalized vibration modes VVM = [ϕ1, . . . ,ϕm],
m ≪ n, typically selected by the MDM (see Section 4.2). The procedure then selects
a dominant vibration mode ϕd, where d ∈ ℳ is the index relative to the mode with
the maximum load participation factor, i. e.

d = argmax
i∈ℳ
(|pTϕi|), (4.57)

where p is the external force in (4.30). Then we form a set of scaling factors α =
[α1, . . . , αr], α ∈ ℝr such that the static solutions xi of

f(xi) − αiKϕd = 0 (4.58)

trigger displacements ranging from linear to strongly nonlinear. That is to say,
𝒪(‖f(xi) −Kxi‖) ≪ 𝒪(‖Kxi‖) for small |αi| and𝒪(‖f(xi) −Kxi‖) ≈ 𝒪(‖Kxi‖) for large |αi|,
respectively. Let ℛ = [1, . . . , r] be the set of indices associated to α. It is now possible
to create load sets,

G(j) = diag(α)K(
ϕd +ϕj

2
), j ∈ℳ, (4.59)

and let g(j)i be the ith column of G(j). Now, for each j ∈ℳ:
1. Solve the static problems

f(x(j)i ) − g
(j)
i = 0, i ∈ ℛ, (4.60)

and collect the obtained solutions in the matrix X(j) as

X(j) = [x(j)1 , . . . ,x
(j)
r ]. (4.61)

2. Mass-orthogonalize each column of X(j) to VVM, i. e.

x(j)i⊥ = x
(j)
i −

m
∑
k=1
(ϕT

kMx(j)i )ϕk , i ∈ ℛ, (4.62)

and collect them into X(j)⊥ as

X(j)⊥ = [x
(j)
1⊥ , . . . ,x

(j)
r⊥ ]. (4.63)

This step is performed to exclude the linear contribution from the static solutions
x(j)i .

3. Perform an SVD of X(j)⊥ , and retain the singular vectors associated to the lowest
k < r singular values, as

Ψ̂
(j)
S(j)R(j) = SVD(X(j)), (4.64)

Ψ̄(j) = [ψ̂
(j)
1 , . . . , ψ̂

(j)
k ] | σ1 > σ2 > ⋅ ⋅ ⋅ < σk > σk+1 > ⋅ ⋅ ⋅ σn, (4.65)

where σi is the ith diagonal component of S(j).
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4. Compute the linearized strain energy measures E(j)i of x(j)i associated to each col-
umn of Ψ̄(j) (i. e. to each dual mode candidate), as

E(j)i = ψ̄
(j)T

i Kψ̄(j)i
r
∑
s=1

β(j)
2

s , β(j)s =
ψ̄(j)

T

i x(j)s
ψ̄(j)

T

i ψ̄(j)i
, (4.66)

which are collected in a vector E(j) = [E(j)1 , . . . ,E
(j)
r ].

5. Select the most relevant s < k DMs ψ(j)pl , l = 1, . . . , s as the columns of Ψ̄(j) associ-
ated to the largest entries of E(j), i. e.

E(j)p1 > E
(j)
p2 > ⋅ ⋅ ⋅ > E

(j)
ps , (4.67)

and let V(j)DM = [ψ
(j)
p1 , . . . ,ψ

(j)
ps ].

6. Move to the next load set: j ← j + 1.

The total collection of selected DMs is then VDM = [V
(1)
DM . . . V

(j)
DM . . . V

(m)
DM]. The reduc-

tion basis V is formed as

V = [VVM VDM]. (4.68)

Note that the computation of the DMs is intrinsically non-intrusive, as only nonlinear
static solutions of the HFM are required. Also, the procedure just described is load-
dependent, meaning that the information of the shape of the external load exerted is
needed. Typically, the computation of DMs requires a careful selection of the scaling
factors α to trigger the nonlinearity at the desired value.

4.5.4 Proper orthogonal decomposition

As alternative to model-based techniques, a reduction basis for Galerkin projection
can be from data obtained by sampling HFM solutions. The most popular of such
method is the Proper Orthogonal Decomposition (POD) [2, 35, 36, 41], also known as
Karhunen–Loeve decomposition or principal component analysis (PCA). This topic is
extensively treated in [8, Chapter 2]. Here we just discuss the main idea.

Let us assume to have collected nt time snapshots of a HFM solution in a matrix
U ∈ ℝn×nt ,U := [u1, . . . ,unt ]. The POD seeks for a lower dimensional representation of
U by a basis V ∈ ℝn×m, V = [v1, . . . , vm], m ≪ nt by solving the following least squares
problem:

min
vi∈ℝn

nt
∑
j=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
uj −

m
∑
i=1
(uTj vi)vi

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2
. (4.69)
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It can be shown that the vectors vi are the left singular vectors of U, obtained by the
Singular Value Decomposition (SVD) of U as

U = LSRT , (4.70)

where L = [l1, . . . , lnt ], R = [r1, . . . , rn], LL
T = I ∈ ℝn×n, RRT = I ∈ ℝnt×nt and S is a

rectangularmatrix containing the singular values on thediagonal, and zero otherwise.
For details on algorithms to compute SVD, refer for instance to [23]. These singular
values represent the relative importance of corresponding eigenvectors of L in forming
the basis V. If the singular values Sii, and the corresponding left and right vectors li and
ri are sorted in a decreasing order, i. e. S11 > S22 > ⋅ ⋅ ⋅ , Snt , it can be shown that the error
norm is bounded, as

nt
∑
j=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
uj −

m
∑
i=1
(uTj li)

T li
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2
=

nt
∑

i=m+1
S2ii. (4.71)

In other words, the left singular vectors l1, . . . , lm corresponding to the highest singu-
lar values are the most significant for constructing a reduction basis. In Figure 4.5, we
show an example of a POD analysis for the nonlinear dynamic response of a plate.
Note that, in this context, the left vectors ri represent the (normalized) time evolu-
tion of the corresponding left singular vector. Since an SVD can be performed for any
set of snapshots of any general nonlinear problem, POD is widespread as a versatile
method to form a reduction basis. It should be noted, however, that the POD basis is
optimal only for the set of snapshots which were used to generate it, while there is
no guarantee on the accuracy of the NLROM outside the training data. For this rea-
son, an NLROM based on POD are used in parametric contexts, i. e. when the HFM is
parametrized with respect to material, geometric and load properties. In these cases,
POD bases are obtained for different instances of the parameter set. Then paramet-
ric NLROMs are formed by either building a larger POD basis that spans the solution
within the parameters range of interest [5], or by interpolating local NLROMs online
for the desired value of the parameters which were not previously sampled [3]. In this
framework, the high computational cost associated to the HFM solution required by
the POD are amortized by the large number of queries to the NROM. For further dis-
cussion of this matter, we refer to Section 4.6.

4.5.5 Non-intrusive methods

As alreadymentioned, non-intrusivemodel order reduction approaches are beneficial
when a HFM model is developed by means of a FE model with no access to element
forces and Jacobians required for the analytical computations of reduced nonlinear
internal forces. There are various strategies to non-intrusively develop a nonlinear re-
duced order model. We outline here the most common methods.
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Figure 4.5: Example of a POD applied to a nonlinear structural dynamics case. A flat plate is simply
supported on three sides, and loaded with step pressure, as shown. The HFM linear and nonlinear
response the mid node of the free side of the plate are shown. The marked difference of the two
responses highlight the significance of the nonlinear term. The first three left and right singular
vectors, and the corresponding singular values are shown on the bottom of the figure. Note the re-
semblance of the dominant first left vector l1 and its corresponding time evolution r1, with a random
snapshot of the HFM (top left corner).

4.5.5.1 Enforced displacement

One way to identify the nonlinear stiffness coefficients of a reduced order model is
to prescribe a set of nonlinear static displacements to the HFM and solve for the cor-
responding reaction forces that generate them. This method, which is known as En-
forcedDisplacement (ED) or STiffness EvaluationProcedure (STEP),wasfirst developed
by Muravyov et al. [48] and later extended by Kim et al. [38] for the case of unknown
linear stiffness components. Essentially, ED first collects the reaction forces due to
statically enforced displacements, projects them onto the modal space, and set linear
equations to obtain the nonlinear stiffness coefficients K(2)ijl and K

(3)
ijlp, i, j, l, p = 1, . . . ,m.

Let us consider the reduced nonlinear restoring forces equation (4.40) already in-
troduced in Section 4.4.1.3, which reads

̃fi = K̃
(1)
ij qj + K̃

(2)
ijl qjql + K̃

(3)
ijlpqjqlqp, (4.72)
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with i = 1, 2, . . . ,m, where summation over repeated indices is implied. The second-
order tensor K̃(1)ij can be immediately found to be

K̃(1)ij = V
T
i KVj, (4.73)

where K is the stiffness matrix of the HFM, usually obtainable from any FE program.
Clearly, K̃(1)ij = K̃

(1)
ji .

The ED method sequentially set linear systems of equation whose unknowns are
K(2)ijl and K(3)ijlp. The first step consists of choosing a modal amplitude ±qr , r = 1, . . . ,m
and assign it to the reduced static problem as

K̃(1)ir qr + K̃
(2)
irr q

2
r + K̃
(3)
irrrq

3
r = p̃
(r+)
i , (4.74a)

−K̃(1)ir qr + K̃
(2)
irr q

2
r − K̃
(3)
irrrq

3
r = p̃
(r−)
i , (4.74b)

with i = 1, . . . ,m. The right-hand sides p̃(r+)i and p̃(r−)i are given by

p̃(r+)i = V
T
i f(u
(r+)), (4.75)

p̃(r+)i = V
T
i f(u
(r−)), (4.76)

where u(r+) = Vrqr and u(r−) = −Vrqr . In words, u(r+) and u(r−) are imposed statically to
the HFM, and the resulting reaction forces are projected onto Vi.

Likewise, we can select pairs of modal amplitudes (qr , qs), (−qr , −qs) and (qr , −qs)
and impose it to the reduced static problem as

K̃(1)ir qr + K̃
(1)
is qs + K̃

(2)
irr q

2
r + K̃
(2)
irs qrqs + K̃

(2)
issq

2
s

+ K̃(3)irrrq
3
r + q

2
rqs + 3K̃

(3)
irssqrq

2
s + K̃
(3)
isssq

3
s = p̃
(rs++)
i (4.77a)

− K̃(1)ir qr − K̃
(1)
is qs + K̃

(2)
irr q

2
r + K̃
(2)
irs qrqs + K̃

(2)
issq

2
s

− K̃(3)irrrq
3
r − K̃
(3)
irrsq

2
rqs − K̃

(3)
irssqrq

2
s − K̃
(3)
isssq

3
s = p̃
(rs−−)
i (4.77b)

K̃(1)ir qr − K̃
(1)
is qs + K̃

(2)
irr q

2
r − K̃
(2)
irs qrqs + K̃

(2)
issq

2
s

+ K̃(3)irrrq
3
r − K̃
(3)
irrsq

2
rqs + K̃

(3)
irssqrq

2
s − K̃
(3)
isssq

3
s = p̃
(rs+−)
i , (4.77c)

where we restrict the case to s ≥ r. The right-hand sides of (4.77a)–(4.77c) are given by

p̃(rs++)i = VT
i f(u
(rs++)), (4.78a)

p̃(rs−−)i = VT
i f(u
(rs−−)), (4.78b)

p̃(rs+−)i = VT
i f(u
(rs+−)), (4.78c)

where, analogously to (4.75), we statically impose to the HFM u(rs++) = Vrqr + Vsqs,
u(rs−−) = −Vrqr − Vsqs and u(rs+−) = Vrqr − Vsqs. Lastly, we need to compute K̃(3)irsp,
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r ̸= s ̸= p. Similarly to the previous steps, we determine a triple (qr , qs, qp) and insert it
to the reduced static problem. This results in a single equation for K̃(3)irsp, as

K̃(1)ir qr + K̃
(1)
is qs + K̃

(1)
ip qp + K̃

(2)
irr q

2
r + K̃
(2)
issq

2
r + K̃
(2)
ippq

2
p

+ K̃(2)irs qrqs + K̃
(2)
irpqrqp + K̃

(2)
ispqsqp + K̃

(3)
irrrq

3
r + K̃
(3)
isssq

3
s + K̃
(3)
ipppq

3
p

+ K̃(3)irrsq
2
rqs + K̃

(3)
irrpq

2
rqp + K̃

(3)
irssqrq

2
s + K̃
(3)
irppqrq

2
p + K̃
(3)
ipssqpq

2
s + K̃
(3)
isppqsq

2
p

+ K̃(3)irspqrqsqp = p̃
(rsp)
i , (4.79)

with p ≥ s ≥ r, and

p̃(rsp)i = V
T
i f(u
(rsp)), (4.80)

where u(rsp) = Vrqr +Vsqs +Vpqp. Note that the restriction s > r in (4.77a)–(4.77c) and
p > s > r in (4.79) is in fact setting K̃(2)irs = 0 ∀s < r and K̃

(2)
irsp = 0 ∀p < s < r. This is done

tominimize the number of coefficientsmultiplying the same combinations of qrqs and
qrqsqp, ∀r, s, p = 1, . . . ,m. Alternatively, one could set symmetry properties as

K(2)ijl = K
(2)
ilj (4.81)

and

K(3)ijlp = K
(3)
ijpl = K

(3)
iljp = K

(3)
ilpj = K

(3)
ipjl = K

(3)
iplj, (4.82)

and modify (4.77a)–(4.77c) and (4.79) accordingly. The total number NED of the re-
quired nonlinear static evaluations to fully construct the nonlinear reduced restoring
forces is

NED = 2m + 3mC2 + mC3, (4.83)

where

mCr =
m!
(m − r)! r!

. (4.84)

Since this number is 𝒪(m3), the computational cost associated to ED grows quickly
with the number of retained modes and severely hinders the applicability of the
method.

4.5.5.2 Enhanced enforced displacement

To reduce the computational costs of the EDmethod, Perez et al. [52] proposed away to
identify theNLROMcoefficients in the case that the tangent stiffnessmatrix is released
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by the FE program at hand. We refer to this method as Enhanced Enforced Displace-
ments (EED). The tangent stiffness matrixKt(u) is the Jacobian of the nonlinear forces
f with respect to the nodal displacements, as

Kt(u) = 𝜕f
𝜕u
. (4.85)

Let us assume thatKt(u) is available. Then the reduced tangent stiffnessmatrix K̃t can
be obtained from Kt as

K̃t = VTKt(Vq)V, (4.86)

whose ir component is given by

K̃t
ir = V

T
i K

t(Vq)Vr , (4.87)

and we pose u = Vq. The reduced tangent stiffness matrix K̃t is the Jacobian of the
reduced nonlinear internal force vector, ̃f, namely

K̃t(q) =
[[[[

[

𝜕 ̃f1
𝜕q1
⋅ ⋅ ⋅ 𝜕

̃f1
𝜕qm

...
. . .

...
𝜕 ̃fm
𝜕q1
⋅ ⋅ ⋅ 𝜕

̃fm
𝜕qm

]]]]

]

. (4.88)

Then, following from (4.40), K̃ir reads

K̃t
ir =
𝜕 ̃fi
𝜕qr
=
𝜕
𝜕qr
[K̃(1)ij qj + K̃

(2)
ijl qjql + K̃

(3)
ijlpqjqlqp]

= K̃(1)ir + [K̃
(2)
ijr + K̃

(2)
irj ]qj + [K̃

(3)
ijlr + K̃

(3)
ijrl + K̃

(3)
irjl ]qjql. (4.89)

The EED method equates (4.89) and (4.87) for as many combinations of modal am-
plitudes as those required to solve for the reduced stiffness coefficients K̃(2)irj and K̃

(3)
ijrl ,

i, j, r, l = 1, . . . ,m. Similarly to the ED method, first two static displacement vectors for
each columnof the reduction basis are constructed and inserted in (4.86).We can then
set two equations as

K̃t(a)
ir = K̃

(1)
ir + [K̃

(2)
ijr + K̃

(2)
irj ]q
(a)
j + [K̃

(3)
ijjr + K̃

(3)
ijrj + K̃

(3)
irjj ](q
(a)
j )

2
, a = 1, 2. (4.90)

Since the elements k̃(2)ijl and k̃
(3)
ijlp were assumed to be zero unless p ≥ l ≥ j, (4.90) splits

into three different cases, namely

K̃t(a)
ir = K̃

(1)
ir + K̃

(2)
ijr q
(a)
j + K̃

(3)
ijjr (q
(a)
j )

2
, if j < r, (4.91a)

K̃t(a)
ir = K̃

(1)
ir + 2K̃

(2)
irr q
(a)
j + 3K̃

(3)
irrr(q
(a)
j )

2
, if j = r, (4.91b)
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K̃t(a)
ir = K̃

(1)
ir + K̃

(2)
irj q
(a)
j + K̃

(3)
irjj (q
(a)
j )

2
, if j > r. (4.91c)

The solutions of (4.90) and (4.91a)–(4.91c) yield the coefficients K̃(2)ijr , K̃
(3)
ijjr , K̃
(3)
ijrr, and

K̃(3)ijjj , j, r = 1, . . . ,m. At this point, the only set of coefficients to be identified is K̃(3)ijlr , j ̸=
l ̸= r, j, l, r = 1, . . . ,m. To calculate these coefficients one can use displacement vectors
which are formed from combinations of two different columns of V by

u = Vjqj + Vlql, j, l = 1, . . . ,m, (4.92)

where qj and ql are prescribed. These displacements are again inserted into (4.86) to
obtain their corresponding tangent stiffness matrices. The irth component of the as-
sociated reduced tangent stiffness matrix is then given by

K̃t
ir = K̃

(1)
ir + [K̃

(2)
ijr qj + K̃

(2)
ilr ql] + [K̃

(3)
ijlrqjql + K̃

(3)
ijjrq

2
j + K̃
(3)
illrq

2
l ]. (4.93)

The only unknown in (4.93) is K̃(3)ijlr , which can be foundwithout needing combinations
of three columns of V as for the case of the ED method. As a result, EED is computa-
tionally more efficient than ED. In fact, the total number of required static solutions
NEED is then

NEED = 2m + mC2, (4.94)

which is 𝒪(m2), as opposed to 𝒪(m3) for the ED method. Note that the amplitudes
qi, i = 1, . . . ,m are user defined. Typically, they are selected such that the resulting dis-
placements generate nonlinear forces of the desired magnitude. For shell-like struc-
tures, it is usually suggested to select qi, i = 1, . . . ,m in the order of one thickness of
the structure for transverse-dominated modes and 0.1 to 0.01 of that for membrane-
dominated ones. A flowchart of the ED and EED method is shown in Figure 4.6.

4.5.5.3 Implicit condensation

In order to identify the coefficients of (4.40) via either the ED or the EED method,
the reduction basis V must contain vibration modes and corresponding membrane-
dominated vectors (e. g. MDs, DMs or manually selected high-frequency VMs). This
increases the size of the basis significantly and impacts the efficiency of the method.
However, it is possible to avoid the use of membrane-dominated modes by using the
method of Implicit Condensation (IC) or Applied Forcemethod, developed by McEwan
et al. [45, 46]. Let p(s) be a generic load obtained by combining one, two and three
columns of V with chosen scaling factors q̄i, q̄j, q̄k as

p(s) = K(Vi(±q̄i) + Vj(±q̄j) + Vk(±q̄k)), i, j, k = 0, 1, 2, . . . ,m, i ̸= j ̸= k, (4.95)
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Figure 4.6: Flowchart of comparison between ED and EED steps to identify nonlinear stiffness coeffi-
cients. The EED method manages to identify all the nonlinear stiffness coefficients in two steps only,
because of the availability of the full order tangent stiffness matrix [34].

where the index 0 implies that the corresponding term is ignored, i. e.

K(V0q̄0 + V1q̄1 + V2q̄2) = K(V1q̄1 + V2q̄2).

One can show that the total number of cases NIC that can be generated from (4.95) is

NIC = 2m + 4mC2 + 8mC3, (4.96)

and therefore s = 1, . . . ,NIC. The scaling factors q̄i, i = 1, . . . ,m should be chosen such
that the resulting displacements are in the nonlinear regime. Gordon and Hollkamp
[20] propose that a scaling factor q̄i for (4.95) should generate a force that induces a
desired maximum displacementWimax

as

q̄i =
Wimax

Vimax

ω2
i , (4.97)

where Vimax
denotes the component of Vi mode which has the maximum out-of-plane

displacement, and ωi is the eigenfrequency of mode Vi. The maximum desired dis-
placement Wimax

, is usually chosen in the order of the thickness of the structure to
properly exercise the nonlinearity.
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Each load p(s) is applied to the static HFM as

f(u(s)) = p(s). (4.98)

The resulting displacement u(s) is then expressed in the subspace spanned by V
through the modal amplitudes q(s) as

u(s) = Vq(s) + û(s) ⇒ q(s) = VTMu(s), (4.99)

where û(s) is the remainder and it is assumed that VTMû(s) = 0. Likewise, p(s) is pro-
jected on V to give the modal loads p̃(s) as

p̃(s) = VTp(s). (4.100)

Then each pair (p̃(s), q(s)) is inserted in the static reduced order problem to obtain

K̃(2)ijl q
(s)
j q(s)l + K̃

(3)
ijlpq
(s)
j q(s)l q(s)p = p̃

(s)
i − ω

2
i q
(s)
i , i = 1, 2, . . . ,m, (4.101)

where it is further assumed that the symmetry properties (4.81) and (4.82) hold. All
equations resulting from (4.101) can be written in matrix form as

GnlKnl = Pnl, (4.102)

where

GT
nl =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

(q(1)1 )
2 . . . (q(NIC)

1 )
2

...
. . .

...

q(1)i q(1)j
. . . q(NIC)

i q(NIC)
j

...
. . .

...
(q(1)m )

2 . . . (q(NIC)
m )

2

(q(1)1 )
3 . . . (q(NIC)

1 )
3

...
. . .

...

q(1)i q(1)j q(1)k
. . . q(NIC)

i q(NIC)
j q(NIC)

k
...

. . .
...

(q(1)m )
3 . . . (q(NIC)

m )
3

]]]]]]]]]]]]]]]]]]]]]]]]]]

]

, (4.103)

KT
nl =
[[[

[

K̃(2)111 . . . K̃(2)1ij . . . K̃(2)1mm K̃(3)1111 . . . K̃
(3)
1ijk . . . K̃(3)1mmm

...
...

...
...

...
...

...
...

...
K̃(2)m11 . . . K̃(2)mij . . . K̃(2)mmm K̃(3)m111 . . . K̃

(3)
mijk . . . K̃(3)mmmm

]]]

]

, (4.104)



4 Modal methods | 125

and

Pnl =
[[[

[

p̃(1)1 − ω
2
1q
(1)
1 . . . p̃(NIC)

1 − ω
2
1q
(NIC)
1

...
. . .

...
p̃(1)m − ω

2
mq
(1)
1 . . . p̃(NIC)

m − ω2
mq
(NIC)
1

]]]

]

. (4.105)

The system of equations (4.102) can be solved by means of any regression technique,
for instance the least square method.

The main advantage of the IC method is the fact that the resulting NROM is based
on vibration modes only, and thus is very compact as compared to the ED and EED
method, which require also modes (e. g. DMs or MDs,) that represent the membranal
behavior due to the large displacements. In the case of ED and EED is then possible
to directly retrieve a full displacement field, and from it compute strain and stresses.
This feature is crucial when the final aim of the analysis is to perform stress/strain
investigations (for instance for fatigue life estimation). On the contrary, the ICmethod
does not offer this possibility, as membranal behavior is not present in the basis.

To overcome this issue, Hollkamp and Gordon [24] developed a post-processing
expansion procedure,which approximate the response of theseDOFswithout increas-
ing the number of required static solutions in IC. In this method, the total displace-
ment vector u(s) relative to load case s can be written as

u(s) = Vq(s) + û(s), (4.106)

where u(s) is the solution of (4.98), and û(s) is the correction vector for in-plane DOFs,
to be found by the expansion procedure. We can express û(s) in a modal fashion as

û(s) = V̂q̂(s) (4.107)

where V̂ is the transformation matrix and q̂(s) is the vector of modal membrane coor-
dinates. The whole displacement set for s = 1, . . . ,NIC can be compactly written as

U = VQ + V̂Q̂, (4.108)

whereU = [u(1), . . . ,u(NIC)],Q = [q(1), . . . ,q(NIC)]while V̂ and Q̂ are yet to be determined.
It is assumed that V̂TMV = 0, that is to say, the in-plane displacement to be retrieved
lies in a subspace which isM-orthogonal to V. Therefore,

Q = VTMU. (4.109)

It is then assumed that each column q̂(s) of Q̂ is given by

q̂(s) = [(q(s)1 )
2
, q(s)1 q(s)2 , . . . , q

(s)
i q(s)j , . . . (q

(s)
m )

2
]
T
; (4.110)

see [49] for more details. Then, by virtue of (4.110) and (4.109), we finally obtain

V̂ = (I − VVTM)UQ̂+, (4.111)

where Q̂+ is the pseudo-inverse of Q̂ and V̂ ∈ ℝn×
m(m+1)

2 .
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In practice, the NLROM obtained by IC is integrated in time and the vectors of
modal coordinates q at time samples t1, t2, . . . , tnT are collected in QT as

QT = [q(t1), . . . ,q(tnt )]. (4.112)

The total displacement UT = [u(t1), . . . ,u(tnt )] is retrieved by

UT = VQT + V̂Q̂T , (4.113)

where the column q̂(ti) of Q̂T relative to time step ti is given by

q̂(ti) = [(q1(ti))
2
, q1(ti)q2(ti), . . . , qi(ti)qj(ti), . . . (qm(ti))

2
]. (4.114)

A comparison of the number of evaluations required by ED, EED and IC is shown in
Figure 4.7.

Figure 4.7: Number of required nonlinear static solution for ED, EED and IC versus the number of
modes in the reduction basis [34].

4.5.6 Nonlinear normal modes

As briefly discussed, the presence of nonlinearity may alter the stiffness of the system
(for geometric nonlinearities), the damping forces (i. e. with friction), or both. In fact,
it was shown that linear reduction techniques based on vibration modes only are not
sufficient to capture the nonlinear behavior, and therefore other vectors (e. g. MDs or
DMs) have to be added to the reduction basis. One could also wonder how a certain
eigensolution (i. e. a vibration mode oscillating at its own eigenfrequency) changes
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when the displacements trigger the nonlinearity. For conservative autonomous sys-
tems (i. e. systems with no damping and no external excitation), there still exist peri-
odic solutions, usually calledNonlinear Normal Modes (NNMs), which can be thought
of as the nonlinear equivalent of a vibration mode for a linear system. This concept
was first defined by Rosenberg [55] as “any vibration-in-unison of a conservative non-
linear system, i. e. where the coordinates of the system pass through the equilibrium
and reach their extrema simultaneously”, and later generalized to include any non-
necessarily synchronous periodic motion [37]. The latter definition allows the system
to exhibit internal resonance, i. e. the coexistence of two ormoremodes which feature
periodic motions at periods at commensurate ratios. Pioneering work on NNMs was
done by Shaw and Pierre [59, 60].

NNMsare instrumental in assessing the impact of the nonlinearity on the dynamic
response. In [40], NNMs are proposed as tool to assess the quality of a NLROM. In this
work, it is in fact suggested to directly compare NNMs computed with NLROMs, as the
NNMs of the HFM are too costly to be computed for large systems. Usually, the effect
of a NNM is summarized by means of a Frequency–Energy Plot (FEP), where the fre-
quency of the periodic motion is plotted against the energy associated to the motion
itself, for instance resulting from initial conditions. Note that, in such representation,
the actual shape of the motion throughout the period is hidden. In Figure 4.8 (taken
from [62]), the NNM associated to the first vibration mode of a shallow arch pinned at
both ends is shown. The response stays linear (i. e. of constant frequency) for a wide
range of energy. Then the frequency decreases due to a softening1 behavior, followed
by an internal resonance tongue due to the interactionwith the NNM associated to the
third vibration mode. At this point, in fact, the two NNMs evolve with a period ratio
of 4:1, enabling the existence of a periodic solution at which both contributions can
coexist. The motion triggers then a hardening behavior at higher energy. A FEP as the
one shown in Figure 4.8 is computationally expensive to construct. In fact, every point
of the FEP requires the knowledge of a periodic motion for a given energy level. The
frequency and the initial conditions of such motion are not known a priori. Numeri-
cal techniques for solving this problem are discussed in detail in [51] and [28]. Here,
is it worth to highlight the benefits of resorting to NLROMs when computing NNMs.
In [62], for instance, MDs-based ROMs were assessed for the computation of NNMs of
FE-discretized planar beam structures. In this work, the shooting method was used
to obtain periodic solutions of the autonomous conservative systems of interest. This
method essentially integrates the system in time for trial initial conditions (i. e. initial
deformed shape imposed to the structure) and a trial period, and then correct themvia

1 The term “softening” (“hardening”) usually refers to a decrease (increase) of the slope of the restor-
ing nonlinear forces. For instance, a flat beam, cantilevered at both ends and loaded by a transverse
force at its mid-span features a hardening stiffness: the bending associated to finite displacements in-
duces stretching in the cross-section,which in turn generates an additional restoring bendingmoment
to that due to linear effects.
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Figure 4.8: First NNM of a shallow arch. Note that the NNM first exhibits softening (i. e. decrease in
frequency due to a decrease in stiffness), followed by an internal resonance (4:1 interaction with
the third NNM), and then hardening. The FEP computed for the full model (blue solid line), a ROM
containing V = [ϕ1], a ROM containing V = [ϕ1 ϕ3], and a ROM including V = [ϕ1 ϕ3 θ11 θ13 θ33].
Plots (a) to (d) show the spatial shape of the response (solid line) for the corresponding points on
the FEP. The undeformed configuration is shown with dashed line [62].

Newton–Raphson iterations until a periodicity condition is met with pre-defined ac-
curacy. Once a solution is obtained (i. e. a point of the FEP), continuation is employed
to estimate the new guess at higher energy level. It becomes clear then that each point
of an FEP requires multiple time integration of the system, and therefore, the tracing
of a FEP for eachmode of interest can be a daunting task. In [62], it was demonstrated
that MD-based NLROMs capture well the nonlinear behavior and internal resonances
by only including the vibration modes—and corresponding MDs, which are expected
to interact. This is achieved at a smaller computational cost as the one required for
the HFM. Moreover, a NLROM so constructed filters a physically meaningless contri-
bution of high-frequency dynamics, which is only due to the resolution of the spatial
discretization. In doing so, the convergence of numerical implicit time integration is
significantly improved.

4.5.7 Nonlinear manifolds for reduction

Up to now, we discussed techniques that approximate the HFM solution as a linear
combination ofmodes spanning a low-dimensional subspace. This is not the only pos-
sibility, as many dynamical systems evolute onmanifolds, rather than subspaces [44].
This is typically the case for systems characterized by slow and fast dynamics. An ex-
ample of this is static condensation (see Section 4.5.1), where the fast dynamics of the
in-plane motion is statically enslaved to the slow dynamics of the bending deforma-
tions. The resultingmappingbetween fast and slowdynamics is in this case quadratic,
see equation (4.51). Once a condensed system is obtained through slow–fast decom-
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position, a further reduction is of course possible. One could apply the techniques dis-
cussed in Sections 4.5.2, 4.5.3 and 4.5.4 (i. e. based on linear subspaces for reduction)
or seek for a manifold on which the solution is embedded. Such a manifold passes
through the equilibrium point and is there tangent to the corresponding linear mode.
Recently, the concept of Spectral Submanifold (SSM) was introduced by Haller and
Ponsioen in [21]. The SSM was introduced as an invariant manifold asymptotic to a
NNM, and it is the smoothest nonlinear continuation of a modal subspace emanating
from the equilibrium. A discussion on the potential of SSM formodel reduction can be
found in [53], where SSMs are computed for a linear FE-discretized beamwith a cubic
nonlinear spring acting at the tip. An interesting application of slow–fast decomposi-
tion combined with SSM reduction is presented in [30] for the case of a geometrically
nonlinear FE discretized beam.

An approximate method to construct a manifold for reduction, related to the MDs
method, is presented in [31] and then generalized in [58]. There, it is postulated that
the HFM displacements u(t) are mapped to the modal coordinates q(t), i. e. q ∈ ℝm →
Γ(q) ∈ ℝn as

u(t) ≈ Γ(q(t)) := Φ ⋅ q(t) + 1
2
(Ω ⋅ q(t) ⋅ q(t)), (4.115)

whereΦ ∈ ℝn×m contains selected vibration modes, and Ω ∈ ℝn×m×m is a third-order
tensor constructedwith theMDs stemming fromΦ. The resultingmanifold is therefore
quadratic in q, hence the naming Quadratic Manifold (QM). The concept is illustrated
in Figure 4.9, for the case of a cantilevered plate. Instead of constituting additional
DOFs for the NLROM, the MDs provide the curvature of the manifold. The NLROM is
then obtained by inserting (4.115) into (4.30) and projecting onto the tangentmanifold
PΓ(q), obtained:

PΓ(q) =
𝜕Γ(q)
𝜕q
. (4.116)

Again, the interested reader is referred to [31] for details. The method was tested on
a fairly large FE model of a wing subject to representative gust load. This approach
outperformed a POD reduction with the same number of modes (5 vibration modes
vs 5 POD modes), in terms of accuracy. It is worth mentioning that the QM technique
needs to be equippedwith a compression technique of the resultingnonlinear reduced
terms. An exact tensorial form as outlined in Section 4.4.1.2 is cumbersome, as the re-
sulting nonlinear terms would contain tensors up to seventh order. Likely, the higher
order terms are not relevant for accuracy, and yet require the most intensive compu-
tational and storage effort. A possible strategy could be therefore to neglect some of
the highest terms. Another possibility is hyper-reduction. It was shown in [32] that
ECSW can be extended to the case of nonlinear manifolds for reduction. In this work,
the same example tackled in [31] is considered, and better speed-ups than traditional,
linear basis POD reduction are obtained, as less elements are picked by the algorithm.
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Figure 4.9: Illustrative picture of a quadratic manifold for reduction of a cantilevered plate. The man-
ifold is a function of the amplitudes of the first two vibration modes. The three MDs provide the cur-
vature of the manifold.

Arguably, this is due to the fact that the QMmore compactly represents the physics of
the problem than the POD basis.

Still, if hyper-reduction is the way to go for reduction with nonlinear manifolds,
one would desire to form the training sets without recurring to expensive HFM simu-
lations. Attempts in this sense are made by [57] and [29]. In the latter of these contri-
butions, the QM is in fact used to “lift” inexpensive linear modal solutions obtained
as described in Section 4.2. The obtained displacements are then used to generate
nonlinear forces to train the ECSW selection. The method proved very effective for
geometrically nonlinear problems, for which the QM provides a good description of
the physical behavior. The NLROM, though, is still obtained by projection on linear
subspaces containing vibration modes and modal derivatives. The extension of this
technique to QM-based reduction is yet to be tried, but it is foreseen not to pose major
hurdles.

4.6 Overview on parametric nonlinear ROMs

In the previous sections, projection-based NLROMs strategies to select a suitable ba-
sis and to evaluate the nonlinear system of equations have been discussed. As it has
already beenpointed out,most of the showcasedmethods do provide very high speed-
ups in the online phase, but usually they require some kind of overhead costs involv-
ing offline training and/or pre-computations. This often heavily reduces the effective
gain provided by the ROM. Indeed, calling for convenience ton and toff the online and
offline times of a ROM and tf the time of a full order analysis, the effective speed-up
factor can be computed as SP = (ton+ toff)/tf . It is clear that, if the same reducedmodel
is used for multiple (sayM) queries requiring different analyses, this factor increases
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to SPM = (Mton + toff)/(Mtf ). In other words, the offline costs become less important
as the number of evaluations increases. Parametric ROMs (PROMs) are then a natural
extension of this concept, as the number M would include the sum of the number of
queries for each combination of parameters, making the reduction even more prof-
itable.

For linear systems parametric reduced order modeling (PMOR) techniques are
well developed. Loosely speaking, the main challenges in PMOR reside in (i) the con-
struction of the model itself, (ii) identification of a projection basis that can be valid
over a space of parameters, and (iii) selection of an interpolation and sampling strate-
gies. The model can be constructed following a local approach (e. g. building several
ROMs for different parameters and interpolating the bases/ROM/solutions) or a global
approach, where the full order system is parametrized and a single basis is selected.
For the latter case, againmany options are available.Moment-matching (discussed ex-
tensively in [7, Chapter 3]) is a popular strategy, where the basis is constructed requir-
ing the nth derivatives (moments) of the reduced and full order systems with respect
to the parameters to match [17]. Another approach is to construct the basis repeatedly
applying POD to a set of simulations selected through some kind of parameter-space
sampling procedures (e. g. Latin Hyper-cube, Smolyak sparse grid). For an extensive
survey of existing methods the reader is referred to [6].

On the other hand, projection-based PMORs for nonlinear systems feature amuch
lessmature theory, and constitute a broad and rapidly evolving area of research.Many
of themethods available in the literature try to carry over concepts from linear analysis
to the nonlinear case. In this sense, POD represents themost widely exploitedmethod
due to its versatility and properties, such as error bound and optimality of the reduc-
tion basis it provides. In [4] for instance, a PROMwas developed for contact problems
by performing a number of full order simulations sampling the parameter space, then
taking the POD of each and clustering all the resulting bases. Using a computation-
ally cheap error estimator, this process is repeated in order to refine the approxima-
tion. A lot of other strategies involving interpolation of such full order simulations
and/or POD bases also exist. In [70] the data coming from the full order simulations
is manipulated using a two-level radial basis function interpolation method to obtain
hyper-surfaces in the parameters, while in [22] the interpolation step is carried out us-
ing neural networks to compute the interpolation coefficients. All the aforementioned
strategies belong to the family of (non-intrusive) data-driven methods, and they all
demand a huge upfront cost to be paid to develop the ROM itself. Nevertheless, these
approaches might probably be the only viable ways to deal with complex problems
such as the ones in fluid-mechanics, which often provides the benchmarks for these
algorithms.

In the context of geometric nonlinearities in solid mechanics, however, we
showed that under some circumstances the nonlinear internal forces take specific
shapes (e. g. third-order polynomials), and thus some information from the model
can be exploited for the construction of the reduction basis (e. g. MDs) without the
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need of full simulations. In [43] for instance, such information is used to construct
a PROM to describe shape defects of a structure in a parametric fashion and relying
solely on the model of the system. Even if probably model-driven approaches seem to
go against the trend of a consistent share of the scientific community that gradually,
but steadily, moves towards the machine-learning area, we deem such strategies still
worth of investigation not only for the possible advantages over other techniques, but
also for their engineering value in terms of interpretability and ease of use.

The parametrization could also be intended as time-dependent, as done for in-
stance in [9] and [63] for the reduction of models of meshing gears. Here, a reduction
basis which is used to reproduce the contact behavior between gears teeth is made
function of a time-dependent load position parameter, and appended to a constant
basis that spans the global behavior of the system. The local, parametrizedmodes can
be either residual attachment modes [63], or static solutions at specific configuration
[9]. The time variation of the reduction basis is then generating additional, state de-
pendent terms in the ROM, which are shown to be important for stress recovery. In all
this contributions, the time variation of the parameter is known a priori. Likewise, a
prescribed time-dependent law could parameterize the equilibrium of a given system.
This is the case of thermo-mechanical systems,where the temperature field is typically
determined buy solving the heat equation, and then applied to the mechanical prob-
lem. Typically, there is a large characteristic time scale difference between the thermal
and mechanical problem, being the latter characterized by much faster dynamics. In
this case indeed, the slow variation of the applied thermal field justifies a parametric
equilibrium and a parametric reduction basis, which can be conveniently interpolated
online; see [33]. For the same reason, state dependent terms that are otherwise present
(see again [9, 63]) can be neglected.

4.7 Conclusions

We briefly overviewed the most popular methods for model order reduction of linear
and geometrical nonlinear mechanical systems. The approaches here considered are
system-driven, meaningwith this that the reduced ordermodel is built from quantities
that can be derived directly from the discretized equations governing the high fidelity
model. This is in contrast with data-driven techniques, which in fact build the reduced
order model from solutions of the high fidelity model. The main appeal of system-
driven method is their independence from computationally expensive solutions and
their exploitation of the system characteristics.

In structural dynamics applications, themodal displacement method has become
a standard already for decades. The full order solution is approximated by a combi-
nation of a few carefully selected eigenmodes, which are also used to span a space
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where the system is projected. The resulting reduced order model consists of an un-
coupled system of modal equations which can be easily solved. Enhancements to the
modal displacement method aim at retrieving the contribution of discarded vectors
by quasi-static corrections.

The same strategy, namelymodal expansionandprojection, canbe employedalso
for nonlinear systems. Here, we restricted to systems with geometric nonlinearities,
which are typically modeled by smooth nonlinear functions of displacements. Sys-
tems affected by geometric nonlinearities usually feature a slow dominant behavior,
which is complemented by a fast dynamics. The slow dynamics—typically featuring
out-of-planemotion for the case of thin-walled structures—can still be developed by a
set of dominant vibrationmodes selected by themodal displacementmethod. The fast
dynamics is usually enslaved to the slow one, as it is given by the bending–stretching
coupling due to the geometric nonlinearity. In fact, for flat systemswhere the in-plane
and out-of-plane dynamics can be clearly separated, a nonlinear mapping between
out-of-plane (slow) and in-plane (fast) dynamics- usually referred to as static conden-
sation can be established by neglecting the in-plane inertial terms.

For more geometrically complex systems, this separation of the degrees of free-
dom might be hard or impossible to perform. In this case, one can of course rely on
expansion and projection onto a subspace that is able to reproduce the nonlinear cou-
pling effects. Two methods to form such basis gained popularity over the past two
decades, namelymodal derivatives and dual modes. Both methods find the most rele-
vant in-plane contribution to best span the nonlinear behavior. While the dual modes
method is inherently non-intrusive, as it requires several nonlinear static solutions of
the high fidelity model, the modal derivative strategy can be applied also intrusively
if the directional derivative of the tangent stiffness matrix along the dominant linear
modes could be calculated.

Indeed, the wording non-intrusive and intrusive refer to two distinct classes of re-
ductionmethods. The distinction lies onwhether or not it is possible to access elemen-
tal functions to compute the projected reduced order terms. In non-intrusivemethods,
the structure of these terms is first postulated and then identified, typically by prob-
ing the system with sufficient nonlinear static cases, where either displacements or
forces are imposed on the high fidelity model. We discussed the methods of enforced
displacements and enhanced enforced displacements, which identify the coefficients
of the projected nonlinear forces by statically applying displacements determined by
combinations of the modes used for reduction. The number of such evaluations is
𝒪(m3) and𝒪(m2) for the enforced displacement and the enhanced enforced displace-
ment method, respectively. The latter gain is due to the assumed availability of the
tangent stiffness matrix from the high fidelity model. The method of implicit conden-
sationand expansiondiffers from the former twoas it relies only ondominant vibration
modes—and not on either dual modes or modal derivatives—to construct the reduced
order model. A recovery of the full displacement field is obtained through an expan-
sion step that assumes a quadratic dependency of the in-planemodes to the dominant
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vibration modes. In intrusive methods, on the contrary, the reduced nonlinear forces
are computed exactly by evaluating and projecting at element level. This is efficient if
the resulting reduced terms are functions of modal coordinates only—i. e. no access to
the mesh is required any longer, once the reduced order model is constructed. This is
the case indeed of polynomial terms, resulting from lagrangian formulation and elas-
ticmaterial of continuumelements, or platesmodeledwith the vonKarman kinematic
assumptions. In more complex cases, the evaluation at element level is unavoidable,
and the speed-up associated to a reduced order model drops significantly. In these
cases, one can resort to hyper-reduction, which is extensively treated in [8, Chapter 5].
Essentially, hyper-reduction scales the computation of the reduced termswith the size
of the reduction basis and not with the one of the high fidelity model, and thus deliv-
ers huge speed-ups. Here, we outlined the Discrete Empirical Interpolation Method
(DEIM) and the Energy Conserving Sampling ans Weighting (ECSW) method. Both
methods rely on training forces, which typically come from the Proper Orthogonal De-
composition of high fidelity solutions. As such, they could be classified as data-driven
methods and would therefore not belong to this chapter. However, recent trends tar-
get the construction of such training sets without recurring to expensive full solution.
For instance, in the case of geometric nonlinearities, one can lift computationally lin-
ear modal solutions on a quadratic manifold centered around the equilibrium, and
whose curvature is provided by modal derivatives. The resulting displacements gen-
erate forces which can be used for training of the hyper-reduction.

The slow–fast dynamics dichotomyof the behavior of nonlinear systems in fact fa-
vors reduction methods based on nonlinear manifolds, rather than projection on lin-
ear subspaces. In otherwords, the solution is assumed to evolve on curved, rather that
flat, manifolds, which can be constructed via asymptotic expansions around the equi-
librium point. Along this direction, the recently proposed spectral submanifold is de-
fined as the smoothest nonlinear continuation of amodal subspace at the equilibrium
point. Likewise,webrieflydiscussed the reductiononquadraticmanifolds constructed
with vibrationmodes andmodal derivatives. As themanifold can be seen as a nonlin-
ear constraint to the solution, a configuration-dependent mass matrix and convective
generalized forces are generated by this reduction method. Reduction through non-
linear manifolds exacerbates the issue of efficient computation of reduced nonlinear
terms. In the case of polynomial nonlinearities for the high fidelity model, the result-
ing reduced tensors are of higher order as the ones corresponding to linear projection.
This could quickly exhaust memory resources and slow down the time integration of
the reduced system significantly. Recent contributions are tackling this problem by
applying for instance hyper-reduction.

Lastly, we briefly discussed parametricmodel order reduction. In this context, the
general trend is to rely on data-driven methods, usually based on POD, to construct
the parametrized reduced ordermodel. In general this could be done by either forming
a large reduction basis that spans the parameter space of interest, or by constructing
local reduced ordermodels and interpolate across the parameter space. In either case,
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a greedy procedure often drives the generation of the parametric reduced ordermodel.
However, for the case of geometric nonlinearity, it is possible to exploit the structure of
the governing equations anddevise a reduction basis containing sensitivities ofmodes
with respect to parameters—for instance, in the case of shape imperfections. This pro-
cedure is completely system-driven and it is shown to span the parameter space in the
neighborhood of the nominal parameter values.
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Stefano Grivet-Talocia and Luis Miguel Silveira
5 Post-processing methods for passivity
enforcement

Abstract: Many physical systems are passive (or dissipative): they are unable to gen-
erate energy on their own, but they can store energy in some form while exchanging
power with the surrounding environment. This chapter describes the most prominent
approaches for ensuring that Reduced Order Models are passive, so that their math-
ematical representation satisfies an appropriate dissipativity condition. The main fo-
cus is on Linear and Time-Invariant (LTI) systems in state-space form. Different condi-
tions for testing passivity of a given LTI model are discussed, including Linear Matrix
Inequalities (LMIs), Frequency-Domain Inequalities, and spectral conditions on asso-
ciated Hamiltonian matrices. Then we describe common approaches for perturbing
a given non-passive system to enforce its passivity. Various examples from electronic
applications are used to demonstrate both theory and algorithm performance.

Keywords: passivity, dissipativity, positive real lemma, bounded real lemma, Hamil-
tonian matrices, state-space systems, descriptor systems, eigenvalue perturbation

5.1 Introduction and motivations

Let us consider the problem of designing a complete electronic product, such as a
smartphone or a high-end computing server. The complexity of such a system is over-
whelming: a singlemicroprocessormight include several billions transistors, and this
is just one component. All components are tightly interconnected to exchange signals
and power: they interact both through electrical connections as well as (unwanted)
electromagnetic couplings, which are inevitable due to the close proximity of compo-
nents in tightly integrated systems. A proper design flow must ensure that all signals
behave as expected during real operation, which requires accounting for all interac-
tions between components and subsystems. A first-pass design can only be achieved
by extensive numerical simulation at the system level, in order to verify full compli-
ance with specifications.

All of us would agree that a direct, brute-force simulation of the complete sys-
tem is totally unrealistic. This is why common engineering practices partition a given
complex system into several simpler subsystems, which are modeled independently.
All models are then interconnected to obtain a system description that is amenable
for numerical simulation. These individual models are very often obtained through

Stefano Grivet-Talocia, Dept. Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
Luis Miguel Silveira, INESC-ID/DEEC, IST Técnico Lisboa, Universidade de Lisboa, Lisbon, Portugal

Open Access. © 2021 Stefano Grivet-Talocia and Luis Miguel Silveira, published by De Gruyter. This
work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/9783110498967-005



140 | S. Grivet-Talocia and L.M. Silveira

some Model Order Reduction scheme applied to some initial device-level characteri-
zation.

Suppose now that one of the above individual models represents some signal
or power interconnect network. Such interconnect structure is intended to feed sig-
nal and power supply to all elements of the system, in the form of electrical current
flowing through metal wires. The interconnect network is unable to generate en-
ergy on its own, but rather redistributes the energy that it receives from its input
signals to its output signals. It may store energy through electric and magnetic field
densities in the physical space surrounding the interconnect, and it may dissipate
energy as heat through metal and dielectric losses, but no more energy can be sup-
plied to the environment than the amount of energy previously stored. Such a system
is called dissipative (or passive). The concept of dissipativity naturally arises from
energy conservation principles and is therefore ubiquitous in several engineering
fields.

A (reduced order) model of the interconnect must respect such property: the sim-
ulationmodel must not be able to releasemore energy than previously stored. This re-
quirement is not just for self-consistencywith fundamental physical principles, but for
a very practical reason: a non-passive model may trigger instabilities during system-
level simulation. An example is provided in Figure 5.1, which compares the voltage
received by a state of the art (at the time of writing) smartphone through a high-speed
interconnect, computed using a passive vs. non-passive model connected to various
other system parts, including drivers and receiver circuits that send and receive the
signals. The non-passive model triggers a resonance, by injecting a continuous flow
of power that is responsible for the instability. Conversely, the passive model provides
a well-behaved bounded response.

Figure 5.1: Comparison between the responses of passive (thick line) and non-passive (thin line)
models of a high-speed smartphone interconnect link.

A fundamental result states that the interconnection of passive subsystems leads to
a passive system; see e. g. [74]. Therefore, a guarantee of passivity for all individual
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models for which this requirement is adequate1 is also a guarantee that amodel-based
system-level simulationwill run smoothly. This is a relevant problemnot only for elec-
tronic applications, but for several applied engineering fields such as, e. g.,mechanics
or fluid dynamics. Energy conservation or dissipation properties must be preserved in
the simulation models.

Figure 5.1 illustrates in a clearmanner that anymodeling procedure used for anal-
ysis of the dynamics of dissipative physical systems should ensure that the resulting
model or reduced order model is dissipative. There exist MOR algorithms that are able
to preserve dissipativity if applied to an original large-scale dissipative model. Exam-
ples are the PRIMA algorithm [63, 67] (see also [6, Chapter 4]) or the PR-TBR algo-
rithm [19, 62, 64, 65, 68] (see also [5, Chapter 2]). Unfortunately, for a variety of reasons,
possibly including efficiency considerations, such schemes are not always applicable,
and one has to resort to one of the many reduced order modeling techniques that are
not able to preserve or enforce dissipativity. Therefore, it is often necessary to perform
a-posteriori checks and possibly implement a post-processing procedure that enforces
model passivity.

In this Chapter, we review the various forms in which the passivity conditions of a
model can be stated. The particular class of systems that we focus on is defined in Sec-
tion 5.2, although generalizations are discussed in Section 5.6. Different forms of pas-
sivity conditionswill lead to corresponding different numerical schemes for their veri-
fication, discussed in Section 5.3.We thenpresent in Section 5.5 a selection ofmethods
for passivity enforcement, mainly cast as perturbation approaches that, starting from
the original non-passive model, update its coefficients in order to achieve passivity.
Model accuracy is retained by minimizing the perturbation amount in some norm, as
discussed in Section 5.4.

The style of this chapter is informal, with main results being stated with some
essential derivation, but without a formal proof. Emphasis is on the practical aspects
of the various formulations, which lead to algorithms presented in pseudocode form.
Pointers to the relevant literature are provided for additional insight.

5.2 Passivity conditions
In order to keep this chapter self-contained, our discussion is based on the special
class of Linear Time-Invariant (LTI), finite-dimensional systems in regular state-space
form

𝒮 : {
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(5.1)

1 Note that not all components are passive: for instance, signal or power sources or amplifier circuits
do not and must not be expected to behave as passive elements.
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where t denotes time, vectors u ∈ 𝒰 ⊆ ℝM and y ∈ 𝒴 ⊆ ℝM collect the system inputs
and outputs, respectively, and x ∈ 𝒳 ⊆ ℝN is the state vector, with ẋ denoting its time
derivative. TheM ×M transfer function of the system is

H(s) = C(sI − A)−1B + D, (5.2)

where s is the Laplace variable. We start by assuming the system to be asymptotically
stable, with all eigenvalues of A, i. e., the poles of H(s), having a strictly negative real
part.

The above assumptions may seem overly restrictive, but most common macro-
modeling schemes that arewidespread in electronic applications such, e. g. the Vector
Fitting algorithm [5, Chapter 8], produce reduced order models in this form. General-
izations will be discussed in Section 5.6.

5.2.1 Dissipative systems

The system 𝒮 in (5.1) is dissipative [15, 74, 88] with respect to the supply function s :
𝒰 × 𝒴 󳨃→ ℝ if there exists a storage function V : 𝒳 󳨃→ ℝ such that

V(x(t1)) ≤ V(x(t0)) +
t1

∫
t0

s(u(t), y(t)) dt (5.3)

for all t0 ≤ t1 and all input, state and output signals u, x, y that satisfy the state-space
equations (5.1). In the above definition, V represents the internal energy that the sys-
tem is able to store, and s is the power flow exchanged by the systemwith the environ-
ment. Thus, for a dissipative system the increase in the internal energy that the system
undergoes during any time interval (t0, t1) cannot exceed the cumulative amount of en-
ergy received from the environment, expressed as a time integral of the input power
flow. If the storage function is differentiable, the dissipation inequality (5.3) can also
be cast in the equivalent form

dV(x(t))
dt
≤ s(u(t), y(t)). (5.4)

As a typical example, one may consider an electric RLC circuit made of an arbi-
trary number of arbitrarily connected resistorsRk > 0, inductors Lk > 0 and capacitors
Ck > 0, which interacts with the environment through M ports. Each port defines an
input, e. g., the port voltage vj, with the port current ij acting as the corresponding out-
put (this representation is called admittance). For this example, the state vector com-
prises all capacitor voltages vCk and inductor currents iLk, so that the energy storage
function is defined as V := 1

2 (∑k Ckv
2
Cv + ∑k Lk i

2
Lk). The electric power entering the cir-

cuit at the jth port is vjij, so that the power supply function reads s(u, y) = uTy = ∑j vjij.
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By Tellegen’s (power conservation) theorem [4, 24], we have

s(u, y) = ∑
j
vjij = ∑

k
vCk iCk +∑

k
vLk iLk +∑

k
Rk i

2
Rk

=
dV
dt
+∑

k
Rk i

2
Rk ≥

dV
dt

(5.5)

wherewe used the definition of capacitor currents iCk = Ck
dvCk
dt , inductor voltages vLk =

Lk
diLk
dt , and where iRk are the resistor currents. So, we see that any RLC circuit with

positive elements is dissipative.
The system 𝒮 in (5.1) is called strictly dissipative [74, 88] with respect to the supply

function s if the stronger condition

V(x(t1)) ≤ V(x(t0)) +
t1

∫
t0

s(u(t), y(t)) dt − ε2
t1

∫
t0

‖u(t)‖2 dt (5.6)

holds for some ε > 0 instead of (5.3), which is thus satisfied with a strict inequality.
The following three subsections provide different equivalent passivity conditions

that are applicable to linear state-space systems in the form (5.1).

5.2.1.1 Linear matrix inequalities

Building on the above example, we consider for the general system (5.1) a quadratic2

storage function V(x) = 1
2x

TPx associated to a symmetric and positive definite matrix
P = PT > 0. Also, we adopt the same supply function3

s(u, y) = uTy = yTu = 1
2
(uTy + yTu). (5.7)

Imposing the dissipation inequality in differential form (5.4) leads to

d
dt
{
1
2
xTPx} = 1

2
(ẋTPx + xTPẋ) ≤ 1

2
(uTy + yTu) (5.8)

and using (5.1) to eliminate ẋ and y, we obtain the following condition:

(
x
u
)
T

(
ATP + PA PB − CT

BTP − C −D − DT)(
x
u
) ≤ 0, P = PT > 0, (5.9)

2 It is well known [89] that, if a storage function V satisfying (5.3) for system (5.1) exists, it can be
found as a positive definite quadratic form.
3 In many physical systems power is expressed as the product of relevant variables, such as voltage–
current in electrical circuits, pressure–flow in hydraulic systems, and force–velocity in mechanical
systems.
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which provides the passivity condition to the state-space system (5.1). This condition
leads to the well-known Positive Real Lemma (PRL), which is a particular case of the
Kalman–Yakubovich–Popov (KYP) lemma [51, 66, 92] (see also [2, 56, 74]), which states
that the state-space system (5.1) is passive if and only if

∃P = PT > 0 : (A
TP + PA PB − CT

BTP − C −D − DT) ≤ 0. (5.10)

This class of conditions is generally known as Linear Matrix Inequalities (LMIs) [2, 13,
14, 87]. For a strictly passive (dissipative) system (5.10) holds with a strict inequality.

5.2.1.2 Frequency-domain inequalities

An equivalent condition for passivity characterization is provided by a frequency-
domain inequality. It is well known [2, 81, 90] that the transfer function of a general
passive system must be Positive Real (PR), i. e., the following three conditions must
hold:
1. H(s)must be regular in the open right half complex planeℜ{s} > 0;
2. H(s∗) = H∗(s), where ∗ denotes the complex conjugate;
3. Ψ(s) = H(s) + HT (−s) ≥ 0 forℜ{s} > 0.

Condition 1 is directly related to the stability of H(s), which is here assumed a pri-
ori; condition 2 implies that the impulse response of the system is real-valued; con-
dition 3 completes passivity characterization through a Frequency-Domain Inequal-
ity. The connection between the PR conditions and the PRL/KYP Lemma are well-
developed and proved in [2].

Since by our assumption all the poles of H(s) are strictly stable, and since the
adopted state-space realization is real-valued, both conditions 1 and 2 are automati-
cally satisfied, whereas condition 3 can be restricted to the imaginary axis s = 𝚥ω by
the minimum principle of harmonic functions [69], showing that

Ψ(𝚥ω) = H(𝚥ω) + HH (𝚥ω) ≥ 0 ∀ω ∈ ℝ (5.11)

where H denotes Hermitian transpose and 𝚥 is the imaginary unit. Continuing on the
same RLC circuit example above, the latter condition states that the input admittance
(matrix) of the circuit block must be nonnegative (Hermitian) definite, which in the
scalar caseM = 1 reduces to the requirement that the real part of the input admittance
or impedance of any passive one-port element must be nonnegative at any frequency.
Condition (5.11) can be further conveniently rewritten as

λi ≥ 0, ∀λi ∈ λ(Ψ(𝚥ω)), ∀ω ∈ ℝ, (5.12)
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where λ(⋅) denotes the set of all eigenvalues of its matrix argument. Nonnegativity can
thus be tested for all individual frequency-dependent eigenvalue trajectories λi(𝚥ω) of
Ψ(𝚥ω), for 1 ≤ i ≤ M. Inequalities (5.11) and (5.12) are strict for ω ∈ ℝ ∪ {∞} in the case
of strictly passive systems.

5.2.1.3 Hamiltonian matrices

There is a third class of conditions that can be used to characterize a passive system,
basedon the so-calledHamiltonianmatrix associated to (5.1).We introduce thismatrix
by finding the set of spectral zeros of Ψ(s). Let us assume that Ψ(s0) v = 0 for some
vector v ̸= 0, with s0 ∈ ℂ. Using (5.2) we have

[C(s0I − A)
−1B + D + BT(−s0I − A

T)−1CT + DT]v = 0. (5.13)

Let us define

r = (s0I − A)
−1Bv → s0r = Ar + Bv,

q = (−s0I − A
T)−1CTv → s0q = −A

Tq − CTv.
(5.14)

Substituting in (5.13) and solving for v under the assumption that W0 = D + DT is
nonsingular (see Section 5.6 for a generalization) leads to

v = −W−10 (Cr + B
Tq), (5.15)

which, inserted in (5.14), again leads to

(
A − BW−10 C −BW−10 BT

CTW−10 C −AT + CTW−10 BT
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℳ

(
r
q
) = s0 (

r
q
) . (5.16)

The matrixℳ in (5.16) has (real) Hamiltonian structure, since

(Jℳ)T = Jℳ where J = ( 0 I
−I 0
) . (5.17)

It is easily shown that the corresponding eigenspectrum is symmetric with respect to
both real and imaginary axis. Condition (5.16) states that the spectral zeros of Ψ(s)
are the eigenvalues of the Hamiltonian matrixℳ. If one of such eigenvalues is purely
imaginary s0 = 𝚥ω0, then we may have a violation of the frequency-domain inequal-
ity (5.12). In fact, if (5.16) holds for some purely imaginary s0 = 𝚥ω0, then Ψ(𝚥ω) is
singular at ω0, implying that one of its eigenvalues λi(𝚥ω) vanishes at ω0. If this zero
is simple, then the eigenvalue trajectory λi(𝚥ω) changes sign at ω0, thus violating the
passivity condition (5.12).
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The above observations can be summarized in the following statements [12, 33].
Assuming that A is asymptotically stable, and thatW0 = D +DT > 0 is strictly positive
definite, then system (5.1) is strictly passive if and only if the Hamiltonian matrix ℳ
in (5.16) has no purely imaginary eigenvalues. In presence of purely imaginary eigen-
values, the system is passive only if the associated Jordan blocks have even size, in
which case it can be shown that the corresponding eigenvalue trajectory λi(𝚥ω) does
not change sign atω0. A qualitative illustration of the above statements is provided by
Figure 5.2. For a more complete treatment, which is outside the scope of this introduc-
tory chapter, see [1, 54].We remark that the conditionW0 > 0 is equivalent to requiring
that the system is asymptotically passive, so that the transfer function is nonnegative
Hermitian for ω→∞.

Figure 5.2: Illustration of the relationship between Hamiltonian eigenvalues μk (left) and eigen-
values λi(𝚥ω) of Ψ(𝚥ω) (right). In the left panel, purely imaginary Hamiltonian eigenvalues are de-
noted with circles (number of circles denote multiplicity) to distinguish them from other eigenvalues
(squares); only eigenvalues with nonnegative imaginary part are shown. In the right panel, the non-
passive frequency bands Ω2 = (ω2,ω3) and Ω4 = (ω4,ω5) are highlighted with a thick line, with
corresponding local minima λ2,1 and λ4,1.

5.3 Checking passivity
There are two main approaches for checking whether a given state-space model (5.1)
is passive. Thesemethods exploit the Positive Real Lemma (5.10) and the properties of
the Hamiltonian matrix (5.16), respectively.

5.3.1 Checking passivity via linear matrix inequalities

The Positive Real Lemma discussed in Section 5.2.1.1 states that system (5.1) is passive
if and only if (5.10) holds. Note that this condition embeds as a corollary also a stability
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check, since restricting (5.10) to its upper-left block, which corresponds to setting u =
0, i. e., considering the zero-input response, results in thepopular Lyapunov condition
for (simple) stability, here restricted to the LTI case, which reads

∃P = PT > 0 : ATP + PA ≤ 0. (5.18)

Both (5.18) and (5.10) are recognized as LMI feasibility (convex) problems. As such,
they can be readily solved by specialized LMI convex optimization software, such as
SeDuMi [77] and Yalmip [55]. For a survey of tools see [49], part 6. If the system is
passive, such tools will return a Lyapunov matrix P for which the above conditions
are satisfied. Conversely, they will return a certificate of non-feasibility, thus proving
existence of passivity violations.

The main advantage of the LMI-based passivity check is simplicity: one does not
have to write any particular code, since most LMI solvers have simple-to-use inter-
faces. This advantage is counterbalanced by two important drawbacks. The first dis-
advantage is computational complexity. The PRL in (5.10) requires proving nonnega-
tivity of a M + N matrix, with P being unknown. The number of decision variables is
N(N + 1)/2, i. e., the number of elements of P. A direct implementation thus requires a
computational cost that scales as𝒪(N6), although advanced solvers exist that can re-
duce this cost to𝒪(N4) [82]. Exploitation of sparsity, structure and symmetries can be
used to reduce this cost even further in many practical cases (for an example see [21]).

The second main disadvantage of LMI-based passivity checks is in the binary na-
ture of their output (passive/non-passive). If the system is not passive, no additional
information is available from the solver that can be exploited to fix the passivity viola-
tion by a suitable perturbation process. Fortunately, this information is available from
the Hamiltonian-based passivity check, discussed next.

5.3.2 Checking passivity using Hamiltonian eigenvalues

As discussed in Section 5.2.1.3, an asymptotically stable system (5.1) with D + DT > 0
is passive if the Hamiltonian matrix ℳ defined in (5.16) does not have purely imag-
inary eigenvalues with odd-sized Jordan blocks (in the vast majority of cases these
eigenvalues, if any, are simple). This suggests a simple algorithm for checking passiv-
ity, summarized as pseudocode in Algorithm 5.1. This scheme is formulated so that
it provides as output some additional information, in particular the frequency bands
where (5.12) is violated [33]. This information will prove very useful in Section 5.5 for
removing such passivity violations via perturbation.

As a first step, we form the Hamiltonian matrix and we compute its eigenvalues
μk ∈ eig(ℳ). If no such eigenvalues are purely imaginary, and if D + DT > 0, then the
model is concluded to be strictly passive and the algorithm stops. No eigenvalue tra-
jectory will cross the imaginary axis, otherwise the corresponding intersection would
be pinpointed by some imaginary Hamiltonian eigenvalue.



148 | S. Grivet-Talocia and L.M. Silveira

The more interesting case occurs in the presence of purely imaginary eigenvalues
μk = 𝚥ωk . Let us extract the subset of these eigenvalues with nonnegative imaginary
part (recall that, if 𝚥ωk is an eigenvalue, also −𝚥ωk is an eigenvalue due to the Hamil-
tonian structure ofℳ) and sort them in ascending order,

0 = ω0 < ω1 < ω2 < ⋅ ⋅ ⋅ < ωK < ωK+1 = +∞ (5.19)

where ω0 is added even if 0 is not an eigenvalue ofℳ, and where we set ωK+1 = +∞.
The frequenciesωk induce a partition of the frequency axis into disjoint adjacent sub-
bands Ωk = (ωk ,ωk+1) for k = 0, . . . ,K. From the above discussion, Ψ(𝚥ω) is nonsingu-
lar ∀ω ∈ Ωk , ∀k.

Each subbandΩk is then flagged as passive or non-passive by assigning k to corre-
sponding index sets 𝒦p and 𝒦np, respectively, depending on whether (5.12) is verified
or not for ω ∈ Ωk . This condition is very easy to check, due to the continuity of all
eigenvalue trajectories λi(𝚥ω), which is a consequence of the assumed asymptotic sta-
bility, so that bothH(s) and Ψ(s) are regular on the imaginary axis. It is thus sufficient
to check whether

Ψ(𝚥ω̆k) > 0, where ω̆k =
ωk + ωk+1

2
, (5.20)

is the midpoint of band Ωk . If (5.20) is verified, then the model is uniformly passive
in Ωk and k ∈ 𝒦p. Otherwise, k ∈ 𝒦np and the number of negative eigenvalues λi(𝚥ω)
(which is constant in Ωk), is determined based on their evaluation at the midpoint ω̆k .

As a final optional step, the subbands Ωk with k ∈ 𝒦np can be subjected to a lo-
cal (adaptive) sampling in order to find all local minima of the eigenvalue trajectories
λi(𝚥ω). These minima, denoted with their frequency location as (ωkν , λkν), correspond
to the worst-case local passivity violations. See Figure 5.2 for a graphical illustration.
See also [20, 34].

The computational cost of the passivity check in Algorithm 5.1 is dominated by
the Hamiltonian eigenvalue evaluation. A general-purpose eigenvalue solver scales
as𝒪(κN3) where κ is a constant, since the size of the Hamiltonian matrix (5.16) is 2N .
Specialized eigensolvers exist that reduce this cost by exploiting the particular matrix
structure [7, 10]; see also [1, 9, 79], but still retaining the scaling 𝒪(κN3) albeit with
a smaller constant κ. If the transfer function H(s) of the model is symmetric (which
is usually verified in electrical and electronic applications), additional computational
savings can be achieved by defining equivalent and smaller-size eigenproblems, often
referred to as half-size passivity tests; see [23, 36, 47, 48, 75].

When the number of states N is medium-large and the state-space realization is
sparse (for instance with A diagonal or quasi-diagonal), then it is more convenient to
use eigensolvers based on repeated shift-invert iterations; see e. g. [3, 41, 85]. It has
been demonstrated that these methods are able to reduce the scaling law of purely
imaginary eigenvalue determination to 𝒪(κN), although with a possibly large κ. See
also [8, 60, 85] for details on more general structured eigenproblems.
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Algorithm 5.1: Hamiltonian-based passivity check.
Require: real state-space matrices A,B,C,D
Require: A asymptotically stable, D + DT nonsingular
1: form the Hamiltonian matrixℳ of (5.16) and compute its eigenvalues μk
2: if no eigenvalue is purely imaginary and D + DT > 0 then
3: system is strictly passive: exit
4: end if
5: extract all imaginary eigenvalues μk = 𝚥ωk and sort them as in (5.19)
6: set 𝒦p = 𝒦np = 0
7: for k = 0, . . . ,K do
8: form subband Ωk = (ωk ,ωk+1) and its midpoint ω̆k
9: ifΨ(𝚥ω̆k) > 0 then
10: system is locally passive ∀ω ∈ Ωk, add k to 𝒦p
11: else
12: system is not passive in Ωk, add k to 𝒦np
13: find all local minima (ωkν , λkν) of the eigenvalues of Ψ(𝚥ω) in Ωk
14: end if
15: end for

5.4 System perturbation

Assuming that the system (5.1) is detected as non-passive from a passivity check, the
main question arises whether we can enforce its passivity through a small perturba-
tion of its coefficients. What is actually important is not the amount of coefficient per-
turbation, but rather the perturbation in the model response, which should be kept
under control in order to maintain model accuracy. Of course, this approach makes
sense only if the passivity violations of the initial model are relatively small to enable
correction via perturbation. This situation is in fact commonly encountered in appli-
cations. Very large passivity violations inmodels that should represent dissipative sys-
tems are a clear indication of poor model quality. Such models should be discarded
and regenerated.

Several perturbation approaches are possible for (5.1). In the following, we focus
on one particular strategy, which amounts to perturbing only the state-output matrix
as Ĉ = C + δC while leaving the other state-space matrices unchanged. This strategy
induces the following perturbation in the transfer function:

Ĥ(s) = H(s) + δH(s) with δH(s) = δC(sI − A)−1B. (5.21)

The corresponding impulse response perturbation is thus

ĥ(t) = h(t) + δh(t) with δh(t) = δCeAtBu(t) (5.22)
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where u is the Heaviside step function. This approach leaves the state matrix A un-
changed, thus preserving the system poles. Allowing for poles perturbation induced
by a modification of A would require in fact additional constraints for ensuring that
stability is not compromised. Except for very few cases [22, 53], most existing passivity
enforcement schemes do not modify matrix A in order to preserve the system poles.
This is a common scenario in those applications where passivity enforcement is ap-
plied as a post-processing of amodel identified frommeasurementswithVector Fitting
(see [5, Chapter 8]). If the system is asymptotically passive with D + DT > 0, there is
also no need to modify the direct coupling matrix D. Modification of the input-state
map B can be considered as an alternative to (5.21).

Based on (5.21), we need to determine a cost function that measures the perturba-
tion amount in terms of the decision variables, i. e., the elements of δC. A number of
popular cost functions are reviewed below.

5.4.1 Gramian-based cost functions

A natural choice for measuring the system perturbation is the L2 norm. We have

ℰ22 = ‖δh‖
2
L2 =
+∞

∫
0

tr(δh(t)δh(t)T) dt = tr(δC𝒢cδC
T) (5.23)

where tr is the trace of its matrix argument, and

𝒢c =
+∞

∫
0

eAtBBTeA
T t dt = 1

2π

+∞

∫
−∞

(𝚥ωI − A)−1BBT (𝚥ωI − A)−H dω (5.24)

is the Controllability Gramian of the system, which is easily found by solving the Lya-
punov equation

A𝒢c + 𝒢cA
T = −BBT . (5.25)

Although simple to use, the cost function (5.23) is seldom used in applications.
This is due to the fact that most often a reduced order model is obtained from some
approximation process that ensures accuracy only in a well-defined frequency band,
which usually does not extend up to∞. Assuming that the model accuracy is of inter-
est only for ω ∈ [0,ωmax], then it is unnecessary and even detrimental to include any
contribution to the Gramian coming from frequencies |ω| > ωmax. A simple approach
to obtain a bandlimited norm is to limit the integration bounds in (5.24) to ∓ωmax. One
loses the possibility to compute 𝒢c through (5.25), so that the corresponding bandlim-
ited Gramian should be obtained by a direct numerical integration of (5.24) through
some quadrature rule.
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An alternative option is to introduce a nonnegative weighting function ρ(ω) in
the frequency-domain integral (5.24), which allows one to fine-tune the contributions
to the Gramian coming from different frequencies. The latter strategy lends itself to
a simple algebraic procedure for the weighted Gramian computation, in the case the
weight is restricted to be in form of a state-space system applied to the input or to the
output of our original transfer function H(s). Some details follow.

Let us consider a weighting function in state-space form with transfer matrix
Γ(s) = CΓ(sI −AΓ)−1BΓ +DΓ of compatible size, which is applied to defining a weighted
error function

δHΓ(s) = δH(s) Γ(s). (5.26)

Instead of (5.23), we measure system perturbation through the Γ-weighted norm de-
fined as

ℰ2Γ = ‖δH‖
2
Γ = ‖δHΓ‖

2
L2 . (5.27)

It can be easily shown [99] that this norm can be computed as

‖δH‖2Γ = tr(δC PΓ δC
T), (5.28)

where PΓ is the upper-left block of the solution of the following augmented Lyapunov
equation:

Ã P̃ + P̃ ÃT = −B̃B̃T (5.29)

with

Ã = (A BCΓ
0 AΓ

) , B̃ = (BDΓ
BΓ
) , P̃ = (

PΓ P12
PT12 P22

) . (5.30)

We see that this characterization is fully compatible with the standard L2 norm, as far
as the standard Gramian 𝒢c is replaced by its weighted counterpart PΓ. This formula-
tion canbe adapted to applications that require control over relative error, by choosing
Γ(s) = H−1(s) or even elementwise relative error [42]. If we are interested in retaining
accuracy only in some prescribed frequency band (ωmin,ωmax), then Γ(s) can be de-
fined as a band pass filter matched to this band.

The two Gramian-based error characterizations (5.23) and (5.28) are further sim-
plified as follows. Let us consider (5.23), and let us assume that the initial model is
controllable, so that the controllability Gramian 𝒢c is full-rank and strictly positive
definite.4 Computing the Cholesky factorization 𝒢c = QT

cQc and inserting it into (5.23)
leads to

ℰ22 = tr(δC Q
T
cQc δC

T) = tr(ΞΞT) = ‖Ξ‖2F = ‖ξ ‖
2
2 (5.31)

4 In case 𝒢c is singular, a preprocessing step based, e. g., on Balanced Truncation [5, Chapter 2] can
be applied to remove any uncontrollable states.
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where ‖ ⋅ ‖F denotes the Frobenius norm of its matrix argument, Ξ = δC QT
c and ξ =

vec(Ξ) stacks the columns of Ξ into a single column vector.5We see that themodel per-
turbation is now cast as the Euclidean norm of the (vectorized) decision variables ξ in
a new coordinate system induced by the Cholesky factor of the Gramian.Minimization
of (5.31) is thus trivial.

5.4.2 Data-based cost functions

A further alternative for defining a cost function thatmeasures themodel perturbation
error is based on a purely discrete formulation. Let us suppose that the model (5.1)
was obtained in first place through a data-driven MOR scheme, starting form a set
of frequency-domain measurements of the underlying system response (ωℓ, H̆ℓ) for
ℓ = 1, . . . , L. A natural choice would be to minimize the error of the perturbed model
with respect to these initial data [21, 43, 44, 46]

ℰ2 =
L
∑
ℓ=1

ρ2ℓℰ
2
ℓ with ℰ2ℓ = ‖H(𝚥ωℓ) + δH(𝚥ωℓ) − H̆ℓ‖

2
F , (5.32)

wherewe used the Frobenius norm to define the local error ℰℓ for each frequency point
(of course other normchoices are possible), andwhere ρℓ is aweighting factor to bede-
fined based on the desired approximation criteria. A straightforward derivation shows
that, vectorizing the decision variables as δc = vec(δC), we can write

ℰ2 = ‖Kδc − d‖22 (5.33)

with

KT = (ρ1KT
1 ⋅ ⋅ ⋅ ρLKT

L ) , dT = (ρ1dT1 ⋅ ⋅ ⋅ ρLdTL ) , (5.34)

where the various components are defined using the Kronecker product ⊗ as

Kℓ = [(𝚥ωℓI − A)
−1B]T ⊗ I , dℓ = vec(H(𝚥ωℓ) − H̆ℓ). (5.35)

A particular case of (5.32) is obtained by defining

ℰ2ℓ = ‖δH(𝚥ωℓ)‖
2
F . (5.36)

This choice corresponds to setting the “target” data samples as the responses of the
initial model, so that H̆ℓ = H(𝚥ωℓ) and consequently dℓ = 0. Correspondingly, (5.33)
reduces to the simple quadratic form

ℰ2 = ‖Kδc‖22. (5.37)

5 We will denote the inverse operation Ξ = mat(ξ ), where the size of Ξ is inferred from the context.
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5.5 Passivity enforcement

In Section 5.4, we showed how the perturbation of a model based on a modification
of the state-output map can be algebraically characterized as a quadratic form of the
decision variables, i. e., the elements of δC, possibly cast in a different coordinate sys-
tem. The resulting cost function provides an effective control over model perturbation
if used within an optimization problem, combined with suitable constraints for pas-
sivity enforcement. In this section, we discuss the three most prominent approaches
for casting the passivity conditions introduced in Section 5.2.1 as constraints, giving
rise to three classes of algorithms for passivity enforcement. An overviewof alternative
approaches and a more complete treatment is available in [39].

5.5.1 Passivity enforcement via LMI constraints

Let us consider an initial non-passive system (5.1), forwhich the PRL condition (5.10) is
not satisfied. We try to enforce this condition on a perturbed system, where the state-
output matrix C is updated as

Ĉ = C + δC = C + ΞQ−Tc , (5.38)

where we used the change of variables in (5.31) based on the Cholesky factor Qc of the
controllability Gramian. Enforcing the PRL for the perturbed system while minimiz-
ing the perturbation, based, e. g., on the cost function (5.31), amounts to solving the
following constrained optimization problem

min
P,Ξ
‖Ξ‖2F s. t. P = PT > 0 and ℱ(P,Ξ) ≤ 0 (5.39)

where

ℱ(P,Ξ) = (
ATP + PA PB − CT − Q−1c ΞT

BTP − C − ΞQ−Tc −D − DT ) . (5.40)

The cost function in (5.39) is a quadratic form in the decision variables, and both con-
straints are of LMI type [21]. Problem (5.39) is known to be convex, therefore there
is a theoretical guarantee that a unique optimal solution exists, which can be found
in polynomial time. In fact, specialized solvers for this class of problems exist, see
e. g. [55, 77], therefore we do not detail any particular algorithm any further (see also
section 5.3.1). The reader is referred to standard textbooks on convex optimization for
more details [14].

As already discussed in Section 5.3.1, the computational cost that is required to
solve (5.39) scales quite badlywith thenumber of decision variables, equivalentlywith
the system size. The main motivation for this high computational requirements is the
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presence of the Lyapunov matrix P in the set of decision variables, which is only in-
strumental to the PRL formulation, but which is not really needed as a result of the
optimization process. Therefore, we can think of eliminating P with a suitable pre-
processing step, in order to obtain a smaller LMI problem that can be solved more
efficiently. The so-called trace parameterization provides a solution to this problem;
see [25, 21, 18] for details.Wenow seek alternatives that provide even better scalability.
The reader is encouraged to also see [43].

5.5.2 Passivity enforcement via Hamiltonian perturbation

Let us consider the Hamiltonian-based passivity constraints discussed in
Section 5.2.1.3. Under the assumptions that A is asymptotically stable and system (5.1)
is asymptotically passive with D + DT > 0, then (strict) passivity holds if the Hamil-
tonian matrix ℳ in (5.16) has no purely imaginary eigenvalues. If this is not true, as
Figure 5.2 shows, the Hermitian part of the frequency response has some negative
eigenvalues in some frequency bands, and the system is not passive due to those
localized violations.

Themain idea of passivity enforcement via Hamiltonian perturbation is to induce
a spectral perturbation on the imaginary Hamiltonian eigenvalues, so that they are
displaced in the correct direction as to eliminate the local passivity violations [33].
A graphical illustration of this strategy is provided in Figure 5.3, where we show that
when two imaginary eigenvalues are displaced along the imaginary axis in a direction
that points inward each passivity violation band, the extent of the violation is effec-
tively reduced (top panels). If the perturbation amount is sufficiently large to induce a
collision of the two imaginary eigenvalues (bottom panels), then a bifurcation occurs
and the two eigenvalues move off the imaginary axis. The passivity violation is thus
removed.

The above spectral perturbation is an inverse problem, which requires a precise
characterization of the relation between matrix element perturbations and the corre-
sponding induced change in the eigenvalues that we need to displace. The algorithm
that we describe below is based on a first-order approximation of this relation.

Let us consider once again a non-passive system which is perturbed by changing
the state-output matrix as Ĉ = C + δC. A straightforward first-order approximation
analysis leads to the following expression for the perturbed Hamiltonian matrix:

ℳ̂ =ℳ + δℳ with δℳ ≈ ( −BW−10 δC 0
CTW−10 δC + δCTW−10 C δCTW−10 BT

) (5.41)

whereW0 = D + DT . Let us now consider a generic eigenvalue μk ofℳ with unit mul-
tiplicity, and let us denote the corresponding right and left eigenvectors as vk and wk,
normalized such that ‖vk‖ = ‖wk‖ = 1. We have the following first-order eigenvalue
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Figure 5.3: Illustration of passivity enforcement via Hamiltonian eigenvalue perturbation. Top and
bottom panels refer to two different scenarios that may occur. In the top left panel the purely imag-
inary Hamiltonian eigenvalues are depicted with empty dots, and their perturbation direction and
extent is represented with thick arrows. The corresponding eigenvalue trajectories λi(𝚥ω) before
(solid lines) and after (dashed lines) perturbation are depicted in the top right panel. Bottom pan-
els show that when two imaginary Hamiltonian eigenvalues collide (left panel), the corresponding
intersections of the eigenvalue trajectories λi(𝚥ω) with the frequency axis are removed (right panel).

perturbation result [86]:

μ̂k ≈ μk + δμk with δμk =
wH
k δℳ vk
wH
k vk
. (5.42)

We now particularize (5.42) to the case of a purely imaginary eigenvalue μk = 𝚥ωk . It
is well known that, for such eigenvalues, the left and right eigenvectors are related by
wk = −Jvk, where J is defined in (5.17), so that we can write

δμk =
vHk J δℳ vk
vHk J vk

. (5.43)

Splitting now the right eigenvector as vTk = (v
T
k1, v

T
k2) according to the block structure

ofℳ, we see that the denominator of (5.43) is purely imaginary

vHk J vk = 2𝚥ℑ{v
H
k1vk2} (5.44)

whereas the numerator is real-valued since Jℳ is real and symmetric. A tedious but
straightforward calculation leads to

vHk J δℳ vk = 2ℜ{v
T
k1 ⊗ y

H
k } δc (5.45)
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where δc = vec(δC) and the auxiliary vector yk is defined as

yk = W
−1
0 (Cvk1 + B

Tvk2). (5.46)

Using the above expressions, we can finally rewrite (5.43) as

ℜ{vTk1 ⊗ y
H
k } δc ≈ (ωk − ω̂k)ℑ{v

H
k1vk2}, (5.47)

where we used the fact that under the adopted first-order approximation also the per-
turbed eigenvalue is purely imaginary μ̂k = 𝚥ω̂k . Furthermore, applying the change of
variables (5.31) to (5.47) gives

zTk ξ ≈ ηk (5.48)

where

zk = ℜ{(Q
−T
c vk1) ⊗ y

∗
k }, ηk = (ωk − ω̂k)ℑ{v

H
k1vk2}. (5.49)

This expression is a linearized constraint that relates the amount of (imaginary) eigen-
value perturbation to the corresponding perturbation on the decision variables ξ .

When using (5.48) as a constraint to determine ξ , the desired location for ω̂ needs
to be provided as input. With reference to Figure 5.3, we see that the direction where
ωk should be perturbed is directly related to the slope λ′i,k of the eigenvalue trajectory
λi(𝚥ω) that vanishes at ωk . A heuristic yet effective choice for ω̂k is

{
ω̂k = ωk + α(ωk+1 − ωk) for λ′i,k < 0,
ω̂k = ωk − α(ωk − ωk−1) for λ′i,k > 0,

(5.50)

where the control parameter 0 < α < 1 determines the maximum extent of the pertur-
bation amount relative to the size of the violation subband. Additional details on how
to determine the slopes λ′i,k as well as appropriate values of α can be found in [33].

Supposing now that multiple eigenvalues μk = 𝚥ωk for k = 1, . . . ,K are to be per-
turbed concurrently, we need to collect all independent constraints (5.48) so that they
are enforced simultaneously. The resulting optimization problem to be solved reads

min
ξ
‖ξ ‖22 s. t. zTk ξ = ηk , k = 1, . . . ,K (5.51)

This is a simple linearly constrained minimum norm problem, whose optimal solu-
tion is ξopt = Z†η, where † denotes the pseudoinverse [14], with Z and η collecting zTk
and ηk as rows. Compared to the evaluation of the Hamiltonian eigenvalues required
to set up the constraints (5.48), the solution of (5.51) has a negligible computational
cost.

Although the solution of (5.51) is straightforward, its passivity constraint is based
on a linearization process and is therefore only accurate up to first order. Therefore,
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the perturbation fraction α should be selected to be small enough for the first-order
approximation to be accurate, and multiple iterations may be required to displace all
imaginary eigenvalues. Figure 5.3 illustrates two scenarios that may typically occur
during iterations, whereas Algorithm 5.2 provides the pseudocode of a possible imple-
mentation. The computational cost of this implementation is dominated by theHamil-
tonian eigensolution; see the discussion in Section 5.3.2. We remark that, despite the
fact the optimization problem (5.51) at each iteration has a closed-form solution, the
overall iterative scheme in its basic formulation is not guaranteed to converge, since
a local perturbation of few eigenvalues does not guarantee that new imaginary eigen-
values will not occur at other locations. The approach that is presented in the next
section provides a more robust scheme.

Algorithm 5.2: Passivity enforcement via Hamiltonian perturbation.
Require: real state-space matrices A,B,C,D
Require: A asymptotically stable, D + DT > 0
Require: control parameter 0 < α < 1 and max iterations imax
1: run Alg. 5.1 to check passivity, store {ωk} and non-passive bands Ωk
2: compute Gramian 𝒢c or weighted Gramian PΓ and its Cholesky factor Qc
3: set iteration count i = 0
4: while (system not passive and i < imax) do
5: i ← i + 1
6: compute right eigenvectors vk and form vectors zk in (5.49), for all k
7: define ω̂k as in (5.50) and form ηk in (5.49) for all k
8: solve optimization problem (5.51) for ξ
9: update state-output map C ← C + ΞQ−Tc where Ξ = mat(ξ )
10: run Alg. 5.1 to check passivity, store {ωk} and non-passive bands Ωk
11: end while

Before closing this section we remark that the above discussion was based on the as-
sumption of simple Hamiltonian eigenvalues. A full characterization of the general
casewith arbitrary highermultiplicity requires knowledge of the complete structure of
the possibly multiple Jordan blocks of the Hamiltonian matrix. This discussion is out-
side the scope of this chapter, the reader is referred to [1, 61] for a complete treatment.
We only remark that the presence of defective eigenspaces is structurally unstable to
small perturbations, so that the defectivity usually disappears if a small perturbation
is applied.

Passivity enforcement via Hamiltonian perturbation was first introduced in [33],
followed by various applications [17, 31, 71] and extensions to large-scale systems [41]
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with possibly frequency weighted accuracy norms [42]. It is worth mentioning the
straightforward extension [11, 57] to so-called negative imaginary systems.6

5.5.3 Passivity enforcement via local perturbation

Let us consider once again a system that is detected as non-passive fromAlgorithm 5.1.
One of the results that this algorithm provides in addition to the index set k ∈ 𝒦np that
identifies the non-passive bands Ωk = (ωk ,ωk+1) is a set of local minima (ωkν , λkν)
of the eigenvalues of Ψ(𝚥ω) in each of these subbands. Figure 5.4 depicts these local
minima with filled dots.

Figure 5.4: Illustration of passivity enforcement via local perturbation. Linearized constraints are
used to perturb (thick arrows) the local minima λi,k (filled dots) of the eigenvalue trajectories λi(𝚥ω)
(solid lines) so that they become nonnegative. The resulting perturbed eigenvalue trajectories
(dashed lines) are uniformly positive after few iterations.

Assume now to perturb the system through the usual state-output matrix as Ĉ = C +
δC. This perturbation leads to an induced perturbation on the eigenvalue trajectories
λ(𝚥ω), represented in Figure 5.4 by solid lines. We seek a constraint that displaces the
local minima to a new nonnegative value [72, 73]. Denoting with vkν the eigenvector of
Ψ(𝚥ωkν) normalized as ‖vkν‖ = 1 corresponding to the eigenvalue λkν, we can express
the induced eigenvalue perturbation through the following first-order approximation,
which results in an inequality constraint after imposing nonnegativity:

λ̂kν = λkν + v
H
kν δΨ(𝚥ωkν) vkν ≥ 0. (5.52)

6 A system with square, strictly proper and stable transfer matrix H(s) is negative imaginary if and
only if sH(s) is Positive Real.
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Figure 5.4 provides a graphical illustration of the perturbation, together with the ex-
pected perturbed eigenvalue trajectories (dashed lines). Note that these trajectories
remain continuous after perturbation, thanks to the assumed asymptotic stability of
the model (no poles on the imaginary axis).

The constraint (5.52) can now be readily expressed in terms of our decision vari-
ables δC, noting that

δΨ(𝚥ω) = δC T(𝚥ω) + TH (𝚥ω) δCT (5.53)

where T(𝚥ω) = (𝚥ωI − A)−1B. Using the vectorized form δc = vec(δC) together with the
change of variable (5.31) leads to

zTkν ξ ≥ −λkν , with zkν = 2ℜ{(Q
−T
c T(𝚥ωkν) vkν) ⊗ v

∗
kν}. (5.54)

As a result, we cast our minimum model perturbation subject to local passivity con-
straints as

min
ξ
‖ξ ‖22 s. t. zTkν ξ ≥ −λkν , ∀k ∈ 𝒦np, ∀ν. (5.55)

This problem is convex and is readily solved through off-the-shelf software. Based
on the analysis in [43] the computational cost for solving (5.55) can be reduced to
𝒪(κNM2).

As for the Hamiltonian perturbation passivity enforcement, the above local per-
turbation is not guaranteed to achieve a passive model after the solution of (5.55). In
fact
– the inequality constraint in (5.54) is only first-order accurate and does not guaran-

tee that the perturbed eigenvaluewill be nonnegative after applying the computed
model correction;

– it is not guaranteed that a local perturbation of all local eigenvalue minima
(ωkν , λkν) will not induce new passivity violations at new locations, in terms
of new negative eigenvalue minima.

The first problem can be easily addressed by embedding (5.55) within an iterative
scheme that, after solving (5.55), applies model correction and repeats the perturba-
tion until all local eigenvalue minima are nonnegative. The second problem is also
easily addressed by the so-called robust iterations, described next.

Assume that after model perturbation a new local eigenvalue minimum λnew < 0
is detected at some frequencyωnew where themodel was locally passive before pertur-
bation. Ifwe could enforce the eigenvalues ofΨ(𝚥ωnew) to remainnonnegative through
anadditional constraint togetherwith those in (5.55), then thenewviolationwouldnot
have arisen. This is exactly the main idea of robust iterations, where problem (5.55) is
solved only as a preliminary step. All new violations are collected and nonnegativity
constraints are formulated as in (5.54) at the corresponding frequencies and added to
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the set of already available constraints. This prediction step is repeated until no new
violations are introduced. Then iterations continue after the model is updated.

The passivity enforcement scheme based on local perturbations (without robust
iterations) is outlined as pseudocode in Algorithm 5.3. More details on the robust iter-
ation scheme are available in [44, 45].

Algorithm 5.3: Passivity enforcement via local perturbations.
Require: real state-space matrices A,B,C,D
Require: A asymptotically stable, D + DT > 0
Require: max iterations imax
1: run Alg. 5.1 to check passivity, store local eigenvalue minima (ωkν , λkν)
2: compute Gramian 𝒢c or weighted Gramian PW and its Cholesky factor Qc
3: set iteration count i = 0
4: while (system not passive and i < imax) do
5: i ← i + 1
6: compute eigenvectors vkν and form vectors zkν in (5.54), for all k, ν
7: solve optimization problem (5.55) for ξ
8: update state-output map C ← C + ΞQ−Tc where Ξ = mat(ξ )
9: run Alg. 5.1 to check passivity, store local eigenvalue minima (ωkν , λkν)
10: end while

5.6 Extensions

The various passivity check and enforcement algorithms discussed in previous sec-
tions were restricted to the narrow class of regular state-space systems (5.1), with A
asymptotically stable, with D +DT > 0, and with a supply rate defined by (5.7). In this
section, we release these assumptions by providing suitable generalizations.

5.6.1 Releasing asymptotic passivity requirements

When W0 = D + DT is singular but positive semidefinite, then the system might still
be passive (although not strictly passive), with at least one of the eigenvalues λi(𝚥ω) of
Ψ(𝚥ω) vanishing forω→∞. In this scenario, the passivity check based on the Hamil-
tonian matrixℳ in (5.16) cannot be performed, sinceℳ is ill-defined and cannot be
constructed.

The Hamiltonian matrix can, however, be generalized [93] by avoiding the in-
version of W0 in (5.15). Retaining the vector v and adding it as an additional block-
component to the eigenvector in (5.16) leads to the following generalized eigenvalue
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problem:

(
A 0 B
0 −AT −CT

C BT W0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℳ

(
r
q
v
) = s0 (

I 0 0
0 I 0
0 0 0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒩

(
r
q
v
). (5.56)

The pencil (ℳ,𝒩 ) has at least one infinite eigenvalue due to the singularity of W0.
However, by the same argument used in Section 5.2.1.3, the finite purely imaginary
eigenvalues μk = 𝚥ωk of the pencil still correspond to the frequencies ωk where one
eigenvalue of Ψ vanishes as λi(𝚥ωk) = 0. Therefore, the passivity check detailed in
Section 5.3.2 and Algorithm 5.1 can still be applied as far as the Hamiltonian matrix
eigenvalue problem (5.16) is replaced by (5.56). Alternative approaches for handling
this case, based on frequency transformations, can be found in [23, 72, 76].

5.6.2 Enforcing asymptotic passivity

When W0 = D + DT is not sign definite, with at least one negative eigenvalue, most
of the foregoing results do not apply if not properly generalized. For instance, the
PRL condition (5.10) cannot be satisfied, since the model is not passive at infinite fre-
quency. Therefore, the proposed system perturbation (5.21) for passivity enforcement
will not be effective since also matrix D should be modified.

There are two main alternative approaches to recovering strict asymptotic passiv-
ity and enable all passivity enforcement schemes discussed in Section 5.5. One ap-
proach involves a preprocessing step that first modifies D so that its symmetric part is
strictly positive definite. Let us compute the following eigendecomposition:

D + DT

2
= VΛVT (5.57)

where Λ = diag(λ1, . . . , λP) collects the eigenvalues and V the corresponding eigenvec-
tors. We can simply redefine the eigenvalues in (5.57) as λ̂p = max(λp, ε)where ε > 0 is
a prescribed positiveminimumvalue assigned to the eigenvalues. The resultingmodel

Hap(s) = C(sI − A)
−1B + D̂, D̂ = Vdiag(λ̂1, . . . , λ̂P)V

T +
D − DT

2
(5.58)

is guaranteed to be asymptotically passive. This newmodelHap(s)may exhibit a large
deviation with respect to the original model response H(s), since a constant term is
added affecting the response at all frequencies. This accuracy loss can be partially
compensated by a standard state-output matrix correction Ĉ = C + δC, where δC is
determined through

min
δC
‖δC (𝚥ωI − A)−1B + D̂ − D‖2 (5.59)
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where the norm is defined, e. g., as a data-based cost function at discrete frequencies
ωℓ, as in Section 5.4.2.

A second (preferable) approach for handling models that are not asymptotically
passive amounts to:
1. Allowing for a perturbation of the direct coupling matrix D̂ = D + δD in addition

to the usual state-output map. The model perturbation thus becomes

δH(s) = δC(sI − A)−1B + δD = (δC δD) ((sI − A)
−1B

I
) (5.60)

which is compatible with all previous derivations with obvious modifications.
Note that, in this case, the Gramian-based cost functions become ill-defined since
the L2 norm of δH(s) is not finite, and a data-based cost function over a limited
bandwidth, such as (5.32), should be used during passivity enforcement.

2. Including an explicit local passivity constraint atω = ∞ during passivity enforce-
ment. This constraint is just a simple particular case of (5.52), where δD + δDT

replaces δΨ(𝚥ωkν).

We leave details of the above generalization to the reader.

5.6.3 Descriptor systems

Many model order reduction methods lead to systems in descriptor form

S : { Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(5.61)

with a possibly singular matrix E, and often with D = 0, instead of the regular state-
space form (5.1). A fundamental requirement to avoid an ill-defined (non-solvable)
model is that the pencil (A,E) is regular with |sE − A| ̸= 0 for some s ∈ ℂ. In the
following, we only discuss the case of impulse-free or equivalently index-one systems,
for which the transfer function

H(s) = C(sE − A)−1B + D (5.62)

has a finite asymptotic valueH∞ = lims→∞ H(s). Descriptor systemswith higher index
require a special treatment7 which is outside the scope of this chapter. See [58, 84, 91,
96, 98] for details.

7 Index-two systems can be passive with a positive real transfer funciton H(s) only when the leading
asymptotic term H(s) ∼ sL∞ for s → ∞ is such that L∞ = LT∞ ≥ 0. Higher index systems are not
passive and, in order to recover passivity, the high order impulsive part must be deflated.
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For index-one descriptor systems the Hamiltonian-based passivity check is appli-
cable with a minimal modification [91, 96, 98]. In fact, repeating the derivations of
Sections 5.2.1.3 and 5.6.1 while using (5.61) as a starting point leads to the same gener-
alized eigenvalue problem (5.56), but with𝒩 redefined as

𝒩 = (
E 0 0
0 ET 0
0 0 0

). (5.63)

Special care should be taken in the (generalized) Hamiltonian eigenvalue computa-
tion, for which structured eigensolvers should be preferred to general-purpose eigen-
solvers; see e. g. the implicitly restarted Krylov method of [59].

Passivity enforcement of descriptor systems viaHamiltonian eigenvalue perturba-
tion is discussed in [83, 84, 91, 96, 97, 98] and further generalized to para-Hermitian
pencils in [16]. The Gramian-based cost function for minimizing model perturbation
of Section 5.4.1 should also be properly generalized; see [78, 84] and [5, Chapter 2] for
details. Finally, we refer the reader to [30] for an extension of the Positive Real Lemma
to descriptor systems.

5.6.4 Other supply rates

All above derivations and algorithms assume that the supply rate s(u, y) through
which power is delivered to the system from the environment is given by (5.7). How-
ever, this is not the only possible choice in general application fields.We review below
the notable cases of scattering representations and general quadratic supply rates,
discussing the various modifications that are required to define, check, and enforce
passivity.

5.6.4.1 Scattering representations and bounded realness

The scattering representation is themost appropriate description of models in several
application fields, in particular high-frequency electronics and electromagnetics. This
is due to a number of reasons, including regularity and boundedness of the transfer
function, as well as the ability to measure it with high accuracy. In scattering repre-
sentations, the inputs u and outputs y are related to the power flow that is incident
and reflected by the structure. In particular, the supply rate is defined as

s(u, y) = uTu − yTy = ‖u‖2 − ‖y‖2 (5.64)

and is interpreted as the net power transferred to the system from the environment,
with the term ‖u‖2 denoting the power flow incident into the system and ‖y‖2 the corre-
sponding power flow that is reflected or scattered back into the environment [2, 4, 90].
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The supply rate s(u, y) in (5.64) leads to a set of passivity8 conditions that are listed
below, and which are obtained by repeating the derivations of Section 5.2.1 while ap-
plying the appropriate modifications.

The KYP Lemma for scattering representation is known as Bounded Real Lemma
(BRL) [2, 74] and states that a scattering state-space system (5.1) is passive if and only if

∃P = PT > 0 : (A
TP + PA + CTC PB + CTD
BTP + DTC −(I − DTD)

) ≤ 0. (5.65)

This lemma can also be stated in the equivalent LMI form

∃P = PT > 0 : (
ATP + PA PB CT

BTP −I DT

C D −I
) ≤ 0. (5.66)

A scattering system is passive when its transfer function H(s) is Bounded Real
(BR), i. e., the following three conditions hold [2, 81, 90]:
1. H(s)must be regular in the open right half complex planeℜ{s} > 0;
2. H(s∗) = H∗(s);
3. Ψ(s) = I − HT (−s)H(s) ≥ 0 forℜ{s} > 0.

These conditions should be compared to the PR conditions of Section 5.2.1.2, noting
that the only difference between PR and BR is in the definition of the function Ψ(s).
Correspondingly, the frequency-domain inequality conditions for the passivity of a
scattering systemstill requireΨ(𝚥ω) ≥ 0 for allω ∈ ℝ, and canbe expressedas in (5.12).
An equivalent statement is based on the singular values of the transfer function

σi ≤ 1, ∀σi ∈ σ(H(𝚥ω)), ∀ω ∈ ℝ, (5.67)

which implies in turn that passive scatteringmodelsmust have a bounded and regular
transfer function H(s) when restricted to the imaginary axis s = 𝚥ω, further requiring
that the state-space matrix A must be asymptotically stable. Another yet equivalent
condition for passivity is expressed in terms of the superior of the largest singular
value throughout the imaginary axis, leading to the well-knownℋ∞ norm condition

‖H‖ℋ∞ = supω∈ℝ
σmax(H(𝚥ω)) ≤ 1. (5.68)

The Hamiltonian matrix associated to a scattering state-space system (5.1) reads

ℳ = (
A − B(I − DTD)−1DTC −B(I − DTD)−1BT

CT (I − DDT )−1C −AT + CTD(I − DTD)−1BT
) . (5.69)

8 We retain the general term passivity also in the scattering (and for general quadratic supply rates),
as a standard denomination in circuit, electronic and electromagnetic applications, although in some
scientific communities this term is dedicated to immittance representations, and the term dissipative
is used in the more general setting.
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The system is passive ifℳ has no purely imaginary eigenvalues (strictly passive) or at
most purely imaginary eigenvalues with even-sized Jordan blocks [12, 33]. The same
considerations of Section 5.2.1.3 apply. When the model is not asymptotically passive
for ω → ∞, then D has one unit singular value and the above Hamiltonian matrix
becomes ill-defined. In this case,ℳ generalizes to the pencil (ℳ,𝒩 ) where

ℳ =(

A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D −I

), 𝒩 = (

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

) (5.70)

which replaces (5.56) for scattering representations [91, 94, 97, 98]. Finally, when the
underlying system is in descriptor form (5.61), then we simply replace I with E in 𝒩 ,
as in (5.63).

With all above redefinitions of appropriate passivity conditions for scattering sys-
tems, all passivity check and enforcement algorithmsdiscussed in Section 5.3 and Sec-
tion 5.5 apply with obvious modifications.

5.6.4.2 General quadratic supply rates

Immittance and scattering representations are just particular cases of the more gen-
eral situation in which the supply rate is a quadratic function of input and output
variables. Such case is compactly described by

s(u, y) = (u
y
)
T

(
Q S
ST R
)(

u
y
) (5.71)

with Q = QT and R = RT , from which the immittance case (5.7) and the scattering
case (5.64) are obtained by setting Q = R = 0, S = I (up to the irrelevant scaling factor
1/2) and Q = I, R = −I, S = 0, respectively.

The LMI condition (KYP lemma) that characterizes a passive (dissipative) state-
space system (5.1) with supply rate (5.71) reads

∃P = PT > 0 : (
ATP + PA − CTRC PB − (SC)T − CTRD
BTP − SC − DTRC −Q − SD − (SD)T − DTRD

) ≤ 0, (5.72)

and the corresponding Frequency-Domain Inequality reads

Ψ(𝚥ω) = Q + HH (𝚥ω)ST + SH(𝚥ω) + HH (𝚥ω)RH(𝚥ω) ≥ 0, ∀ω ∈ ℝ. (5.73)

Finally, the Hamiltonian matrix that generalizes (5.16) and (5.69) reads

ℳ = (
A − BW−1Z −BW−1BT

−CTRC + ZTW−1Z −AT + ZTW−1BT
) (5.74)

where W = Q + SD + (SD)T + DTRD and Z = (SC + DTRC). We leave all details to the
reader, pointing to [74, 88, 89] for a complete theoretical discussion. With suitable
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modifications, all passivity verification and enforcement schemes of Section 5.3 and
Section 5.5 are applicable to this general case as well.

5.6.5 Enforcing stability

All results and algorithms presented up to noware based on the fundamental assump-
tion that the system at hand is asymptotically stable, with all eigenvalues of state ma-
trix A, or pencil (A,E) in the descriptor case, having a strictly negative real part. Many
MOR schemes are able to preserve stability if the original model is stable, for instance
balanced truncation [5, Chapter 2] or Krylov subspacemethods based on split congru-
ence transformations such as PRIMA [6, Chapter 4]. Basic Arnoldi or Lanczosmethods
are instead not generally able to preserve stability in the reduced order model. Con-
sidering data-drivenmethods, the Vector Fitting algorithm [5, Chapter 8] incorporates
a pole-flipping strategy that guarantees stability, whereas basic Loewner interpola-
tion/reduction schemes [5, Chapter 6] do not guarantee stability. Further, even if a
stability-preserving MOR method is used, roundoff errors in computer implementa-
tions may compromise the stability and may result in some eigenvalue with a positive
real part.

Stabilization of a given model or system is a standard problem in Control Theory,
where many alternative approaches usually based on feedback are routinely applied.
The Reader is referred to any textbook such as [99]. The requirements we have in MOR
applications are stronger than simple stabilization, since the final model should be as
close as possible to the initial (unstable)model according to a prescribed performance
metric or norm. Therefore, the simplistic approach of separating the unstable modes
through an eigenvalue or, better, Schur decomposition and simply discarding them is
not appropriate. Optimal stabilizing approximations are in fact available through ro-
bust and reliable algorithms. As an example, we refer the reader to [52], where some
approaches for finding the closest stable system based on ℋ2 and ℋ∞ norms are in-
troduced; see also [32].

5.6.6 Parameterized systems

Passivity verification andenforcementmethods canbe extended toparameterized sys-
tems, whose response H(s, ϑ) depends both on frequency s and (multivariate) param-
eters ϑ ∈ Θ ⊆ ℝd. In this framework, many different approaches and solutions have
been proposed, depending on how parameters are embedded in the model and on
how themodel is constructed. A complete treatmentwould be outside the scope of this
chapter, so that we discuss only a specific yet wide class of model parameterizations

H(s; ϑ) = N(s, ϑ)
D(s, ϑ)
=
∑n̄n=0∑

̄ℓ
ℓ=1 Rn,ℓ ξℓ(ϑ)φn(s)

∑n̄n=0∑
̄ℓ
ℓ=1 rn,ℓ ξℓ(ϑ)φn(s)

, (5.75)
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where Rn,ℓ ∈ ℝM×M and rn,ℓ ∈ ℝ are the model coefficients, φn(s), ξℓ(ϑ) are suitable
basis functions representing the dependence of model numerator and denomina-
tor on frequency and parameters, respectively, and ℓ is a scalar index spanning the
parameter basis set through a suitable linear ordering. The parameterization (5.75) in-
cludes as particular cases themultivariate barycentric form leading to the (parameter-
ized) Loewner framework [50] (see [5, Chapter 6]) and the generalized Sanathanan–
Koerner form [38, 80], which extends to the multivariate setting the Vector Fitting
scheme [5, Chapter 8]. In the latter case the frequency basis functions are φ0(s) = 1
and φn(s) = (s − qn)−1 for n > 0, where qn are predefined stable “basis poles”, either
real or in complex conjugate pairs, and the parameter-dependent basis functions ξℓ
can be orthogonal or trigonometric polynomials, or any other choice that is appro-
priate for the application at hand. A parameterized (descriptor) realization is easily
obtained from (5.75) as (5.61), where

A = A(ϑ) =
̄ℓ
∑
ℓ=1

Aℓξℓ(ϑ), C = C(ϑ) =
̄ℓ
∑
ℓ=1

Cℓξℓ(ϑ) (5.76)

and E,B,D are constant.
One notable and simple approach to obtain a uniformly passive model, so that

all passivity conditions discussed in Section 5.2.1 hold ∀ϑ ∈ Θ, is to suppress the
denominator in (5.75) as D(s) = 1 and construct the parameterized system through
interpolation of a set of non-parameterized models. This is achieved by choosing ξℓ
as interpolating, e. g. Lagrange, basis functions. There exist passivity-preserving in-
terpolation schemes that ensure that, if the individual models being interpolated
are passive, then also the interpolated parameterized model is passive ∀ϑ ∈ Θ.
See [26, 27, 28, 29, 70] and the references therein for details on various alternative
approaches within this framework.

A complementary approach is to consider the fully-parameterized model in
form (5.75) and extend the passivity verification and enforcement methods of Sec-
tion 5.3 and Section 5.5 to the multivariate case. The main difficulty that arises in this
scenario is that the Hamiltonian matrix, which is the main tool providing localization
of the passivity violations, becomes parameter-dependent due to (5.76). The conve-
nience of the purely algebraic test based on its eigenvalues is partially lost, since the
purely imaginary eigenvalues (if any) are parameter-dependent. A possible strategy
for tracking these eigenvalues based on adaptive sampling in the parameter space is
discussed in [95], where a first-order perturbation analysis on the full Hamiltonian
eigenspectrum is used to determine the regions in the parameter space that need re-
fined sampling, in order to track the boundaries between the regions defining passive
and non-passive models. Figure 5.5 provides an illustration by depicting the results of
this adaptive sampling process in a case with two parameters d = 2. If any passivity
violation region is detected (the red dots in Figure 5.5, left panel), then the worst-case
passivity violations are determined as in Algorithm 5.1 and a multivariate extension
of Algorithm 5.3 is applied to eliminate them. All details are available in [37, 40, 95].



168 | S. Grivet-Talocia and L.M. Silveira

Figure 5.5: Adaptive sampling in a two-dimensional parameter space, applied to a non-passive
model (left panel) and to the corresponding passive model after enforcement (right). Each dot rep-
resents a non-parameterized model instance obtained by evaluating the parameterized model (5.75)
at the corresponding sampling point. Each dot is colored in green/red if the corresponding model
instance is locally passive/non-passive, respectively, as resulting from the absence/presence of
imaginary Hamiltonian eigenvalues. Iterative refinement leads to tracking the boundaries between
passive/non-passive regions. Courtesy of A. Zanco, Politecnico di Torino.

5.7 Examples

5.7.1 A high-speed interconnect in a mobile device
The passivity enforcement process is here applied to amodel of a high-speed intercon-
nect providing a data link in a smartphone. An initial characterization of the struc-
ture was obtained through a full-wave numerical simulation of the time-harmonic
Maxwell’s equations, which provided a set of frequency samples of the 4 × 4 (scatter-
ing) transfer function S(𝚥ω) from0 to 50GHz. These sampleswere processed by Vector
Fitting [5, Chapter 8], obtaining a rational approximationof the system responses. This
rational approximation was then converted to a state-space realization as in [5, Chap-
ter 8]. The accuracy of the rational approximation is excellent, as depicted in the two
top panels of Figure 5.6.

AHamiltonian-based passivity check on thismodel reveals the presence ofK = 10
purely imaginary Hamiltonian eigenvalues μk = 𝚥ωk (see Figure 5.7, left panel). Cor-
respondingly, a sweep of the model singular values σi(H(𝚥ω)) (see the top panel of
Figure 5.8) up to a maximum frequency slightly beyond ωK reveals a few evident pas-
sivity violations, corresponding to singular value trajectories exceeding the passivity
threshold σ = 1. The local singular value maxima are highlighted with red dots in
Figure 5.8.

Figure 5.8 depicts the typical situation that arises when fitting a rational model to
response data over a finite frequency band: passivity violations usually occur at fre-
quencies that fall outside the range where data samples are available. The fact that
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Figure 5.6: Comparison between model and original data used for model extraction for the smart-
phone interconnect. For illustration, only response S22(𝚥ω) of the 4 × 4 scattering matrix is reported.
Top two panels refer to the initial non-passive model, whereas bottom two panels refer to the model
after passivity enforcement.
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Figure 5.7: Hamiltonian eigenvalues before (left) and after (right) passivity enforcement for the
smartphone interconnect model (only eigenvalues with positive imaginary parts are shown). The
purely imaginary eigenvalues are highlighted with a darker color in the left panel.

such violations are not located within the modeling bandwidth may induce a false
sense of confidence in the model user, who may argue that out-of-band passivity vi-
olations are unimportant, since located at frequency ranges that are not of interest.
In fact, a time-domain simulation of the model using a transient ODE solver is agnos-
tic whether the passivity violation occurs within or off-band: during time-stepping,
numerical approximation errors due to the adopted ODE solver will inevitably excite
those frequencies where the model amplifies energy, leading to instability. This is ex-
actly what happens in Figure 5.1, where the thin blue line demonstrates the instability
induced by this initial non-passive model. In this simulation scenario, the model was
interconnected to a set of other linear (passive) circuits, and it was indeed possible to
determine exactly the two poles p = 2π(α ± 𝚥β) that are responsible for this instabil-
ity, obtaining α = +1.13 × 108 Hz and β = 5.32 × 1010 Hz. The real part is positive, and
the imaginary part nearly matches the frequency of the singular value peak; see Fig-
ure 5.8. This is exactly the frequency where the model injects energy into the system.
See [35] for additional details on destabilization of non-passive models.

Enforcing model passivity removes the instability, as we already know from Fig-
ure 5.1. Application of Algorithm 5.3 leads to a passive model in 5 iterations, docu-
mented by the singular value plots in the various panels of Figure 5.8. The final pas-
sivemodel hasnopurely imaginaryHamiltonianeigenvalues, as evident from the right
panel of Figure 5.7, and its responses still match very accurately the original data sam-
ples, as depicted in the bottom panel of Figure 5.6.
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Figure 5.8: Evolution of the singular values (blue solid lines) of the smartphone interconnect during
passivity enforcement iterations through Algorithm 5.3. Passive and non-passive frequency bands
are highlighted with green and red color, respectively. Local maxima of all singular value trajecto-
ries in each non-passive frequency band, which are used to set up local passivity constraints, are
highlighted with red dots.
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5.7.2 An interconnect link on a high-performance PCB

We consider here the coupled interconnect link on a high-performance Printed Circuit
Board (PCB), already discussed in [5, Chapter 8], where an accurate model was ex-
tractedusing theVector Fitting algorithm fromscatteringmeasurements performedon
the real hardware. As depicted in [5, Chapter 8], Figures 6 and 7, the model responses
of this initial model are visually undistinguishable from the measured samples, with
a model-data error of 1.34 ⋅ 10−3 (worst-case RMS error among all responses).

A passivity check performed on this initial model reveals some small passivity vi-
olations at low frequencies. This is actually expected, since the system is almost loss-
less at low frequency, and passivity violations induced by the rational approximation
process of VF are therefore more likely than at high frequency, where energy dissi-
pation is more pronounced. The passivity violations are detected by the presence of
eight pairs of purely imaginary Hamiltonian eigenvalues, depicted in Figure 5.9, pan-
els (a), (c) and (d). The corresponding frequencies denote crossings of the singular

Figure 5.9: Hamiltonian eigenvalues α + 𝚥β = μ/2π of the PCB interconnect model. Panels (a), (c), (d):
original model after Vector Fitting; panels (b), (e), (f): model after passivity enforcement. Top panels
(a), (b) depict the full Hamiltonian eigenspectrum. Bottom panels (c), (d) and (e), (f) are enlarged
views of the top panels (a) and (b), respectively, at different magnification levels. Panels (e) and (f)
show that all purely imaginary Hamiltonian eigenvalues clustered at low frequencies, depicted in
panels (c) and (d), are effectively removed by passivity enforcement.
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value trajectories σi(𝚥ω) of the threshold σ = 1, as depicted in Figure 5.10, top panel.
After few iterations of Algorithm 5.3 all these passivity violations are removed. As the
bottom panel of Figure 5.10 shows, all singular value trajectories of the passive model
are uniformly bounded by one. This is further confirmed by panels (e) and (f) of Fig-
ure 5.9, which show that all purely imaginary eigenvalues of the initial model are now
displaced from the imaginary axis.

Figure 5.10: Top panel: singular value trajectories (blue lines) of the initial (non-passive) PCB in-
terconnect model, revealing low-frequency passivity violations exceeding the passivity threshold
σ = 1 (red line). Black dots correspond to the frequencies of the purely imaginary Hamiltonian eigen-
values; see Figure 5.9, panels (c) and (d). Bottom panel: singular value trajectories after passivity
enforcement, which are uniformly below the passivity threshold.

The passivity enforcement process did not spoil model accuracy. Figure 5.11 compares
the scattering responses (1, 2) and (1, 3) of the passivemodel to the rawmeasured sam-
ples from which the initial model was derived (the same responses already depicted
in [5, Chapter 8], Figures 6 and 7). Also for the passive model the responses closely
match the measurements, with a worst-case RMS model-data error of 1.38 ⋅ 10−3.

5.8 Conclusions
The goal of this chapter was to survey the most widely used techniques for enforc-
ing passivity of reduced order models. To motivate the ensuing description, a simple
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Figure 5.11: Comparison between passive model responses and measured data used for model iden-
tification for the high-speed PCB interconnect of Section 5.7.2.
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example was shown that illustrates in striking fashion the need for ensuring passiv-
ity in models. The focus of the chapter was on Linear Time-Invariant (LTI) systems in
state-space form, although the techniques reviewed are applicable in other represen-
tations with appropriate modifications. Conditions for testing the passivity of a given
LTImodel aswell as approaches for perturbingnon-passive systems in order to enforce
passivity were reviewed and examples were shown to demonstrate the application of
such techniques to realistic cases.
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Abstract:One of themain approaches tomodel reduction of both linear and nonlinear
dynamical systems is bymeans of interpolation. This approach seeks reducedmodels
whose transfer function matches that of the original system at selected interpolation
points. Data-driven methods constitute an important special case. We start with an
account of the Loewner framework in the linear case [52]. It constructs models from
given data in a straightforward manner. An important attribute is that it provides a
trade-off between accuracy of fit and complexity of the model. We compare this ap-
proach with other approximation methods and apply it to different test-cases. One
of the case studies to which we apply the aforementioned methods is defined by the
inverse of the Bessel function. We then turn our attention to the approximation of an
Euler–Bernoulli beammodel with Rayleigh damping. Further case studies include the
approximation of two real valued functions with specific difficulties (discontinuity,
sharp peaks). One computational tool is the SVD; its complexity is cubic in the num-
ber of data points. For large data sets the CUR factorization is a viable alternative. Note
that its complexity is cubic aswell but with respect to the dimension of the reduced or-
der model (ROM). Another option is to use stochastic procedures such as randomized
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Loewner framework is a data-driven approach which can construct low order models
from measurements. It can be applied to both frequency and time-domain data [56].
Here we will concentrate on frequency domain data. The Loewner framework will be
implemented using (a) the SVD (singular value decomposition), (b) the CUR factoriza-
tion, (c) randomized SVD (r-SVD). Its performance will be compared with that of the
recently developed AAA algorithm see [53], the Vector Fitting approach [21, 40] and
the IRKA algorithm [13].

The paper is composed of three sections. The first one covers the fundamen-
tals of the Loewner framework starting from left and right interpolatory reduction. It
concludes (a) by describing an interpolation property satisfied by reduced systems
and (b) by making the procedure of obtaining real reduced models (despite com-
plex interpolation points and values) explicit. Next the description of two algorithms
namely, Loewner-SISO and Loewner-MIMO, is given. Finally two simple examples are
presented and the role of generalized inverses outlined.

The second chapter describes methods for implementing the Loewner reduction,
namely the SVD, the CUR factorization and the role of splitting the interpolation point
in left and right sets. The third chapter illustrates the main features of the Loewner
approach bymeans of seven case studies, namely, (a) the CD player, (b) an oscillating
function, (c) the inverse of a Bessel function, (d) an Euler–Bernoulli beam, (e) a heat
equation, (f) a function with two sharp peaks, and (g) the sign function. An epilogue
and references conclude the presentation.

6.2 The Loewner framework and moment matching

The Loewner framework has attracted increased attention of researchers from vari-
ous fields of applied mathematics and control engineering in the last 13 years. Con-
sequently, a fair amount of contributions that are now available, deal with various
aspects on further extending the framework and with its application to different test-
cases. Below we provide an account of some of the work related to or inspired by the
“Loewner framework” (see Table 6.1).

Consider linear, time-invariant systems withm inputs, n internal variables (states
if E is non-singular) and p outputs:

Σ : {
Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), where

E,A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n.
(6.1)

Wewill denote this realization of the systembymeans of the quadrupleΣ = (C,E,A,B).
The associated transfer function is

H(s) = CΦ(s)B whereΦ(s) = (sE − A)−1 ∈ ℂn×n. (6.2)
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Table 6.1: A collection of contributions related to the Loewner Framework.

Original paper [52] & tutorial paper [6] Chapters 4 and 7 in the book [9]

Extension to Application to
parametrized linear systems [4, 42] modeling multi-port linear systems [48]
bilinear systems [5, 45, 46] preserving the stability of the ROM [30]
quadratic systems [29, 36] the Burgers equations [8]
quadratic-bilinear systems [32] the Oseen equations [10]
linear switched systems [34] preserving the structure of DAE systems [37]
polynomial systems [11, 16] systems with delay [35, 59]
modeling from noisy data [20, 50] approximating functions [31, 33, 43, 44]
modeling from time-domain data [56] singular/rectangular systems [3]

genes oscillations [7] and biological rhythms [68]

Perspective based on duality and application
to bilinear differential [57, 58]

Interpretation based on interconnection and
application to LTV systems [60, 61]

A common way to reduce the complexity of a system is by means of Petrov–Galerkin
projections. Such projections are defined bymeans of twomatricesV,W ∈ ℝn×k, k < n,
satisfying the condition thatWTV ∈ ℝk×k is invertible.1

Definition 6.1. Consider vi,wi ∈ ℝ
n, i = 1, . . . , k, and let V = [v1, . . . , vk], W =

[w1, . . . ,wk] ∈ ℝ
n×k . The map defined by Π1 = V(VTV)−1VT , is an orthogonal pro-

jection onto the span of the columns ofV. IfWTV is non-singular,Π2 = V(WTV)−1WT ,
is an oblique projector onto the span of the columns of V, along the columns of W.
Π1 and Π2 are usually referred to in the model reduction literature as Galerkin and
Petrov–Galerkin projectors, respectively.

Reducing the system Σ = (C,E,A,B) defined above, bymeans of a Petrov–Galerkin
projection, we obtain the reduced system Σ̂ = (Ĉ, Ê, Â, B̂)with the reduced order matri-
ces given by

Ĉ = CV ∈ ℝp×k , Ê =WTEV, Â =WTAV ∈ ℝk×k , B̂ =WTB ∈ ℝk×m. (6.3)

There are many ways of choosing Petrov–Galerkin projectors in order to achieve
various goals. Herewewill restrict our attention to interpolatory projections. Suchpro-
jectors yield reducedmodels whichmatchmoments of the original system. These mo-
ments are values of transfer functions at selected frequencies, referred to as interpo-
lation points.

Remark 6.1. The D-term. In the system representations to follow no explicit D terms
will be considered. The reason is that such terms can be incorporated in the remaining

1 The notation (⋅)T indicates transposition of (⋅), while the notation (⋅)∗ indicates transposition of (⋅)
followed by complex conjugation.
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matrices of the realization, thus yieldingwhat is knownas adescriptor representation.
Consider a rank-revealing factorization

D = D1D2 where D1 ∈ ℝ
p×ρ, D2 ∈ ℝ

ρ×m,

and ρ = rankD. It readily follows that

Ê = [ E
0ρ×ρ
] , Â = [ A

−Iρ
] , B̂ = [ B

D2
] , Ĉ = [ C D1 ] ,

is a descriptor realization of the same system with no explicit D-term. The reason for
not considering explicit D-terms, comes from the fact that the Loewner framework
yields descriptor realizations with the D-term incorporated in the rest of the realiza-
tion.

6.2.1 Moments of a system

Given a matrix-valued function of time h : ℝ → ℝp×m, its kthmoment is

ηk =
∞

∫
0

tkh(t) dt, k = 0, 1, 2, . . . .

If this function has a Laplace transform defined by H(s) = ℒ(h)(s) = ∫∞0 h(t)e−st dt,
the kth moment of h is, up to a sign, the kth derivative of H evaluated at s = 0:

ηk = (−1)
k dk

dsk
H(s)|s=0 ∈ ℝ

p×m, k = 0, 1, 2, . . . .

In the sequel, we will also make use of a generalized notion of moments, namely the
moments of h around the (arbitrary) point s0 ∈ ℂ:

ηk(s0) =
∞

∫
0

tkh(t)e−s0t dt.

These generalized moments turn out to be (up to a sign) the derivatives ofH(s) evalu-
ated at s = s0:

ηk(s0) = (−1)
k dk

dsk
H(s)|s=s0 ∈ ℝ

p×m, k = 0, 1, 2, . . . .

In this context, assuming for simplicity that E = I, the moments of h at s0 ∈ ℂ are

ηk(s0) = −kC(s0I − A)
−(k+1)B, k = 0, 1, 2, . . . ,

provided that s0 is not an eigenvalue of A.
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Notice that the moments determine the coefficients of the Laurent series expan-
sion of the transfer function H(s) in the neighborhood of si ∈ ℂ; in particular

H(s) = H(s0) +H
(1)(s0)
(s − s0)

1!
+ ⋅ ⋅ ⋅ +H(k)(s0)

(s − s0)k

k!
+ ⋅ ⋅ ⋅

= η0(s0) + η1(s0)
(s − s0)

1!
+ ⋅ ⋅ ⋅ + ηk(s0)

(s − s0)k

k!
+ ⋅ ⋅ ⋅ .

Approximation by moment matching
Given Σ = (C,E,A,B), consider the expansion of the transfer function around si, i =
1, . . . , r, as above. Approximation by moment matching consists in finding

Σ̂ = (Ĉ, Ê, Â, B̂), Ê, Â ∈ ℝk×k , B̂ ∈ ℝk×m, Ĉ ∈ ℝp×k , (6.4)

such that the expansion of the transfer function

Ĥ(s) = η̂0(si) + η̂1(si)
(s − si)
1!
+ η̂2(si)

(s − si)2

2!
+ η̂3(si)

(s − si)3

3!
+ ⋅ ⋅ ⋅ ,

for appropriate si ∈ ℂ, and ℓi, r ∈ ℕ, satisfies

ηj(si) = η̂j(si), j = 1, 2, . . . , ℓi and i = 1, . . . , r.

This problem is also known as rational interpolation.

6.2.2 Rational interpolation by Petrov–Galerkin projection

Rational interpolation by projection was originally proposed in the work of Skelton
and co-workers; see [65, 66, 67]. Contributions were also made by Grimme, Gallivan
and van Dooren [23, 24, 38].

Suppose that we are given a system Σ = (C,E,A,B), assumed SISO (single-input
single-output, i. e.,m = p = 1) for simplicity. We wish to find lower dimensional mod-
els Σ̂ = (Ĉ, Ê, Â, B̂), defined as in (6.3), k < n, such that Σ̂ approximates the original
system in an appropriate way.

Consider k distinct points sj ∈ ℂ. Define V as a generalized controllability matrix:

V = [(s1E − A)
−1B, . . . , (skE − A)

−1B] ∈ ℂn×k , (6.5)

and letW∗ be any left inverse of V. Then we have the following.

Proposition 6.1. Σ̂ interpolates the transfer function of Σ at the points sj, that is,

H(sj) = C(sjE − A)
−1B = Ĉ(sjÊ − Â)

−1B̂ = Ĥ(sj), j = 1, . . . , k.
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Proof. Denoting by ej = [0 ⋅ ⋅ ⋅0 1⏟⏟⏟⏟⏟⏟⏟
j

0 ⋅ ⋅ ⋅ 0]T , the jth unit vector, we obtain the string

of equalities below which lead to the desired result:

Ĉ(sjÊ − Â)
−1B̂ = CV(sjW

∗EV −W∗AV)−1W∗B

= CV(W∗(sjE − A)V)
−1W∗B

= CV([∗ ⋅ ⋅ ⋅ ∗W∗B ∗ ⋅ ⋅ ⋅ ∗])−1W∗B

= [C(s1E − A)
−1B, . . . ,C(skE − A)

−1B]ej
= C(sjE − A)

−1B.

Next, we are concernedwithmatching the value of the transfer function at a given
point s0 ∈ ℂ, together with k − 1 derivatives. We define

V = [(s0E − A)
−1B, (s0E − A)

−2B, . . . , (s0E − A)
−kB] ∈ ℂn×k , (6.6)

together with any left inverseW. The following holds.

Proposition 6.2. Σ̂ interpolates the transfer function ofΣat s0, togetherwith k−1deriva-
tives at the same point:

(−1)j

j!
dj

dsj
H(s)|s=s0 = C(s0E − A)

−(j+1)B = Ĉ(s0Ê − Â)
−(j+1)B̂ = (−1)

j

j!
dj

dsj
Ĥ(s)|s=s0 ,

for j = 0, 1, . . . , k − 1.

Proof. Let V be as defined in (6.6), and W be such that WTV = Ik . It readily follows
that the ℓth power of the projected matrix s0Ê − Â satisfies

(s0Ê − Â)
ℓ = [ ∗ ⋅ ⋅ ⋅ ∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ−1
W∗B ∗ ⋅ ⋅ ⋅ ∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

k−ℓ
].

Consequently [WT (s0E − A)V]−ℓWTB = eℓ, which finally implies

Ĉ(s0Ê − Â)
−ℓB̂ = CV[WT (s0E − A)V]

−ℓWTB = CVeℓ = C(s0E − A)
−ℓB,

for ℓ = 1, 2, . . . , k.

Since any V̄ that spans the same column space as V achieves the same objective,
projectors composed of combinations of the cases (6.5) and (6.6) achieve matching of
an appropriate number of moments. To formalize this we will make use of the follow-
ing matrices:

ℛk(E,A,B; σ) = [(σE − A)
−1B (σE − A)−2B ⋅ ⋅ ⋅ (σE − A)−kB].
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Corollary 6.1.
(a) If V as defined above is replaced by V̄ = RV, R ∈ ℝk×k , detR ̸= 0, and W by

W̄ = R−TW, the same matching results hold true.
(b) Let V be such that

span colV = span col [ℛm1
(E,A,B; σ1) ⋅ ⋅ ⋅ ℛmℓ (E,A,B; σℓ)],

andW be any left inverse of V. The reduced system matches mi moments at σi ∈ ℂ,
i = 1, . . . , ℓ.

6.2.3 Two-sided projections

The above results can be strengthened if the row span of the matrix WT is chosen
to match the row span of a generalized observability matrix. In such a case twice as
manymoments canbematchedwith a reduced systemof the samedimension.Here, in
addition to points s1, . . . , sk, and the associated (6.5), we are given k additional distinct
points sk+1, . . . , s2k . These points are used to define a generalized observability matrix:

W = [(sk+1E
T − AT)−1CT ⋅ ⋅ ⋅ (s2kE

T − AT)−1CT] ∈ ℂn×k . (6.7)

Proposition 6.3. Assuming thatWTV has full rank, the projected system Σ̂, interpolates
the transfer function of Σ at the points si, i = 1, . . . , 2k.

Proof. The string of equalities that follows proves the desired result:

Ĉ(siÊ − Â)
−1B̂ = CV(siW

TEV −WTAV)−1WTB

= CV(WT (siE − A)V)
−1WTB

= CV(WT [⋅ ⋅ ⋅B ⋅ ⋅ ⋅])−1WTB

= CVei = C(siE − A)
−1B, for i = 1, . . . , k,

= CV(
[[[[

[

...
C
...

]]]]

]

V)

−1

WTB

= eTi W
TB = C(siE − A)

−1B, for i = k + 1, . . . , 2k.

The projectors (see [62]) discussed in the previous section satisfy the Sylvester
equations as shown next.

Proposition 6.4. With Λ = diag[λ1, . . . , λk], M = diag[μ1, . . . , μq], where λi and μj are
mutually distinct, R = [1 ⋅ ⋅ ⋅ 1] ∈ ℝk , and L = [1 ⋅ ⋅ ⋅ 1]T ∈ ℝq, the matrices V andW
satisfy the Sylvester equations:

EVΛ − AV = BR and MWTE −WTA = LC. (6.8)
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6.2.4 Interpolatory model reduction for MIMO systems

In the general case ofMIMO (multi-inputmulti-output) systems, themoments arep×m
matrices. So, in the case of rational matrix interpolation the most appropriate way to
proceed is to interpolate along certain directions. This leads to the so-called tangential
interpolation problem (see e. g. [6, 21, 25]).

More precisely, we are given a set of input/output response measurements spec-
ified by left driving frequencies {μi}

q
i=1 ⊂ ℂ, using left input or tangential directions:

{ℓi}
q
i=1 ⊂ ℂ

p, producing left responses: {vi}
q
i=1 ⊂ ℂ

m, and right driving frequencies:
{λi}ki=1 ⊂ ℂ, using right input or tangential directions: {ri}

k
i=1 ⊂ ℂ

m, producing right re-
sponses: {wi}

k
i=1. We are thus given the left data: (μj; ℓjT , vTj ), j = 1, . . . , q, and the right

data: (λi; ri,wi), i = 1, . . . , k. The problem is to find a rational p × m matrix H(s), such
that

H(λi)ri = wi, i = 1, . . . , k, ℓTj H(μj) = v
T
j , j = 1, . . . , q. (6.9)

The left data is rearranged compactly as

M =
[[[

[

μ1
. . .

μq

]]]

]

∈ ℂq×q, L =
[[[

[

ℓT1
...
ℓTq

]]]

]

∈ ℂq×p, 𝕍 =
[[[

[

vT1
...
vTq

]]]

]

∈ ℂq×m, (6.10)

while the right data is rearranged as

Λ =
[[[

[

λ1
. . .

λk

]]]

]

∈ ℂk×k ,
R = [r1 r2 ⋅ ⋅ ⋅ rk] ∈ ℂm×k ,

𝕎 = [w1 w2 ⋅ ⋅ ⋅ wk] ∈ ℂ
p×k .

(6.11)

Interpolation points and tangential directions are determined by the problem or are
selected to realize given model reduction goals. For SISO systems, i. e.,m = p = 1, left
and right directions can be taken equal to one (ℓj = 1, ri = 1) and hence the conditions
above become

Ĥ(μj) = H(μj) ⇒ Ĥ(μj) = vj, j = 1, . . . , q,

Ĥ(λi) = H(λi) ⇒ Ĥ(λi) = wi, i = 1, . . . , k.
} (6.12)

6.2.5 The Loewner framework

Given a row array of complex numbers (μj, vj), j = 1, . . . , q, and a column array, (λi,wi),
i = 1, . . . , k, (with λi and the μj mutually distinct) the associated Loewner matrix is

𝕃 =
[[[[

[

v1−w1
μ1−λ1
⋅ ⋅ ⋅ v1−wk

μ1−λk
...

. . .
...

vq−w1
μq−λ1
⋅ ⋅ ⋅ vq−wk

μq−λk

]]]]

]

∈ ℂq×k .
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Definition 6.2. If g is rational, i. e., g(s) = p(s)
q(s) , for appropriate polynomials p, q, the

McMillan degree or the complexity of g is deg g = max{deg(p),deg(q)}.

Now, if wi = g(λi), and vj = g(μj), are samples of a rational function g, the main
property of Loewner matrices asserts the following.

Theorem 6.1 ([52]). Let 𝕃 be as above. If k, q ≥ deg g, then rank𝕃 = deg g. In other
words the rank of 𝕃 encodes the complexity of the underlying rational function g. Fur-
thermore, the same result holds for matrix-valued functions g.

6.2.5.1 The Loewner pencil and interpolatory projectors

In the sequel we denote the tangential versions of (6.5) and (6.7) byℛ,𝒪, respectively.
For arbitrary k and q, these are defined as

ℛ = [(λ1E − A)
−1Br1, . . . , (λkE − A)

−1Brk] ∈ ℂ
n×k , (6.13)

𝒪T = [(μ1E
T − AT)−1CTℓ1 ⋅ ⋅ ⋅ (μqE

T − AT)−1CTℓq] ∈ ℂ
n×k . (6.14)

It readily follows that the reduced quantities Ê and Â form a Loewner pencil:

Ê = −𝒪Eℛ = −
[[[[[

[

vT1 r1−ℓ
T
1 w1

μ1−λ1
⋅ ⋅ ⋅ vT1 rk−ℓ

T
1 wk

μ1−λk
...

. . .
...

vTq r1−ℓ
T
qw1

μq−λ1
⋅ ⋅ ⋅ vTq rk−ℓ

T
qwk

μq−λk

]]]]]

]

= −𝕃 ∈ ℂq×k , (6.15)

Â = −𝒪Aℛ = −
[[[[[

[

μ1vT1 r1−ℓ
T
1 w1λ1

μ1−λ1
⋅ ⋅ ⋅ μ1vT1 rk−ℓ

T
1 wkλk

μ1−λk
...

. . .
...

μqvTq r1−ℓ
T
qw1λ1

μq−λ1
⋅ ⋅ ⋅ μqvTq rk−ℓ

T
qwkλk

μq−λk

]]]]]

]

= −𝕃s ∈ ℂ
q×k , (6.16)

B̂ = 𝒪B =
[[[

[

vT1
...
vTq

]]]

]

= 𝕍 ∈ ℂq×m, Ĉ = Cℛ = [ w1 ⋅ ⋅ ⋅ wk ] = 𝕎 ∈ ℂ
p×k . (6.17)

The resulting quadruple (𝕎,𝕃, 𝕃s, 𝕍) is called the Loewner quadruple.

Lemma 6.1. Upon multiplication of the first equation in (6.8) with𝒪 on the left and the
second byℛ on the right we obtain

𝕃s − 𝕃Λ = 𝕍R and 𝕃s −M𝕃 = L𝕎. (6.18)

By adding/subtracting appropriate multiples of these expressions it follows that the
Loewner quadruple satisfies the Sylvester equations

M𝕃 − 𝕃Λ = 𝕍R − L𝕎 and M𝕃s − 𝕃sΛ = M𝕍R − L𝕎Λ. (6.19)
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Theorem 6.2. Assume that the pencil (𝕃s, 𝕃) is regular.2 Then H(s) = 𝕎(𝕃s − s𝕃)−1𝕍,
satisfies the tangential interpolation condition (6.9).

Proof. Multiplying the first Sylvester equation by s and subtracting it from equation
the second one, we get

M(𝕃s − s𝕃) − (𝕃s − s𝕃)Λ = (M − sI)𝕍R − L𝕎(Λ − sI).

Multiplying this equation by ei on the right and setting s = λi, we obtain

(M − λiI)(𝕃s − λi𝕃)ei = (M − λiI)𝕍ri ⇒ (𝕃s − λi𝕃)ei = 𝕍ri
⇒𝕎ei = 𝕎(𝕃s − λi𝕃)

−1𝕍ri.

Thus wi = H(λi)ri. Next, we multiply the above equation by eTj on the left and set
s = μj:

eTj (𝕃s − μj𝕃)(Λ − μjI) = e
T
j L𝕎(Λ − μjI) ⇒ eTj (𝕃s − μj𝕃) = ℓj𝕎

⇒ eTj 𝕍 = ℓ
T
j 𝕎(𝕃s − μj𝕃)

−1𝕍.

Thus vTj = ℓ
T
j H(μj).

Remark 6.2 (Parametrization of all interpolants of complexity equal to the size of 𝕃).
With K ∈ ℂp×m, the Sylvester equations can be rewritten as

M𝕃 − 𝕃Λ = (𝕍 − LK)R − L(𝕎 − KR) and
M(𝕃s + LKR) − (𝕃s + LKR)Λ = M(𝕍 − LK)R − L(𝕎 − KR)Λ.

These equations imply that (𝕎̄, 𝕃, 𝕃̄s, 𝕍̄) is an interpolant for all K ∈ ℂp×m, where
𝕃̄s = 𝕃s + LKR, 𝕍̄ = 𝕍 − LK and 𝕎̄ = 𝕎 − KR.

6.2.5.2 Construction of interpolants

If the pencil (𝕃s, 𝕃) is regular, then E = −𝕃,A = −𝕃s,B = 𝕍,C = 𝕎, is a minimal
interpolant of the data, i. e., H(s) = 𝕎(𝕃s − s𝕃)−1𝕍, interpolates the data. Otherwise,
as shown in [52], problem (6.9) has a solution provided that

rank[s𝕃 − 𝕃s] = rank[𝕃, 𝕃s] = rank [
𝕃
𝕃s
] = r,

for all s ∈ {λj} ∪ {μi}. Consider then the short SVDs:

[𝕃, 𝕃s] = YΣ̂rX̃
∗, [
𝕃
𝕃s
] = ỸΣrX

∗,

where Σ̂r, Σr ∈ ℝr×r, Y ∈ ℂq×r, X ∈ ℂk×r, Ỹ ∈ ℂ2q×r, X̃ ∈ ℂr×2k .

2 The pencil (𝕃s,𝕃) is called regular if there is at least one value of λ ∈ ℂ such that det(𝕃s − λ𝕃) ̸= 0.
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Remark 6.3. r can be chosen as the numerical rank (as opposed to the exact rank) of
the Loewner pencil. For issues related to the rank, we refer the reader to [2], page 50,
for details.

Theorem 6.3. The quadruple (E,A,B,C) of size r × r, r × r, r ×m, p × r, given by

E = −YT𝕃X, A = −YT𝕃sX, B = YT𝕍, C = 𝕎X,

is a descriptor realization of an (approximate) interpolant of the data with McMillan
degree r = rank𝕃.

Remark 6.4.
(a) The Loewner approach constructs a descriptor representation (𝕎,𝕃, 𝕃s, 𝕍), of an

underlying dynamical system exclusively from the data, with no further manipu-
lations involved (i. e., matrix factorizations or inversions). In general, the pencil
(𝕃s, 𝕃) is singular and needs to be projected to a regular pencil (A,E). However, as
shown in the mass–spring–damper example in equation (6.22), inversion can be
replaced by generalized inversion.

(b) As already mentioned, in the Loewner framework, by construction, D terms are
absorbed in the other matrices of the realization. Extracting the D term involves
an eigenvalue decomposition of (𝕃s, 𝕃).

6.2.5.3 Interpolation property of reduced systems

Given a Loewner quadruple and the projection matrices3 X,Y ∈ ℂn×k, let the reduced
quantities be

𝕃̂ = X∗𝕃Y, 𝕃̂s = X
∗𝕃sY, 𝕍̂ = X

∗𝕍, 𝕎̂ = 𝕎Y.

We also consider the projected L and Rmatrices, namely L̂ = X∗L, R̂ = RY. The ques-
tion which arises is whether these reduced quantities satisfy interpolation conditions
as well. The answer is affirmative and to show this we proceed as follows.

The associated Λ̂ and M̂must satisfy the projected equations resulting from (6.18),
i. e.

𝕃̂s − 𝕃̂Λ̂ = 𝕍̂R̂ and 𝕃̂s − M̂𝕃̂ = L̂𝕎̂. (6.20)

Notice that the projected Loewner pencil is not in Loewner form. To achieve this we
proceed as follows. We need to diagonalize Λ̂ and M̂. For this purpose we compute the
following two generalized eigenvalue decompositions:

[DΛ̂,TΛ̂] = eig(𝕃̂s − 𝕍̂R̂, 𝕃̂) and [DM̂,TM̂] = eig(𝕃̂s − L̂𝕎̂, 𝕃̂).

3 We call X,Y ∈ ℂn×k projection matrices as they are used for defining the projector: X(Y∗X)−1Y∗.
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These decompositions imply

Λ̂ = TΛ̂DΛ̂T
−1
Λ̂ and M̂ = TM̂DM̂T

−1
M̂ , (6.21)

where for simplicity, it is assumed that the matrices Λ̂ and M̂ are diagonalizable.
It follows that the (diagonal) entries of DΛ̂ and DM̂ are the right frequencies and

the left frequencies of the reduced system, respectively. Furthermore, straightforward
calculations imply that the remaining quantities are as follows:

{{{{
{{{{
{

𝕃̄s = T−1M̂ 𝕃̂sTΛ̂, 𝕃̄ = T
−1
M̂ 𝕃̂TΛ̂,

𝕍̄ = T−1M̂ 𝕍̂, L̄ = T−1M̂ L̂,

𝕎̄ = 𝕎̂TΛ̂, R̄ = R̂TΛ̂.

Conclusion: the right/left data triples for the reduced system are (DΛ̂, 𝕎̄, R̄), and
(DM̂, 𝕍̄, L̄), respectively, while the associated Loewner pencil is (𝕃̄s, 𝕃̄).

6.2.5.4 Real interpolants and reduced models

Most often the data are collected from real systems. In these cases if (si,ϕi) si,ϕi ∈ ℂ, is
a measurement pair, in order for the interpolants/reducedmodels to be real, the com-
plex conjugate pair ( ̄si, ϕ̄i), should also be included. Thus the left/right frequencies
besides real quantities contain complex ones appearing in complex conjugate pairs.
For instance, in the SISO (single-input single-output) case, let the real measurement
frequencies be σi ∈ ℝ, and the complex ones σ̂i + j ⋅ ω̂i where j denotes the imaginary
unit. We split them in two sets, the left and the right ones, respectively, making sure
that each set is closed under complex conjugation:

M = {σi, i = 1, . . . , r1; σ̂i ± j ⋅ ω̂i, i = 1, . . . , r3},
Λ = {σi, i = r1 + 1, . . . , r1 + r2; σ̂i ± j ⋅ ω̂i, i = r3 + 1, . . . , r3 + r4}.

Thus the left set has r1 real frequencies and r3 complex frequencies together with their
complex conjugates (total r1+2r3 numbers). Similarly the numbers for the right set are
r2 and r4, i. e., it consists of r2 + 2r4 numbers. The quantities𝕎 and 𝕍 are assembled
in accordance withM and Λ. In addition let us define the matrices:

Jμ = blkdiag[Ir1 ,

r3 terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞J, . . . , J] ∈ ℂ(r1+2r3)×(r1+2r3),

Jλ = blkdiag[Ir2 , J, . . . , J⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
r4 terms
] ∈ ℂ(r2+2r4)×(r2+2r4),

where J = 1
√2 [

1 −j
1 j ], where blkdiag[⋅] (following Matlab notation) denotes the block

diagonal structure. A simple calculation shows then that the matrices

MR = J
∗
μMJμ, 𝕍R = J

∗
μ𝕍, LR = J

∗
μL,
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have real entries. The same happens with the matrices

ΛR = J
∗
λΛJλ, 𝕎R = 𝕎Jλ, RR = RJλ.

Recall equations (6.18). If we now solve the transformed equations for 𝕃R, 𝕃Rs :

𝕃Rs − 𝕃
RΛR = 𝕍RRR and 𝕃Rs −MR𝕃

R = LR𝕎R,

the resulting pencil (𝕃Rs , 𝕃
R) has real entries. Hence the algorithms based on 𝕃R and

𝕃Rs described below yield real reduced order models.

6.2.5.5 The Loewner algorithms for scalar and matrix rational approximation

Next, two algorithms (see Algorithms 6.1 and 6.2) for computing a strictly rational real
interpolant for both, the scalar and the matrix interpolation problem are presented.

Algorithm 6.1: Loewner-SISO (Scalar rational approximation) [49].

Input: S = [s1, . . . , sN ] ∈ ℂN ,F = [ϕ1, . . . ,ϕN ] ∈ ℂ
N ,N ∈ ℕ.

Output: Ê ∈ ℝr×r , Â ∈ ℝr×r , B̂ ∈ ℝr×1, Ĉ ∈ ℝ1×r with r ≪ N .

1. Partition the measurements into two disjoint sets and form left and right set as
(μj, vj), j = 1, . . . , q and (λi,wi), i = 1, . . . , k.

frequencies : [s1, . . . , sN ] → [λ1, . . . , λk], [μ1, . . . , μq], k + q = N ,

values : [ϕ1, . . . ,ϕN ] → [w1, . . . ,wk] = 𝕎, [v1, . . . , vq] = 𝕍T .

2. Construct the Loewner pencil as

𝕃 = (
vi −wj

μi − λj
)
j=1,...,k

i=1,...,q
, 𝕃s = (

μivi − λjwj

μi − λj
)
j=1,...,k

i=1,...,q
.

3. It follows that the complex rawmodel is

{𝕎,𝕃, 𝕃s, 𝕍}.

4. Transform all the complex data to real and there follows the raw real model:

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}.

5. Compute the rank-revealing SVDs: [Y1, Σ1,X1] = SVD([𝕃R𝕃Rs ]) and [Y2, Σ2,X2] =
SVD([𝕃R; 𝕃Rs ]); the decay of the singular values, leads to the choice of the order r
of the approximant.
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6. The reduced realmodel is obtainedbyprojecting the raw realmodelwithY = Yn×r
1

and X = Xn×r
2 as

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

singular

⇒⏟⏟⏟⏟⏟⏟⏟
SVD
{𝕎RX,Y

T𝕃RX,YT𝕃RsX,Y
T𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

regular

= {Ĉ, −Ê, −Â, B̂}.

7. A real approximant of the data is then

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ ≈ ϕ(s).

Algorithm 6.2: Loewner-MIMO (Matrix rational approximation).

Input: S = [s1, . . . , sN ] ∈ ℂN ,F = [ϕ1, . . . ,ϕN ] ∈ ℂ
N×p×m,N ∈ ℕ.

Output: Ê ∈ ℝr×r , Â ∈ ℝr×r , B̂ ∈ ℝr×m, Ĉ ∈ ℝp×r with r ≪ N .

1. Partition the measurements into two disjoint sets:
Left data:

M =
[[[

[

μ1
. . .

μq

]]]

]

∈ ℂq×q, L =
[[[

[

ℓT1
...
ℓTq

]]]

]

∈ ℂq×p, 𝕍 =
[[[

[

vT1
...
vTq

]]]

]

∈ ℂq×m.

Right data:

Λ =
[[[

[

λ1
. . .

λk

]]]

]

∈ ℂk×k ,
R = [r1, r2, ⋅ ⋅ ⋅ rk] ∈ ℂm×k ,

𝕎 = [w1 w2 ⋅ ⋅ ⋅ wk] ∈ ℂ
p×k .

2. Construct the Loewner pencil as

𝕃 = (
vTi ri − ℓ

T
j wj

μi − λj
)
j=1,...,k

i=1,...,q
, 𝕃s = (

μivTi ri − λjℓ
T
j wj

μi − λj
)
j=1,...,k

i=1,...,q
.

3. It follows that the complex rawmodel is

{𝕎,𝕃, 𝕃s, 𝕍}.

4. Transform all the complex data to real and there follows the real rawmodel:

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}.

5. Compute the rank-revealing SVDs: [Y1, Σ1,X1] = SVD([𝕃R𝕃Rs ]) and [Y2, Σ2,X2] =
SVD([𝕃R; 𝕃Rs ]); the decay of the singular values, lead to the choice of r.
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6. The reduced realmodel is obtainedbyprojecting the raw realmodelwithY = Yn×r
1

and X = Xn×r
2 .

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

singular

⇒⏟⏟⏟⏟⏟⏟⏟
SVD
{𝕎RX,Y

T𝕃RX,YT𝕃RsX,Y
T𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

regular

= {Ĉ, −Ê, −Â, B̂}.

7. A real approximant of the data is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ ≈ ϕ(s).

6.2.6 Examples

In this section the theory will be illustrated by means of simple examples.

Example 6.1 (A spring–mass–damper system). Letm, d, and k denote themass, damp-
ing, and stiffness of the spring as in Figure 6.1; let also x(t) denote the displacement
and F(t) the force applied; the associated differential equation is

mẍ(t) + dẋ(t) + kx(t) = F(t).

Figure 6.1: A spring–mass–damper system.

This is a SISO (single-input single-output) system. By introducing the state variables
x1 = x, x2 = ẋ, the input u = F, and as output the velocity y = ẋ, the following state
equations result:

ẋ1(t) = x2(t), mẋ2(t) = −kx1 − dx2(t) + u(t), y(t) = x2(t).

The system matrices are thus

E = [ 1 0
0 m
] , A = [ 0 1

−k −d
] , B = [ 0

1
] , C = [ 0 1 ] ,

and the resulting transfer function is

H(s) = C(sE − A)−1B = s
ms2 + ds + k

.

In the sequel we will assume for simplicity that all parameters have value one. We
nowwish to recover state equations equivalent to the ones above frommeasurements
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of the transfer function. Toward this goal we evaluate the transfer function at the real
frequencies: λ1 =

1
2 , λ2 = 1 (right frequencies), as well as μ1 = −

1
2 , μ2 = −1 (left frequen-

cies). The corresponding values of H are collected in the matrices

𝕎 = ( 2
7

1
3 ) , 𝕍 = ( −

2
3 −1 )

T
.

Furthermore, with R = [1 1] = LT , we construct the Loewner pencil:

𝕃 = [
20
21

2
3

6
7

2
3

] , 𝕃s = [
− 421 0

− 47 −
1
3

] .

Since the pencil (𝕃s, 𝕃) is regular, we recover the original transfer function:

H(s) = 𝕎Φ(s)−1𝕍 = s
s2 + s + 1

, where Φ(s) = 𝕃s − s𝕃.

Hence, themeasurements above yield aminimal (descriptor) realization of the system
in terms of the (state) variables z1, z2:

20
21
ż1(t) +

2
3
ż2(t) =

4
21
z1(t) +

2
3
u(t),

6
7
ż1(t) +

2
3
ż2(t) = −

4
7
z1(t) −

1
3
z2(t) + u(t), y(t) =

2
7
z1(t) +

1
3
z2(t),

with

Ẽ = [
20
21

2
3

6
7

2
3

] , Ã = [
− 421 0

− 47 −
1
3

] , B̃ = [
2
3

1
] , C̃ = [ 2

7
1
3 ] .

By multiplying with Ẽ−1, it yields (id: identified system in state-space form)

Ãid = [
4 7

2
−6 −5

] , B̃id = [
− 72
6
] , C̃id = [ 2

7
1
3 ] .

Coordinate transformation Let the state vector x be transformed to the new state
vector z by the non-singular transformation matrix

Ψ = [ C
CA
]
−1

[
C̃id

C̃idÃid
] ,

of dimension 2 × 2. Then the following hold:

z = Ψ−1x, Ãid = Ψ
−1AΨ, B̃id = Ψ

−1B, C̃id = CΨ;

e. g.,ΨÃidΨ−1 = [ 0 1
−1 −1 ] = A.
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Remark 6.5. The above result ensures that the Loewner framework constitutes a data-
driven system identification method which constructs a realization only from mea-
surements. It is important to mention that under a coordinate transformation, both
systems, initial and identified are identical. At the same time, the underlying dynam-
ics is recovered exactly while the corresponding revealing transfer function remains
invariant under such a transformation.

The question now arises: what happens if we collect more data than neces-
sary? Let us consider

Λ = diag ( 1
2 1 3

2 2 ) , M = diag ( − 12 −1 −
3
2 −2 ) .

In this case, the associated measurements are

𝕎 = ( 2
7

1
3

6
19

2
7 ) , 𝕍 = ( −

2
3 −1 −

6
7 −

2
3 )

T
,

and with R = [1 1 1 1] = LT , the Loewner pencil is

𝕃 =

[[[[[[[[

[

20
21

2
3

28
57

8
21

6
7

2
3

10
19

3
7

4
7

10
21

52
133

16
49

8
21

1
3

16
57

5
21

]]]]]]]]

]

, 𝕃s =

[[[[[[[[

[

− 421 0 4
57

2
21

− 47 −
1
3 −

4
19 −

1
7

− 47 −
8
21 −

36
133 −

10
49

− 1021 −
1
3 −

14
57 −

4
21

]]]]]]]]

]

.

It turns out that we can choose arbitrary matrices X,Y ∈ ℝ4×2, provided that
det(YTX) ̸= 0, e. g.

X =
[[[[

[

−1 0
0 −1
0 0
−2 1

]]]]

]

, YT = [
0 1 0 −1
1 −1 −1 1

] ,

so that the projected quantities

𝕎̂ = 𝕎X = [ − 67 −
1
21 ] , 𝕃̂ = Y

T𝕃X = [
− 67 −

1
7

18
49

1
147

] ,

𝕃̂s = Y
T𝕃sX = [

0 1
21

− 4849 −
19
147

] , 𝕍̂ = YT𝕍 = [
− 13
11
21

] ,

constitute a minimal realization of H(s):

H(s) = 𝕎̂(𝕃̂s − s𝕃̂)
−1𝕍̂ =

s
s2 + s + 1

.

It should be stressed that this holds for arbitrary projection matrices X, Y.
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6.2.6.1 The generalized inverse approach

There is another way to express the above relationship avoiding arbitrary projectors.
Basic ingredients are generalized inverses. This approach will be demonstrated only
for the spring–mass–damper example. However, it holds in general (see, e. g., [3]).

In the sequel, we will make use (only) of theMoore–Penrose generalized inverse,
which is defined as follows. Given the (rectangular) matrix M ∈ ℝq×k, the Moore–
Penrose generalized inverse, denoted byMMP ∈ ℝk×q, satisfies:
(a) MMMPM = M,
(b) MMPMMMP = MMP,
(c) [MMMP]T = MMMP,
(d) [MMPM]T = MMPM.

This generalized inverse always exists and is unique.
In the sequel we will be concerned with rectangular q × k polynomial matrices

which have an explicit (rank-revealing) factorization as follows:

M = XΔYT ,

where X, Δ, Y have dimension q × n, n × n, k × n, n ≤ q, k, and all have full rank n. In
such cases, theMoore–Penrose generalized inverse is

MMP = Y(YTY)−1Δ−1(XTX)−1XT .

Mass–spring–damper example (continued). The quantity needed is the generalized
inverse of

Φ(s) = 𝕃s − s𝕃 =
[[[[[[

[

− 20s21 −
4
21 − 2s3

4
57 −

28s
57

2
21 −

8s
21

− 6s7 −
4
7 − 2s3 −

1
3 −

10s
19 −

4
19 −

3s
7 −

1
7

− 4s7 −
4
7 −

10s
21 −

8
21 −

52s
133 −

36
133 −

16s
49 −

10
49

− 8s21 −
10
21 − s3 −

1
3 − 16s57 −

14
57 −

5s
21 −

4
21

]]]]]]

]

. (6.22)

We first notice thatΦ(s) = XΔ(s)YT , where X and Y can be chosen as follows:

X =
[[[[[[

[

1 0

0 1

− 37
8
7

− 12 1

]]]]]]

]

, Y = [
1 0 − 719 −

1
2

0 1 24
19

9
7

] ⇒ det(YX) ̸= 0.
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Thus by taking the 2 × 2 upper-left block as Δ(s) = Φ(1 : 2, 1 : 2)(s), it follows that
Φ(s)MP = 1

80989667
1

s2+s+1Z(s), where

Z(s) =
[[[[

[

−28(11610185s + 7274073) 14(3558666s − 5604037)
294(225182s + 281171) (−147)(192415s − 19668)
3724(54617s + 48189) (−1862)(29046s − 17485)
98(2527157s + 2123670) −49(1250553s − 876439)

6076(32301s − 391) 14(15168851s + 1670036)
−2058(29494s + 15609) −147(417597s + 261503)
−26068(5715s + 1523) −1862(83663s + 30704)
−98(1797669s + 409322) −49(3777710s + 1247231)

]]]]

]

In the rectangular case, where there are two right measurements less, i. e., we only
have Λ̃ = diag[ 12 , 1], whileM remains the same, the right values are 𝕎̃ = 𝕎(:, 1 : 2);
hence

Φ̃(s) = 𝕃̃s − s𝕃̃ =

[[[[[[[

[

− 20s21 −
4
21 − 2s3

− 6s7 −
4
7 − 2s3 −

1
3

− 4s7 −
4
7 −

10s
21 −

8
21

− 8s21 −
10
21 − s3 −

1
3

]]]]]]]

]

= XΔ(s)ỸT ,

has dimension 4 × 2, where Ỹ = Y(1 : 2, 1 : 2). In this case the Moore–Penrose inverse
is

Φ̃(s)MP = 1
737(s2 + s + 1)

× [
−4767s − 3402 1827

2 s − 2037
2 3087s + 294 3297s + 1365

2
5838s + 5250 −1596s + 903 −4326s − 1218 −4515s − 1722

] ,

which implies the desired equality

⇒𝕎Φ(s)MP𝕍 = 𝕎̃Φ̃(s)MP𝕍 = H(s).

Conclusion: the Loewner framework allows the definition of rectangular and singular
systems.

Example 6.2 (Reduction of a 10th order band-stop filter). The system has two inputs
and two outputs (MIMO), state-space dimension 10, and a D term of rank 2. A state-
space representation is as follows:

Σ : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), where
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A =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

− 12 −
1
2 −

1
2

1
2

1
2 −1 0 0 0 0

− 12 −
1
2 −

1
2 −

1
2

1
2 0 −1 0 0 0

1
2

1
2 −

1
2 −

1
2 −

1
2 0 0 −1 0 0

− 12
1
2 −

1
2 −

1
2 −

1
2 0 0 0 −1 0

− 12 −
1
2 −

1
2 −

1
2 −

1
2 0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]

]

, B =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

1
2 −

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0

0 0

0 0

0 0

0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]

]

,

C = [
− 12 −

1
2

1
2

1
2

1
2 0 0 0 0 0

− 12 −
1
2 −

1
2 −

1
2 −

1
2 0 0 0 0 0

] , D = [
1
2 −

1
2

1
2

1
2

] .

The transfer function is a 2 × 2 rational matrix given by

H(s) = 1
d(s)
[

n1(s) n2(s)

−n2(s) −n1(s)
] + D, where

n1(s) = s(s
8 + 7s6 + 13s4 + 7s2 + 1),

n2(s) = s(5s
8 + 6s7 + 25s6 + 20s5 + 41s4 + 20s3 + 25s2 + 6s + 5),

d(s) = 2(s4 + s3 + 3s2 + 2s+)(2s6 + 3s5 + 7s4 + 7s3 + 7s2 + 3s + 2).

It readily follows that lims→∞H(s) = D. We take N = 100 samples of the transfer func-
tion on the imaginary axis (frequency response measurements) between 10−1 and 101

rad/sec. Figure 6.3 (left) shows the first 20 normalized singular values of the resulting
real Loewner pencil (the rest are numerically zero). The rank of 𝕃 is 10 (the McMillan
degree of the system) while the rank of 𝕃s is 12 (= rank𝕃 + rankD). The right pane in
Figure 6.2 shows that we can obtain a perfect fit (total recovery of the model) with the
Loewner framework for this MIMO example only by sampling the transfer function.
As both Gramians are 𝒫 = 𝒬 = 1

2 I10, i. e., they are equal and a multiple of the identity
matrix, the Hankel singular values (see [2]) are all equal; this makes reduction with
balanced truncation not feasible.

The right pane in Figure 6.3 shows the poles of the system obtained by means of
the Loewner framework along with the zeros for every entry. The right pane in Fig-
ure 6.2 shows the band-stop character around frequency ω0 = 1 rad/s, of entries (1, 2)
and (2, 1).
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Figure 6.2: Left pane: Shows the 100 measurements sampled with DNS(Direct Numerical Simula-
tions) of the theoretical (2 × 2)-matrix transfer function. Right pane: Loewner approximants.

Figure 6.3: Left pane: Shows the first 12 singular values while the rest are numerically zero. Right
pane: Pole/Zero diagram.

Computing the poles of the Loewner model confirms the accuracy of the approach.
Consider the following:

[[[[[[[[[[[[[[[[[[[[[[

[

eig(A) eig(Ar ,Er)
−0.0181885913675508 − 0.745231200229 i −0.0181885913675508 − 0.745231200229 i
−0.0181885913675508 + 0.745231200229 i −0.0181885913675508 + 0.745231200229 i
−0.148402943598342 − 0.632502179219046 i −0.148402943598342 − 0.632502179219046 i
−0.148402943598342 + 0.632502179219046 i −0.148402943598342 + 0.632502179219046 i
−0.699080475814867 − 0.715042997542469 i −0.699080475814867 − 0.715042997542469 i
−0.699080475814867 + 0.715042997542469 i −0.699080475814867 + 0.715042997542469 i
−0.0327309328175858 − 1.34106659803138 i −0.0327309328175858 − 1.34106659803138 i
−0.0327309328175858 + 1.34106659803138 i −0.0327309328175858 + 1.34106659803138 i
−0.351597056401658 − 1.49852758300335 i −0.351597056401658 − 1.49852758300335 i
−0.351597056401658 + 1.49852758300335 i −0.351597056401658 + 1.49852758300335 i

∞
∞

]]]]]]]]]]]]]]]]]]]]]]

]

As can be observed from this table, the Loewner method computes, besides the fi-
nite poles, two poles at infinity. This happens because in the Loewner framework the
D-term is incorporated in the remaining matrices of the realization.
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6.2.7 Summary

Recall Section 6.2.5. The following result summarizes the cases which arise in the
Loewner framework, depending on the amount of data available.

Lemma 6.2. Given is a scalar transfer function of McMillan degree n.
1. Amount of data less that 2n. For q = k ≤ n, define the transfer function Ĥ(s) = Ĉ(sÊ−

Â)−1B̂, by means of the Loewner procedure. The interpolation conditions below are
satisfied:

Ĥ(μi) = H(μi) and Ĥ(λi) = H(λi) for i = 1, . . . , k.

If k = q = n, the Loewner quadruple is equivalent to the original one (C,E,A,B).
2. Arbitrary amount of data, no reduction. For arbitrary k and q (i. e. k, q ≤ n or k,

q ≥ n) the Loewner quadruple interpolates the data, even if the pencil (𝕃s, 𝕃) is
singular. This is to be interpreted as follows:

(𝕃s − λi𝕃)ei = 𝕍 and eTj (𝕃s − μj𝕃) = 𝕎.

Hence𝕎ei = wi, i = 1, . . . , k, and eTj 𝕍 = vj, j = 1, . . . , q. Therefore the transfer
function of the Loewner pencil interpolates H(s) at the left and right interpolation
points.

3. Arbitrary amount of data, followed by reduction. If k, q ≥ n, consider the rank-
revealing SVD decompositions:

[𝕃 𝕃s] = Ŷr Σ̂rX
T
r and [ 𝕃

𝕃s
] = Yr Σ̃rX̃

T
r ,

where Yr ∈ ℝ
q×r , Xr ∈ ℝ

k×r , and r ≤ k, q, is the exact or the numerical rank of the
Loewner pencil involved. Let

Ẽ = YT
r 𝕃Xr , Ã = YT

r 𝕃sXr ∈ ℂ
r×r , B̃ = YT

r 𝕍 ∈ ℂ
r , C̃ = 𝕎Xr ∈ ℂ

1×r .

Then the following approximate interpolation conditions are satisfied:

H̃(μi) ≈ H(μi), i = 1, . . . , q, and H̃(λj) ≈ H(λj), j = 1, . . . , k.

In addition, the reduced system satisfies (exact) interpolation conditions as shown
in Section 6.2.5.3.

6.3 Practical considerations
This section deals with some key aspects of the Loewner framework, through a prac-
tical point of view.
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– The factorization of the Loewner matrix into low-rank factor matrices:
1. Through the singular value decomposition (SVD).
2. Through the CUR decomposition.

– The choices involving the measurements used in the framework:
1. Distribution of the interpolation points.
2. Partition of the interpolation points.

6.3.1 The singular value decomposition
The SVD is arguably one of the most useful and commonly used tools in numerical
linear algebra. It is listed as one of the main matrix decompositions and can be effi-
ciently computed through various numerically stable algorithms. It is widely used for
different high dimension reduction and approximation methods.

Any complex-valued matrix A ∈ ℂn×m has a singular value decomposition given
by A = YΣX∗ where Y ∈ ℂn×n, X ∈ ℂm×m are unitary matrices, i. e., Y∗Y = In and
X∗X = Im. The left and right singular vectors are collected as columns of matrices X,
and Y, respectively.

Additionally, the matrix Σ ∈ ℂn×m is defined as Σi,i = σi and zero elsewhere. Here,
the ordered non-negative scalars σ1 ⩾ σ2 ⩾ ⋅ ⋅ ⋅ σn ⩾ 0 are the singular values (for
n ⩽ m).

In what follows, it is assumed that matrix A has low rank, i. e., rank(A) = r ⩽ n
⩽ m. Let k be a positive integer so that k < r. The singular value decomposition of
matrix A can be additively split as follows:

A = Y ⋅ Σ ⋅ X∗ = (Yk Yn−k)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n×n
⋅ (

Σk 0k,m−k
0n−k,k Σn−k,m−k

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n×m

⋅ (
X∗k
X∗m−k
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
m×m

(6.23)

= YkΣkX
∗
k⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=Ak

+Yn−kΣn−k,m−kX
∗
m−k (6.24)

where Yk ∈ ℂ
n×k, Σk ∈ ℂk×k andXk ∈ ℝ

m×k . Note that the matrixAk := YkΣkX∗k ∈ ℂ
m×n

can be written in terms of the truncated dyadic decomposition, i. e., Ak = ∑
k
i=1 σiyix

∗
i ,

where yi and xi are the ith column of matrices Y, and X, respectively.
A problem of interest is to approximate the original matrix A with a rank k ma-

trix T, so that the approximation error is minimal with respect to the 2-induced norm
or to the Frobenius norm.

From the Schmidt–Eckart–Young–Mirsky theorem (see Theorem 3.6 in [2]), it fol-
lows that (given σk > σk+1)

min
T∈ℝn×m , rank(T)≤k‖A − T‖2 = σk+1. (6.25)

Moreover, it turns out that the unique solution to theminimization problem in (6.25) is
given by T = Ak . If we replace the 2-induced normwith the Frobenius norm, it follows
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that

min
T∈ℝn×m , rank(T)≤k‖A − T‖F = (

n
∑
i=k+1

σ2i )

1
2

. (6.26)

As before, the unique solution to the minimization problem in (6.26) is again given
by T = Ak . For more details on the singular value decomposition (SVD) we refer the
reader to [2], pages 31–41.

The advantage of the SVD is that it offers optimal low-rank solutions in both the
2-induced and the Frobenius norms. At the same time, one disadvantage is given by
the fact that the method (full SVD) has cubic complexity with respect to min(m, n) (in
the classical set-upwhen applied to densematrices). Taking into account this possible
downside, we seek ways of circumventing the usage of the classical SVD and investi-
gate other matrix decompositions. It is worth mentioning that SVD complexity can be
faster than cubic for a low-rank approximation with iterative algorithm. In the latter,
a randomized version of SVD (r-SVD) will reveal this robust behavior.

6.3.2 The CUR decomposition

A challenging aspect of data-driven approximation methods is the choice of a rele-
vant and meaningful low dimensional subset of the (usually large-scale) data set. In
some cases, this subset can be used to preserve relevant characteristics of the dynam-
ics for the model described by the original data. In this framework, it is of interest to
devise procedures that can extract relevant information from large-scale sets of mea-
surements. The end goal is to construct reduced order models suitable for tasks such
as control, design, and simulation.

Nowadays, the dimension of data sets for various applications can easily reach
≈ 𝒪(106). In such cases, computing the SVD of large and full matrices becomes pro-
hibitive.

One appealing alternative is the so-called CUR decomposition. As before, the goal
is to approximate theoriginalmatrixA ∈ ℂn×m, by aproduct of three low-rankmatrices
Â = CUR. Here, the columns of the matrix C ∈ ℂn×c are represent a subset of the
columns of A while the rows of the matrix R ∈ ℂr×m form a subset of the rows of A.
Finally, the matrix U ∈ ℂc×r is constructed such that the factorization Â = CUR holds.

In this new set-up, the left and right singular vectors appearing in the SVD are
replaced by columns and rows of the initial matrix A. Hence, the CUR factorization
provides a way of identifying important sets of rows and columns of a matrix A.

For more details on the CUR decomposition and some of its applications, we refer
the reader to [19, 26, 27, 28, 47, 51, 54, 63].

The CUR factorization is hence an important tool for analyzing large-scale data
sets which offers the following advantages over SVD:
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1. If the matrix A is sparse, then the matrices C and R are also sparse (unlike the
matrices X and Y in the SVD approach).

2. The CUR factorization computes an approximation of A in terms of some of the
rows and some of the columns of A. In contrast, the SVD computes approximants
in terms of linear combinations of orthonormal bases generated by the rows and
columns of A.

3. ConsiderA ∈ ℝm×n,m > n. The complexity for computing the full SVD ofA isO(n3)
flops, using for instance the QR factorization, O(mn2) flops, using iterative meth-
ods as in ARPACK, and O((m + n)k) flops per iteration, for approximate incremen-
tal methods where the k dominant singular triples are determined approximately
(for details see [12]). On the other hand the CUR factorization of order k requires
O(k3 + k2(m + n)) flops per iteration (for details see [47]).

6.3.2.1 CUR approximation of the Loewner matrix

In this section, we apply the CUR factorization to the Loewner matrix. We follow [47],
where CUR is applied to Hankel matrices instead.

Definition 6.3. With 𝕃 ∈ ℝn×n, let ℐ = {i1, . . . , ir} and 𝒥 = {j1, . . . , jr} denote the r-
subsets (r ≪ n) of row and column indices, respectively. If (⋅)MP denotes the pseudo
inverse, then the CUR factorization of the Loewner matrix 𝕃 is given by

𝕃r := 𝕃(:,𝒥 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒥 -columns

⋅𝕃(ℐ,𝒥 )MP ⋅ 𝕃(ℐ, :)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℐ-rows
. (6.27)

In practical applications, large-scale data matrices are only approximately of low
rank (when data can be for instance corrupted by noise). In this case, the sets ℐ and
𝒥 need to be chosen in such a way that the approximation error ‖𝕃 − 𝕃r‖ is small.
Many approaches for selecting the sets of rows and columns have been proposed. In
the following we mention only some of them.
1. Selection based on a maximum volume sub-matrix in [54].
2. Selection based on minimizing the approximation error in the Chebyshev norm

(“skeleton” approximation) in [26, 27].
3. Procedure based on the “cross-approximation” algorithm in [55].
4. Selection based on a discrete empirical interpolation method (DEIM) approach in

[63].

6.3.2.2 The Loewner CUR algorithm

We introduce a data-driven approximation algorithm for the SISO case based on CUR
approach. This constructs a reduced ordermodel bymeans of an adaptive selection of
the rows and columns via the cross-approximation algorithm in [55]. The steps of the
procedure are included in Algorithm 6.3.
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Algorithm 6.3: Loewner CUR-cross-approximation based – SISO [44].

Input: S = [s1, . . . , sN ] ∈ ℂN , F = [ϕ1, . . . ,ϕN ] ∈ ℂ
N with N , r ∈ ℕ, and tolerance

values δ, ϵ.
Output: Ê ∈ ℝr×r , Â ∈ ℝr×r , B̂ ∈ ℝr×1, Ĉ ∈ ℝ1×r with r ≪ N .

1. Form the left and right sets as (μj, vj), j = 1, . . . , q and (λi,wi), i = 1, . . . , k
2. Form the Loewner matrices 𝕃 and 𝕃s as in Algorithm 6.1 and step 2.
3. Transform all the complex data to real as explained in Section 6.2.5.4.
4. 𝒥0 = [j1, . . . , jr] ⊂ 𝒥n an initial set of column indices.
5. [ℐr , ∼, ∼] = crossapprox([𝕃 𝕃s],𝒥0, δ, ϵ).
6. [∼,𝒥r , ∼] = crossapprox([ 𝕃𝕃s ], ℐr , δ, ϵ).
7. Ê = −𝕃(ℐr ,𝒥r), Â = −𝕃s(ℐr ,𝒥r), B̂ = 𝕍(ℐr), Ĉ = 𝕎(𝒥r).
8. The rational approximant is given by

Hr(s) = Ĉ(sÊ − Â)
−1B̂.

For the practical implementation of the function “crossapprox”, used in steps 5 and
6 of the above algorithm, we refer the reader to Algorithm 1 in [47], or to the original
reference [55].

Remark 6.6. Instead of using the cross-approximation algorithm, one can use the
DEIM (Discrete Empirical Interpolation Method) algorithm from [63]. Hence, steps 5
and 6 in Algorithm 6.3 need to be modified accordingly. As a result, singular value
decompositions are performed in order to construct left and right singular vector
matrices (for which the DEIM procedure is applied to). In order to avoid the SVD, an
incremental QR factorization can be instead used, as proposed in [63].

Remark 6.7. TheCUR factorization directly reveals the dominant rows/columns of the
data, while the SVD does not. More precisely, the leading singular vectors give only
linear combinations of the underlying features. Whereas, with the CUR one gets an
actual subset of the initial features (columns) together with the corresponding rows.
Consequently, a first benefit of the CUR is that it preserves the physical meaning and
structure of the initial data. Additionally, another advantage is that the sparsity is pre-
served.

6.3.3 Choice of left and right interpolation points

This section deals with the problem of selecting the initial interpolation points in the
Loewner framework. More specifically, we investigate how the choice of the initial in-
terpolation points affects the quality of the reduced order model. We take into consid-
eration different point distributions in 1D or in 2D.
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Moreover, several splitting techniques are analyzed. These are related to the par-
tition of the data set into two disjoint subsets, which is performed in the beginning of
the algorithms in the Loewner framework.

6.3.3.1 Distribution of the interpolation points

We present various distributions of the initial interpolation points for the one-dimen-
sional case (1D) as well as for the two-dimensional case (2D).

1D interpolation grid 2D interpolation grid

equispaced; equispaced (“same areas”);
logarithmic spaced; logarithmic spaced;
Chebyshev nodes; Padua points;
Uniformly random Uniformly random

In Figure 6.4, we depict different distributions of initial interpolation points. One way
of selecting points is that of equispaced or linearly spaced points, commonly used for
Fourier analysis. This represents a natural choice because of the usage of trigonomet-
ric periodic functions.

Figure 6.4: A visual representation of different interpolation grids.

In some practical applications, under the assumption that the energy decreases ex-
ponentially as time or frequency approach infinity (on an unbounded domain), the
choice of logarithmic distributed points is more appropriate.

Naturally, a dense sampling grid can be used in the beginning of the experiment
(e. g., for a lower frequency range or for small time instances). The motivation for this
approach stems from the assumption that themeaningful quantities (with high energy
or with relevant oscillations) appear in the beginning, hence requiring more samples.
Afterwards, a more sparse distribution grid of points can be instead chosen as the
energy level decays (or as relevant oscillations decay in time).
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Additionally, the choice of Chebyshev-type points is motivated by their usage in
polynomial-based interpolation on bounded domains due to for example, the elimi-
nation of the Runge phenomenon4 (high degree polynomials are generally unsuitable
for interpolation with equispaced points).

Finally, randomly distributed sampling points often appear in stochastic experi-
ments that are characterized by randomness.

6.3.3.2 Partition of the data points and values

Data splitting is one of the first steps in the classical Loewner algorithm (presented
in Section 6.2). In this section, we mention various splitting schemes and how they
affect the Loewner matrix singular value decay and also the approximation quality of
the Loewner interpolants.

The data set (n = even) is composed of

{
Sample points : S = [ω1,ω2, . . . ,ωn] ∈ ℝ

n, with ω1 < ω2 < ⋅ ⋅ ⋅ < ωn,

Sample values : H = [H(ω1),H(ω2), . . . ,H(ωn)] ∈ ℂ
n.

(6.28)

We analyze four different types of data splitting that are mentioned in the following.
1. First type: disjoint splitting.

– μ = [ω1, . . . ,ωn/2] and𝕍 = [H(ω1), . . . ,H(ωn/2)],
– λ = [ωn/2+1, . . . ,ωn] and𝕎 = [H(ωn/2+1), . . . ,H(ωn)].

2. Second type: alternate splitting.
– μ = [ω1,ω3, . . . ,ωn−1] and𝕍 = [H(ω1),H(ω3), . . . ,H(ωn−1)],
– λ = [ω2,ω4, . . . ,ωn] and𝕎 = [H(ω2),H(ω4), . . . ,H(ωn)].

3. Third type: magnitude splitting (in this case the set S is first sorted with respect
to the magnitude of the set H).
– μ = [ω1, . . . ,ωn/2] and𝕍 = [H(ω1), . . . ,H(ωn/2)],
– λ = [ωn/2+1, . . . ,ωn] and𝕎 = [H(ωn/2+1), . . . ,H(ωn)].

4. Fourth type: magnitude alternate splitting (in this case, the set S is first sorted
with respect to the magnitude of the set H and then alternating splitting is ap-
plied).
– μ = [ω1,ω3, . . . ,ωn−1] and𝕍 = [H(ω1),H(ω3), . . . ,H(ωn−1)],
– λ = [ω2,ω4, . . . ,ωn] and𝕎 = [H(ω2),H(ω4), . . . ,H(ωn)].

As observed in practice, when splitting the data as for the first type, the Loewner ma-
trix has a very fast decay of the singular values. Moreover, in this case, the computed
reduced models usually provide low approximation quality.

4 Runge’s phenomenon is a problem of oscillation at the edges of an interval that occurs when us-
ing polynomial interpolation with polynomials of high degree over a set of equispaced interpolation
points.
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On the other hand, for the second separation type (alternate splitting), the left
and right sets of sample points can be chosen ϵ-close to one another (element-wise).
Hence, as ϵ → 0, Hermitian interpolation conditions are enforced (which involve
matching the first derivative at those points).

Other observations that hold in the case of second type splitting are that the nu-
merical rank of the Loewner matrix is usually larger than that of the Loewner ma-
trix constructed based on the first type. Additionally, for the second type, the condi-
tion number is smaller than that computed for the first type. For the above-mentioned
cases, bounds on the singular value decay of the Loewner matrix are provided in [15].

6.4 Case studies

In this sectionwe illustrate the concepts developed in thepreceding sections bymeans
of examples. In particular the following seven examples will be analyzed.
1. The benchmark CD player (n = 120).
2. The function f (x) = exp(−x) sin(10x), x ∈ [−1, 1].
3. The inverse of the Bessel function of the first kind, in [0, 10] × [−1, 1]j.
4. An Euler–Bernouli beam.
5. A heat equation with transfer function H(s) = exp(−√s), s ∈ [0.01, 100]j.
6. Approximation of f = y/ sinh(y), y(x) = 100π(x2 − 0.36), x ∈ [−1, 1].
7. The sign function in the interval [−b, −a] and [a, b], a > b > 0.

6.4.1 The CD player

Consider the CD player benchmark example which is a MIMO dynamical system of
dimension 120with 2 inputs and 2 outputs. Herewewill consider the (2, 1) sub-system,
i. e. the SISO system from the first input to the second output.

The goal is to approximate the transfer function in the Loewner framework. We
start by considering 400 interpolation points ±jωi, i = 1, . . . , 200, where ωi are loga-
rithmically spaced in the interval Ω = [10−1, 105]. Thus Ω = {ω1,ω2, . . . ,ω200}, where
ωi < ωi+1, for all i. We now define the left/right interpolation points in four different
ways as explained in section 6.3.3.2 and depicted in Figure 6.5 (up).

As can be seen in Figure 6.5 (down), the decay of the Loewner matrix singular
values is faster for “half-half” (disjoint) splitting than for “alternating” splitting.

The next step is to choose the truncation order and to determine the level of ap-
proximation. We propose two different ways for this purpose.
1. By choosing equal truncation orders r.
2. By choosing for each separation themaximum truncation order so that σrσ1 , is equal

to a fixed tolerance value.
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Figure 6.5: The four different splitting schemes (up) and the decay of the singular values ( σiσ1 , i =
1, . . . , 100) of the Loewner matrix for each type (down).

First experiment: equal truncation orders
Here, we fix the truncation order to r = 10, and compute σr

σ1
. The results are presented

in Table 6.2.

Table 6.2: Normalized singular values corresponding to r = 10 for each splitting.

Case 1st 2nd 3rd 4th

r 10 10 10 10
σr
σ1

1e − 8 1e − 6 1e − 4 1e − 4

The frequency response of the original system with those of the four reduced systems
(corresponding to eachdifferent splitting) is shown inFigure 6.6.Note that allmethods
produce similar approximation quality.

Figure 6.6: Frequency response comparison: original system vs. the reduced ones with equal trunca-
tion orders (r = 10).
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Next, the approximation error for each reduced systems is depicted in Figure 6.7. For
the first partition type, the error curve displays a ‘V’ shape form near the middle of
the sampling interval. This is where the left and right sampling points are very close
to each other.

Figure 6.7: Approximation error with the four splitting schemes.

Second experiment: reaching machine precision5

The tolerance of normalized singular value σr
σ1
is now fixed (e. g. 10−14). This implies

the truncation order r. The results are presented in Table 6.3

Table 6.3: Different truncation orders for all splitting schemes and for a fixed tolerance.

Case 1st 2nd 3rd 4th

r 16 51 23 48
σr
σ1

1e − 14 1e − 14 1e − 14 1e − 14

The truncation order for the first splitting type is more than three times smaller than
that for the second splitting type (16 vs 51).

The frequency response of the original systems with the four reduced systems in
depicted in Figure 6.8. All methods produce good approximation quality, with a slight
deviation in the high frequency range observed for the first splitting type.

Finally, Figure 6.9 shows the approximation error for each reduced system.
Notice that the blue curve in Figure 6.9 has a ‘V’ shape in the middle of the sam-

pling interval. The lowest approximation error is recorded for the second splitting type
(alternate selection).

5 Machine precision is the smallest number ϵ such that the difference between 1 and 1 + ϵ is nonzero.
This is approximately 10−16.
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Figure 6.8: Frequency response comparison: original system vs. the reduced ones by reaching ma-
chine precision.

Figure 6.9: Approximation error for the four splitting schemes.

6.4.2 Approximation of an oscillating function

We collect N = 4,000 measurements {(sk ,ϕk) : k = 1, . . . ,N} of the following function:

ϕ(x) = e−x sin(10x), x ∈ [−1, 1]. (6.29)

Assume that the interpolation points s = [s1, s2, . . . , s4000] ⊂ [−1, 1] are equispaced;
next we remain with two types of splitting.
1. First type: disjoint splitting.

– Left: μ = [s1, s2, . . . , s2000] ⊂ [−1,0)
– Right: λ = [s2001, s2002, . . . , s4000] ⊂ [0, 1]

We construct the Loewner pencil and the underlying rank is 11.
2. Second type: alternate splitting.

– Left: μ = [s1, s3, . . . , s3999] ⊂ [−1, 1]
– Right: λ = [s2, s4, . . . , s4000] ⊂ [−1, 1].

We construct the Loewner pencil and the underlying rank is 15.



6 The Loewner framework for system identification and reduction | 213

Figure 6.10 shows the entries of the Loewner matrix in logarithmic scale for the
two ways of sampling point separation. Next, the interpolation data is compressed,
making use of the following methods: (a) the singular value decomposition SVD, (b)
the randomized version rSVD, (c) CUR, implemented with DEIM and (d) CUR imple-
mented with cross approximation. The parameters for the latter two methods are:
ϵ = 0.001 and δ = 0.01.

Figure 6.10: Entries of the Loewner matrix for the first splitting (left) and the second splitting (right).

Table 6.4: Results for the first splitting type (disjoint) with an i5-CPU 2.60 GHz.

Reduction – r for ≈ 𝕃 rank(𝕃r×r ) cond(𝕃r×r ) =
σmax
σmin

Error ‖⋅‖F Time (s)

SVD 11 9.7313e + 10 6.7367e − 10 4.166029
CUR-CrossApprox 11 7.6582e + 10 1.5621e − 09 0.528352
CUR-DEIM 11 1.3898e + 11 2.2283e − 09 4.101303
randomized SVD 11 9.7314e + 10 1.1281e − 10 0.030148

In Figure 6.11 the error curves for the first splitting are shown. The red Xs indicate the
selected points with CUR-cross-approximation method while the green crosses (+) in-
dicate the selected points with CUR-DEIM method. In Figure 6.12 the error curves for
the second splitting are shown. As opposed to the previously shown results (in Fig-
ure 6.11), the error in this case (Figure 6.12) is distributed more uniformly. Additional
qualitative measures (e.g., the condition number) under different splitting schemes
with the same reduced-order are presented in Tables 6.4 and 6.5.

Table 6.5: Results for the second splitting type (alternate) with an i5-CPU 2.60 GHz.

Reduction – r for ≈ 𝕃 rank(𝕃r×r ) cond(𝕃r×r ) =
σmax
σmin

Error ‖⋅‖F Time (s)

SVD 11 8.8199e + 4 0.0020 4.261075
CUR-CrossApprox 11 1.0228e + 5 0.0062 0.563411
CUR-DEIM 11 9.3343e + 4 0.0245 4.152420
randomized SVD 11 8.8199e + 4 0.0020 0.024586
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Figure 6.11: Selected points and approximation error for the disjoint splitting.

Figure 6.12: Selected points and approximation error for the alternate splitting.

As seen in the above experiments, the splitting of the data influences both the Loewner
singular value decay and the quality of approximation. Inmost of the experiments that
follow, we choose the alternate way of splitting the data.

6.4.3 Approximation of a Bessel function

In this sectionwe investigate the approximation of the inverse of a Bessel function in a
domain in the complex plane. If this function is considered to be the transfer function
of a dynamical system, this system is infinite dimensional; furthermore it is not stable
as there are poles in the right-half of the complex plane.

In particular we consider the inverse of the Bessel function of the first kind and
order n ∈ ℕ. It is defined by the following contour integral:

Jn(s) =
1
2πi
∮ e(

s
2 )(t−

1
t )t−n−1dt. (6.30)

Here, we consider only the case n = 0. Our aim is to approximateH(s) = 1
J0(s)

, s ∈ ℂ, in-
side the rectangle Ω = [0, 10] × [−1, 1] ⊂ ℂ. In Figure 6.13 (left pane) the function H(s)
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Figure 6.13: Left pane: The inverse of the Bessel function of the 1st kind. Right pane: A subset of
10,000 Padua point grid over Ω = [0, 10] × [−1, 1] domain are shown.

is shown in the domain Ω. The three spikes correspond to the unstable poles of the
underlying system. These are three of the zeros of the Bessel function. Here we con-
struct approximantsHr(s), of order r, ofH(s), using the interpolation points as shown
in Figure 6.13 on the right pane. The distribution of the two-dimensional initial grids
is 5,000 Padua points with the conjugates. This grid is used to reduce the Runge phe-
nomenon. For more details in approximation theory (i. e. Runge phenomenon, Padua
points, barycentric interpolation, etc.), we refer the reader to [64]. In [43, 44], the same
experiment with other types of grids (random uniformly, structured) is presented.

In the Loewner framework, the singular value decomposition (SVD) plays a key
role. This factorization allows us to extract the numerical order of the rational model
which approximates the original non-rational one.

In Figure 6.14 (left pane), we show the distribution of the normalized singular val-
ues σj

σ1
, j = 1, . . . ,N, of the augmented matrices [𝕃 𝕃s] and [ 𝕃𝕃s ].

Figure 6.14: Left pane: Singular value decay of 10,000 values. Right pane: Pole/zero diagram with
the three original poles (zeros of Bessel) which recovered with 15 digits accuracy.

By takingmeasurements as in Figure 6.13 (right pane) the decay of the singular values
Figure 6.14 – left pane, leads to a reduced order r = 12 with σ12

σ1
= 4.887 ⋅ 10−13. In

Figure 6.14 on the right pane the pole/zero diagram is presented which includes the
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results fromallmethods.MethodsVF, andLoewner(SVDorCUR) construct real strictly
rational models with degree (11, 12)6 with D = 0, as opposed to AAA algorithm which
constructs complex proper rational model of degree (12, 12) with a non-zero D term.

By using the methods LoewCUR-cross and AAA, points from the sampling grid
are selected. Applying the LoewSVD method the point selection is obtained by com-
pressing the initial grid. This can be achieved by using the first r columns (r: singu-
lar vectors) of the singular matrices as projection matrices and by solving two (r ×
r-dimension) generalized eigenvalue problems as explained in Section 6.2.5.3. Under
this way, we compress the original grid with N = 10,000 points into a much smaller
set of only 2r = 24 points which are exact interpolation points for the approximant. As
it turns out, the projected points lie in the domain Ω; see also left pane in Figure 6.15.

Figure 6.15: Left pane: Support and compressed points for every method over Ω domain with LSVD(r)
→ LoewSVD projected right points, LSVD(l)→ LoewSVD projected left points. Right pane: The error
for every method.

The LoewCUR-cross and AAA methods select points among the initial interpolation
points but with different criteria. The AAA algorithm selects support points by mini-
mizing themean squared errorwith the rest of themeasurementswhile LoewCURuses
cross approximation, which maximizes the absolute value of the determinant (maxi-
mum volume) of the sub-matrix of dimension (r × r).

In Figure 6.15 on the right pane, the error for each method is shown. The normal-
ized error is computed as |H(s)−Hr(s)|

|H(s)| with 25,000 evaluation points in Ω. It should be
mentioned that the above special choice of the original interpolation grid as Padua
points, indeed reduced the Runge phenomenon.

Next we wish to visualize the approximation error outside Ω. Towards this goal
we chose 25,000 equispaced evaluation points inside the domain [−3, 13] × [−3, 3]. Re-
sults with log-contour level error of increasing order 10−16, . . . , 10−4 are presented in
Figure 6.16.

6 The notation (m, n) indicates that the order of the numerator polynomial is m and the order of de-
nominator polynomial is n.
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Figure 6.16: Extrapolation error as log |H(s) −Hr(s)| in [−3, 13] × [−3, 3]j ⊂ ℂ. The symbol ‘+’ is for the
original poles.

All methods constructed accurate rational approximants. Notice, however, that the
Loewner approach reaches similar precision with AAA without performing any op-
timization step. Finally, in terms of computational complexity, the CUR method per-
formed the best.

6.4.4 An Euler–Bernoulli beam

In this subsectionwe analyse the approximation of an Euler–Bernoulli clamped beam
[18]. The underlying PDE describes the oscillation of the free end. As shown in [18], the
non-rational transfer function is given by

H(s) = sn(s)
(EI + scdI)m3(s)d(s)

, where

m(s) = [ −s
2

EI + cdIs
]

1
4

, d(s) = 1 + cosh(Lm(s)) cos(Lm(s)),

n(s) = cosh(Lm(s)) sin(Lm(s)) − sinh(Lm(s)) cos(Lm(s)).

(6.31)

Usually, the next step consists of a discretization of the PDE involved. We bypass this
step and instead take frequency response measurements making use of the transfer
function above. The parameter specification is as in [18].7 Thus, we have the frequency
response of the beam as in Figure 6.17 and on the left pane.

7 Young’s modulus (elasticity constant): E = 69GPa = 6.9 ⋅ 1010 N/m2, moment of inertia: I = 3.58 ⋅
10−9m4, damping constant: cd = 5 ⋅ 10−4, length: L = 0.7m, base: b = 0.07m, height: h = 0.0085m.
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Figure 6.17: Left pane: Original frequency response of the beam. Right pane: The approximant which
constructed with the Loewner framework.

The next step is to collect 2,000 measurements on the imaginary axis (frequencies
jωi, i = 1, . . . , 2000), spaced logarithmically from 1 rad/s to 105 rad/s. These points are
depicted in the left pane of Figure 6.18.

Figure 6.18: Left pane: 2,000 sampling points alternating as left and right. Right pane: The singular
value decay.

The singular value of the Loewner matrices decay is as shown in Figure 6.18 on the
right pane. Thus, we construct a reduced model with dimension r = 44 and the
Loewner approximant in Figure 6.17 (right pane) is depicted.

Finally, the poles and zeros for every method are presented in Figure 6.19. The
quality of the approximation is given for each method in Figure 6.20 where the evalu-
ation is in the frequency range from 1 to 105.5. The error outside the sampling domain
increases thus indicating the difficulty of approximation outside of the sampling do-
main for infinite dimensional systems.

6.4.5 Heat equation

Next, we investigate an one-dimensional heat equation [13]. The corresponding PDE
describing the diffusion of heat leads to the following non-rational transfer function:

H(s) = e−√s, s ∈ ℂ. (6.32)
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Figure 6.19: Pole/Zero diagram for every method (LoewSVD, LoewCUR-cross, LoewCUR-DEIM, VF and
AAA).

Figure 6.20: The error distribution with 8,000 evaluation points grid.

The aim is to construct reducedmodels bymeans of the Loewner framework and com-
pare the results with the TF-IRKA used in [13]. Iterative Rational Krylov Algorithm -
IRKA [14] builds optimal reduced models by minimizing theℋ2 error [39].

By collecting 1,000 values of the transfer function on the imaginary axis, the re-
sulting reduced order was chosen to be r = 6 (as in [13]). For this truncation order,
σ6
σ1
≈ 6 ⋅ 10−3. In Figure 6.21c, the pole/zero distribution for every method is depicted;

in Figure 6.21d, the selected points are shown. It is worthmentioning that the Loewner
SVD method produced poles near to the optimal set computed by means of IRKA; see
Figure 6.21c. Approximation results are in Figure 6.22.

6.4.6 Approximation of a two-peak function

In this section we present an example involving a hyperbolic sine from [22]. The diffi-
culty here results from the two differentiable peaks. More precisely, the function is

f (x) = 100π(x2 − 0.36)
sinh(100π(x2 − 0.36))

, x ∈ [−1, 1],
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Figure 6.21: Approximation of the heat equation with LoewSVD, LoewCUR, VF, AAA, TF-IRKA.

Figure 6.22: Approximation results for the heat equation with various interpolation methods.

and is shown Figure 6.23 (left pane). We approximate this function by choosing 1,000
equispaced points in [−1, 1] as on the right pane in Figure 6.23. The singular values of
the Loewnermatrix are shown in Figure 6.24 on the left panewhile the selected points
are shown on the right pane of the same figure. The order is selected to be r = 38 with
( σ38σ1 ≈ 10

−12). In Figure 6.25, the distribution of the poles and zeros for each method is
shown. On the other hand, AAA looks quite different because it does not impose real
symmetry.

Remark 6.8. In Figure 6.24, right pane, the different supports points are shown. In the
case of the LoewSVDmethod two almost pure imaginary projected points are obtained
even if the initial sampling points were real.
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Figure 6.23: Left pane: The function f with two very sharp differentiable picks. Right pane: 1,000
sampling points and zoom in close to one pick.

Figure 6.24: Left pane: Singular values decay. Right pane: Various points for every method and the
projected points from the Loewner framework.

Figure 6.25: The pole/zero diagram.

Finally we observe a good fit for every method, with slightly better performance at-
tained for the Loewner SVD method (see the error plot in Figure 6.26).

6.4.7 Approximation of the sign function

Our final case study problem concerns the approximation of the sign function, known
as Zolotarev’s fourth problem. Here, we compare the approximation obtained using
the Loewner SVD with the optimal solution that is explicitly known [1]. Given two dis-
joint closed complex sets E and F, Zolotarev’s fourth problem is to find the rational
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Figure 6.26: The error profile with 5,000 evaluation points over [−1, 1].

function r(x) = p(x)
q(x) , where p, q are polynomials of degree k, that deviates least from

the sign function

sign(x) = { −1, x ∈ E,
+1, x ∈ F,

on E ∪ F. For general sets E and F, the solution to Zolotarev’s fourth problem is not
known; however, there are special cases where the rational function can be given ex-
plicitly. For the real disjoint intervals, E = [−b, −1], and F = [1, b]with b > 1, an explicit
(optimal) solution to Zolotarev’s fourth problem is known [1]. Here, we investigated
howwell the Loewner framework can approximate this discontinuous function in two
symmetric real intervals. We choose b = 3 and N = 2,000 initial interpolation points
from [−3, −1] ∪ [1, 3]. We perform two experiments. Firstly, we choose initial interpo-
lation points as equispaced and secondly, as Chebyshev nodes. For each choice, we
split the data as “half-half” and “alternating” as discussed previously. The left pane
in Figure 6.27 shows the plot of the sign function.

Figure 6.27: Left pane: The sign function. Right pane: 200 Chebyshev points in [−3, −1] ∪ [1, 3].

In [17] the explicit solution of this optimization problem is computed. We start by tak-
ing N = 2,000 measurements as Chebyshev nodes as in Figure 6.27 on the right pane.
The above sampling way leads to the following singular value decay of the Loewner
matrices as in Figure 6.28 on the left pane.
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Figure 6.28: Left pane: The singular value decay of the Loewner pencil. Right pane: Pole/Zero dia-
gram for the Loewner and the optimal approximant with order r = 4.

From the rank-revealing factorization in the left pane in Figure 6.28, we chose r =
4 with σ4

σ1
= 1.657 ⋅ 10−4. In Figure 6.28 on the right pane is the distribution of the

pole/zero diagram which is derived from the Loewner SVD method, in comparison
with the optimal set is presented.

In Figure 6.29 (left) the Loewner approximant is shown. It is quite close to the op-
timal one by choosing the Chebyshev nodes and splitting the left and right points as
“half–half”. Indeed, the error distribution as presented in the optimal interpolant in
Figure 6.30 with the blue line has the equioscillation property of the optimal approx-
imant in the infinity norm - ‖x‖∞ = max(|x1|, . . . , |xn|). Thus the equioscillation of the
error | sign(x) − r(x)| on both intervals shows the optimality of the approximant. The
Loewner framework succeeds in constructing an approximant very close to the opti-
mal. Another aspect is shown in Figure 6.29 (right pane). More specifically, note that
the projected points are indeed interpolation points.

Figure 6.29: Left pane: A comparison between the Loewner approximant with the optimal one order
r = 4. Right pane: The projected points are approximated interpolation points.

Remark 6.9. If the choice of the splitting is disjoint—“half–half” as in this experi-
ment, the constructed approximant interpolates the data as in Figure 6.29(right pane).
If the choice is “alternating” by mixing left and right, then the projected low order
model approximates the values and the derivatives at the interpolation points as in
Figure 6.31.
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Figure 6.30: Error plot with the Loewner approximant and the optimal solution as well with order
r = 4.

Figure 6.31: By splitting the data as “alternating”, the projected Loewner model approximates the
first derivative as well (Hermite interpolation conditions).

6.5 Epilogue

Interpolatorymethods formodel identification and reductionwere studied in this con-
tribution. The main focus was on the Loewner framework. The aim was to introduce
the Loewner framework by providing results which connect this rational interpolation
tool with system theory. At the same time, algorithms that make the Loewner frame-
work a complete numerical tool for approximation with ease of implementation are
offered. Several case studies illustrate the effectiveness of the method. Implementa-
tion issues like the splitting of the data in left and right were addressed. Finally, con-
nections with the SVD, the r-SVD, CUR, VF and IRKA have been detailed.
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7 Manifold interpolation

Abstract: One approach to parametric and adaptive model reduction is via the inter-
polation of orthogonal bases, subspaces or positive definite system matrices. In all
these cases, the sampled inputs stem from matrix sets that feature a geometric struc-
ture and thus form so-called matrix manifolds. This chapter reviews the numerical
treatment of the most important matrix manifolds that arise in the context of model
reduction. Moreover, the principal approaches to data interpolation and Taylor-like
extrapolation on matrix manifolds are outlined and complemented by algorithms in
pseudo-code.

Keywords: parametric model reduction, matrix manifold, interpolation, Riemannian
computing, Riemannian normal coordinates
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7.1 Introduction & motivation
This chapter addresses interpolation approaches for parametricmodel reduction. This
includes techniques for
– computing trajectories of parameterized subspaces,
– computing trajectories of parameterized reduced orthogonal bases,
– structure-preserving interpolation.

Mathematically, this requires data processing on nonlinear matrix manifolds. The ex-
position at hand intends to be an introduction and a reference guide to numerical
procedures with matrix manifold-valued data. As such it addresses practitioners and
scientists new to the field. It covers the essentials of those matrix manifolds that arise
most frequently in practical problems in model reduction. The main purpose is not
to discuss concrete model reduction applications, but rather to provide the essential
tools, building blocks and background theory to enable the reader to devise her/his
own approaches for such applications.

The text was designed such that it works as a commented formula collection,
meanwhile giving sufficient context, explanations and, not least, precise references
to enable the interested reader to immerse further in the topic.
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7.1.1 Parametric model reduction via manifold interpolation: an
introductory example

The basic objective in model reduction is to emulate a large-scale dynamical system
with very few degrees of freedom such that its input/output behavior is preserved
as well as possible. While classical model reduction techniques aim at producing
an accurate low-order approximation to the autonomous behavior of the original
system, parametric model reduction (pMOR) tries to account for additional system
parameters. If we look for instance at aircraft aerodynamics, an important task is to
solve the unsteady Navier–Stokes equations at various flight conditions, which are,
amongst others, specified by the altitude, the viscosity of the fluid (i. e. the Reynolds
number) and the relative velocity (i. e. the Mach number). We explain the objec-
tive of pMOR with the aid of a generic example in the context of proper orthogonal
decomposition-based model reduction. Similar considerations apply to frequency
domain approaches, Krylov subspace methods and balanced truncation, which are,
e. g., discussed Chapters 2 and 3 of this volume and in [19, Chapter 1], [20, Chapter 3].

Consider a spatio-temporal dynamical system in semi-discrete form

𝜕
𝜕t
x(t, μ) = f (x(t, μ); μ), x(t0, μ) = x0,μ, (7.1)

where x(t, μ) ∈ ℝn is the spatially discretized state vector of dimension n, the vector
μ = (μ1, . . . , μd) ∈ ℝd accounts for additional system parameters and f (⋅; μ) : ℝn → ℝn

is the (possibly nonlinear, parameter-dependent) right hand side function. Projection-
based MOR starts with constructing a suitable low-dimensional subspace that acts as
a space of candidate solutions.

Subspace construction. One way to construct the required projection subspace is
the proper orthogonal decomposition (POD) see [19, Chapter 2]. In its simplest form,
the POD can be summarized as follows. For a fixed system parameter μ = μ0, let
x1 := x(t1, μ0), . . . , xm := x(tm, μ0) ∈ ℝn be a set of state vectors satisfying (7.1) and let
𝕊 := (x1, . . . , xm) ∈ ℝn×m. The state vectors xi are called snapshots and the matrix 𝕊 is
called the associated snapshot matrix. POD is concerned with finding a subspace 𝒱 of
dimension r ≤ m represented by a column-orthogonal matrix𝕍r ∈ ℝn×r such that the
error between the input snapshots and their orthogonal projection onto 𝒱 = ran(𝕍r)
is minimized:

min
V∈ℝn×r ,VTV=I

∑
k

󵄩󵄩󵄩󵄩x
k − VVTxk󵄩󵄩󵄩󵄩

2
2 (⇔ min

V∈ℝn×r ,VTV=I
‖𝕊 − VVT𝕊‖2F).

Themain result of POD is that, for any r ≤ m, the best r-dimensional approximation of
ran(x1, . . . , xm) in the above sense is 𝒱 = ran(v1, . . . , vr), where {v1, . . . , vr} are the eigen-
vectors of the matrix 𝕊𝕊T corresponding to the r largest eigenvalues. The subspace 𝒱
is called the POD subspace and the matrix 𝕍r = (v1, . . . , vr) is the POD basis matrix.
The same subspace is obtained via a compact singular value decomposition (SVD) of
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the snapshot matrix 𝕊 = 𝕍ΣℤT , truncated to the first r ≤ m columns of 𝕍 ∈ ℝn×m by
setting 𝒱 := ran(𝕍r). For more details, see, e. g., [18, §3.3]. In the following, we drop
the index r and assume that𝕍 is already the truncated matrix𝕍 = (v1, . . . , vr) ∈ ℝn×r .

Since the input snapshots are supplied at a fixed system parameter vector μ0, the
POD subspace is considered to be an appropriate space of solution candidates 𝒱(μ0) =
ran(𝕍(μ0)) at μ0.

Projection. POD leads to a parameter decoupling

x̃(t, μ0) = 𝕍(μ0)xr(t). (7.2)

In this way, the time trajectory of the reduced model is uniquely defined by the coef-
ficient vector xr(t) ∈ ℝr that represents the reduced state vector with respect to the
subspace ran(𝕍(μ0)). Given a matrix𝕎(μ0) such that the matrix pair𝕍(μ0),𝕎(μ0) is
bi-orthogonal, i. e.𝕎(μ0)T𝕍(μ0) = I, the original system (7.1) can be reduced in di-
mension as follows. Substituting (7.2) in (7.1) and multiplying with𝕎(μ0)T from the
left leads to

d
dt
xr(t) = 𝕎

T (μ0)f (𝕍(μ0)xr(t); μ0), xr(t0) = 𝕍
T (μ0)x0,μ0 . (7.3)

This approach goes by the name of Petrov–Galerkin projection, if𝕎(μ0) ̸= 𝕍(μ0) and
Galerkin projection if𝕎(μ0) = 𝕍(μ0). There are various ways to proceed from (7.3)
depending on the nature of the function f and many of them are discussed in other
chapters of Model Order Reduction. If f (⋅; μ0) is linear, the reduced operator𝕎T (μ0) ∘
f (⋅; μ0) ∘ 𝕍(μ0) can be computed a priori (‘offline’) and stays fixed throughout the time
integration. If f (⋅; μ0) is affine, the same approach can be carried over to the affine
building blocks of f (⋅; μ0); see e. g. [45]. For a nonlinear f (⋅; μ0), an affine approxi-
mation can be constructed via the empirical interpolation method (EIM, [14]). Other
approaches that address nonlinearities include the discrete empirical interpolation
method (DEIM, [30]) and the missing point estimation (MPE, [13, 105]).

For illustration purposes, we proceed with𝕎(μ0) = 𝕍(μ0) and assume that the
right hand side function f splits into a linear and a nonlinear part: f (x; μ0) = A(μ0)x +
f(x; μ0), where A(μ0) ∈ ℝn×n is, say, a symmetric and negative definite matrix to foster
stability. Then (7.3) becomes

d
dt
xr(t) = 𝕍

T (μ0)A(μ0)𝕍(μ0)xr(t) + 𝕍
T (μ0)f(𝕍(μ0)xr(t); μ0).

In the discrete empirical interpolation method (DEIM, [30]), the large-scale nonlinear
term f(𝕍(μ0)xr(t); μ0) is approximated via amaskmatrixP = (ei1 , . . . , eis ) ∈ ℝ

n×s, where

{i1, . . . , is} ⊂ {1, . . . , n} and ej = (. . . ,
j
1, . . .)T ∈ ℝn is the jth canonical unit vector. The

maskmatrixP acts as an entry selector on a given n-vector viaPTv = (vi1 , . . . , vis )
T ∈ ℝs.

In addition, another POD basis matrix 𝕌(μ0) ∈ ℝn×s is used, which is obtained from
snapshots of the nonlinear term. The matrices P and 𝕌(μ0) are combined to form an
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oblique projection of the nonlinear term onto the subspace ran(𝕌(μ0)). This leads to
the reduced model

d
dt
xr(t) = 𝕍

T (μ0)A(μ0)𝕍(μ0)xr(t)

+ 𝕍T (μ0)𝕌(μ0)(P
T𝕌(μ0))

−1PT f(𝕍(μ0)xr(t); μ0), (7.4)

whose computational complexity is formally independent of the full-order dimension
n; see [30] for details. Mind that by assumption,M(μ0) := −𝕍T (μ0)A(μ0)𝕍(μ0) is sym-
metric positive definite and that both𝕍(μ0) and𝕌(μ0) are column-orthogonal. More-
over, for a fixed mask matrix P, coordinate changes of 𝕍(μ0) and 𝕌(μ0) do not af-
fect the approximated state x̃(t, μ0) = 𝕍(μ0)xr(t), so that essentially, the reduced sys-
tem (7.4) depends only on the subspaces ran(𝕍(μ0)) and ran(𝕌(μ0)) rather than the
matrices𝕍(μ0) and𝕌(μ0).1

Solving (7.3), (7.4) constitutes the online stage of model reduction. The main focus
of this chapter is not on the efficient solution of the reduced systems (7.3) or (7.4) at a
fixed μ0, but on tackling parametric variations in μ. In view of the associated compu-
tational costs, it is important that this can be achieved without computing additional
snapshots in the online stage.

A straightforward way to achieve this is to extend the snapshot sampling to the
μ-parameter range to produce POD basis matrices that are to cover all input parame-
ters. This is usually referred to as the “global approach”. For nonlinear systems, the
global approachmay suffer from requiring a large number of snapshot samples. More-
over, the snapshot information is blurred in the global POD and features that occur
only in a restricted regime affect the ROMpredictions everywhere. Therefore, localized
approaches are preferable; see e. g. the applications in and the numerical examples
in [38, 100].

In this chapter, the focus is on constructing trajectories of functions in the system
parameters μ on certain sets of structured matrix spaces. In the above example, these
are the symmetric positive definite matrices {M ∈ ℝr×r | MT = M, vTMv > 0 ∀v ̸= 0},
the orthonormal basis matrices {U ∈ ℝn×s | UTU = I} or the associated s-dimensional
subspaces 𝒰 := ran(U) ⊂ ℝn:

μ 󳨃→ −𝕍T (μ)A(μ)𝕍(μ) ∈ {M ∈ ℝr×r | MT = M, vTMv > 0 ∀v ̸= 0},
μ 󳨃→ 𝕌(μ) ∈ {U ∈ ℝn×s | UTU = I},

μ 󳨃→ 𝒰(μ) = ran(𝕌(μ)) ∈ {𝒰 ⊂ ℝn | 𝒰 subspace,dim(𝒰) = s}.

We outline generic methods for constructing such trajectories via interpolation. All
the special sets of matrices considered above feature a differentiable structure that

1 Replacing 𝕌 with 𝕌S, S ∈ ℝs×s orthogonal, does not affect (7.4) at all. Replacing 𝕍 with 𝕍R, R ∈
ℝr×r orthogonal, induces a coordinate change on the reduced state xr = Rx̂r but preserves the output
x̃(t) = 𝕍xr(t) = 𝕍Rx̂r(t).
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allows one to consider them (directly or indirectly) as submanifolds of someEuclidean
matrix space, referred to as matrix manifolds. The above example is not exhaustive.
Other matrix manifolds may arise in model reduction applications.

To keep the exposition both general and modular, the interpolation techniques
will be formulated for arbitrary submanifolds. For working examples that put these
techniques into action, the reader is referred to Chapter 5 of Volume 2 and Chapter 9
of Volume 3 of Model Order Reduction. Model reduction literature on manifold inter-
polation problems includes [8, 9, 18, 32, 34, 67, 74, 76, 78, 94, 100].

7.1.2 Structure and organization

The text is constructed modular rather than consecutive, so that selected reading is
enabled. Yet, this entails that the reader will encounter some repetition.

Section 7.2 covers the essential background from differential geometry. Section 7.3
contains generic methods for interpolation and extrapolation onmatrix manifolds. In
Section 7.4, the geometric and numerical aspects of the matrix manifolds that arise
most frequently in the context of model reduction are discussed.

A practitioner that faces a problem in matrix manifold interpolation may skim
through the recap on elementary differential geometry in Section 7.2 and thenmove on
to the subsection of Section 7.4 that corresponds to the matrix manifold in the appli-
cation. This provides the specific ingredients and formulas for conducting the generic
interpolation methods of Section 7.3.

7.1.3 Notation & abbreviations

– w. r. t.: with respect to
– EVD: eigenvalue decomposition
– SVD: singular value decomposition
– POD: proper orthogonal decomposition
– LTI: linear time-invariant (system)
– ODE: ordinary differential equation
– PDE: partial differential equation
– ONB: orthonormal basis
– ℝn×r: the set of real n-by-r matrices
– In: the n-by-n identity matrix; if dimensions are clear, written as I
– ran(A): the subspace spanned by the columns of A ∈ ℝn×r

– GL(n): the general linear group of real, invertible n-by-nmatrices
– sym(n) = {A ∈ ℝn×n | AT = A}: the set of real, symmetric n-by-nmatrices
– skew(n) = {A ∈ ℝn×n | AT = −A}: the set of real, skew-symmetric n-by-nmatrices
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– SPD(n) = {A ∈ sym(n) | xTAx > 0∀x ∈ ℝn \ {0}}: the set of real, symmetric positive
definite n-by-nmatrices

– O(n) = {Q ∈ ℝn×n | QTQ = In = QQT }: the orthogonal group
– SO(n) = {Q ∈ O(n) | det(Q) = 1}: the special orthogonal group
– St(n, r) = {U ∈ ℝn×r | UTU = Ir}: the (compact) Stiefel manifold, r ≤ n
– Gr(n, r): the Grassmann manifold of r-dimensional subspaces of ℝn, r ≤ n
– ℳ: a differentiable manifold
– 𝒟p ⊂ℳ: an open domain around the point p on a manifoldℳ
– Dx ⊂ ℝ

n: an open domain in the Euclidean space around a point x ∈ ℝn

– Tpℳ: the tangent space ofℳ at a location p ∈ℳ
– ⟨A,B⟩0 = trace(ATB): the standard (Frobenius) inner product on ℝn×r

– ⟨v,w⟩ℳp : the Riemannian metric on Tpℳ (the superscript is often omitted)
– expm: standard matrix exponential
– logm: standard (principal) matrix logarithm
– Expℳp : the Riemannian exponential of a manifoldℳ at base point p ∈ℳ
– Logℳp : the Riemannian logarithm of a manifoldℳ at base point p ∈ℳ.

7.2 Basic concepts of differential geometry

This section provides the essentials on elementary differential geometry. Established
textbook references on differential geometry include [35, 60, 61, 63, 65]; condensed
introductions can be found in [49, Appendices C.3, C.4, C.5] and [39]. An account of
differential geometry that is tailor-made to matrix manifold applications is given in
[3].

The fundamental objects of study in differential geometry are differentiable man-
ifolds. Differentiable manifolds are generalizations of curves (one-dimensional) and
surfaces (two-dimensional) to arbitrary dimensions. Loosely speaking, an n-dimen-
sional differentiablemanifoldℳ is a topological space that ‘locally looks likeℝn’ with
certain smoothness properties. This concept is rendered precise by postulating that,
for every point p ∈ ℳ, there exists a so-called coordinate chart x : ℳ ⊃ 𝒟p → ℝ

n

that bijectively maps an open neighborhood𝒟p ⊂ℳ of a location p to an open neigh-
borhood Dx(p) ⊂ ℝ

n around x(p) ∈ ℝn with the important additional property that the
coordinate change

x ∘ x̃−1 : x̃(𝒟p ∩ 𝒟̃p) → x(𝒟p ∩ 𝒟̃p)

of two such charts x, x̃ is a diffeomorphism, where their domains of definition overlap;
see [39, Figure 18.2, p. 496] or [49, Figure 3.1, p. 342]. Note that the coordinate change
x ∘ x̃−1 maps from an open domain of ℝn to an open domain of ℝn, so that the stan-
dard concepts of multivariate calculus apply. For details, see [3, §3.1.1] or [39, §18.8].
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Depending on the context, we will write x(p) for the value of a coordinate chart at p
and also x ∈ ℝn for a point in ℝn.

Of special importance to numerical applications are embedded submanifolds in
the Euclidean space.

Definition 7.1 (Submanifolds ofℝn+d). A parameterization is a bijective differentiable
function f : ℝn ⊃ D→ f (D) ⊂ ℝn+d with continuous inverse such that its Jacobi matrix
Dfx ∈ ℝ(n+d)×n has full rank n at every point x ∈ D.

A subsetℳ ⊂ ℝn+d is called an n-dimensional embedded submanifold of ℝn+d, if
for every p ∈ℳ, there exists an open neighborhood Ω ⊂ ℝn+d such that 𝒟p :=ℳ ∩ Ω
is the image of a parameterization

f : ℝn ⊃ Dx → f (Dx) = 𝒟p =ℳ ∩ Ω ⊂ ℝ
n+d.

One can show that, if f : D→ℳ∩Ωand ̃f : D̃→ℳ∩Ω̃ are two parameterizations,
say with f (x0) = ̃f (x̃0) = p ∈ℳ ∩ Ω ∩ Ω̃, then

(f −1 ∘ ̃f ) : ̃f −1(Ω ∩ Ω̃) → f −1(Ω ∩ Ω̃)

is a diffeomorphism (between open sets in ℝn). In this sense, parameterizations f are
the inverses of coordinate charts x. In addition to coordinate charts and parameteriza-
tions, submanifolds can be characterized via equality constraints. This fact is due to
the inverse function theorem of classical multivariate calculus [64, §I.5]. For details,
see [39, Thm. 18.7, p. 497].

Theorem 7.1 ([39, Prop. 18.7, p. 500]). Let h : ℝn+d ⊃ Ω → ℝd be differentiable and
c0 ∈ ℝd be defined such that the differential Dhp ∈ ℝd×(n+d) has maximum possible rank
d at every point p ∈ Ω with h(p) = c0. Then the preimage

h−1(c0) = {p ∈ Ω | h(p) = c0}

is an n-dimensional submanifold of ℝn+d.

An obvious application of Theorem 7.1 to the function h : ℝ3 → ℝ, (x1, x2, x3) 󳨃→
x21 + x

2
2 + x

2
3 − 1 establishes the unit sphere S

2 = h−1(0) as a 2-dimensional submanifold
of ℝ2+1. As a more sophisticated example, we recognize the orthogonal group as a
differentiable (sub)-manifold.

Example 7.1. Consider the orthogonal group O(n) ⊂ ℝn×n ≃ ℝn
2
and the set of sym-

metric matrices sym(n) ≃ ℝn(n+1)/2. Define h : ℝn×n → sym(n),A 󳨃→ ATA − I. Then
DhA(B) = ATB + BTA. For Q ∈ O(n), the differential is indeed surjective: For any
M ∈ sym(n), we have DhQ(

1
2QM) =

1
2Q

TQM + 1
2M

TQTQ = M. As a consequence, the
orthogonal group O(n) is a submanifold of dimension n2 − 1

2 (n(n + 1)) =
1
2 (n(n − 1)) of

the Euclidean matrix space ℝn×n.
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7.2.1 Intrinsic and extrinsic coordinates

As a rule, numerical data processing onmanifolds requires calculations in explicit co-
ordinates. For differentiable submanifolds, we distinguish between two types: extrin-
sic and intrinsic coordinates. Extrinsic coordinates address points on a submanifold
ℳ ⊆ ℝn with respect to their coordinates in the ambient space ℝn, while intrinsic
coordinates are with respect to the local parameterizations. Hence, extrinsic coordi-
nates are what an outside observer would see, while intrinsic coordinates correspond
to the perspective of an observer that resides on the manifold. Let us exemplify these
concepts on the two-dimensional unit sphere S2, embedded in ℝ3. As a point set, the
sphere is defined by the equation

S2 = {(x1, x2, x3)
T ∈ ℝ3 | x21 + x

2
2 + x

2
3 = 1}.

Any three-vector (x1, x2, x3)T ∈ S2 specifies a point on the sphere in extrinsic coordi-
nates. However, it is intuitively clear that S2 is intrinsically a two-dimensional object.
Indeed, S2 can be parameterized via

f : ℝ2 ⊃ [0, 2π)2 → S2 ⊂ ℝ3, (α, β) 󳨃→ (
sin(α) cos(β)
sin(α) sin(β)

cos(α)
) .

The parameter vector (α, β) ∈ ℝ2 specifies a point on S2 in intrinsic coordinates. Even
though intrinsic coordinates directly reflect the dimension of the manifold at hand,
they often cannot be calculated explicitly and extrinsic coordinates are the preferred
choice in numerical applications [36, §2, p. 305]. Turning back to Example 7.1, we recall
that the intrinsic dimension of the orthogonal group is 1

2n(n − 1). Yet, in practice, one
uses the extrinsic representationwith (n×n)-matricesQ, keeping thedefining equation
QTQ = I in mind.

7.2.2 Tangent spaces

We need a few more fundamental concepts.

Definition 7.2 (Tangent space of a differentiable submanifold). Let ℳ ⊂ ℝn+d be an
n-dimensional submanifold of ℝn+d. The tangent space of ℳ at a point p ∈ ℳ, in
symbols Tpℳ, is the space of velocity vectors of differentiable curves c : t 󳨃→ c(t)
passing through p, i. e.,

Tpℳ = {ċ(t0) | c : J →ℳ, c(t0) = p}.

Here, J ⊆ ℝ is an arbitrarily small open interval with t0 ∈ J.
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Figure 7.1: Visualization of a manifold (curved surface) with the tangent space Tpℳ attached. The
tangent vector v = ̇c(0) ∈ Tpℳ is the velocity vector of a curve c : t 󳨃→ c(t) ∈ℳ.

The concept is illustrated in Figure 7.1. It is straightforward to show that the tangent
space is actually a vector space.Moreover, the tangent space canbe characterizedboth
with respect to intrinsic and extrinsic coordinates.

Theorem 7.2 (Tangent space, intrinsic characterization). Let ℳ ⊂ ℝn+d be an n-di-
mensional submanifold of ℝn+d and let f : ℝn ⊇ D → f (D) ⊆ℳ be a parameterization.
Then, for x ∈ D with p = f (x) ∈ℳ, we have

Tpℳ = ran(Dfx).

Theorem 7.3 (Tangent space, extrinsic characterization). Let h : ℝn+d ⊃ Ω → ℝd and
c0 ∈ ℝd be as in Theorem 7.1 and letℳ := h−1(c0) ⊂ ℝn+d. Then, for p ∈ℳ, we have

Tpℳ = ker(Dhp).

Note that both Theorem 7.2 and Theorem 7.3 immediately show that the tangent
space Tpℳ is a vector space of the same dimension n as the manifoldℳ.

Example 7.2. The tangent space of the orthogonal group O(n) at a point Q0 is

TQ0
O(n) = {Δ ∈ ℝn×n | ΔTQ0 = −Q

T
0Δ}.

This fact can be established via considering amatrix curveQ : t 󳨃→ Q(t)withQ(0) = Q0
and velocity vector Δ = Q̇(0) ∈ TQ0

O(n). Then

0 = d
dt
|t=0I =

d
dt
|t=0Q

T (t)Q(t) = ΔTQ0 + Q
T
0Δ.

(The claim follows by counting the dimension of the subspace {ΔTQ0 = −QT
0Δ}.) As an

alternative, we can consider h : ℝn×n → sym(n),A 󳨃→ ATA − I as in Example 7.1. Then
DhQ0
(Δ) = QT

0Δ + Δ
TQ0 and TQ0

O(n) = ker(DhQ0
).
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7.2.3 Geodesics and the Riemannian distance function

One of the most important problems in both general differential geometry and data
processing on manifolds is to determine the shortest connection between two points
on a given manifold. This requires one to measure the lengths of curves. Recall that
the length of a curve c : [a, b] → ℝn in the Euclidean space is L(c) = ∫ba ‖ċ(t)‖ dt. In
order to transfer this to the manifold setting, an inner product for tangent vectors is
needed that is consistent with the manifold structure.

Definition 7.3 (Riemannian metrics). Let ℳ be a differentiable submanifold of ℝn+d.
A Riemannian metric on ℳ is a family (⟨⋅, ⋅⟩p)p∈ℳ of inner products ⟨⋅, ⋅⟩p : Tpℳ ×
Tpℳ→ ℝ that is smooth in variations of the base point p.

The length of a tangent vector v ∈ Tpℳ is ‖v‖p := √⟨v, v⟩p.2 The length of a curve
c : [a, b] →ℳ is defined as

L(c) =
b

∫
a

‖ċ(t)‖c(t) dt =
b

∫
a

√⟨ċ(t), ċ(t)⟩c(t) dt.

A curve is said to be parameterized by the arc length, if L(c|[a,t]) = t − a for all
t ∈ [a, b]. Obviously, unit-speed curves with ‖ċ(t)‖c(t) ≡ 1 are parameterized by the arc
length. Constant-speed curves with ‖ċ(t)‖c(t) ≡ ν0 are parameterized proportional to
the arc length. The Riemannian distance between two points p, q ∈ℳ with respect to
a given metric is

distℳ(p, q) = inf{L(c) | c : [a, b] →ℳ piecewise smooth, c(a) = p, c(b) = q}, (7.5)

where, by convention, inf{0} = ∞.

Hence, a shortest path between p, q ∈ℳ is a curve c that connects p and q such
that L(c) = distℳ(p, q). In general, shortest paths onℳ do not exist.3 Yet, candidates
for shortest curves between points that are sufficiently close to each other can be ob-
tained via a variational principle: Given a parametric family of suitably regular curves
cs : t 󳨃→ cs(t) ∈ ℳ, s ∈ (−ε, ε) that connect the same fixed endpoints cs(a) = p and
cs(b) = q for all s, one can consider the length functional s 󳨃→ L(cs). A curve c = c0
is a first-order candidate for a shortest path between p and q, if it is a critical point of

2 This notation should not be confused with the classical p-norm p√∑i |vi|p.
3 Considerℝ2,∗ = ℝ2 \ {(0,0)}with the Euclidean inner product. There is no shortest connection from
(−1,0) to (1,0) on ℝ2,∗. A sequence of curves that is in ℝ2,∗ and converges to the curve c : [−1, 1] →
ℝ2, t 󳨃→ (t,0) is readily constructed. Hence, the Riemannian distance between (−1,0) and (1,0) is 2.
Yet, every curve connecting these points must go around the origin. The length-minimizing curve of
length 2 crosses the origin and is thus not an admissible curve on ℝ2,∗.
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the length functional, i. e., if d
ds |s=0L(cs) = 0. Such curves are called geodesics. Differ-

entiating the length functional leads to the so-called first variation formula [65, §6],
which, in turn, leads to the characterizing equation for geodesics:

Definition 7.4 (Geodesics). A differentiable curve c : [a, b] →ℳ is called a geodesic
(w. r. t. to a given Riemannian metric), if the covariant derivative of its velocity vector
field vanishes, i. e.,

Dċ
dt
(t) = 0 ∀t ∈ [a, b]. (7.6)

Remark 7.1. If a starting point c(0) = p ∈ ℳ and a starting velocity ċ(0) = v ∈ Tpℳ
are specified, then the geodesic equation (7.6) translates to an initial value problem of
second order with guaranteed existence and uniqueness of local solutions, [3, p. 102].

An immediate consequence of (7.6) is that geodesics are constant-speed curves. A
formal introduction of the covariant derivative D

dt along a curve is beyond the scope
of this contribution, and the interested reader is referred to, e. g., [65, §4, §5]. To get
some intuition, we introduce this concept for embedded Riemannian submanifolds
ℳ ⊂ ℝn+d, where the metric is the Euclidean metric of ℝn+d restricted to the tangent
bundle; see also [39, §20.12]:

A vector field along a curve c : [a, b] →ℳ is a differentiable map v : [a, b] → ℝn+d

such that v(t) ∈ Tc(t)ℳ.4 For every p ∈ ℳ, the ambient ℝn+d decomposes into an
orthogonal direct sum

ℝn+d = Tpℳ ⊕ Tpℳ
⊥,

where Tpℳ⊥ is the orthogonal complement of Tpℳ and orthogonality is w. r. t. the
standard Euclidean inner product on ℝn+d. Let Πp : ℝ

n+d → Tpℳ be the (base point-
dependent) orthogonal projection onto the tangent space at p. In this setting (and only
in this), the covariant derivative of a vector field v(t) along a curve c(t) is the tangent
component of v̇(t), i. e., Dv

dt (t) = Πc(t)(v̇(t)). As a consequence,

Dċ
dt
(t) = Πc(t)(c̈(t)) (7.7)

and the geodesics on Riemannian submanifolds with themetric induced by the ambi-
ent Euclidean inner product are precisely the constant-speed curves with acceleration
vectors orthogonal to the corresponding tangent spaces, i. e., c̈(t) ∈ Tc(t)ℳ⊥.

Example 7.3. On the unit sphere S2 ⊂ ℝ3, the geodesics are great circles. When con-
sidered as curves in the ambient ℝ3, their acceleration vector points directly to the
origin and is thus orthogonal to the corresponding tangent space, see the cartoon be-
low. When viewed as entities of S2, these curves do not experience any acceleration at
all.

4 The prime example for such a vector field is the curve’s own velocity field v(t) = ̇c(t).
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c̈(t)ċ(t)

Mind that a constant-speed curve inℝn changes its direction only, when it experiences
a non-zero acceleration. In this sense, geodesics on manifolds are the counterparts to
straight lines in the Euclidean space.

In general, a covariant derivative, also known as a linear connection, is a bilinear
mapping (X,Y) 󳨃→ ∇XY that maps two vector fields X,Y to a third vector field ∇XY in
such a way that it can be interpreted as the directional derivative of Y in the direc-
tion of X. Of importance is the Riemannian connection or Levi-Civita connection that
is compatible with a Riemannian metric [3, Thm 5.3.1], [65, Thm 5.4]. It is determined
uniquely by the Koszul formula,

2⟨∇XY , Z⟩ = X(⟨Y , Z⟩) + Y(⟨Z,X⟩) − Z(⟨X,Y⟩)
− ⟨X, [Y , Z]⟩ − ⟨Y , [X, Z]⟩ + ⟨Z, [X,Y]⟩,

and is used to define the Riemannian curvature tensor

(X,Y , Z) 󳨃→ R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.5

A Riemannian manifold is flat if and only if it is locally isometric to the Euclidean
space,whichholds if and only if theRiemannian curvature tensor vanishes identically
[65, Thm. 7.3]. Hence, ‘flatness’ depends on the Riemannian metric.

7.2.4 Normal coordinates

The local uniqueness and existence of geodesics allows us tomap a tangent vector v ∈
Tpℳ to the endpoint of a geodesic that starts from p ∈ℳwith velocity v. Formalizing
this principle gives rise to the Riemannian exponential,

Expℳp : Tpℳ ⊃ Bε(0) →ℳ, v 󳨃→ q := Expℳp (v) := cp,v(1). (7.8)

Here, t 󳨃→ cp,v(t) is the geodesic that starts from p with velocity v and Bε(0) ⊂ Tpℳ
is the open ball with radius ε and center 0 in the tangent space;6 see Figure 7.2. Note

5 In these formulas, [X,Y] = X(Y) − Y(X) is the Lie bracket of two vector fields.
6 For technical reasons, ε > 0 must be chosen small enough such that cp,v(t) is defined on the unit
interval [0, 1].
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Figure 7.2: The Riemannian exponential sends tangent vectors to end point of geodesic curves.

that we can restrict the considerations to unit-speed geodesics via

Expℳp (v) := cp,v(1) = cp,v/‖v‖(tv) = Exp
ℳ
p (tv

v
‖v‖
),

where tv = ‖v‖; see [65, §5., p. 72 ff.] for the details.
For ε > 0 small enough, the Riemannian exponential is a smooth diffeomorphism

between Bε(0) and an open domain on 𝒟p ⊂ ℳ around the point p. Hence, it is in-
vertible. The smooth inverse map is called the Riemannian logarithm and is denoted
by

Logℳp :ℳ ⊃ 𝒟p → Bε(0) ⊂ Tpℳ, q 󳨃→ v := (Expℳp )
−1(q), (7.9)

where v satisfies cp,v(1) = q.
Thus, theRiemannian logarithm is associatedwith the geodesic endpoint problem:

Given p, q ∈ ℳ, find a geodesic that connects p and q. The Riemannian exponential
map establishes a local parametrization of a small region around a location p ∈ℳ in
terms of coordinates of the flat vector space Tpℳ. This is referred to as representing
the manifold in normal coordinates [60, §III.8], [65, Lem. 5.10]. Normal coordinates
are radially isometric in the sense that the Riemannian distance between p and q =
Expℳp (v) is exactly the same as the length of the tangent vector ‖v‖p as measured in
themetric on Tpℳ, provided that v is contained in a neighborhood of 0 ∈ Tpℳ, where
the exponential is invertible, [65, Lem. 5.10 & Cor. 6.11].

Mind that thedefinition of theRiemannian exponential depends on the geodesics,
which, in turn, depend on the chosen Riemannianmetric—via Definition 7.3. Different
metrics lead to different geodesics and thus to different exponential and logarithm
maps.
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7.2.5 Matrix Lie groups and quotients by group actions

In general, a Lie group is a differentiable manifold 𝒢 which also has a group structure,
such that the group operations ‘multiplication’ and ‘inversion’,

𝒢 × 𝒢 ∋ (g, g̃) 󳨃→ g ⋅ g̃ ∈ 𝒢 and 𝒢 ∋ g 󳨃→ g−1 ∈ 𝒢

are both smooth [39, 46, 41]. A matrix Lie group 𝒢 is a subgroup of GL(n, ℂ) that is
closed inGL(n, ℂ).7 This definition already implies that𝒢 is an embedded submanifold
ofℂn×n [46, Corollary 3.45]. Not all matrix groups are Lie groups and not all Lie groups
are matrix Lie groups; see [46, §1.1 and §4.8]. However, matrix Lie groups are arguably
the most important class of Lie groups when it comes to practical applications and
this exposition is restricted to this subclass.

Let 𝒢 be an arbitrary matrix Lie group. When endowed with the bracket opera-
tor or matrix commutator [V ,W] = VW − WV , the tangent space TI𝒢 at the identity
is called the Lie algebra associated with the Lie group 𝒢; see [46, §3]. As such, it is
denoted by g = TI𝒢. For any A ∈ 𝒢, the function “left-multiplication with A” is a
diffeomorphism LA : 𝒢 → 𝒢, LA(B) = AB; its differential at a point M ∈ 𝒢 is the iso-
morphism d(LA)M : TM𝒢 → TLA(M)𝒢, d(LA)M(V) = AV . Using this observation atM = I
shows that the tangent space at an arbitrary location A ∈ 𝒢 is given by the translates
(by left-multiplication) of the tangent space at the identity:

TA𝒢 = TLA(I)𝒢 = Ag = {Δ = AV ∈ ℝ
n×n | V ∈ g}, (7.10)

[41, §5.6, p. 160]. The Lie algebra g = TI𝒢 of 𝒢 can equivalently be characterized as
the set of all matrices Δ such that expm(tΔ) ∈ 𝒢 for all t ∈ ℝ. The intuition behind
this fact is that all tangent vectors are velocity vectors of smooth curves running on
𝒢 (Definition 7.2) and that c(t) = expm(tΔ) is a smooth curve starting from c(0) = I
with velocity ċ(0) = Δ; see [46, Def. 3.18 & Cor. 3.46] for the details. By definition, the
exponential map8 for a matrix Lie group is the matrix exponential restricted to the
corresponding Lie algebra, i. e. the tangent space at the identity g = TI𝒢, [46, §3.7],

expm |g : g→ 𝒢.

In general, a Lie algebra is a vector space with a linear, skew-symmetric bracket oper-
ation, called Lie bracket [⋅, ⋅], that satisfies the Jacobi identity.

[X, [Y , Z]] + [Z, [X,Y]] + [Y , [Z,X]] = 0.

7 But not necessarily in ℂn×n.
8 The exponential map of a Lie group must not be confused with the Riemannian exponential.
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Quotients of Lie groups by closed subgroups
In many settings, it is important or sometimes even necessary to consider certain
points p, q on a given differentiablemanifoldℳ as equivalent. Consider the following
example.

Example 7.4. Let U ∈ ℝn×r feature orthonormal columns so that UTU = Ir . We may
extend the columns of U = (u1, . . . , ur) to an orthogonal matrix Q = (u1, . . . , ur , ur+1, . . . ,
un) ∈ O(n). Define Ir × O(n − r) := {( Ir 00 R ) | R ∈ O(n − r)}. This is actually a closed
subgroup of O(n), in symbols (Ir × O(n − r)) ≤ O(n). The action Q̃ = QΦ with any
orthogonal matrix Φ ∈ Ir × O(n − r) preserves the first r columns of Q. Hence, we
may identify U with the equivalence class [Q] = {QΦ | Φ ∈ Ir × O(n − r)} ⊂ O(n). In
Sections 7.4.4 and 7.4.5, we will see that this example establishes the Stiefel manifold
of ONBs and eventually also the Grassmannmanifold of subspaces as quotients of the
orthogonal group O(n).

Note that in the example, the equivalence relation is induced by actions of the
Lie group Ir × O(n − r). Quotients that arise from such group actions are important
examples of quotient manifolds. Theorems 7.4 and 7.5 cover this example as well as all
other cases of quotientmanifolds that are featured in this chapter. First, group actions
need to be formalized.

Definition 7.5 (Cf. [66, p. 162,163]). Let 𝒢 be a Lie group, ℳ be a smooth manifold,
and let 𝒢 ×ℳ→ℳ, (g, p) 󳨃→ g ⋅ p be a left action of 𝒢 onℳ.9 The orbit relation onℳ
induced by 𝒢 is defined by

p ≃ q :⇔ ∃g ∈ 𝒢 : g ⋅ p = q.

The equivalence classes are the 𝒢-orbits [p] := 𝒢p := {g ⋅ p | g ∈ 𝒢}. The orbit space is
denoted byℳ/𝒢 := {[p] | p ∈ℳ}. The quotient map sends a point to its 𝒢-orbit via Π :
ℳ→ℳ/𝒢, p 󳨃→ [p]. The action is free, if every isotropy group 𝒢p := {g ∈ 𝒢 | g ⋅ p = p}
is trivial, 𝒢p = {e}.

Theorem 7.4 (Quotient manifold theorem, cf. [66, Thm. 21.10]). Suppose 𝒢 is a Lie
group acting smoothly, freely, and properly on a smooth manifold ℳ. Then the or-
bit space ℳ/𝒢 is a manifold of dimension dimℳ − dim𝒢, and has a unique smooth
structure such that the quotient mapΠ :ℳ→ℳ/𝒢, p 󳨃→ [p] is a smooth submersion.10

In this context,ℳ is called the total space andℳ/𝒢 is the quotient (space).

A special case is Lie groups under actions of Lie subgroups.

9 The theory for right actions is analogous. In all cases considered in this chapter, ℳ is a matrix
manifold so that “⋅” is the usual matrix product.
10 I. e. a smooth surjective mapping such that the differential is surjective at every point.
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Definition 7.6. [66, §21, p. 551] Let 𝒢 be a Lie group andℋ ≤ 𝒢 be a Lie subgroup. For
g ∈ 𝒢, a subset of 𝒢 of the form [g] := gℋ = {g ⋅h | h ∈ ℋ} is called a left coset ofℋ. The
left cosets form a partition of 𝒢, and the quotient space determined by this partition
is called the left coset space of 𝒢 moduloℋ, and is denoted by 𝒢/ℋ.

Coset spaces of Lie groups are again smooth manifolds.

Theorem 7.5 (Cf. [66, Thm 21.17, p. 551]). Let 𝒢 be a Lie group and let ℋ be a closed
subgroup of 𝒢. The left coset space 𝒢/ℋ is a manifold of dimension dim𝒢 − dimℋ with
a unique differentiable structure such that the quotient map Π : 𝒢 → 𝒢/ℋ, g 󳨃→ [g] is a
smooth submersion.

In general, if π : ℳ → 𝒩 is a surjective submersion between two manifolds ℳ
and 𝒩 , then for any q ∈ 𝒩 , the preimage π−1(q) ⊂ ℳ is called the fiber over q, and
is denoted by ℳq. Each fiber ℳq is itself a closed, embedded submanifold by the
implicit function theorem. If ℳ has a Riemannian metric ⟨⋅, ⋅⟩ℳp , then at each point
p ∈ ℳ, the tangent space Tpℳ decomposes into an orthogonal direct sum Tpℳ =
Tpℳπ(p) ⊕ (Tpℳπ(p))

⊥. The tangent space of the fiber Tpℳπ(p) =: Vp is the called the
vertical space, its orthogonal complement Hp := V⊥p is the horizontal space. The ver-
tical space is the kernel Vp = ker(dπp) of the differential dπp : Tpℳ → Tπ(p)𝒩 ; the
horizontal space is isomorphic to Tπ(p)𝒩 . This allows one to identifyHp ≅ Tπ(p)𝒩 ; see
[3, Figure 3.8., p. 44] for an illustration. This construction helps to compute tangent
spaces of quotients, if the tangent space of the total space is known.

If𝒢/ℋ is a quotient as in Theorem7.4 or 7.5 and ifΠ : 𝒢 → 𝒢/ℋ is the corresponding
quotient map, then Π is a local diffeomorphism. A Riemannianmetric on the quotient
can be defined by

⟨v,w⟩𝒢/ℋ[g] := ⟨(dΠg)
−1(v), (dΠg)

−1(w)⟩𝒢g , v,w ∈ T[g](𝒢/ℋ). (7.11)

For this (and only this) metric, the quotient map is a local isometry.
In fact, Theorem 7.5 additionally establishes 𝒢/ℋ as a homogeneous space, i. e. a

smooth manifoldℳ endowed with a transitive smooth action by a Lie group (cf. [66,
§21, p. 550]). In the setting of the theorem, the group action is given by the left action
of 𝒢 on 𝒢/ℋ given by g1 ⋅ [g2] := [g1 ⋅ g2]. A transitive action allows us to transport a
location p ∈ℳ to any other location q ∈ℳ.

7.3 Interpolation on non-flat manifolds

When working with matrix manifolds, the data is usually given in extrinsic coordi-
nates; see Section 7.2. For example, data on the compact Stiefel manifold St(n, r) =
{U ∈ ℝn×r | UTU = Ir}, r ≤ n, is given in form of n-by-r matrices. These matrices
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feature nr entries while the intrinsic number of degrees of freedom, i. e., the intrinsic
dimension is nr − 1

2 r(r + 1); see Section 7.4.4. Essentially, the practical obstacle asso-
ciated with data interpolation on matrix manifolds arises from this fact. Given, say,
k matrices on St(n, r) in extrinsic coordinates, interpolating entry-by-entry will most
certainly lead to interpolants that do not feature orthogonal columns and thus are not
points on the Stiefel manifold. Likewise, entry-by-entry interpolation of positive defi-
nite matrices is not guaranteed to produce another positive definite matrix.

There are essentially two different approaches to address this issue: Performing
the interpolation on the tangent space of the manifold and using the Riemannian
barycenter or Riemannian center of mass as an interpolant. Both will be explained
in more detail in the next two subsections.11

7.3.1 Interpolation in normal coordinates

As outlined in Section 7.2, every location p ∈ ℳ on an n-dimensional differentiable
manifold features a small neighborhood 𝒟p that is the domain of a coordinate chart
x :ℳ ⊃ 𝒟p → Dx(p) ⊂ ℝ

n that maps bijectively onto an open set Dx(p) ⊂ ℝ
n. Therefore,

for a sample data set {p1, . . . , pk} ⊂ 𝒟p that is completely contained in the domain of a
single coordinate chart x, interpolation can be performed as follows:
1. Map the data set to Dx(p): Calculate v1 = x(p1), . . . , vk = x(pk) ∈ Dx(p).
2. Interpolate in Dx(p) to produce the interpolant v∗ ∈ Dx(p).
3. Map back to manifold: compute p∗ = x−1(v∗) ∈ 𝒟p.

In principle, any coordinate chart may be applied. In practice, the challenge is to find
a suitable coordinate chart that can be evaluated efficiently. Moreover, it is desirable
that the chosen chart preserves the geometry of the original data set as well as possi-
ble.12 The standard choice is to use normal coordinates as introduced in Section 7.2.4.
This means that the Riemannian logarithm is used as the coordinate chart

Logℳp :ℳ ⊃ 𝒟p → Bε(0) ⊂ Tpℳ

with the Riemannian exponential

Expℳp : Tpℳ ⊃ Bε(0) → 𝒟p ⊂ℳ

as the corresponding parameterization. The general procedure of data interpolation
via the tangent space is formulated as Algorithm 7.1.

11 The German speaking reader may find an introduction that addresses a general scientific audience
in [90].
12 There are no isometric coordinate charts on a non-flat manifold; see [65, Thm 7.3].
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Algorithm 7.1: Interpolation in normal coordinates.
Input: Data set {p1, . . . , pk} ⊂ℳ.
1: Choose pi ∈ {p1, . . . , pk} as a base point.
2: Check that Logℳpi (pj) is well-defined for all j = 1, . . . , k.
3: for j = 1, . . . , k do
4: Compute vj := Logℳpi (pj) ∈ Tpℳ.
5: end for
6: Compute v∗ via Euclidean interpolation of {v1, . . . , vk}.
7: Compute p∗ := Expℳpi (v

∗)
Output: p∗ ∈ℳ.

Remark 7.2. There are a few facts that the practitioner needs to be aware of:
1. The interpolation procedure of Algorithm 7.1 depends on which sample point is

selected to act as the base point. Different choices may lead to different inter-
polants.13

2. For matrix manifolds, the tangent space is often also given in extrinsic coordi-
nates. This means that an entry-by-entry interpolation of the matrices that rep-
resent the tangent vectors may lead to an interpolant that is not in the tangent
space. As an illustrative example, consider the Grassmannian Gr(n, r). Matrices
Δ1, . . . ,Δk ∈ T[U]Gr(n, r) are characterized by UTΔj = 0. Entry-by-entry interpola-
tion in the tangent space may potentially result in a matrix Δ∗ that is not orthog-
onal to the base point U, i. e. UTΔ∗ ̸= 0; see [100, §2.4].
In general, because of the vector space structure of the tangent space of any man-
ifold ℳ, it is sufficient to use an interpolation method that expresses the inter-
polant in Tpℳ as a weighted linear combination of the sampled tangent vectors
v1, . . . , vk ∈ Tpℳ,

v∗ =
k
∑
j=1

ωjvj.

Amongst others, linear interpolation, Lagrange and Hermite interpolation, spline
interpolation and interpolation via radial basis functions fulfill this requirement.
As an aside, the interpolation procedure is computationally less expensive, since
it works on the weight coefficients ωj rather than on every single entry.

Quasi-linear interpolation of trajectories via geodesics
In this paragraph,we address applications,where the sampledmanifold data features
a univariate parametric dependency. The setting is as follows. Letℳ be a Riemannian

13 In the practical applications considered in [8], it was observed that the base point selection has
only a minor impact on the final result.
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manifold and suppose that there is a trajectory

c : [a, b] →ℳ, μ 󳨃→ c(μ)

onℳ that is sampled at k instants μ1, . . . , μk ∈ [a, b]. Then an interpolant ĉ for c can
be computed via Algorithm 7.2.

Algorithm 7.2: Geodesic interpolation.
Input: Data set {c(μ1), . . . , c(μk)} ⊂ℳ sampled from a curve c : μ→ c(μ), unsampled

instant μ∗ ∈ [μj, μj+1].
1: Compute vj+1 := Logℳc(μj)(c(μj+1)) ∈ Tc(μj)ℳ.
2: Compute ĉ(μ∗) := Expℳc(μj)(

μ∗−μj
μj+1−μj

vj+1)
Output: ĉ(μ∗) ∈ℳ interpolant of c(μ∗).

The interpolants at μ ∈ [μj, μj+1] that are output by Algorithm 7.2 lie on the unique
geodesic connection between the points c(μj) and c(μj+1). Hence, it is the straightfor-
ward manifold analogue of linear interpolation and is base-point independent.

The generic formulation of Algorithm 7.1 allows one to employ higher-order inter-
polation methods. However, this does not necessarily lead to more accurate results:
the overall error depends not only on the interpolation error within the tangent space
but also on the distortion caused by mapping the data to a selected (fixed) tangent
space; see Figure 7.3.

Figure 7.3: Illustration of the course of action of Algorithms 7.1 and 7.2. Algorithm 7.1 (right) first
maps all data points to a selected fixed tangent space. In Algorithm 7.2 (left), two points pj = c(μj)
and pj+1 = c(μj+1) are connected by a geodesic line, then the base is shifted to point pj+1 and the
procedure is repeated.

Algorithms 7.1 and 7.2 can be applied in practical applications, where the Rieman-
nian exponential and logarithmmappings are known in explicit form. Applications in
parametric model reduction that consider matrix manifolds include [34] (GL(n)-data),
[8, 76, 100] (Grassmann data), [104] (Stiefel data) and [9, 82] (SPD(n) data).

7.3.2 Interpolation via the Riemannian center of mass
As pointed out in Remark 7.2, interpolation of manifold data via the back and forth
mapping of a complete data set of sample points between the manifold and its tan-
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gent space depends on the chosen base point. As a consequence, sample points may
experience an uneven distortion under the projection onto the tangent space; see Fig-
ure 7.3 (right). An approach that avoids this issue is to interpret interpolation as the
task of finding suitably weighted Riemannian centers of mass. This concept was in-
troduced in the context of geodesic finite elements in [44, 91].

The idea is as follows: The Riemannian center ofmass14 or Fréchetmean of a sam-
ple data set {p1, . . . , pk} ∈ℳ on a manifold with respect to the scalar weights wi ≥ 0,
∑ki=0 wi = 1 is defined as the minimizer(s) of the Riemannian objective function

ℳ ∋ q 󳨃→ f (q) = 1
2

k
∑
i=1

wi dist(q, pi)
2 ∈ ℝ,

where dist(q, pi) is the Riemannian distance of (7.5). This definition generalizes the
notion of the barycentric mean in Euclidean spaces. However, on curved manifolds,
the global center might not be unique. Moreover, local minimizers may appear. For
more details, see [58] and [4], which also give uniqueness criteria.

Interpolation is now performed by computing weighted Riemannian centers.
More precisely, let μ1, . . . , μk ⊂ ℝd be sampled parameter locations and let pi = p(μi) ∈
ℳ, i = 1, . . . , k be the corresponding sample locations on ℳ. Interpolation is within
the convex hull conv{μ1, . . . , μk} ⊂ ℝd of the samples.

Let {φi : μ 󳨃→ φi(μ) | i = 1, . . . , k} be a suitable set of interpolation functions with
φi(μj) = δij, say Lagrangians [91], splines [44] or radial basis functions [26]. Then the
interpolant p∗ ≈ p(μ∗) ∈ℳ at an unsampled parameter location μ∗ ∈ conv{μ1, . . . , μk}
is defined as the minimizer of

p∗ = argmin
q∈ℳ

f (q) = 1
2

k
∑
i=1

φi(μ
∗)dist(q, pi)

2. (7.12)

At a sample locationμj, onehas indeed that∑
k
i=1 φi(μj)dist(q, pi)2 =∑

k
i=1 δij dist(q, pi)

2 =
dist(q, pj)2, which has the unique global minimum at q = pj.

Computing p∗ requires one to solve a Riemannian optimization problem. The sim-
plest approach is a gradient descent method [3, 4]. The gradient of the objective func-
tion f in (7.12) is

∇fq = −
k
∑
i=1

φi(μ
∗) Logℳq (pi) ∈ Tqℳ, (7.13)

see [58, Thm 1.2], [4, §2.1.5], [91, eq. (2.4)]. Hence, just like interpolation in the tangent
space, the interpolation via the Riemannian center can be pursued only in applica-
tions, where the Riemannian logarithm can be computed. A generic gradient descent

14 Here, we introduce this for discrete data sets; for centers w. r. t. a general mass distribution; see the
original paper [58], Section 1.
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algorithm to compute thebarycentric interpolant for a functionp : ℝd ∋ μ 󳨃→ p(μ) ∈ℳ
reads as follows.

Algorithm 7.3: Interpolation via the weighted Riemannian center [4, 84].
Input: Sample data set {p1 = p(μ1), . . . , pk = p(μk)} ⊂ℳ, unsampled parameter loca-

tion μ∗ ∈ conv(μ1, . . . , μk) ⊂ ℝd, initial guess q0, convergence threshold τ.
1: k := 0
2: Compute ∇fqk according to (7.13)
3: while ‖∇fqk ‖q > τ do
4: select a step size αk
5: qk+1 := Expℳqk (−αk∇fqk )
6: k := k + 1
7: end while

Output: p∗ := qk ∈ℳ interpolant of p(μ∗).

An implementation of this (type of) method for finding the Karcher mean in SO(3) is
discussed in [84]. Of course, Riemannian analogues to more sophisticated nonlinear
optimization methods may also be employed; see [3].

In the context of model reduction, the benefits of interpolation via weighted Rie-
mannian centers and the computational costs of solving the associated Riemannian
optimization problem must be juxtaposed.

7.3.3 Additional approaches
A large variety of sophisticated ideas and further manifold interpolation techniques
exist in the literature: The acceleration-minimizing property of cubic splines in the Eu-
clidean space can be generalized to Riemannianmanifolds in the form of a variational
problem [24, 27, 33, 57, 77, 88, 93]; see also [81] and the references therein. Moreover,
the construction concepts of Bézier curves and the De Casteljau algorithm [15] can
be transferred to Riemannian manifolds [1, 62, 81, 75, 89]. Bézier curves in Euclidean
spaces are polynomial splines that rely on a number of so-called control points. To
obtain the value of a Bézier curve at time t, a recursive sequence of straight-line con-
vex combinations between pairs of control points must be computed. The transition
of this technique to Riemannian manifolds is via replacing the inherent straight lines
with geodesics [81]. Another option is to conduct the Bézier–De Casteljau algorithm in
the tangent space and to transfer the results to the manifold via a geodesic averaging
of the spline arcs that were constructed in the tangent spaces at the first and the last
control point, respectively; see [43].

Derivative information may also be incorporated in manifold interpolation
schemes. A Hermite-type method that is specifically tailored for interpolation prob-
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lems on the Grassmannmanifold is sketched in [7, §3.7.4]. General Hermitianmanifold
interpolation in compact, connected Lie groups with a bi-invariant metric has been
considered in [55]. A practical approach to first-order Hermite interpolation of data on
arbitrary Riemannian manifolds is discussed in [103].

7.3.4 Quasi-linear extrapolation on matrix manifolds
In application scenarios,where both snapshot data of the full-ordermodel and deriva-
tive information are at hand, various approaches have been suggested to exploit the
latter. On the one hand, derivatives can be used for improving the ROMs accuracy
and approximation quality by constructing PODbases that incorporate snapshots and
snapshot derivatives [28, 51, 54, 99]. On the other hand, snapshot derivatives enable to
parameterize the ROM bases and subspaces or to perform sensitivity analyses [48, 47,
97, 101]. In this section, we outline an approach to transferring the idea of extrapola-
tion and parameterization via local linearizations to manifold-valued functions. The
underlying idea is comparable to the trajectory piece-wise linear (TPWL) method; see
[85] and Chapter 3 of this volume. Yet, TPWL linearizes the full-order model prior to
the ROM projection, whereas here we consider linearizing ROM building blocks like
the reduced orthogonal bases, reduced subspaces or reduced system matrices.

A geometric first-order Taylor approximation
Any differentiable function f : ℝn → ℝn can be linearized via a first-order Taylor ex-
pansion. A step ahead of size t in direction d ∈ ℝn gives f (x0 + td) = f (x0) + tDfx0 (d) +
𝒪(t2).When considering t 󳨃→ c(t) := f (x0+td) as a curve, then the first-order Taylor ap-
proximant is the straight line g : t 󳨃→ c(0) + ċ(0)t. Such a first-order linearization often
serves for extrapolating a given nonlinear function in a neighborhood of a selected ex-
pansion point. For doing so, the starting point c(0) and the starting velocity ċ(0)must
be available. This procedure translates to themanifold setting, when straight lines are
replaced with geodesics.

Let μ ∈ ℝ be a scalar parameter and let c : μ 󳨃→ c(μ) ∈ ℳ be a curve on a sub-
manifold ℳ. For given initial values c(μ0) = p0 ∈ ℳ and ċ(μ0) = v0 ∈ Tp0ℳ, the
corresponding unique geodesic cp0 ,v0 is expressed via the Riemannian exponential as

cp0 ,v0 : μ→ℳ, μ 󳨃→ Expℳp0 (μv0).

Algorithm 7.4: Geodesic extrapolation.
Input: Scalar parameter μ0 ∈ ℝ, initial values c(μ0) ∈ ℳ, ċ(μ0) ∈ Tc(μ0)ℳ sampled

from a curve c : μ→ c(μ) ∈ℳ, parameter value μ∗ > 0.
1: Compute ĉ(μ0 + μ∗) := Expℳc(μ0)(μ

∗ċ(μ0))
Output: ĉ(μ0 + μ∗) ∈ℳ extrapolant of c(μ0 + μ∗).
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Example: extrapolating POD basis matrices
As outlined in Section 7.1.1, snapshot POD works by collecting state vector snapshots,
x1 := x(t1, μ0), . . . , xm := x(tm, μ0) ∈ ℝn followed by an SVD of the snapshot ma-
trix (x1, . . . , xm)(μ0) =: 𝕊(μ0) = 𝕌(μ0)Σ(μ0)ℤT (μ0). Here, the matrix dimensions are
𝕌(μ0) ∈ ℝn×m, Σ(μ0) ∈ ℝm×m,ℤ(μ0) ∈ ℝm×m. The objective is to approximate𝕌(μ0 +μ)
for a small μ > 0 based on the data𝕌(μ0), 𝕌̇(μ0), where𝕌(μ0) is a point on the Stiefel
manifold St(n,m) and 𝕌̇(μ0) is a tangent vector; see Section 7.4.4.1.

Differentiating the SVD. If the snapshotmatrix functionμ 󳨃→ 𝕊(μ) ∈ ℝn×m is smooth
in the neighborhood of μ0 ∈ ℝ and if the singular values of 𝕊(μ0) are mutually dis-
tinct,15 then the singular values and both the left and the right singular vectors are
differentiable in μ ∈ [μ0 − δμ, μ0 + δμ] for δμ small enough. For brevity, let 𝕊̇ = d𝕊

dμ (μ0)
denote the derivative with respect to μ evaluated in μ0 and so forth. Let μ 󳨃→ 𝕊(μ) =
𝕌(μ)Σ(μ)ℤ(μ)T ∈ ℝn×m and let C(μ) = (𝕊T𝕊)(μ). Let uj and vj, j = 1, . . . ,m, denote the
columns of𝕌(μ0) and ℤ(μ0), respectively. We have

σ̇j = (u
j)T 𝕊̇vj, (j = 1, . . . ,m), (7.14)

ℤ̇ = ℤA, where Aij = {
σj(uj)T 𝕊̇vi+σi(ui)T 𝕊̇vj

(σj+σi)(σj−σi)
, i ̸= j

0, i = j
(i, j = 1, . . . ,m), (7.15)

𝕌̇ = 𝕊̇ℤΣ−1 + 𝕊ℤ̇Σ−1 + 𝕊ℤΣ̇−1 = (𝕊̇ℤ + 𝕌(ΣA − Σ̇))Σ−1. (7.16)

A proof can be found in [48]. Note that𝕌T (μ0)𝕌̇(μ0) is skew-symmetric so that indeed
𝕌̇(μ0) =: Δ(μ0) ∈ T𝕌(μ0)St(n,m). The above equations hold in approximative form for
the truncated SVD. For convenience, assume that𝕌(μ0) ∈ St(n, r) is now the truncated
to r ≤ m columns.

Performing the Taylor extrapolation on St(n, r).With𝕌(μ0), 𝕌̇(μ0) at hand,𝕌(μ0 +
μ) can be approximated using the Stiefel exponential: 𝕌(μ0 + μ) ≈ 𝕌̂(μ0 + μ) :=
ExpSt𝕌0 (μ𝕌̇(μ0)); see Algorithm 7.7. The process is illustrated in Figure 7.4.

Note that when the μ-dependency is real-analytic, then the Euclidean Taylor ex-
pansion

𝕌(μ0 + μ) = 𝕌(μ0) + μ𝕌̇(μ0) +
μ2

2
𝕌̈(μ0) +𝒪(μ

3) ∈ St(n, r) (7.17)

converges to an orthogonalmatrix𝕌(μ0+μ) ∈ St(n, r). Yet, when truncating the Taylor
series, we leave the Stiefel manifold. In particular, the columns of the first-order ap-
proximation are not orthonormal, i. e.𝕌(μ0)+μ𝕌̇(μ0) ∉ St(n, r) for μ ̸= 0. By construc-
tion, the Stiefel geodesic features the same starting velocity 𝕌̇(μ0) and thus matches
the Taylor series up to terms of second order. In addition, it respects the geometric
structure of the Stiefel manifold and thus preserves column-orthonormality for ev-
ery μ.

15 This condition can be relaxed; see the results of [5, §7].
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Figure 7.4: Extrapolation of matrix manifold data. Sketched on the right is the sample matrix data in
ℝn×r . The curved line on the left represents the nonlinear matrix manifold; the straight lines repre-
sent the tangent vectors in the tangent space. The matrix curve is linearized at U(q0), U(q1), etc.

7.4 Matrix manifolds of practical importance
In this section,wediscuss thematrixmanifolds that featuremost often in practical ap-
plications in the context of model reduction. For each manifold under consideration,
we recap, if applicable
– the representation of points/locations in numerical schemes.
– the representation of tangent vectors in numerical schemes.
– the most common Riemannian metrics.
– how to compute distances, geodesics and the Riemannian exponential and loga-

rithm mappings.

7.4.1 The general linear group

This section is devoted to the general linear group GL(n) of invertible square matrices.
In model reduction, regular matrices appear for example as (reduced) system matri-
ces in LTI and discretized PDE systems [9, 34, 78] and parameterizations have to be
such that matrix regularity is preserved. In addition, the discussion of the seemingly
simple matrix manifold GL(n) is important, because it is the fundamental matrix Lie
group from which all other matrix Lie groups are derived. Moreover, it provides the
background for understanding quotient spaces of GL(n); see Subsection 7.2.5 and also
[23, 96]. A short summary on the Riemannian geometry of GL(n) is given in [83, §6].

7.4.1.1 Introduction and data representation in numerical schemes

BecauseGL(n) = det−1(ℝ\{0}) = {A ∈ ℝn×n | det(A) ̸= 0},GL(n) is an open subset of the
n2-dimensional vector space ℝn×n ≃ ℝn

2
and is thus an n2-dimensional differentiable
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manifold; see [66, Examples 1.22–1.27]. ThematrixmanifoldGL(n) is disconnected as it
decomposes into two connected components, namely the regular matrices of positive
determinant and the regular matrices of negative determinant.

Because GL(n) is an open subset of the vector space ℝn×n, the tangent space at a
locationA ∈ GL(n) is simply TAGL(n) = ℝn×n. ForGL(n), the Lie algebra is gl(n) = ℝn×n,
so that the Lie group exponential is the standard matrix exponential expm : ℝn×n =
gl(n) → GL(n). From the Lie group perspective (7.10), the tangent space at an arbitrary
pointA ∈ GL(n) is to be considered as the setTAGL(n) = Agl(n) = A(ℝn×n), even though
this set coincides with ℝn×n.

7.4.1.2 Distances and geodesics

The obvious choice for a Riemannian metric on GL(n) is to use the inner product from
the ambient Euclidean matrix space, i. e.,

⟨Δ, Δ̃⟩A = ⟨Δ, Δ̃⟩0 = trace(Δ
T Δ̃),

for A ∈ GL(n) and Δ, Δ̃ ∈ TAGL(n) = ℝn×n.
In many applications, it is more appropriate to consider metrics with certain in-

variance properties.16 A left-invariant metric can be obtained from the standardmetric
via

⟨Δ, Δ̃⟩A = ⟨A
−1Δ,A−1Δ̃⟩0, A ∈ GL(n), Δ, Δ̃ ∈ TAGL(n). (7.18)

When formally considering Δ = AV , Δ̃ = AṼ ∈ TAGL(n) = Agl(n) as left-translates of
tangent vectors V , Ṽ ∈ TIGL(n) = gl(n), then this metric satisfies ⟨Δ, Δ̃⟩A = ⟨V , Ṽ⟩0.
Alternatively, ⟨V , Ṽ⟩0 = ⟨AV ,AṼ⟩A, which explains the name ‘left-invariant’.

The Riemannian exponential and logarithm for the flat metric
When equipped with the Euclidean metric, GL(n) is flat: since the tangent space is
the full matrix space ℝn×n, the geodesic equation (7.7) requires the acceleration of a
geodesic curve to vanish completely. Hence, the geodesic that starts from A ∈ GL(n)
with velocity Δ ∈ ℝn×n is the straight lineC(t) = A+tΔ.Note that the curve t 󳨃→ C(t)may
leave the manifold GL(n) for some t ∈ ℝ as it may hit a matrix with zero determinant.
The formulas for the Riemannian exponential and logarithmmapping at a base point
A ∈ GL(n) are

ExpGLA : TAGL(n) ⊃ Bε(0) → GL(n), Δ 󳨃→ Ã := A + Δ, (7.19)

16 “Eulerian motion of a rigid body can be described as motion along geodesics in the group of rota-
tions of three-dimensional euclidean space provided with a left-invariant Riemannian metric. A sig-
nificant part of Euler’s theory depends only upon this invariance, and therefore can be extended to
other groups.” [11, Appendix 2, p. 318].
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LogGLA : GL(n) → TAGL(n), Ã 󳨃→ Δ := (Ã − A). (7.20)

In (7.19), Bε(0) denotes a suitably small open neighborhood around 0 ∈ TAGL(n) ≃
ℝn×n such that A + Δ ∈ GL(n) for all Δ ∈ Bε(0).

The Riemannian exponential for the left-invariant metric on GL(n)
The left-invariant metric induces a non-flat geometry on GL(n). Formulae for the co-
variant derivatives and the corresponding geodesics are derived in [10, Thm. 2.14]. The
counterparts w. r. t. the right-invariantmetrics can be found in [96]. Given a base point
A ∈ GL(n) and a starting velocity Δ = AV ∈ TAGL(n) = Agl(n), the associated geodesic
is

ΓA,Δ : t 󳨃→ A expm(tV
T) expm(t(V − V

T)). (7.21)

The Riemannian exponential is

ExpGLM (Δ) = ΓA,Δ(1) = A expm(V
T) expm(V − V

T)

= A expm((A
−1Δ)T) expm((A

−1Δ) − (A−1Δ)T). (7.22)

The author is not aware of a closed formula for the inverse map, i. e., the Riemannian
logarithm for the left-invariant metric; see also the discussion in [96, §4.5]. The thesis
[83, §6.2] introduces a Riemannian shooting method for computing the Riemannian
logarithm w. r. t. the left-invariant metric.

An important special case
For tangent vectors Δ = AV ∈ TAGL(n) with normal V ∈ ℝn×n, i. e., VVT = VTV ,
we have that the matrices VT and (V − VT ) commute. Therefore, according to (7.36),
A expm(VT ) expm(V − VT ) = A expm(VT + V − VT ) = A expm(V) and the Riemannian
exponential reduces to

ExpGLA : TAGL(n) ∩ {Δ | A
−1Δ normal} → GL(n),Δ 󳨃→ Ã = A expm(A

−1Δ).

The Riemannian logarithm is

LogGLA : 𝒟A ∩ {Ã | A
−1Ã normal} → TAGL(n), Ã 󳨃→ Δ = A logm(A

−1Ã),

where 𝒟A ⊂ GL(n) is a domain such that a suitable branch of the matrix logarithm
is well-defined. These expressions are sometimes encountered in the literature as the
Riemannian exponential and logarithm mappings. Yet, one should be aware of the
fact that they hold under special circumstances.
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7.4.2 The orthogonal group

This section is devoted to the orthogonal groupO(n) ⊂ ℝn×n of orthogonal n-by-nmatri-
ces. In parametricmodel reduction, suchmatricesmay appear as eigenvectormatrices
in symmetric EVD problems.

7.4.2.1 Introduction and data representation in numerical schemes

The orthogonal group is O(n) = {Q ∈ ℝn×n | QQT = I = QTQ}. The manifold structure
ofO(n) can be established via Theorem 7.1; see also Example 7.1. The orthogonal group
decomposes into two connected components, namely the orthogonal matrices with
determinant 1 and the orthogonalmatriceswith determinant−1. The former constitute
the special orthogonal group SO(n) = {Q ∈ O(n) | det(Q) = 1}. The orthogonal group
is a closed subgroup of the Lie group GL(n) and thus itself a Lie group (Section 7.2.5).
The tangent space TIO(n) at the identity forms the Lie algebra associated with the Lie
groupO(n). It coincideswith the Lie algebra of SO(n) and as such is denoted by so(n) =
TISO(n) = TIO(n), [46, §3.3, 3.4]. The Lie algebra of SO(n) is precisely the vector space
of skew-symmetric matrices, so(n) = skew(n). According to (7.10), the tangent space
at an arbitrary location Q is given by the translates (by left-multiplication) of the Lie
algebra

TQO(n) = Qso(n) = {Δ = QV ∈ ℝ
n×n | V ∈ skew(n)},

which is the same as {Δ ∈ ℝn×n | QTΔ = −ΔTQ}. The Lie exponential is

expm |so(n) : so(n) → SO(n). (7.23)

This restriction is a surjective map; see Appendix A. The dimensions of both TQO(n)
and O(n) are 1

2n(n − 1).

7.4.2.2 Distances and geodesics

We follow up on the discussion in Section 7.4.1.1. For the orthogonal group, the Eu-
clidean metric and the left-invariant metric coincide. Let Δ = QV , Δ̃ = QṼ ∈ TQO(n) =
Qso(n). Then

⟨Δ, Δ̃⟩Q = ⟨Q
−1Δ,Q−1Δ̃⟩0 = ⟨V , Ṽ⟩0

= trace(VT Ṽ) = trace(VTQTQṼ) = ⟨Δ, Δ̃⟩I .

In fact, the metric is also right-invariant, which makes it a bi-invariant metric; see
[6, §2]. Bi-invariant metrics are important, because for Lie groups endowed with bi-
invariant metrics, the Lie exponential map and the Riemannian exponential map at
the identity coincide [6, Thm. 2.27, p. 40].
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The Riemannian exponential and logarithm maps on O(n)
The Riemannian O(n)-exponential at a base point Q ∈ O(n) sends a tangent vector
Δ ∈ TQO(n) to the endpoint Q̃ ∈ O(n) of a geodesic that starts from Q with velocity
vector Δ. Therefore, it provides at the same time an expression for the geodesic curves
on O(n). A formula for computing the Riemannian O(n)-exponential was derived in
[36, §2.2.2]. Given Q ∈ O(n), we have

ExpOnQ : TQO(n) → O(n), Δ 󳨃→ Q̃ := Q expm(Q
TΔ). (7.24)

This result is also immediate from abstract Lie theory; see [6, Eq. (2.2) & Thm. 2.27].17

The corresponding Riemannian logarithm on O(n) is

LogOnQ : O(n) ⊃ 𝒟Q → TQO(n), Q̃ 󳨃→ Δ := Q logm(Q
T Q̃) (7.25)

and is well defined on a neighborhood 𝒟Q ⊂ O(n) around Q such that, for all Q̃ ∈ 𝒟p,
the orthogonal matrix QT Q̃ does not feature λ = −1 as an eigenvalue.

The Riemannian distance between orthogonal matrices
For given Q, Q̃ ∈ O(n) from the same connected component of O(n), consider the EVD
QT Q̃ = ΨΛΨH . Because QT Q̃ is orthogonal, we have Λ = diag(eiθ1 , . . . , eiθn ) and we
assume that θ1, . . . , θn ∈ (−π,π). The Riemannian distance is

distOn(Q, Q̃) = ‖ Log
On
Q (Q̃)‖Q = ‖ logm(Λ)‖F = (

n
∑
k=1

θ2k)

1
2

.

The compact Lie group SO(n) is a geodesically complete Riemannian manifold [6,
Hopf–Rinow theorem, p. 31], and each two points of SO(n) can be joined by a mini-
mal geodesic.

7.4.3 The matrix manifold of symmetric positive definite matrices

This section is devoted to the matrix manifold SPD(n) of real, symmetric positive-
definite n-by-n matrices. In model reduction, such matrices appear for example as

17 The Lie exponential is expm |so(n) : so(n) → SO(n), which is in the case at hand the Riemannian
exponential at the identity, ExpSOI = expm |so(n). This translates to any other location via [6, Eq. (2.2)]
as follows: Pick anyQ ∈ SO(n) and consider themapping “left-multiplication by Q”, i. e., LQ : SO(n) →
SO(n),P 󳨃→ QP. Then the differential is d(LQ)I : TISO(n) → TLQ(I)SO(n),V 󳨃→ Δ := QV . Because LQ is
an isometry,

QExpSOI (V) = LQ(Exp
SO
I (V)) = Exp

SO
LQ(I)(d(LQ)I (V)) = Exp

SO
Q (QV),

which gives ExpSOQ (QV) = QExpSOI (V) = Q expm(Q−1Δ) and thus (7.24).
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(reduced) system matrices in second-order parametric ODEs. For example, in linear
structural or electrical dynamical systems, mass, stiffness and damping matrices are
usually in SPD(n), [9, §4.2]. Moreover, positive definite matrices arise as Gramians of
reachable and observable LTI systems in the context of balanced truncation; see Chap-
ter 2 of this volume.

Related is the manifold of positive semi-definite matrices of fixed rank. It is inves-
tigated in [23, 96, 68]. An application in model reduction features in [67].

7.4.3.1 Introduction and data representation in numerical schemes

The set

SPD(n) = {A ∈ sym(n) | xTAx > 0 ∀x ∈ ℝn \ {0}}

is an open subset of the metric Hilbert space (sym(n), ⟨⋅, ⋅⟩0) of symmetric matrices.
As such, it is a differentiable manifold [22, §6]. Moreover, it forms a convex cone [37,
Example 2, p. 8], [71, §2.3], and can be realized as a quotient SPD(n) ≃ GL(n)/O(n). The
latter is based on the fact that, for A ∈ SPD(n), matrix factorizations A = ZZT with
Z ∈ GL(n) are invariant under orthogonal transformations Z 󳨃→ ZQ, Q ∈ O(n), [23, §2,
p.3].

Since SPD(n) is an open subset of the vector space sym(n), the tangent space is
simply

TASPD(n) = sym(n). (7.26)

The dimensions of both TASPD(n) and SPD(n) are
1
2n(n + 1).

There is a smooth one-to-one correspondence between sym(n) and SPD(n). That
is, every positive definite matrix can be written as the matrix exponential of a unique
symmetric matrix, [39, Lem. 18.7, p. 472]. Put in different words, when restricted to
sym(n), the standard matrix exponential

expm : sym(n) → SPD(n)

is a diffeomorphism, its inverse is the standard principal matrix logarithm

logm : SPD(n) → sym(n);

see also [12, Thm. 2.8]. The groupGL(n) acts onSPD(n) via congruence transformations

gX(A) = X
TAX, X ∈ GL(n),A ∈ SPD(n). (7.27)

For additional background on SPD(n); see [72, 73, 79]. Applications in computer vision
are presented in [31, 59].
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7.4.3.2 Distances and geodesics

The literature knows a large variety of distancemeasures on SPD(n); see [56, Table 3.1,
p. 56]. Yet, there are essentially two choices that are associated with inner products
on the tangent space of SPD(n) and thus induce Riemannian metrics on the manifold
SPD(n): the so-called natural metric and the log-Euclidean metric. Let A ∈ SPD(n) and
let Δ, Δ̃ ∈ sym(n) be two tangent vectors.
– The natural metric is

⟨Δ, Δ̃⟩A = ⟨A
−1/2ΔA−1/2,A−1/2Δ̃A−1/2⟩0 = trace(A

−1ΔA−1Δ̃),

see [22, §6, p. 201], [23]. It also goes by the name trace matric, [64, §XII.1, p.322]. In
statistical applications, it is usually called the affine-invariant metric [70, 80].18

– The log-Euclidean metric is

⟨Δ, Δ̃⟩A = ⟨D(logm)A(Δ),D(logm)A(Δ̃)⟩0;

see [12, eq. (3.5)].

For the naturalmetric, it ismore appropriate to consider sym(n) = TISPD(n) as the tan-
gent space at the identity and the tangent space at an arbitrary location A ∈ SPD(n)
as TASPD(n) = A1/2(TISPD(n))A1/2, which, of course, is nothing but a reparameteriza-
tion of sym(n). From this perspective, we have for tangent vectors Δ = A1/2VA1/2, Δ̃ =
A1/2ṼA1/2

⟨Δ, Δ̃⟩A = ⟨V , Ṽ⟩0.

The congruence transformations (7.27) are isometries of SPD(n)with respect to the
natural metric, [64, Thm. XII.1.1, p. 324], [22, Lem. 6.1.1, p. 201]. See also the discussion
in [80, §3].

By a standard pullback construction from differential geometry [35, Def. 2.2, Ex-
ample 2.5], the log-Euclidean metric transfers the inner product ⟨⋅, ⋅⟩0 on sym(n) to
SPD(n) via the matrix logarithm logm : SPD(n) → sym(n). In [12, eq. (3.5)], the authors
take this construction one step further and use the expm–logm-correspondence to de-
fine a multiplication that turns SPD(n) into a Lie group and, eventually, into a vector
space. As such, it is a flatmanifold, i. e. a Riemannianmanifoldwith zero curvature. In
this way, the computational challenges that comewith dealingwith data on nonlinear
manifolds are circumvented.

18 The motivation is as follows: if y = Ax + v0, A ∈ GL(n) is an affine transformation of a random vec-
tor x, then the mean is transformed to ȳ := Ax̄ + v0 and the covariance matrix undergoes a congruence
transformation Cyy = E[(y − ȳ)(y − ȳ)T ] = ACxxAT .
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Which metric is to be preferred is problem-dependent; see the various contribu-
tions in [92] and [69]. Since thenaturalmetric arises canonical both from the geometric
approach, [64, §XII.1], and the matrix-algebraic approach [22, §6] and since staying
with the standard matrix multiplication is consistent with the setting of solving dy-
namical systems in model reduction applications, we restrict the discussion of the
Riemannian exponential and logarithm to the geometry that is based on the natural
metric.

The SPD(n) exponential
TheRiemannianSPD(n)-exponential at a basepointA ∈ SPD(n) sends a tangent vector
Δ to the endpoint Ã ∈ SPD(n) of a geodesic that starts from A with velocity vector Δ.
Therefore, it provides at the same timean expression for the geodesic curves onSPD(n)
with respect to the natural metric. Formulae for computing the SPD(n)-exponential
can be found in [23], [80]. The reader preferring amatrix-analytic approach is referred
to [22, §6].

Algorithm 7.5: Riemannian SPD(n)-exponential
Input: base point A ∈ SPD(n), tangent vector Δ ∈ TASPD(n) = sym(n)
Output: Ã := ExpSPDA (Δ) = A

1
2 expm(A−

1
2 ΔA−

1
2 )A

1
2 .

Here, A
1
2 denotes the matrix square root of A; see Appendix A.

The SPD(n) logarithm
The Riemannian SPD(n)-logarithm at a base point A ∈ SPD(n) finds for another point
Ã ∈ SPD(n) an SPD(n)-tangent vector Δ such that the geodesic that starts from A with
velocity Δ reaches Ã after an arc length of ‖Δ‖A = √⟨Δ,Δ⟩A. Therefore, it provides for
two given data points A, Ã ∈ SPD(n)
– a solution to the geodesic endpoint problem: a geodesic that starts from A and

ends at Ã;
– the Riemannian distance between the given points A, Ã.

Formulas for computing the SPD(n)-logarithm can be found in [23], [80].

Algorithm 7.6: Riemannian SPD(n)-logarithm.

Input: base point A ∈ SPD(n), location Ã ∈ SPD(n)
Output: Δ := LogSPDA (Ã) = A

1
2 logm(A−

1
2 ÃA−

1
2 )A

1
2 .

Both Algorithms 7.5 and 7.6 require one to compute the spectral decomposition of
n-by-n-matrices. The computational effort is𝒪(n3). In the context of parametricmodel
reduction, the Riemannian exponential and logarithm maps are usually required for
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reduced matrix operators [9]. If n denotes the dimension of the full state vectors and
r ≪ n denotes the dimension of the reduced state vectors, then matrix exponentials
for r-by-r-matrices are required, so that the computational effort reduces to𝒪(r3).

7.4.4 The Stiefel manifold
This section is devoted to the Stiefel manifold St(n, r) ⊂ ℝn×r of rectangular column-
orthogonal n-by-r matrices, r ≤ n. Points U ∈ St(n, r)may be considered as orthonor-
mal bases of cardinality r, or r-frames inℝn. Inmodel reduction, suchmatrices appear
as orthogonal coordinate systems for low-order ansatz spaces that usually stem from
a proper orthogonal decomposition or a singular value decomposition of given input
solution data. Modeling data on the Stiefel manifold corresponds to data processing
for orthonormal bases and thus allows for example for interpolation/parameteriza-
tion of POD subspace bases. Themost important use case inmodel reduction is where
the Stiefel matrices are tall and skinny, i. e., r ≪ n. Interpolation problems on the
Stiefel manifold have not yet been considered in the model reduction context. The
reference [62] discusses interpolation of Stiefel data; however, using quasi-geodesics
rather than geodesics. Reference [103] includes numerical experiments for interpolat-
ing orthogonal frames on the Stiefelmanifold that relies on the canonical Riemannian
Stiefel logarithm [83, 102].

7.4.4.1 Introduction and data representation in numerical schemes

The Stiefel manifold is the compact, homogeneousmatrix manifold of column-orthog-
onal rectangular matrices

St(n, r) := {U ∈ ℝn×r | UTU = Ir}.

The manifold structure can be directly established via Theorem 7.1 in a similar way as
in Example 7.1. An alternative approach is via Example 7.4, where St(n, r) is identified
with the quotient space St(n, r) ≅ O(n)/(Ir × O(n − r)) under actions of the closed sub-
group Ir × O(n − r) := {( Ir 00 R ) | R ∈ O(n − r)} ≤ O(n). Two square orthogonal matrices
inO(n) are identified as the same point on St(n, r), if their first r columns coincide; see
[36, §2.4].

For any matrix representative U ∈ St(n, r), the tangent space of St(n, r) at U is
represented by

TUSt(n, r) = {Δ ∈ ℝ
n×r | UTΔ = −ΔTU} ⊂ ℝn×r .

Every tangent vector Δ ∈ TUSt(n, r)may be written as

Δ = UA + (I − UUT)T , A ∈ ℝr×r skew, T ∈ ℝn×rarbitrary, (7.28)
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Δ = UA + U⊥B, A ∈ ℝr×r skew, B ∈ ℝ(n−r)×r arbitrary, (7.29)

where, in the latter case, U⊥ ∈ St(n, n − r) is such that (U ,U⊥) ∈ O(n) is a square
orthogonal matrix. The dimension of both TUSt(n, r) and St(n, r) is nr −

1
2 r(r + 1). For

additional background and applications, see [3, 21, 29, 36, 52, 95].

7.4.4.2 Distances and geodesics

Let U ∈ St(n, r) be a point and let Δ = UA +U⊥B, Δ̃ = UÃ +U⊥B̃ ∈ TUSt(n, r) be tangent
vectors. There are two standard metrics on the Stiefel manifold.
– The Euclidean metric on TUSt(n, r) is the one inherited from the ambient ℝn×r:

⟨Δ, Δ̃⟩0 = trace(Δ
T Δ̃) = traceAT Ã + traceBT ̃B.

– The canonical metric on TUSt(n, r)

⟨Δ, Δ̃⟩U = trace(Δ
T(I − 1

2
UUT)Δ̃) = 1

2
traceAT Ã + traceBT B̃

is derived from the quotient representation St(n, r) = O(n)/(Ir × O(n − r)) of the
Stiefel manifold.

The canonicalmetric counts the independent coordinates19 of a tangent vector equally,
when measuring the length √⟨Δ,Δ⟩U of a tangent vector Δ = UA + U⊥B, while the
Euclidean metric disregards the skew-symmetry of A [36, §2.4]. Recall that different
metrics entail different measures for the lengths of curves and thus different formulae
for geodesics.

The Stiefel exponential
The Riemannian Stiefel exponential at a base pointU ∈ St(n, r) sends a Stiefel tangent
vector Δ to the endpoint Ũ ∈ St(n, r) of a geodesic that starts from U with velocity
vector Δ. Therefore, it provides at the same time an expression for geodesic curves on
St(n, r).

A closed-form expression for the Stiefel exponential w. r. t. Euclideanmetric is in-
cluded in [36, §2.2.2],

Ũ = ExpStU (Δ) = (U ,Δ) expm ((
UTΔ −ΔTΔ
Ip UTΔ

))(
Ip
0
) expm(−U

TΔ).

In [53], an alternative formula is derived that features only matrix exponentials of
skew-symmetricmatrices. An efficient algorithm for computing the Stiefel exponential
w. r. t. the canonical metric was derived in [36, §2.4.2]:

19 That is, the upper triangular entries of the skew-symmetric A and the entries of B of Δ = UA+U⊥B.
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Algorithm 7.7: Stiefel exponential [36].
Input: base point U ∈ St(n, r), tangent vector Δ ∈ TUSt(n, r)
1: A := UTΔ {horizontal component, skew}
2: QR := Δ − UA {(thin) qr-decomp. of normal component of Δ.}

3: ( A −RT
R 0 ) = TΛT

H ∈ ℝ2r×2r {EVD of skew-symmetric matrix}

4: (MN) := T expm(Λ)T
H (Ir0) ∈ ℝ

2r×r

Output: Ũ := ExpStU (Δ) = UM + QN ∈ St(n, r)

In applications, where ExpStU (μΔ) needs to be evaluated for various parameters μ
as in the example of Section 7.3.4, steps 1.–3. should be computed a priori (offline).
Apart from elementary matrix multiplications, the algorithm requires one to compute
the standard matrix exponential of a skew-symmetric matrix. This, however, is for a
2r-by-2r-matrix and does not scale in the dimension n. With the usual assumption of
model reduction that n ≫ p, the computational effort is𝒪(nr2).

The Stiefel logarithm
The Riemannian Stiefel logarithm at a base point U ∈ St(n, r) finds for another point
Ũ ∈ St(n, r) a Stiefel tangent vector Δ such that the geodesic that starts from U with
velocity Δ reaches Ũ after an arc length of ‖Δ‖U = √⟨Δ,Δ⟩U . Therefore, it provides for
two given data points U , Ũ ∈ St(n, r)
– a solution to the geodesic endpoint problem: a geodesic that starts from U and

ends at Ũ;
– the Riemannian distance between the given points U , Ũ .

An efficient algorithm for computing the Stiefel logarithm w. r. t. the canonical metric
was derived in [102].

Algorithm 7.8: Stiefel logarithm [102].

Input: base point U ∈ St(n, r), Ũ ∈ St(n, r) ‘close’ to base point, τ > 0 convergence
threshold

1: M := UT Ũ ∈ ℝr×r

2: QN := Ũ − UM ∈ ℝn×r {(thin) qr-decomp. of normal component of Ũ}

3: V0 := (
M X0
N Y0
) ∈ O(2r) {compute orth. completion of the block (M

N
)}

4: for k = 0, 1, 2, . . . do

5: (
Ak −BTk
Bk Ck

) := logm(Vk) {matrix log of orth. matrix}

6: if ‖Ck‖2 ≤ τ then
7: break
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8: end if
9: Φk := expm (−Ck) {matrix exp of skew matrix}
10: Vk+1 := VkWk, whereWk := (

Ir 0
0 Φk
)

11: end for
Output: Δ := LogStU (Ũ) = UAk + QBk ∈ TUSt(n, r)

The analysis in [102] shows that the algorithm is guaranteed to converge if the input
data points U , Ũ are at most a Euclidean distance of d = ‖U − Ũ‖2 ≤ 0.09 apart. In
this case, the algorithm exhibits a linear rate of convergence that depends on d but
is smaller than 1

2 . In practice, the algorithm seems to converge, whenever the initial
V0 is such that its standard matrix logarithm logm(V0) is well-defined. Note that two
points on St(n, r) can at most be a Euclidean distance of 2 away from each other.

Apart from elementary matrix multiplications, the algorithm requires one to com-
pute the standardmatrix logarithm of an orthogonal 2r-by-2r-matrix and the standard
matrix exponential of a skew-symmetric r-by-r-matrix at every iteration k. Yet, these
operations are independent of the dimension n. With the usual assumption of model
reduction that r ≪ n, the computational effort is𝒪(nr2).

For the Stiefel manifold equipped with the Euclidean metric, methods for calcu-
lating the Stiefel logarithm are introduced in [25].

7.4.5 The Grassmann manifold
This section is devoted to theGrassmannmanifold Gr(n, r) of r-dimensional subspaces
of ℝn for r ≤ n. Every point 𝒰 ∈ Gr(n, r), i. e., every subspace may be represented by
selecting a basis {u1, . . . , ur} with ran(u1, . . . , ur) = 𝒰 . In numerical schemes, we work
exclusively with orthonormal bases. In this way, points 𝒰 on the Grassmannmanifold
are to be represented by points U ∈ St(n, r) on the Stiefel manifold via 𝒰 = ran(U). For
details and theoretical background, see the references [2, 3, 36]. Modeling data on the
Grassmann manifold corresponds to data processing for subspaces and thus allows,
for example, for the interpolation/parameterization of POD subspaces see [19, Chap-
ter 5], [19, Chapter 9]. The most important use case in model reduction is where the
subspaces are of low dimension when compared to the surrounding state space, i. e.,
n ≫ p. Grassmann interpolation problems in the context of projection-based paramet-
ric model reduction are considered in [8, 76, 100, 87]. Subspaces also feature in Krylov
subspace approaches; see [20, Chapter 3].

7.4.5.1 Introduction and data representation in numerical schemes

The set of all r-dimensional subspaces 𝒰 ⊂ ℝn forms the Grassmann manifold

Gr(n, r) := {𝒰 ⊂ ℝn | 𝒰 subspace, dim(𝒰) = r}.
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The Grassmann manifold is a quotient of O(n) under the action of the Lie subgroup
O(r) × O(n − r) = {( S 0

0 R ) | S ∈ O(r),R ∈ O(n − r)} ≤ O(n). Two matrices Q, Q̃ ∈ O(n) are
in the same (O(r) × O(n − r))-orbit, if and only if the first r columns of Q and Q̃ span
the same subspace and the tailing n − r columns span the corresponding orthogonal
complement subspace. Theorem 7.5 applies and shows that Gr(n, r) = O(n)/(O(r) ×
O(n − r)) is a homogeneous manifold.

Alternatively, the Grassmann manifold can be realized as a quotient manifold of
the Stiefel manifold with the help of Theorem 7.4,

Gr(n, r) = St(n, r)/O(r) = {[U] | U ∈ St(n, r)}, (7.30)

where the O(r)-orbits are [U] = {UR | R ∈ O(r)}. A matrix U ∈ St(n, r) is called amatrix
representative of a subspace𝒰 ∈ Gr(n, r), if𝒰 = ran(U). The orbit [U] and the subspace
𝒰 = ran(U) are to be considered as the same object. For any matrix representative
U ∈ St(n, r) of 𝒰 ∈ Gr(n, r) the tangent space of Gr(n, r) at 𝒰 is represented by

T𝒰Gr(n, r) = {Δ ∈ ℝ
n×r | UTΔ = 0} ⊂ ℝn×r .

Every tangent vector Δ ∈ T𝒰Gr(n, r)may be written as

Δ = (I − UUT)T , T ∈ ℝn×r arbitrary, or, (7.31)
Δ = U⊥B, B ∈ ℝ(n−r)×r arbitrary, (7.32)

where in the latter case, U⊥ ∈ St(n, n − r) is such that (U ,U⊥) ∈ O(n) is a square
orthogonal matrix. The dimension of both T𝒰Gr(n, r) and Gr(n, r) is nr − r2.

7.4.5.2 Distances and geodesics

A metric on T𝒰Gr(n, r) can be obtained via making use of the fact that the Grassman-
nian is a quotient of the Stiefel manifold. Alternatively, one can restrict the standard
innermatrix product ⟨A,B⟩0 = trace(ATB) to theGrassmann tangent space. In the case
of the Grassmannian, the two approaches lead to the same metric

⟨Δ, Δ̃⟩𝒰 = trace(Δ
T Δ̃) = ⟨Δ, Δ̃⟩0;

see [36, §2.5].

The Grassmann exponential
The Riemannian Grassmann exponential at a base point 𝒰 ∈ Gr(n, r) sends a Grass-
mann tangent vector Δ to the endpoint ̃𝒰 ∈ Gr(n, r) of a geodesic that starts from 𝒰
with velocity vector Δ. Therefore, it provides at the same time an expression for the
geodesic curves on Gr(n, r). An efficient algorithm for computing the Grassmann ex-
ponential was derived in [36, §2.5.1]:
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Algorithm 7.9: Grassmann exponential [36].
Input: base point 𝒰 = [U] ∈ Gr(n, r), where U ∈ St(n, r), tangent vector Δ ∈ TUGr(n, r)
1: QΣVT SVD:= Δ, with Q ∈ St(n, r) {(thin) SVD of tangent vector}
2: Ũ := UV cos(Σ)VT + Q sin(Σ)VT {cos and sin act only on diag. entries.}

Output: ̃𝒰 := ExpGr𝒰 (Δ) = [Ũ] ∈ Gr(n, r).

Apart from elementary matrix multiplications, the algorithm requires one to compute
the singular value decomposition of an n-by-r-matrix. The computational effort is
𝒪(nr2).

The Grassmann logarithm
The Riemannian Grassmann logarithm at a base point 𝒰 ∈ Gr(n, r) finds for another
point ̃𝒰 ∈ Gr(n, r) a Grassmann tangent vector Δ such that the geodesic that starts
from 𝒰 with velocity Δ reaches ̃𝒰 after an arc length of ‖Δ‖𝒰 = √gC𝒰 (Δ,Δ). Therefore, it
provides for two given data points 𝒰 , ̃𝒰 ∈ Gr(n, r)
– a solution to the geodesic endpoint problem: a geodesic that starts from 𝒰 and

ends at ̃𝒰 ;
– the Riemannian distance between the given points 𝒰 , ̃𝒰 .

An algorithm for computing the Grassmann logarithm is stated implicitly in [2, §3.8,
p. 210]. The reference [40] features expressions for the Grassmann exponential and
the corresponding logarithm that formally work with Grassmann representatives in
SO(n)/(SO(r) × SO(n− r)) but also keep the computational effort𝒪(nr2). Reference [82,
§4.3] gives the corresponding mappings after identifying subspaces with orthoprojec-
tors; see also [16].

Algorithm 7.10: Grassmann Logarithm.

Input: base point 𝒰 = [U] ∈ Gr(n, r) with U ∈ St(n, r), ̃𝒰 = [Ũ] ∈ Gr(n, r) with Ũ ∈
St(n, r).

1: M := UT Ũ
2: L := (I − UUT )ŨM−1 = ŨM−1 − U
3: QΣVT SVD:= L {(thin) SVD }
4: Δ := Q arctan(Σ)VT {arctan acts only on diag. entries.}
Output: Δ = LogGr𝒰 ( ̃𝒰) ∈ T𝒰Gr(n, r)

The composition ExpGr[U] ∘ Log
Gr
[U] is the identity on Gr(n, r), wherever it is defined. Yet,

on the level of the actual matrix representatives, the operation

(ExpGr[U] ∘ Log
Gr
[U])([Ũin]) = [Ũout]
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produces a matrix Ũout ̸= Ũin. Directly recovering the input matrix can be achieved
via a Procrustes-type preprocessing step, where Ũ is replaced with Ũ∗ := ŨΦ, Φ =
argminΦ∈O(r) ‖U − ŨΦ‖. This leads to the following.

Algorithm 7.11: Grassmann Logarithm: modified version.20

Input: base point 𝒰 = [U] ∈ Gr(n, r) with U ∈ St(n, r), ̃𝒰 = [Ũ] ∈ Gr(n, r) with Ũ ∈
St(n, r).

1: ΨSRT SVD:= ŨTU
2: Ũ∗ := Ũ(ΨRT ) {‘Transition to Procrustes representative’}
3: L := (I − UUT )Ũ∗
4: QΣVT SVD:= L {(thin) SVD}
5: Δ := Q arcsin(Σ)VT {arcsin acts only on diagonal entries.}

Output: Δ = LogGr𝒰 ( ̃𝒰) ∈ T𝒰Gr(n, r)

An additional advantage of the modified Grassmann logarithm is that the matrix in-
versionM−1 = (UT Ũ)−1 is avoided. In fact, it is replaced by the SVD ΨSRT = ŨTU that
is used to solve the Procrustes problemminΦ∈O(r) ‖U−ŨΦ‖. The SVD exists also ifUT Ũ
does not have full rank.

Distances between subspaces
The Riemannian logarithmprovides the distance between two subspaces𝒰 = [U], ̃𝒰 =
[Ũ] ∈ Gr(n, r) as follows: First, compute Δ = LogGr𝒰 ( ̃𝒰), then compute ‖Δ‖𝒰 =
distGr(𝒰 , ̃𝒰). In practice, however, this boils down to computing the singular val-
ues of the matrix M = UT Ũ, which can be seen as follows. By Algorithm 7.11,
‖Δ‖2𝒰 = trace(ΔTΔ) = ∑pk=1 arcsin(σk)

2, where the σk ’s are the singular values of
L = (I − UUT )Ũ∗. These match precisely the square roots of the eigenvalues of LTL.
Using the SVD of the square matrix ŨTU = ΨSRT as in steps 1&2 of Algorithm 7.11, the
eigenvalues of LTL can be read off from

LTL = ŨT
∗ (I − UU

T)Ũ∗ = I − RS
2RT = R(I − S2)RT ,

so that σ2k = 1 − s2k, when consistently ordered. As a consequence, sk = √1 − σ2k =
cos(arcsin(σk)), which implies

distGr(𝒰 , ̃𝒰) = (
p
∑
k=1

arcsin(σk)
2)

1
2

= (
p
∑
k=1

arccos(sk)
2)

1
2

, (7.33)

where σ1, . . . , σr and s1, . . . , sr are the singular values of L and ŨTU, respectively.
The numerical linear algebra literature knows a variety of distance measures for

subspaces. Essentially, all of them are based on the principal angles [36, §2.5.1, §4.3].

20 This is an original contribution to this chapter; for a detailed discussion, see [17, Section 5.2].
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The principal angles (or canonical angles) θ1, . . . , θr ∈ [0,
π
2 ] between two subspaces

[U], [Ũ] ∈ Gr(n, r) are defined recursively by

cos(θk) := u
T
k vk := max

u ∈ [U], ‖u‖ = 1
u⊥u1, . . . , uk−1

max
v ∈ [Ũ], ‖v‖ = 1
v⊥v1, . . . , vk−1

uTv.

The principal angles can be computed via θk := arccos(sk) ∈ [0,
π
2 ], where sk is the

kth singular value of UT Ũ ∈ ℝr×r [42, §6.4.3]. Hence, the Riemannian subspace dis-
tance (7.33) expressed in terms of the principal angles is precisely

dist([U], [Ũ]) := ‖Θ‖2, Θ = (θ1, . . . , θr) ∈ ℝ
r . (7.34)

In particular, (7.34) shows that any two points on Gr(n, r) can be connected by a
geodesic of length at most √r2 π; see also [98, Thm 8(b)].

7.5 Conclusion
Interpolation of structuredmatrices is a viable building block in parametric model re-
duction approaches. In order to preserve the characteristic features, the matrix sets
in question are considered as geometric entities, so-called differentiable manifolds.
In this chapter, we exposed how concepts from Riemannian geometry apply in de-
signing manifold counterparts to Euclidean interpolation algorithms. As examples,
the generic approach of interpolating in Riemannian normal coordinates, the quasi-
linear, geodesic interpolation method and interpolation via the Riemannian center of
mass are discussed. All the aforementioned methods share many of their constituent
algorithmic units and acquaintance with these units allows one to adapt and modify
the established approaches as needed or to design new ones. In this spirit, for a se-
lection of matrix manifolds that feature frequently in practical applications, namely,
the general linear group, the orthogonal group, the set of symmetric positive definite
matrices, the Stiefel manifold and the Grassmann manifold, we have gathered the es-
sential geometric concepts and formulas necessary to conduct Riemannian interpola-
tion.

Appendix A
The matrix exponential and logarithm
The standard matrix exponential and matrix logarithm are defined via the power se-
ries

expm(X) :=
∞

∑
j=0

Xj

j!
, logm(X) :=

∞

∑
j=1
(−1)j+1 (X − I)

j

j
. (7.35)
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For X ∈ ℝn×n, expm(X) is invertible with inverse expm(−X). The following restrictions
of the exponential map are important:

expm |sym(n) : sym(n) → SPD(n), expm |skew(n) : skew(n) → SO(n).

The former is a diffeomorphism [79, Thm. 2.8], the latter is a differentiable, surjective
map [41, §. 3.11, Thm. 9]. For additional properties and efficientmethods for numerical
computation, see [50, §10, 11].

A few properties of the exponential function for real or complex numbers carry
over to thematrix exponential. However, sincematrices do not commute, the standard
exponential law is replaced by

expm(Z(X,Y)) = expm(X) expm(Y), (7.36)

Z(X,Y) = X + Y + 1
2
[X,Y]

+
1
12
([X, [X,Y]] + [Y , [Y ,X]]) − 1

24
[Y , [X, [X,Y]]] . . . ,

where [X,Y] = XY −YX is the commutator bracket, or Lie bracket. This is Dynkin’s for-
mula for the Baker–Campbell–Hausdorff series; see [86, §1.3, p. 22]. From a theoretical
point of view, it is important that all terms in this series can be expressed in terms of
the Lie bracket. A special case is

expm(X + Y) = expm(X) expm(Y), if [X,Y] = 0.

Matrix square roots and the polar decomposition
Every S ∈ SPD(n) has a unique matrix square root in SPD(n), i. e., a matrix denoted by
S

1
2 with the property S

1
2 S

1
2 = S. This square root can be obtained via an EVD S = QΛQT

by setting

S
1
2 := Q√ΛQT ,

where Q ∈ O(n), Λ = diag(λ1, . . . , λn) and λi > 0 are the eigenvalues of S. Every
A ∈ GL(n) can be uniquely decomposed into an orthogonal matrix times a symmet-
ric positive definite matrix,

A = QP = Q expm(X), Q ∈ O(n),P ∈ SPD(n),X ∈ sym(n).

The polar factors can be constructed via taking the square root of the assuredly posi-
tive definite matrix ATA and subsequently setting P := (ATA)

1
2 andQ := AP−1. Because

the restriction of expm to the symmetric matrices is a diffeomorphism onto SPD(n),
there is a unique X ∈ sym(n) with P = expm(X). For details, see [46, Thm. 2.18].
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The Procrustes problem
Let A,B ∈ ℝn×r . The Procrustes problem aims at finding an orthogonal transformation
R∗ ∈ O(r) such that R∗ is the minimizer of

min
R∈O(r)
‖A − BR‖F .

The optimal R∗ is R∗ = UVT , where BTA SVD= UΣVT ∈ ℝr×r; see [42].
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8 Vector fitting

Abstract: We introduce the Vector Fitting algorithm for the creation of reduced or-
der models from the sampled response of a linear time-invariant system. This data-
driven approach to reduction is particularly useful when the system under modeling
is known only through experimental measurements. The theory behind Vector Fitting
is presented for single- and multiple-input systems, together with numerical details,
pseudo-codes, and an open-source implementation [75]. We discuss how the reduced
model can be made stable and converted to a variety of forms for use in virtually any
modeling context. Finally, we survey recent extensions of the Vector Fitting algorithm
geared towards time domain, parametric and distributed systems modeling.

Keywords: vector fitting, data-driven modeling, macromodeling, stability, passivity
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8.1 Introduction and motivation
The Vector Fitting (VF) algorithm [42, 35] is one of the most successful techniques for
creating reduced order models for linear systems starting from samples of their re-
sponse. Samples may originate from an experimental measurement or from a prior
numerical simulation. This need arises in many practical scenarios, and we cite two
examples.

A biomedical engineermay need a linearmodel describing blood flow in a portion
of the human cardiovascular system, and have simultaneous in-vivomeasurements of
pressure and flow rate at the inlets and outlets of the region of interest. With a data-
driven algorithm for model order reduction, such as VF, the reduced model can be
created directly from experimental observations.

As a second example, we consider an electronic engineer that needs amodel for a
radio-frequency amplifier or an antenna, to be used for design purposes. If the device
is provided by a third party, a measurement may be the only way to characterize the
system. High-frequency measurements are typically performed in the frequency do-
main, and return the impedance or admittance seen between the ports of the device,
measured at various frequencies ωk . From these samples, VF can create a reduced
model which can be represented as a set of differential equations or as an equivalent
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circuit for use in subsequent simulation, including those performed in the time do-
main.

The main advantage of a data-driven approach to reduced order modeling is that
only samples of the system response are required. This feature makes data-driven re-
duction a natural choice when experimental measurements are readily available. Fur-
thermore, data-driven reduction can also be applied when samples originate from a
numerical simulation based on first-principles equations, such as Maxwell’s equa-
tions for electromagnetic phenomena. Although in this second scenario one could
technically use equation-driven methods, the available simulator may not allow the
user to export the discretized first-principles equations for reduction. This is the case
for most commercial simulators used by industry. The main disadvantage of data-
driven reduction is that it offers less physical insight into the system under modeling,
since it leads to a “black-box” reducedmodel. By starting fromafirst-principlesmodel,
equation-driven methods are typically better in this regard, since they can provide to
the user more information about which features of the original model were retained,
and which features were discarded.

8.2 The Sanathanan–Koerner algorithm

8.2.1 Problem statement

We assume that the system under modeling is linear and time-invariant, with input
u(t) ∈ ℝm̄ and output y(t) ∈ ℝq̄. Because of linearity and time-invariance, the output
can be written as a convolution

y(t) =
+∞

∫
−∞

h(t − τ)u(τ) dτ (8.1)

between input u(t) and the impulse response h(t) ∈ ℝq̄×m̄ of the system, which is un-
known. Applying the Laplace transform to both sides of (8.1), we get

Y(s) = H(s)U(s), (8.2)

where s = σ + 𝚥ω is complex frequency. In (8.2), U(s) ∈ ℂm̄ and Y(s) ∈ ℂq̄ are the
Laplace transforms of u(t) and y(t), respectively, andH(s) ∈ ℂq̄×m̄ is the transfer func-
tion of the system. The VF algorithm solves the following problem. Given k̄ measure-
ments of the transfer function

Hk = H(𝚥ωk) k = 1, . . . , k̄, (8.3)

determine a rational function H̃(s) that approximates the given measurements

H̃(𝚥ωk) ≃ Hk ∀k = 1, . . . , k̄. (8.4)
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InVF, H̃(s) is chosen to be a rational function. Rational functions are universal approx-
imators, and can therefore approximate a wide range of functions with arbitrary accu-
racy. Moreover, since the transfer function of lumped systems is rational by construc-
tion, this is a natural choice to model dynamical systems. Finally, rational functions
can be represented as a state-space system, a poles-residue form, a set of differential
equations, an equivalent electric circuit and many other forms. This flexibility facil-
itates the integration of the reduced model into existing software for computational
mathematics and system simulation.

8.2.2 The Levy and Sanathanan–Koerner algorithms

The first attempts to solve (8.4) numerically date back at least to the 1950s, with the
work of Levy, SanathananandKoerner amongothers.Webriefly summarize theirwork
since the VF algorithm can be better understood from that perspective. For simplicity,
we initially consider the case of a system with a single input and a single output (m̄ =
q̄ = 1). The general case will be discussed in Section 8.3.5.

In order to solve the approximation problem (8.4), we must first choose a suitable
parametric form for H̃(s), which is the model that we want to estimate from the given
samples. The most natural choice is to let H̃(s) be the ratio of two polynomials

H̃(s) = n(s)
d(s)
=
∑n̄n=0 ans

n

∑n̄n=0 bnsn
, (8.5)

where an, bn ∈ ℝ are unknowns, and n̄ is the order of the desired model. Since one
coefficient can be normalized, we let bn̄ = 1. In (8.5), we chose the same degree n̄ for
numerator and denominator. This choice is appropriate for transfer functions that are
known to be bounded when s→∞. This is the case of the scattering coefficients used
to model electronic devices at high frequencies, as in the example in Section 8.3.7.
In other applications, the transfer function of the system under modeling may grow
polynomially as s increases. This is the case, for example, of the impedance and ad-
mittance coefficients of passive electrical circuits, which can grow linearly with s. As
an example, one can consider the impedance Z(s) = sL of an inductor. In such cases,
the degree of the numerator of (8.5) should be increased to n̄ + 1. This change leads
to minor modifications to the algorithms presented in this chapter, which will not be
discussed here, but can be found in [35].

After choosing the form of model (8.5), we have to determine its coefficients an
and bn in order to satisfy (8.4), minimizing a suitable norm between samples Hk and
model response H̃(𝚥ωk). We choose the l2 norm, and aim to minimize

e2 = 1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨Hk − H̃(𝚥ωk)
󵄨󵄨󵄨󵄨
2
. (8.6)
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Minimizing (8.6) is a nonlinear least squares problem, due to the unknowns bn in
the denominator. Although nonlinear optimization algorithms can be directly applied
to (8.6), experience shows that they can be quite time consuming and prone to local
minima. A different approach is preferred, where (8.6) is linearized into a linear least
squares problem, which can be solved efficiently and robustly with the QR decompo-
sition [28].

We first rewrite (8.6) as

e2 = 1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Hk ∑
n̄
n=0 bn(𝚥ωk)

n − ∑n̄n=0 an(𝚥ωk)
n

∑n̄n=0 bn(𝚥ωk)n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
. (8.7)

Levy proposed to linearize (8.7) by simply neglecting the denominator, and mini-
mize [54]

(eL)
2 =

1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Hk

n̄
∑
n=0

bn(𝚥ωk)
n −

n̄
∑
n=0

an(𝚥ωk)
n
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

, (8.8)

which ultimately boils down to solving a system of linear equations in least squares
sense. Unfortunately, this simple trick typically fails to provide an accurate solu-
tion of (8.4). Indeed, error functionals (8.7) and (8.8) are equivalent only when
∑n̄n=0 bn(𝚥ω)

n is approximately constant, which is rarely the case. Furthermore, the
monomial terms (𝚥ω)n in (8.8)will result inVandermondematrices in the least-squares
problem to be solved, which are ill-conditioned [28].

To overcome this issue, Sanathanan and Koerner proposed an iterative process to
improve the quality of the solution [69]. In the first iteration (i = 1), the Levy func-
tional (8.8) is minimized, providing a first estimate of the model coefficients that we
denote as a(1)n and b(1)n . In successive iterations (i ≥ 2), the following linearization
of (8.7) is minimized:

(e(i)SK)
2
=
1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Hk ∑
n̄
n=0 b
(i)
n (𝚥ωk)

n − ∑n̄n=0 a
(i)
n (𝚥ωk)

n

∑n̄n=0 b
(i−1)
n (𝚥ωk)n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
, (8.9)

leading to a new estimate of model coefficients a(i)n and b(i)n . We can see that, in (8.9),
the coefficients b(i−1)n from the previous iteration are used to approximate the “nonlin-
ear” term in (8.7). Since the unknowns a(i)n and b(i)n appear only in the numerator, the
Sanathanan–Koerner method only requires the solution of linear least squares prob-
lems. If the iterative process converges, b(i−1)n → b(i)n , and (8.9) becomes equivalent
to (8.7). We can see that the term ∑n̄n=0 b

(i−1)
n (𝚥ωk)

n in the denominator of (8.9) acts as
a frequency-dependent weight of the least squares problem. This weight aims to pro-
gressively remove the bias introduced in the linearization of (8.6). For discrete-time
systems, the counterpart of the Sanathanan–Koerner method was proposed by Stei-
glitz and McBride [73].
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8.2.3 Numerical issues of the Sanathanan–Koerner method

The work of Sanathanan and Koerner solves (8.4) accurately using only linear least
squares problems. Unfortunately, this method can still suffer from severe numerical
issues when applied to realistic problems, where the required model order n̄ may be
quite large and frequencyωmay span several orders ofmagnitude. For example, VF is
extensively used in integrated circuit design to model the interconnect network that
distributes signals and power across the circuit. In this application, the frequency
range of interest typically extends from a few MHz to tens of GHz, for about four
decades of variation. The numerical issues associated with the Sanathanan–Koerner
method arise from two factors:
(a) The error (8.9) contains high powers of frequency (ωk)

n, leading to very poor con-
ditioning. Specifically, the matrix of the least-squares problem to be solved will
contain Vandermonde blocks [28], which are known to be ill-conditioned even
for relatively modest values of n̄.

(b) Theweighting term∑n̄n=0 b
(i−1)
n (𝚥ωk)

n in the denominator of (8.9) typically exhibits
large variations over [ω1,ωk̄], which further degrade the conditioning of the least
squares problem.

8.3 The Vector Fitting algorithm
TheVFalgorithm, conceivedbyGustavsen andSemlyen [42], addresses both problems
with a simple yet brilliant solution.

8.3.1 A new basis function and implicit weighting

In order to avoid the ill-conditioning arising from the sn terms in (8.5), VF replaces
those termswith partial fractions. The numerator and denominator of H̃(s) arewritten
as

n(i) = c(i)0 +
n̄
∑
n=1

c(i)n
s − p(0)n
, (8.10)

d(i) = 1 +
n̄
∑
n=1

d(i)n
s − p(0)n
, (8.11)

where p(0)n ∈ ℂ are a set of initial poles, whose choice will be discussed later on. We
see that, without loss of generality, the constant term in (8.11) has been normalized
to one. In comparison to the monomial basis functions sn used by the Sanathanan–
Koerner iteration, which vary wildly as s increases, partial fractions 1

s−p(0)n have more

contained variations over frequency if the poles p(0)n are chosen appropriately [43], as
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will be discussed in Section 8.3.2. This feature leads to better conditioning, especially
if the poles p(0)n are distinct and well separated.

The introduction of partial fractions is also crucial to address the second issue
discussed in Section 8.2.3, and perform an implicit weighting of (8.9). To understand
how VF achieves this, we first give a different interpretation to linearized error (8.9).
In terms of (8.10) and (8.11), error (8.9) can be expressed as

(e(i)SK)
2
=
1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Hk

d(i)(𝚥ωk)
d(i−1)(𝚥ωk)

−
n(i)(𝚥ωk)
d(i−1)(𝚥ωk)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
. (8.12)

We can see that this expression involves the two new quantities

w(i)(s) = d(i)(s)
d(i−1)(s)

(8.13)

and

H̃(i)(s) = n(i)(s)
d(i−1)(s)

. (8.14)

The function H̃(i)(s) can be interpreted as the model transfer function estimated at it-
eration i by the minimization of (8.12). Notably, this transfer function is made by the
numerator n(i)(s) from the current iteration (to be found), and by the denominator
d(i−1)(s) from the previous iteration (already known). This approximation arises from
the linearizationof the error function, since it indeedavoids thepresenceof unknowns
in the denominator. The function w(i)(s) can be interpreted as a frequency-dependent
weight which multiplies the given samples Hk . This weighting function has two pur-
poses:
– providing a new estimate of denominator d(i)(s), and
– compensating for the approximation introduced by fixing the denominator of

H̃(i)(s) to the previous iteration value. Indeed, weight w(i)(s) depends on the ratio
between new denominator estimate d(i)(s) and previous estimate d(i−1)(s).

Next, we derive alternative expressions for w(i)(s) and H̃(i)(s), which pave the way for
an implicit weighting of (8.12). Substituting (8.10) and (8.11) into (8.13) we can derive
the following chain of equalities:

w(i)(s) =
1 + ∑n̄n=1

d(i)n
s−p(0)n

1 + ∑n̄n=1
d(i−1)n
s−p(0)n
=

∏(s−p(i)n )
∏(s−p(0)n )
∏(s−p(i−1)n )
∏(s−p(0)n )

= 1 +
n̄
∑
n=1

w(i)n
s − p(i−1)n

, (8.15)

where ∏ = ∏n̄n=1. In (8.15), p(i)n are the zeros of d(i)(s), and therefore the poles of
H̃(i+1)(s). From the second expression in (8.15), we see that w(i)(s) is the ratio of two
rational functions with the same poles p(0)n . By factorizing their respective numerators
and denominators, as in the third expression, we observe that those common poles
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can be eliminated. Finally, we express w(i) in terms of a new set of poles p(i−1)n that
change at every iteration, as in the last expression in (8.15). The same manipulation
can be performed on H̃(i)(s), leading to

H̃(i)(s) =
c(i)0 + ∑

n̄
n=1

c(i)n
s−p(0)n

1 + ∑n̄n=1
d(i−1)n
s−p(0)n
= r(i)0 +

n̄
∑
n=1

r(i)n
s − p(i−1)n

. (8.16)

Substituting (8.15) and (8.16) into (8.12), we obtain [42, 35]

(e(i)SK)
2
=
1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Hk(1 +

n̄
∑
n=1

w(i)n
𝚥ωk − p

(i−1)
n
) − (r(i)0 +

n̄
∑
n=1

r(i)n
𝚥ωk − p

(i−1)
n
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

, (8.17)

which is the actual error function used in VF to fit the model to the given samples.
The main difference between (8.17) and (8.9) is how the linearized error is iteratively
weighted to progressively converge to (8.6). In (8.12), the weight 1

d(i−1)(𝚥ωk)
is applied

explicitly, which degrades numerical conditioning. In (8.17), instead, the same weight
is applied implicitly by relocating the poles p(i−1)n at each iteration.

Once (8.17) has been minimized, the updated poles p(i)n for the next iteration can
be found as the zeros of d(i)(s), as one can see from the third expression in (8.15). It
can be shown that such zeros can be calculated as the eigenvalues of a matrix [42]

{p(i)n } = eig(A
(i−1) − bw(c

(i)
w )

T
), (8.18)

with A(i−1) = diag{p(i−1)1 , . . . , p
(i−1)
n̄ } being a diagonal matrix formed by poles p(i−1)n .

In (8.18) bw is a n̄ × 1 vector of ones, and (c(i)w )
T = [w(i)1 , . . . ,w

(i)
n̄ ]. Upon convergence,

p(i−1)n → p(i)n , and they become the poles of the obtained model H(i)(s). When this
happens,w(i) → 1 as we can see from the third expression in (8.15), and the linearized
error (8.12) tends to (8.6), as desired.

8.3.2 The Vector Fitting algorithm

We are now ready to present the complete VF algorithm [42, 35], with a pseudo-code
implementation available in Algorithm 8.1. The first step is to choose the order n̄ of
the desired model. This choice will be discussed in Section 8.3.11.1. Next, we set the
initial poles p(0)n of the basis functions in (8.16) and (8.15). Numerical tests [42] showed
that a linear distribution of poleswith small and negative real part over the bandwidth
spanned by samples Hk leads to the best conditioning of the least squares problems
to be solved. We assume n̄ even, and frequency values ωk sorted in ascending order.
If ω1 = 0, the initial poles can be set as [35]

p(0)n = {
(−α + 𝚥) ω ̄kn̄/2n for n = 1, . . . , n̄/2
(p(0)n−n̄/2)

∗ for n = n̄/2 + 1, . . . , n̄
(8.19)
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Algorithm 8.1: Vector Fitting.

Require: response samples Hk, corresponding frequencies ωk (k = 1, . . . , k̄)
Require: desired model order n̄
Require: maximum number of iterations imax
1: set initial poles p(0)n according to (8.19) or (8.20).
2: i ← 1
3: while i ≤ imax do
4: Solve (8.21) or (8.38) in least squares sense
5: Compute the new poles estimate p(i)n with (8.18)
6: Enforce poles stability with (8.71), if desired ⊳ Stability enforcement
7: if (8.27) is true then ⊳ First convergence test
8: Solve (8.29) or (8.40) in least squares sense ⊳ Tentative final fitting
9: Compute fitting error e with (8.6) or (8.34)
10: if e ≤ εH then ⊳ Second convergence test
11: H̃(s) = H̃(i+1)(s)
12: return Success!
13: end if
14: end if
15: i ← i + 1
16: end while
17: return Failure: maximum number of iterations reached.

where ∗ denotes the complex conjugate and α is typically set to 0.01. This rule gen-
erates n̄/2 pairs of complex conjugate poles, linearly distributed over the frequency
range [0,ωk̄] spanned by samplesHk . The imaginary part of the poles is set to be quite
larger than the real part, since this makes the partial fraction basis functions well dis-
tinct from each other, which improves numerical conditioning.

When ω1 ̸= 0, the distribution (8.19) can be modified as [35]

p(0)n =
{
{
{

(−α + 𝚥)[ω1 +
ω ̄k−ω1
n̄/2−1 (n − 1)] for n = 1, . . . , n̄/2,

(p(0)n−n̄/2)
∗ for n = n̄/2 + 1, . . . , n̄,

(8.20)

to linearly spread the poles between ω = ω1 and ω = ωk̄ . Rules (8.19) and (8.20) work
well for most cases, since the choice of initial poles is typically not critical for VF con-
vergence.When the frequency range of interest spans several decades, and the system
frequency response exhibits significant behavior inmultiple decades, initial poles can
be distributed logarithmically for optimal results [35].

The core of the VF algorithm is an iterative minimization of (8.17), which begins
with i = 1. Minimizing (8.17) is equivalent to solving, in the least-squares sense, the
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system of equations

[Φ(i)0 −DHΦ
(i)
1 ] [

c(i)H
c(i)w
] = VH (8.21)

where Φ(i)0 and Φ(i)1 contain the partial fraction basis functions evaluated at the differ-
ent frequency points ωk:

Φ(i)0 =
[[[[

[

1 1
𝚥ω1−p

(i−1)
1
. . . 1
𝚥ω1−p

(i−1)
n̄

...
...

...
1 1
𝚥ω ̄k−p(i−1)1

. . . 1
𝚥ω ̄k−p(i−1)n̄

]]]]

]

, (8.22)

Φ(i)1 =
[[[[

[

1
𝚥ω1−p

(i−1)
1
. . . 1
𝚥ω1−p

(i−1)
n̄

...
...

1
𝚥ω ̄k−p(i−1)1

. . . 1
𝚥ω ̄k−p(i−1)n̄

]]]]

]

, (8.23)

and DH = diag{H1, . . . ,Hk̄}. The right hand side of (8.21) is a column vector formed by
the given samples

VH = [H1 . . . Hk̄]
T
, (8.24)

while c(i)H and c(i)w contain the unknown coefficients

c(i)H = [r
(i)
0 . . . r(i)n̄ ]

T
, (8.25)

c(i)w = [w
(i)
1 . . . w(i)n̄ ]

T
. (8.26)

System (8.21) can be solved in the least-squares sense with a QR decomposition of
the coefficient matrix [28]. Once (8.21) has been solved, the new poles estimate p(i)n is
computed with (8.18).

The VF iterative process usually converges very quickly, often in 4–5 iterations,
except when the given samples are noisy. The fast and reliable convergence of VF is
truly remarkable considering thatVFultimately solves anonlinearminimizationprob-
lem. Unfortunately, so far no one has been able to support this experimental evidence
with strong theoretical results on VF convergence. Actually, contrived examples show
that VF convergence is not guaranteed [53, 72]. However, these examples are quite ar-
tificial and far from practical datasets. Two decades of widespread use indeed show
that, when properly implemented, VF is a remarkably robust algorithm for the iden-
tification of reduced order models from sampled data. In VF, convergence is typically
monitored with three conditions:



284 | P. Triverio

1. When the poles estimates stabilizes, i. e. p(i)n ≃ p
(i−1)
n , performing new iterations

will not improve accuracy. When this happens, w(i)(𝚥ω) ≃ 1 for ω ∈ [ω1,ωk̄]. This
occurrence can be tested numerically as

√ 1
k̄

k̄
∑
k=1

󵄨󵄨󵄨󵄨w(i)(𝚥ω) − 1
󵄨󵄨󵄨󵄨
2
≤ εw , (8.27)

where εw is a user-defined threshold. The advantage of criterion (8.27) is that it
does not require additional computations apart from the calculation of the norm
in (8.27). The limitation of this test is that it is based on an empirical condition,
which may be satisfied even when the reduced model H(i)(s) still does not fit well
the given frequency samples. Conversely, when samples Hk are noisy, test (8.27)
may fail even when additional iterations will not significantly improve the poles
estimate [33]. Therefore, test (8.27) should be only used as a low-cost check to de-
cidewhether it is worth to compute the error between the reducedmodel response
and samples Hk .

2. When condition (8.27) is satisfied, the error between the fitted model and sam-
ples Hk should be checked. In principle, this can be done by computing the error
between (8.16) and Hk . However, since after solving (8.21) a new estimate of the
poles can be found via (8.18), the common practice is to use those poles to fit a
new model. This is done by minimizing the exact error (8.6) between the given
samples Hk and model

H̃(i+1)(s) = r(i+1)0 +
n̄
∑
n=1

r(i+1)n

s − p(i)n
, (8.28)

considering only residues r(i+1)0 , . . . , r
(i+1)
n̄ as unknowns. Since poles p(i)n are now

fixed, this is equivalent to solve, in least squares sense, the linear system

Φ(i+1)0 c(i+1)H = VH . (8.29)

The VF iteration ends, successfully, when

e ≤ εH , (8.30)

since model (8.28) meets the accuracy threshold εH set by the user. The main
reason why this additional fitting step is performed is because this step mini-
mizes the exact error (8.6) betweenmodel and given samples, rather than a linear
approximation like (8.17), which improves accuracy and more reliably detects
convergence. Therefore, solving (8.29) serves both as convergence test and as
final fitting of the model.

3. In selected circumstances, VF may be unable to reach (8.30) even after many iter-
ations. In this case, the iterative process concludes unsuccessfully when i exceeds
the maximum number of iterations imax allowed by the user.
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8.3.3 Example: fitting a rational transfer function

In this example, we apply VF to a set of samples Hk generated from a known ratio-
nal function of order 10. Its poles were generated randomly, and are reported in Ta-
ble 8.1. The original transfer function was sampled at k̄ = 100 frequency points lin-
early spaced between ω1 = 0.1 rad/s and ω100 = 10 rad/s. A Matlab implementation of
VF [75] was used to fit the samples with a model in the form (8.16) with order n̄ = 10.
The initial distribution of poles p(0)n set by (8.20) is depicted in the left panel of Fig-
ure 8.1. Throughout the VF iterations, poles relocate to the final distribution shown
in the right panel of Figure 8.1, which also compares them to the exact poles of the
original rational function. We can see that the poles estimated by VF closely match
the poles of the original system.

Table 8.1: Example of Section 8.3.3: poles and residues of the transfer function used to generate
samples Hk .

Pole Residue

constant term r0 = 0.1059
p1 = −1.3578 r1 = −0.2808
p2 = −1.2679 r2 = 0.1166
p3,4 = −1.4851 ± 0.2443𝚥 r3,4 = 0.9569 ∓ 0.7639𝚥
p5,6 = −0.8487 ± 2.9019𝚥 r5,6 = 0.9357 ∓ 0.7593𝚥
p7,8 = −0.8587 ± 3.1752𝚥 r7,8 = 0.4579 ∓ 0.7406𝚥
p9,10 = −0.2497 ± 6.5369𝚥 r9,10 = 0.2405 ∓ 0.7437𝚥

Figure 8.1: Left panel: initial poles p(0)n used by VF in the first iteration. Right panel: poles of the final
model H̃(s) compared to the exact poles of the original transfer function.

In Figure 8.2, the frequency response H̃(𝚥ω) of the VFmodel is compared to the initial
samples. We observe excellent agreement over the entire frequency range of interest.
At the conclusion of the VF iterative process, the worst-case error between samplesHk
and model response

e∞ = max
k
󵄨󵄨󵄨󵄨Hk − H(𝚥ωk)

󵄨󵄨󵄨󵄨 (8.31)
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Figure 8.2: Example of Section 8.3.3: magnitude (top) and phase (bottom) of samples Hk and of the
model H̃(𝚥ω) identified by VF.

is 2.37 × 10−14. Figure 8.3 shows the evolution of e∞ throughout the five iterations per-
formed by VF, plus a final iteration (i = 6) where poles were kept fixed and residues
were calculated one more time using (8.29). The figure shows that VF converges very
quickly, reaching an error below 10−8 in only three iterations.We can also observe that
the final fitting iteration (i = 6) with fixed poles provides a more accurate model. For
this example, VF took only 0.2 s of CPU time on a 2.2 GHzmobile processor. The source
codes related to this example can be downloaded from [75].

8.3.4 Example: modeling of aortic input impedance

In this example, VF is used to model the relation between pressure p(t) and flow
rate q(t) in the ascending aorta of a 1.1-year old patient [71, patient 1]. Simultaneous
pressure and flow rate measurements were collected during a surgical procedure.
The blood flow rate was measured with an ultrasonic flow probe positioned about
1 cm downstream of the aortic valve. The pressure was acquired using a catheter
with a pressure transducer on its tip, positioned in the same location as the flow rate
probe. From time domain recordings, the input impedance seen from the aorta was
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Figure 8.3: Example of Section 8.3.3: worst-case fitting error e∞ as a function of iteration counter i.
The last iteration (i = 6) was performed with fixed poles.

obtained:

Z(𝚥ω) = F {p(t)}
F {q(t)}

, (8.32)

where F {.} denotes the Fourier transform. Impedance was computed at k̄ = 11 fre-
quency points ωk = 2π(k − 1)f0 for k = 1, . . . , 11, where f0 = 2.54Hz = 152.4 beats/min
corresponds to the heart rate of the patient. The authors of [71] estimate that the
impedance measurements are affected by uncertainty with a relative standard de-
viation that ranges between 0.66% to 14.5% depending on frequency. The relative
standard deviation was normalized to |Z(0)|.

We apply VF to the impedance samples to obtain a closed-form model relating
aortic pressure and flow rate. The limited number of available samples and their un-
certainty make the identification of an accurate model challenging. We use this non-
trivial scenario to explore the relation between number and quality of the available
samples, model order n̄, and accuracy. Vector Fittingwas applied to the given samples
four times with model order n̄ increasing from 2 to 8 in steps of 2. Figure 8.4 compares
the magnitude and phase of the identified model to the original impedance samples.
We can see that the n̄ = 2 model captures the overall trend of the impedance. How-
ever, it fails to resolve the increase in impedance at f = 12.7Hz and the associated
phase variation. Increasing order to 4 or 6 resolves that feature and provides higher
accuracy. Further increasing order n̄ to 8 leads to amodel whichmatches closely most
given samples, but has a sharp and high peak at f = 12.3Hz. This unrealistic behavior
in-between the given samples is typical of an overfitting scenario, where the sought
model has toomanydegrees of freedom,which can behardly estimated from the infor-
mation contained in the available samples. Although still solvable, the conditioning
number of (8.21) degrades. The system solution, which gives the model coefficients,
becomes very sensitive to the noise superimposed to the given samples. The source
codes related to this example can be downloaded from [75].
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Figure 8.4: Impedance seen into the ascending aorta of the pediatric patient considered in Sec-
tion 8.3.4: measured samples (circles) and response of four different VF models (dashed lines) of
order n̄ = 2,4,6,8 (from top to bottom).
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8.3.5 The multi-input multi-output case

The VF algorithm presented in Section 8.3.2 for the single-input single-output case
can be easily extended to the general case of a systemwith m̄ inputs and q̄ outputs. In
this case, the given samples are q̄× m̄ complexmatricesHk, and we denote their (q,m)
entry as Hk,qm. The model transfer function is now defined as

H̃(i)(s) = R(i)0 +
n̄
∑
n=1

R(i)n
s − p(i−1)n

, (8.33)

where R(i)n ∈ ℂ
q̄×m̄. In (8.33), the same poles p(i−1)n are used for all elements of matrix

H̃(i)(s). This choice is appropriate whenmodeling linear dynamical systems, since it is
known that the poles of each transfer function entry are a subset of a common set of
poles shared by all transfer function elements. The physical justification of this fact is
that poles are related to the natural modes of the system, which are a property of the
system itself and not of individual entries of its transfer function. In other communi-
ties, natural modes are referred to as resonances or eigenmodes of the system. When
VF is applied to model transfer functions not related to the same physical system, one
should use distinct poles for different elements of (8.33). This scenario is discussed
in [35], which also elaborates on the computational implications of this choice.

In the multi-input multi-output case, weighting function w(i)(s) remains defined
by (8.15). Since the transfer function (8.33) is nowmatrix-valued, VF aims to minimize
the error functional

e2 = 1
k̄q̄m̄

k̄
∑
k=1

󵄩󵄩󵄩󵄩Hk − H̃(𝚥ωk)
󵄩󵄩󵄩󵄩
2
F , (8.34)

where ‖.‖F denotes the Frobenius norm, which for A ∈ ℂq̄×m̄ is defined as

‖A‖F = √
q̄
∑
q=1

m̄
∑
m=1
|Aqm|2. (8.35)

From (8.35), we see that the square of the Frobenius norm is simply equal to the sumof
the squared magnitudes of each entry. Therefore, minimizing (8.34) means minimiz-
ing the sum of the squared error between each sample Hk,qm and the corresponding
entry of (8.33).

The minimization of (8.34) is a nonlinear least-squares problem, which VF solves
iteratively by working on the linearized error [42]

(e(i)SK)
2
=

1
k̄q̄m̄

k̄
∑
k=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Hk(1 +

n̄
∑
n=1

w(i)n
𝚥ωk − p

(i−1)
n
) − (R(i)0 +

n̄
∑
n=1

R(i)n
𝚥ωk − p

(i−1)
n
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

F
. (8.36)

As in the single-input single-output case, we can see that (8.36) uses weighting func-
tion w(i)(s) to offset the error introduced by using the previous poles estimate in the
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denominators. Minimizing (8.36) is equivalent to solving, in the least-squares sense,
the system of equations

R(i)0,qm +
n̄
∑
n=1

R(i)n,qm
𝚥ωk − p

(i−1)
n
− Hk,qm

n̄
∑
n=1

w(i)n
𝚥ωk − p

(i−1)
n
= Hk,qm (8.37)

for k = 1, . . . , k̄, q = 1, . . . , q̄ andm = 1, . . . , m̄. In matrix form, equations (8.37) read

[[[[[[[

[

Φ(i)0 0 . . . 0 −DH11
Φ(i)1

0 Φ(i)0
. . .

... −DH21
Φ(i)1

...
. . . . . . 0

...
0 . . . 0 Φ(i)0 −DHq̄m̄

Φ(i)1

]]]]]]]

]

[[[[[[[[[

[

c(i)H11

c(i)H21
...

c(i)Hq̄m̄

c(i)w

]]]]]]]]]

]

=
[[[[[

[

VH11

VH21
...

VHq̄m̄

]]]]]

]

, (8.38)

where DHqm
and VHqm

are, respectively, a diagonal matrix and a column vector formed
by all samples Hk,qm for k = 1, . . . , k̄. In the unknown vector of (8.38),

c(i)Hqm
= [R(i)0,qm . . . R(i)n̄,qm]

T
, (8.39)

and c(i)w is defined by (8.26). System (8.38) is solved in step 4 of Algorithm 8.1. In step 8,
a tentative final fitting of the model is performed, assuming fixed poles and determin-
ing only a new estimate of residues R(i+1)n . This step can be achieved by solving

Φ(i+1)0 c(i+1)Hqm
= VHqm
, (8.40)

for q = 1, . . . , q̄ andm = 1, . . . , m̄.

8.3.6 The fast Vector Fitting algorithm

As the number of inputs m̄ and outputs q̄ increases, the computational cost of solv-
ing (8.38) can quickly become unsustainable. As technology evolves, this scenario
arises more frequently, as engineers need to model systems of increasing complex-
ity, either in terms of dynamic order or number of inputs and outputs. For example,
a modern server processor has about 2,000 pins, which are connected to the mother-
board by a dense network of tinywires realized on the chip package. Seen as an input–
output system, this network will have about 4,000 inputs and outputs, half where the
network connects to themotherboard, and half where the network is connected to the
silicon die. The need to predict electromagnetic interference in this dense and intri-
cate network of wires calls for scalable algorithms to create reduced order models for
systemswhere the number of inputs m̄ and outputs q̄ can be several thousands [70, 8].

The Fast VF algorithm [22, 47] significantly reduces the cost of solving (8.38) for
multi-input and multi-output systems. Savings are achieved by exploiting the block
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structure of (8.38) and the fact that, of the solution vector of (8.38), only c(i)w is actually
needed to compute the new poles estimate (8.18). A least-squares problem in the form
of (8.38) can be efficiently solved by first performing the QR decompositions [29, 9, 86,
22]

[Φ(i)0 −DHqm
Φ(i)1 ] = [𝒬

1
qm 𝒬2

qm] [
ℛ11

qm ℛ12
qm

0 ℛ22
qm
] , (8.41)

for q = 1, . . . , q̄ andm = 1, . . . , m̄. Then a reduced system is formed [22]:

[[[[[[

[

ℛ22
11

ℛ22
21
...

ℛ22
q̄m̄

]]]]]]

]

c(i)w =
[[[[[[

[

(𝒬2
11)

HVH11

(𝒬2
21)

HVH21
...

(𝒬2
q̄m̄)

HVHq̄m̄

]]]]]]

]

, (8.42)

where H denotes the conjugate transpose, also known as Hermitian transpose. Sys-
tem (8.42) is solved in the least-squares sense to determine c(i)w , and compute the new
poles estimate with (8.18). Computational savings arise from the fact that the size of
the matrices involved in (8.41) and (8.42) is much lower than the size of the coefficient
matrix in (8.38). Furthermore, since the q̄m̄ QR decompositions (8.41) are indepen-
dent, they can be performed in parallel [14]. The Fast VF algorithm with paralleliza-
tion can identify reduced models for systems with hundreds of inputs and outputs in
minutes [35]. A pseudo-code of a real-valued implementation of the Fast VF algorithm
will be given in Section 8.3.8.

Several other ideas were proposed to increase VF scalability for large input and
output counts. In VF with compression, samplesHk are “compressed” with a singular
value decomposition reducing the cost of the subsequent fitting [37] and passivity en-
forcement steps [63]. The Loewner method [52, 46], which is an alternative to VF for
the data-driven modeling of linear systems, was also shown to scale favorably with
respect to the number of inputs and outputs. This class of techniques is the subject of
Chapter 6 of this volume.

8.3.7 Example: modeling of a multiport interconnect on a printed
circuit board

Vector Fitting is extensively usedby electronic designers tomodel howhigh-speeddig-
ital signals propagate over a printed circuit board, and design the system accordingly.
We consider the structure shown in Figure 8.5, which consists of several copper traces
realized on the top face of a high-performance printed circuit board (Wild River Tech-
nology CMP-28 [88]). This structure mimics, in a simplified way, the multiwire buses
that may connect the CPU and memory of a high-performance server. At the end of
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Figure 8.5: Interconnect network on a printed circuit board considered in Section 8.3.7. The four
measurement ports of the vector network analyzer were connected as shown in the Figure.

each trace, an electrical port is defined between the trace endpoint and a reference
point on the ground plane underneath. The port is defined where the CPU or memory
chipwould be connected. In the test system, a high-frequency connectorwas installed
at each port allowing the user to inject a signal from each port, and observe the signal
received at the other ports.

In this example, we consider the two lower traces in Figure 8.5, which have con-
nectors J72, J71, J64, J61 soldered at their ends. The scattering matrix H(𝚥ω) of this
4-port device was measured from 10MHz to 40GHz in steps of 10MHz with a Keysight
N5227A vector network analyzer (courtesy of Fadime Bekmambetova, University of
Toronto). In the scattering representation, input Um(𝚥ω) is the amplitude of the elec-
tromagnetic wave injected into portm by the instrument. Output Yq(𝚥ω) is the ampli-
tude of the wave received at port q. The scattering representation is commonly used at
high frequency since it can be measured more accurately compared to the impedance
or admittance representations used at low frequency.

A commercial implementation of the VF algorithm (IdEM, Dassault Systemes)
was used to generate a reduced order model from the measured samples (courtesy of
Prof. Stefano Grivet-Talocia, Politecnico di Torino). Figure 8.6 compares the VF model
response to the original samples for the (1, 2) element of the scattering matrix. This
response is the ratio between the amplitude of the wave received at one end of the
trace (port 1) and the amplitude of the wave injected at the other end (port 2). We see
that, as frequency increases, the received signal is progressively weaker, due to higher
attenuation. The agreement between the VF model and the samples is excellent over
the entire frequency range spanned by the measured data. Figure 8.7 compares the
model response to the measured samples for the (1, 3) entry of the scattering matrix,
which describes the signal received on the lower copper trace in Figure 8.5 when only
the upper trace is excited. This coefficient is about 25 times smaller than the (1, 2)
coefficient, since the two traces are not directly connected, and any coupling is due to
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Figure 8.6: Example of Section 8.3.7: comparison between samples Hk,12 and corresponding VF
model response.

Figure 8.7: Example of Section 8.3.7: comparison between samples Hk,13 and corresponding VF
model response.

electromagnetic interference. We can see that the VF model approximates this small
entry very accurately.

Figure 8.8 plots the samples-model error e(i)SK as a function of i, together with the
order n̄ used by VF at each iteration. In this example, the order is adapted throughout
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Figure 8.8: Example of Section 8.3.7: VF error as a function of iteration, compared to the desired
error level. Labels indicate the order n̄ used by VF at each iteration.

iterations with the adding and skimming process [33] described in Section 8.3.11.1. We
observe that VF is able to progressively reduce the error throughout iterations, but
convergence is slower than in the analytical example of Section 8.3.3. This happens
because of two reasons. First, this implementation of VF adaptively determines order
n̄ in a single run, without requiring the user to determine a suitable n̄withmultiple VF
runs. Second, some noise is unavoidably present in the experimental measurements,
which slows down convergence, and prevents VF from reducing the fitting error below
10−3. Indeed, we can see that VF is unable to increase model accuracy after the 10th
iteration. Ultimately, VF delivers a reduced model with an error of 1.34 ⋅ 10−3, which is
adequate for most design purposes.

8.3.8 A real-valued formulation of VF and fast VF

Inmost systems of practical interest, input u(t) and output y(t) are real-valued. Conse-
quently, polespn and residuesRn are expected to be either real or in complex conjugate
pairs. Because of round-off errors, the VF algorithm described so far may not ensure
this realness condition. In this section, we describe a real-valued version of Fast VF
which can be implemented in real arithmetics, and will ensure the realness condition
by construction. The pseudo-code of the described algorithm is given inAlgorithm8.2.
An open-source implementation of this algorithm, which closely follows the notation
and pseudo-code in this chapter, can be downloaded from [75].

To ensure complex conjugate poles and residues, we redefine model (8.33) as

H̃(i)(s) = R(i)0 +
n̄r
∑
n=1

R(i)n
s − p(i−1)n

+
n̄r+n̄c
∑

n=n̄r+1
[

R(i)n
s − p(i−1)n

+
(R(i)n )
∗

s − (p(i−1)n )∗
], (8.43)

where n̄r is the number of real poles and n̄c is the number of pairs of complex conjugate
poles, for a total order n̄ = n̄r + 2n̄c. In (8.43), we force R(i)n ∈ ℝ

q̄×m̄ for n = 0, . . . , n̄r . The
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VF weighting function (8.15) is redefined in a similar fashion as

w(i)(s) = 1 +
n̄r
∑
n=1

w(i)n
s − p(i−1)n

+
n̄r+n̄c
∑

n=n̄r+1
[

w(i)n
s − p(i−1)n

+
(w(i)n )
∗

s − (p(i−1)n )∗
], (8.44)

where w(i)n ∈ ℝ for n = 1, . . . , n̄r . Using (8.43) and (8.44), and following the steps in
Section 8.3.5, one can arrive at a least-squares system in the same form as (8.38)

[[[[[[[

[

Φ(i)0 0 . . . 0 −DH11
Φ(i)1

0 Φ(i)0
. . .

... −DH21
Φ(i)1

...
. . . . . . 0

...
0 . . . 0 Φ(i)0 −DHq̄m̄

Φ(i)1

]]]]]]]

]

[[[[[[[[[

[

c(i)H11

c(i)H21
...

c(i)Hq̄m̄

c(i)w

]]]]]]]]]

]

=
[[[[[

[

VH11

VH21
...

VHq̄m̄

]]]]]

]

, (8.45)

but where we take as unknowns the real and imaginary part of each residue in (8.43)

c(i)Hqm
= [R(i)0,qm . . . R(i)n̄r ,qm Re{R(i)n̄r+1,qm} Im{R(i)n̄r+1,qm} . . .]

T
, (8.46)

and the real and imaginary part of each residue of the weighting function (8.44)

c(i)w = [w
(i)
1 . . . w(i)n̄r Re{w(i)n̄r+1} Im{w(i)n̄r+1} . . .]

T
. (8.47)

This choice of unknowns will ensure that complex residues always come in conjugate
pairs. The coefficient matrices Φ(i)0 and Φ(i)1 in (8.45) are given by

Φ(i)0 = [1k̄ Φ(i)r Φ(i)c ] , (8.48)

Φ(i)1 = [Φ
(i)
r Φ(i)c ] , (8.49)

where 1k̄ is a k̄ × 1 vector of ones, and

Φ(i)r =
[[[[[

[

1
𝚥ω1−p

(i−1)
1
. . . 1
𝚥ω1−p

(i−1)
n̄r

...
. . .

...
1

𝚥ω ̄k−p(i−1)1
. . . 1
𝚥ω ̄k−p(i−1)n̄r

]]]]]

]

, (8.50)

Φ(i)c =
[[[[[

[

1
𝚥ω1−p

(i−1)
n̄r+1 + 1

𝚥ω1−(p
(i−1)
n̄r+1)∗ 𝚥

𝚥ω1−p
(i−1)
n̄r+1 − 𝚥

𝚥ω1−(p
(i−1)
n̄r+1)∗ . . .

...
...

1
𝚥ω ̄k−p(i−1)n̄r+1 + 1

𝚥ω ̄k−(p(i−1)n̄r+1)∗ 𝚥
𝚥ω ̄k−p(i−1)n̄r+1 − 𝚥

𝚥ω ̄k−(p(i−1)n̄r+1)∗ . . .
]]]]]

]

. (8.51)

Although (8.45) has real unknowns, its coefficients matrix and right hand side are still
complex-valued. To remedy this issue, we write the real and imaginary part of each
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equation separately

[[[[[[[[[[

[

Re{Φ(i)0 } 0 . . . 0 −Re{DH11
Φ(i)1 }

Im{Φ(i)0 } 0 . . . 0 −Im{DH11
Φ(i)1 }

...
...

...
0 . . . 0 Re{Φ(i)0 } −Re{DHq̄m̄

Φ(i)1 }

0 . . . 0 Im{Φ(i)0 } −Im{DHq̄m̄
Φ(i)1 }

]]]]]]]]]]

]

[[[[[[

[

c(i)H11
...

c(i)Hq̄m̄

c(i)w

]]]]]]

]

=

[[[[[[[[

[

Re{VH11
}

Im{VH11
}

...
Re{VHq̄m̄

}
Im{VHq̄m̄

}

]]]]]]]]

]

. (8.52)

The obtained system, which has real coefficients and unknowns will ensure, by con-
struction, that model poles and residues are either real or complex conjugate. Due to
its block structure, system (8.52) can be efficiently solved with the Fast VF approach
discussed in Section 8.3.6. In step 5 of Algorithm 8.2, the QR decompositions

[

[

Re{Φ(i)0 } −Re{DHqm
Φ(i)1 }

Im{Φ(i)0 } −Im{DHqm
Φ(i)1 }
]

]
= [

𝒬11
qm 𝒬12

qm

𝒬21
qm 𝒬22

qm
][

ℛ11
qm ℛ12

qm

0 ℛ22
qm
] , (8.53)

are computed for q = 1, . . . , q̄ andm = 1, . . . , m̄. Then, in step 5, the reduced system

[[[[[[

[

ℛ22
11

ℛ22
21
...

ℛ22
q̄m̄

]]]]]]

]

c(i)w =
[[[[[[

[

(𝒬12
11)

TRe{VH11
} + (𝒬22

11 )
T Im{VH11

}

(𝒬12
21)

TRe{VH21
} + (𝒬22

21)
T Im{VH21

}
...

(𝒬12
q̄m̄)

TRe{VHq̄m̄
} + (𝒬22

q̄m̄)
T Im{VHq̄m̄

}

]]]]]]

]

(8.54)

is solved in the least-squares sense to determine c(i)w and compute the new poles esti-
mate with the real-valued counterpart of (8.18), which reads [35]

{p(i)n } = eig(A
(i−1) − bw(c

(i)
w )

T
), (8.55)

with A(i−1) = diag{p(i−1)1 , . . . , p
(i−1)
n̄r
,Π(i−1)n̄r+1
, . . . ,Π(i−1)n̄r+n̄c

} being a block diagonal matrix
formed by the real poles and, for complex conjugate pairs, by the blocks

Π(i−1)n = [
Re{p(i−1)n } Im{p(i−1)n }

−Im{p(i−1)n } Re{p(i−1)n }
] . (8.56)

In (8.55), bw is a n̄ × 1 vector with the first n̄r entries set to one, followed by a [2,0]T

block for each pair of complex conjugate poles.
Once poles have been estimated, a first convergence test is performed in step 8

using (8.27). If the test is passed, in step 9 of Algorithm 8.2 we fit the residues of the
final model, solving in the least-squares sense

[
Re{Φ(i+1)0 }

Im{Φ(i+1)0 }
] c(i+1)Hqm
= [

Re{VHqm
}

Im{VHqm
}
] , (8.57)

for q = 1, . . . , q̄ and m = 1, . . . , m̄. The second and final convergence test is performed
in step 11 of Algorithm 8.2.
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Algorithm 8.2: Fast Vector Fitting, real-valued implementation.

Require: response samples Hk, corresponding frequencies ωk (k = 1, . . . , k̄)
Require: desired model order n̄
Require: maximum number of iterations imax
1: set initial poles p(0)n according to (8.19) or (8.20).
2: i ← 1
3: while i ≤ imax do
4: Compute QR decompositions (8.53)
5: Solve (8.54) in the least-squares sense
6: Compute the new poles estimate p(i)n with (8.55)
7: Enforce poles stability with (8.71), if desired ⊳ Stability enforcement
8: if (8.27) is true then ⊳ First convergence test
9: Solve (8.57) in the least-squares sense ⊳ Tentative final fitting
10: Compute fitting error e with (8.34)
11: if e ≤ εH then ⊳ Second convergence test
12: H̃(s) = H̃(i+1)(s)
13: return Success!
14: end if
15: end if
16: i ← i + 1
17: end while
18: return Failure: maximum number of iterations reached.

8.3.9 Model realization

The real-valued formulation of VF, discussed in Section 8.3.8, produces a reduced
model in the form

H̃(s) = R0 +
n̄r
∑
n=1

Rn
s − pn
+

n̄r+n̄c
∑

n=n̄r+1
[

Rn
s − pn
+

R∗n
s − p∗n
], (8.58)

which can be easily converted into a variety of equivalent representations to facilitate
its use in different simulation scenarios. Expression (8.58) is known as pole-residue
form of the transfer function. This form is the most convenient when the model will
be used in frequency domain analyses, since it minimizes the computational cost of
evaluating H(𝚥ω).

For time domain analyses, such as transient simulations, expression (8.58) can be
converted into the time domain with the inverse Laplace transform, which yields

h̃(t) = R0 +
n̄r
∑
n=1

Rne
pnt +

n̄r+n̄c
∑

n=n̄r+1
[2R′ne

p′nt cos(p′′n t) − 2R′′n ep′nt sin(p′′n t)] (8.59)
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for t ≥ 0, where p′n = Re{pn}, p
′′
n = Im{pn}, R

′
n = Re{Rn} and R′′n = Im{Rn}. In (8.59),

h̃(t) denotes the impulse response of the model. This form is particularly convenient
in transient simulators based on convolutions like (8.1).While computing convolution
integrals is in general very expensive, when an impulse response has the form (8.59),
convolution can be computed very quickly using recursive formulas [35].

While convolutional simulators are prominent in selected applications, the ma-
jority of transient simulators is based on the solution of differential equations, and
cannot handle (8.59) directly. To overcome this issue, we can represent (8.58) through
a set of differential equations in state-space form

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

(8.60)

System (8.60) is constructed in such a way that the transfer function between input
u(t) and output y(t) is (8.58). Given a transfer function, there are infinitely-many sys-
tems (8.60) that meet this criterion, known as realizations of H(s). We present a pop-
ular realization, due to Gilbert [27], and refer the reader to [35] for a comprehensive
description of how VF models can be realized.

For reasons that will become clear later on, the Gilbert realization process begins
with the truncated singular value decomposition [28] of residues Rn

Rn = UnΣnV
H
n for n = 1, . . . , n̄r + n̄c, (8.61)

where Σn = diag{σn,1, . . . , σn,ρn } is a diagonal matrix collecting all nonzero singular
values of Rn, and ρn is the rank of Rn. Matrices Un ∈ ℂ

q̄×ρn and Vn ∈ ℂm̄×ρn are formed
by the left and right singular vectors of Rn, respectively. Given (8.61), we can express
the partial fractions in (8.58) associated to real poles as

Rn
s − pn
= UnΣn

Iρn
s − pn

VT
n = Cn(sIρn − An)

−1Bn, (8.62)

for n = 1, . . . , n̄r . In (8.62), Iρn is the identitymatrix of size ρn×ρn, Cn = UnΣn,An = pnIρn ,
and Bn = VT

n . For complex poles, we can derive an equivalent expression for the sum
of the two conjugate partial fractions [35]

Rn
s − pn
+

R∗n
s − p∗n
= Cn(sI2ρn − An)

−1Bn, (8.63)

for n = n̄r + 1, . . . , n̄r + n̄c, where

An =[
p′nIρn p′′n Iρn
−p′′n Iρn p′nIρn

] Bn = 2 [
Re{VH

n }
Im{VH

n }
] (8.64)

Cn = [Re{UnΣn} Im{UnΣn}] . (8.65)
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Expressions (8.62) and (8.63) allow us to rewrite (8.58) as

H̃(s) = D + C(sIN − A)
−1B, (8.66)

where

A =
[[[

[

A1
. . .

An̄r+n̄c

]]]

]

, B =
[[[

[

B1
...

Bn̄r+n̄c

]]]

]

, (8.67)

C = [C1 . . . Cn̄r+n̄c ] , D = R0. (8.68)

Since (8.66) is the transfer function of (8.60), equations (8.67) and (8.68) provide the
coefficient matrices of a state space realization (8.60) of the transfer function (8.58)
produced by VF. The order of (8.66) is

N =
n̄r
∑
n=1

ρn + 2
n̄r+n̄c
∑

n=n̄r+1
ρn (8.69)

and can be shown to be minimal [27]. This property stems from the singular value
decompositions (8.61), which reveal the rank ρn of each residue Rn. If those singular
value decompositions are not performed, a realization of order n̄m̄ is obtained. This
realization may not be minimal, and may contain states that are not controllable, not
observable, or both, as discussed in Chapter 2 of this volume.

In addition to the forms presented in this section, the VFmodel (8.58) can be con-
verted to a variety of additional forms, including equivalent electric circuits [5, 35] for
seamless integration into any circuit simulator.

8.3.10 Stability, causality and passivity enforcement

Most systems of practical interest are stable, and the real part of their poles is either
negative or zero. One would expect that, given noise-free samples of their frequency
response, VF will produce a model with stable poles satisfying

Re{pn} ≤ 0 ∀n. (8.70)

Unfortunately, this is not guaranteed, since round-off errors may indeed push a few
poles into the right half of the complex plane, making the VF model unstable.

Condition (8.70) is essentially mandatory for time domain simulations, since oth-
erwise results will diverge. The standard practice is to enforce stability during VF it-
erations. After computing the new poles estimate p(i)n with (8.18), the following rule is
applied:

p(i)n = {
p(i)n if Re{p(i)n } < 0,
−Re{p(i)n } + 𝚥Im{p

(i)
n } if Re{p(i)n } > 0,

(8.71)



300 | P. Triverio

for n = 1, . . . , n̄r + n̄c. We can see that, if a pole p(i)n is unstable, the sign of its real part
is inverted. Since in the tentative final fitting in step 8 of Algorithm 8.1 poles are fixed,
condition (8.71) ensures the stability of the final model.

For frequency domain analyses, one may think that (8.70) is not necessary, since
stability is not an issue. However, one can show that (8.70), in the frequency domain,
becomes a condition for causality [82]. Causalitymeans that the systemwill react to an
excitation only after it has been applied, and not before. In other words, if the system
input u(t) begins at t = t0 (u(t) = 0 for t < t0), the system output will start varying only
at or after t = t0. All systems in nature are obviously causal, since they cannot “antic-
ipate” the application of an excitation. Enforcing (8.70) ensures that VF model (8.58)
is causal. If this is not the case, frequency domain analyses will succeed, but results
may be inaccurate and unphysical. In particular, the VF model may underestimate
the delay between input and output which is present in the real system, which may
be important in some applications, such as the timing analysis of digital circuits. A
complete discussion of causality is beyond the scope of this chapter, and the reader is
referred to [82].

Overall, condition (8.70) simultaneously enforces the stability and causality of the
VF model. This condition can be enforced without any accuracy penalty when the
given samples Hk are error free, and thus faithfully represent the response of a causal
and stable system. When samples are corrupted by noise or measurement errors, VF
may be unable to reduce fitting error (8.6) to the desired level if condition (8.70) is en-
forced. This happens when the noise or errors in samples Hk are not causal functions
themselves, and thus cannot be approximated with stable and causal poles [82]. Nu-
merical algorithmsexist to verify if the given samplesHk satisfy the causality condition
required by VF to fit them with high accuracy [77, 78, 51, 76, 7].

In addition to causality and stability, passivity is another important property that
one may want to impose on the VF model (8.58). This property characterizes those
physical systems that are unable to generate energy on their own, simply due to the
lack of energy sources or gain mechanisms inside them. A circuit made by positive
resistors, capacitors and inductors is an example of a passive system, in contrast to
an amplifying circuit. When applied to the response of a passive system, VF may still
produce a non-passive model, due to approximation and numerical errors. However,
passivity can be enforced a-posteriori, with themethods presented in Chapter 5 of this
volume.

8.3.11 Numerical implementation

Vector Fitting is easy to implement, and several free codes are available [75, 38]. This
section briefly describes a few changes to the basic templates in Algorithms 8.1 and 8.2
that can lead to a more robust and efficient implementation.
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8.3.11.1 Order estimation

The VF templates in Algorithms 8.1 and 8.2 require the desiredmodel order n̄ as input.
Typically, this is not known a priori, but can be determined during the fitting pro-
cess using the VF algorithmwith adding and skimming [33], as shown in the example
of Section 8.3.7. In this method, an initial estimate of n̄ is derived from the phase of
the given samples Hk, and used in the first VF iteration. Then n̄ is automatically in-
creased or decreased based on the achieved error, as visible in Figure 8.8. If error e is
still too high, the order is increased until either VF converges or it becomes evident
that no further error reduction can be achieved, as in the last four iterations in Fig-
ure 8.8. Conversely, when the algorithm detects that some partial fractions in (8.58)
give a negligible contribution over the frequency range of interest, the order n̄ is re-
duced at the next iteration by removing such terms. This happens in the 13th iteration
of the example in Section 8.3.7, where the order is reduced from 226 to 200.

8.3.11.2 Relaxed VF: a better normalization of the weighting function

In the original VF algorithm, the coefficients of weighting function (8.15) are normal-
ized such that w(i)(𝚥ω) → 1 when ω → ∞. It can be shown that this normalization is
not optimal, and can slow down VF convergence when samples Hk are contaminated
bynoise. The relaxedVFalgorithm [41]mitigates this issue by redefining theweighting
function as

w(i)(s) = w(i)0 +
n̄
∑
n=1

w(i)n
s − p(i−1)n

, (8.72)

wherew(i)0 is now free to depart from one. With this change, the fitting equation (8.37)
becomes

R(i)0,qm +
n̄
∑
n=1

R(i)n,qm
𝚥ωk − p

(i−1)
n
− Hk,qm(w

(i)
0 +

n̄
∑
n=1

w(i)n
𝚥ωk − p

(i−1)
n
) = 0. (8.73)

Since (8.73) admits a trivial solution (R(i)n,qm = w
(i)
n = 0 ∀n), the relaxed VF algorithm

adds an additional constraint to exclude it [41]

1
k̄

k̄
∑
k=1

Re{w(i)0 +
n̄
∑
n=1

w(i)n
𝚥ωk − p

(i−1)
n
} = 1. (8.74)

This constraint can be seen as amore relaxed normalization of theweighting function.
Equations (8.73) and (8.74) are then jointly solved in the least-squares sense. In the
single-input single-output case (q̄ = m̄ = 1), the system to be solved takes the form

[

[

Φ(i)0 −DHΦ
(i)
0

0 β
k̄
(1k̄)

TΦ(i)0
]

]
[
c(i)H
c(i)w
] = [

0
β
] (8.75)
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where

c(i)w = [w
(i)
0 . . . w(i)n̄ ]

T
. (8.76)

In (8.75), β is a suitable weight to the last equation, which is typically set to [41]

β = √
k̄
∑
k=1
|Hk |2. (8.77)

8.4 Generalized and advanced VF algorithms
Since its inception in 1996, VF has inspired a generation of algorithms for the data-
driven modeling of linear systems. These extensions either improve the original VF
formulation, or extend it to different modeling scenarios. We briefly summarize the
most relevant work in this area, and provide several bibliographic references where
more details can be found.

8.4.1 Time domain VF algorithms

The original VF algorithm works in the frequency domain, and creates the reduced
model from samples of the system frequency response. In some applications, how-
ever, it is more convenient to characterize the system in the time domain. For exam-
ple, one may have simultaneous measurements of the system input u(tl) and output
y(tl) at several time points tl for l = 1, . . . , ̄l, as in the example of Section 8.3.4. In this
scenario, one has two options. The first is to estimate the systems’ frequency response
from the timedomain sampleswith the discrete Fourier transform, and applyVF in the
frequency domain. However, the accuracy of the discrete Fourier transform depends
significantly on the sampling rate of the given samples, and on their behavior near the
boundaries t = t1 and t = t ̄l of the acquisition window. These issues, if not well un-
derstood and managed, can result in an inaccurate time–frequency conversion, and
degrade model quality.

The second option is to use the time domain VF algorithm [30, 31], which directly
extracts (8.58) from the time domain samples u(tl) and y(tl). This is achieved by rewrit-
ing the fitting error (8.17) in the time domain, where multiplication by partial fraction
1/(s−pn) becomes a convolution between epnt and the input or output samples. These
convolutions can be computed by numerical integrations, leading to a time domain
version of the original VF algorithm which closely follows the steps of the original
frequency domain VF algorithm [35].

The time domain VF algorithm leads to a model in the continuous time domain.
Alternatively, if the sampling period Δt = tl+1 − tl is constant, one can also apply the z-
domain VF [59], which relies on the z transform as opposed to the Laplace transform.
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This latter algorithm leads to a model in the discrete time domain, which can be ex-
pressed as a digital filter or as a set of difference equations (as opposed to differential
equations).

8.4.2 Improved Vector Fitting formulations

In the QuadVF algorithm [23], a quadrature rule inspired by the H2 error measure is
used in conjunction with a suitable choice of frequency sampling points to improve
the fidelity of the reducedmodel to the given samples. The samework also shows how
one can incorporate derivative information, making QuadVF able to minimize a dis-
crete Sobolev norm. In [24], this approach is extended to themulti-input multi-output
case, and a way to control the McMillan degree1 of the approximation is proposed,
which helps to achieve smaller reduced models when q̄ and m̄ are high.

The numerical robustness of VF, which is already quite remarkable in its original
formulation, is further improved in the Orthonormal VF algorithm [21]. This algorithm
replaces partial fractions 1/(s−pn) in (8.15) and (8.16) with orthonormal rational func-
tions, achieving better numerical conditioning of the linear system (8.38) to be solved.

Another subject that received considerable attention is the robustness of VF
against noise in the given samples Hk . Noise may arise from the measurement pro-
cess or, if samples were obtained with a numerical simulation, from round-off errors,
approximations, and convergence issues. The relaxed normalization discussed in Sec-
tion 8.3.11.2 improves VF convergence in the presence of noise [41]. Furthermore, the
VF with adding and skimming includes a mechanism to detect spurious poles caused
by noise [33]. Since spurious poles impair VF convergence, they must be removed
throughout iterations [33]. This mechanism is coupled with a robust way to adaptively
refine model order n̄ to maximize accuracy even when noise is significant [33]. Taking
into account noise variance in the definition of the VF fitting error was also shown to
improve convergence [26]. Finally, instrumental variables can be used to unbias the
VF process from the effects of noise, leading to better accuracy and convergence at no
additional cost [10].

8.4.3 VF algorithms for distributed systems

The efficientmodeling of distributed systems is anopenproblem inmodel order reduc-
tion. A system is distributed when the time a signal takes to propagate from an input
to an output is not negligible. In systems described by a Helmholtz (wave) equation,
this happens when the physical size of the system is not negligible compared to the

1 The McMillan degree [93] of a matrix transfer function H(s) is the order of a minimal state space
realization of H(s), such as the order N of the Gilbert realization discussed in Section 8.3.9.
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wavelength. Propagation delays lead to the presence of irrational terms in the transfer
function of the underlying system. Typically, these terms are in the form e−sτ where τ
is the propagation delay. Rational functions, including the partial fractions in (8.58)
can accurately fit these irrational terms, up to arbitrary accuracy. However, if τ is not
negligible, the required order may be large, and will quickly increase as τ grows. This
leads to a large model which may burden subsequent simulations.

To overcome this issue, the core idea is to explicitly include exponential terms
e−sτl in the reduced model which will be fitted to the given samples. A popular choice
is to define each element H̃qm(s) of the model transfer function as

̄l
∑
l=1
(r0,l +

n̄l
∑
n=1

rn,l
s − pn,l
)e−sτl , (8.78)

where the qm subscript was omitted from all coefficients for clarity. The exponential
factors in (8.78) are meant to efficiently capture long propagation delays, while the
rational terms between brackets will resolve the residual behavior of the system. Typ-
ically, since long propagation delays are already accounted for by the exponential
terms, the order n̄l of the rational factors can be kept quite low.

For systems with uniform cross-section along the direction of propagation, such
as electrical transmission lines and fluid pipes, VF is used in conjunction to the
method of characteristics to obtain an efficient distributed model [50, 2, 36, 61]. For
distributed systems of general shape, several VF algorithms with delay terms have
been proposed [15, 16, 13, 79, 67, 58]. In these algorithms, the first step is to iden-
tify the values of the relevant propagation delays τi present in the system. Given
only frequency samples Hk, this is not a trivial task, and the dominant approach is
to exploit time–frequency decompositions [39, 32, 67, 48]. Next, the coefficients of
the remaining rational factors in the model are determined with a VF-like iterative
process [16, 13, 79, 67, 58].

8.4.4 Parametric VF algorithms

The design process of an engineering system typically requires a large number of sim-
ulations for different values of design parameters, such as material properties, geo-
metrical dimensions and operating conditions (e. g. bias voltages, temperature, …).
In early design stages, parametric simulations are used to explore the design space.
Later on, they may be used to optimize design in order to meet specifications or im-
prove performance. Moreover, parametric simulations also help designers to account
for manufacturing variability during design. In the context of parametric simulations,
conventional VF models may be inefficient. Indeed, every time a parameter changes,
a new set of samples Hk must be obtained, and the fitting process has to be repeated
from scratch.
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A better solution is to create a parametric VFmodel which captures the system re-
sponse with respect to both frequency s and some parameters of interest μ(1), μ(2), . . ..
The core idea behind parametric VF techniques [83, 80, 64, 20, 34] is to let residues
Rn and poles pn in (8.58) be parameter-dependent functions, such as polynomials in
μ(1), μ(2), . . .. Their coefficients can be determined with an iterative process analogous
to the Sanathanan–Koerner iteration in Section 8.2, starting from samples of the sys-
tem’s frequency response obtained for multiple values of parameters μ(1), μ(2), . . .. The
main advantage of a parametric model is that, once generated, it can be reused many
times for different parameter values within its range of validity. One of the challenges
in the generation of parametric VF models is how to guarantee that the model will be
stable and passive over the desired parameter range [81, 85, 25]. Recently, systematic
solutions to this challenging problem have been proposed [92].

8.5 Conclusion

This chapter introduced the Vector Fitting algorithm, which has become one of the
most popular tools for the extraction of linear reduced order models from samples of
their response, collected in the frequency or in the time domain. Vector Fitting pro-
duces a rational model which approximately minimizes the least-squares error be-
tween the given samples and the model response. Determining model coefficients is
originally a nonlinear least-squares problem, whose solution is prone to the typical
issues of nonlinear minimization: high computational cost and problematic conver-
gence due to local minima. Vector Fitting overcomes these issues by iteratively min-
imizing a linearization of the original problem, leveraging well-established methods
for the solution of linear least-squares problems. Several strategies to obtain a robust
and efficient implementation of VF have been reviewed.When properly implemented,
Vector Fitting enjoys remarkable robustness, efficiency and versatility, typically con-
verging in a handful of iterations. Finally, we reviewed themost prominent extensions
of the original algorithm which have been proposed for data-driven modeling of time
domain systems, noisy samples, distributed systems, and parametric systems.

Vector Fitting’s superior performance and reliability lead to a widespread use
in many different fields. Originally conceived to predict how transients propagate
throughout power distribution networks, VF is themethod of choice for the wideband
modeling of overhead lines, underground cables and power transformers [61, 40, 62,
4, 35]. In electronic engineering, VF is extensively used to model the propagation of
high-speed signals through interconnect networks found at the chip, package and
printed circuit board level. These models are crucial for system design, and greatly
help in preventing signal integrity, power integrity and electromagnetic compatibility
issues [2, 68, 55, 74, 64, 1, 90]. The impact of VF in this area is confirmedby the fact that
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all leading commercial tools for the design of high-frequency electronic circuits in-
clude a VF module. Applications in microwave engineering [56, 84, 19, 18] and digital
filter design [89] have also been reported. Within computational electromagnetism,
VF can be used to efficiently model the Green function of layered media, which is
necessary to solve Maxwell’s equations with integral equation methods [49, 11, 65].
The ability of VF to generate models compatible with transient simulations has also
been exploited in the finite difference time domain (FDTD) method [57, 60], the finite
element time domain method [12, 87], and the discontinuous Galerkin method [91].
Beyond electrical engineering, VF found countless applications in various domains,
including acoustics [17, 66], fluid dynamics [3, 45, 35], mechanical engineering [35, 6],
and in the thermal modeling of chemical batteries [44]. For a collection of VF appli-
cations and additional references, the reader is referred to [35].
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9 Kernel methods for surrogate modeling

Abstract: This chapter deals with kernel methods as a special class of techniques for
surrogate modeling. Kernel methods have proven to be efficient in machine learn-
ing, pattern recognition and signal analysis due to their flexibility, excellent experi-
mental performance and elegant functional analytic background. These data-based
techniques provide so called kernel-expansions, i. e., linear combinations of kernel
functions which are generated from given input–output point samples that may be
arbitrarily scattered. In particular, these techniques are meshless, do not require or
depend on a grid, hence are less prone to the curse of dimensionality, even for high-
dimensional problems.

In contrast to projection-based model reduction, we do not necessarily assume a
high-dimensional model, but a general function that models input–output behavior
within some simulation context. This could be somemicro-model in amultiscale sim-
ulation, some submodel in a coupled system, some initialization function for solvers,
coefficient function in Partial Differential Equations (PDEs), etc.

First, kernel surrogates can be useful if the input–output function is expensive
to evaluate, e. g. as a result of a finite element simulation. Here, acceleration can be
obtained by sparse kernel expansions. Second, if a function is available only via mea-
surements or a few function evaluation samples, kernel approximation techniques
can provide function surrogates that allow for global evaluation.

We present some important kernel approximation techniques, which are kernel
interpolation, greedy kernel approximation and support vector regression. Pseudo-
code is provided for ease of reproducibility. In order to illustrate the main features,
commonalities and differences, we compare these techniques on a real-world appli-
cation. The experiments clearly indicate the enormous acceleration potential.

Keywords: regularizedkernel interpolation, support vector regression, surrogatemod-
eling, greedy approximation, reproducing kernel Hilbert spaces
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9.1 Introduction

This chapter deals with kernel methods as tools to construct surrogate models of ar-
bitrary functions, given a finite set of arbitrary samples.

These methods generate approximants based solely on input–output pairs of
the unknown function, without geometrical constraints on the sample locations. In
particular, the surrogates do not necessarily depend on the knowledge of an high-
dimensional model but only on its observed input–output behavior at the sample
sites, and they can be applied on arbitrarily scattered points in high dimension.

These features are particularly useful when these methods are applied within
some simulation context. For example, kernel surrogates can be useful if the input–
output function is expensive to evaluate, e. g. is a result of a finite element simulation.
Here, acceleration can be obtained by sparse kernel expansions. Moreover, if a func-
tion is available only via measurements or a few function evaluation samples, kernel
approximation techniques can provide function surrogates that allow global evalua-
tion.

Kernel methods are used with much success in Model Order Reduction, and far
beyond the scope of this chapter. For example, they have been used in the modeling
of geometry transformations and mesh coupling [3, 12, 13], and in mesh repair meth-
ods [33], or in the approximation of stability factors and error indicators [14, 32, 34],
where only a few samples of the exact indicators are sufficient to construct an effi-
cient surrogate to be used in the online phase. Moreover, kernel methods have been
combined with projection-based MORmethods, e. g. to obtain simulation-based clas-
sification [60], or to derive multi-fidelity Monte Carlo approximations [40]. Kernel sur-
rogates have been employed in optimal control problems [51, 59], in the coupling of
multi-scale simulations in biomechanics [25, 69], in real time prediction for parame-
ter identification and state estimation in biomechanical systems [29], in gas transport
problems [22], in the reconstruction of potential energy surfaces [30], in the forecast-
ing of time steppingmethods [6], in the reduction of nonlinear dynamical systems [67],
in uncertainty quantification [28], and for nonlinear balanced truncation of dynami-
cal systems [5].

In further generality, there exist many kernel-based algorithms and application
fields that we do not address here. Mainly, we address the solution of PDEs, in which
several approaches have emerged in the last years, and which particularly allow one
to solve problems with unstructured grids on general geometries, including high di-
mensionalmanifolds (see e. g. [11, 17]). Moreover, several other techniques are studied
withinMachine Learning, such as classification, density estimation, novelty detection
or feature extraction (see e. g. [53, 54]).

Furthermore, we remark that these methods are members of the larger class of
machine learning and approximation techniques, which are generally suitable to con-
struct models based on samples to make prediction on new inputs. These models are
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usually referred to as surrogateswhen they are thenused as replacements of themodel
that generated the data, as they are able to provide an accurate and faster response.
Someexamples of these techniques are classical approximationmethods suchaspoly-
nomial interpolation, which are used in this context especially in combination with
sparse grids to deal with high-dimensional problems (see [19]), and (deep) neural net-
work models. The latter in particular have seen a huge increase in analysis and ap-
plication in the recent years. For a recent treatment of deep learning, we refer e. g. to
[21].

Despite these very diverse applications and methodologies, kernel methods can
be analyzed to some extent in the common framework of Reproducing Kernel Hilbert
spaces and, although the focus of this chapter will be on the construction of sparse
surrogate models, parts of the following discussion can be the starting point for the
analysis of other techniques.

In general terms, kernel methods can be viewed as nonlinear versions of linear
algorithms. As an example, assume to have some set Xn := {xk}nk=1 ⊂ ℝ

d of data points
and target data values Yn := {yk}nk=1 ⊂ ℝ. We can construct a surrogate s : ℝd → ℝ
that predicts new data via linear regression, i. e., findw ∈ ℝd s. t. s(x) := ⟨w, x⟩, where
⟨⋅, ⋅⟩ is the scalar product in ℝd. A good surrogate model s will give predictions such
that |s(xk) − yk | is small. If we can write w ∈ ℝd as w = ∑nj=1 αjxj for a set of coefficients
(αi)ni=1 ∈ ℝ

n, then s can be rewritten as

s(x) :=
n
∑
j=1

αj⟨xj, x⟩.

Note that this formulation includes also regressionwith anoffset (or bias)b ̸= 0,which
can be written in this form by an extended representation as

s(x) := ⟨w, x⟩ + b =: ⟨w̄, x̄⟩,

where x̄ := (x, 1)T ∈ ℝd+1 and w̄ := (w, b)T ∈ ℝd+1.
Using now the Gramian matrix A ∈ ℝn×n with entries Aij := ⟨xi, xj⟩ and rows ATi ∈

ℝn, we look for the surrogate s which minimizes

n
∑
i=1
(s(xi) − yi)

2
2 =

n
∑
i=1
(ATi α − yi)

2
2 = ‖Aα − y‖

2
2.

Additionally, a regularization term can be added to keep the norm of α small, e. g. in
terms of the value αTAα. Thus, the surrogate can be characterized as the solution of
the optimization problem

min
α∈ℝn
‖Aα − y‖22 + λα

TAα,

i. e., α = (A + λI)−1y if λ > 0.
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Inmany cases this (regularized) linear regression is not sufficient to obtain a good
surrogate. A possible idea is to try to combine this linear, simple method with a non-
linear function whichmaps the data to a higher dimensional space, where the hope is
that the image of the data can be processed linearly. For this we consider a so-called
feature map Φ : ℝd → H, where H is a Hilbert space, and apply the same algorithm
to the transformed data Φ(Xn) := {Φ(xi)}ni=1 with the same values Yn. Since the algo-
rithm depends on Xn only via the Gramian A, it is sufficient to replace it with the new
Gramian Aij := ⟨Φ(xi),Φ(xj)⟩H to obtain a nonlinear algorithm.

We will see that ⟨Φ(x),Φ(y)⟩H defines in fact a positive definite kernel, and if any
numerical procedure can be written in terms of inner products of the inputs, it can
be transformed in the same way into a new nonlinear algorithm simply by replacing
the inner products with kernel evaluations (the so-called kernel trick).Wewill discuss
the details of this procedure in the next sections in the case of interpolation and Sup-
port Vector Regression, but this immediately gives a glance of the ample spectrum of
algorithms in the class of kernel methods.

This chapter is organized as follows. Section 9.2 covers the basic notions on ker-
nels and kernel-based spaces which are necessary for the development and under-
standing of the algorithms. The next Section 9.3 presents the general ideas and tools to
construct kernel surrogates as characterized by the Representer Theorem, and these
ideas are specialized to the case of kernel interpolation in Section 9.4 and Support
Vector Regression in Section 9.5. In both cases, we provide the theoretical founda-
tions as well as the algorithmic description of the methods, with particular attention
to techniques to enforce sparsity in the model. These surrogates can be used to per-
form various analyses of the full model, and we give some examples in Section 9.6.
Section 9.7 presents a general strategy to choose the various parameters defining the
model, whose tuning can be critical for a successful application of the algorithms. Fi-
nally, we discuss in Section 9.8 the numerical results of themethods on a real applica-
tion dataset, comparing training time (offline), prediction time (online), and accuracy.

9.2 Background on kernels
We start by introducing some general facts of positive definite kernels. Further de-
tails on the general analytical theory of reproducing kernels can be found e. g. in the
recentmonograph [45], while the books [15, 65] and [53, 55] contain a treatment of ker-
nel theory from the point of view of pattern analysis and scattered data interpolation,
respectively.

9.2.1 Positive definite kernels
Givenanonempty setΩ,which canbe a subset ofℝd,d ∈ ℕ, but also a set of structured
objects such as strings or graphs, a real- and scalar-valued kernel K on Ω is a bivariate
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symmetric function K : Ω × Ω → ℝ, i. e., K(x, y) = K(y, x) for all x, y ∈ Ω. For our
purposes, we are interested in (strictly) positive definite kernels, defined as follows.

Definition 9.1 (Positive definite kernels). Let Ω be a nonempty set. A kernel K on Ω is
positive definite (PD) onΩ if for alln ∈ ℕ and for any set of npairwise distinct elements
Xn := {xi}ni=1 ⊂ Ω, the kernel matrix (or Gramian matrix) A := AK,Xn ∈ ℝ

n×n defined as
Aij := K(xi, xj), 1 ≤ i, j ≤ n, is positive semidefinite, i. e., for all vectors α := (αi)ni=1 ∈ ℝ

n

we have

αTAα =
n
∑
i,j=1

αiαjK(xi, xj) ≥ 0. (9.1)

The kernel is strictly positive definite (SPD) if the kernel matrix is positive definite,
i. e., (9.1) holds with strict inequality when α ̸= 0.

The further class of conditionally (strictly) positive definite kernels is also of in-
terest in certain contexts. We refer to [65, Chapter 8] for their extensive treatment, and
we just mention that they are defined as above, except that the condition (9.1) has to
be satisfied only for the subset of coefficients α which match a certain orthogonality
condition. When this condition is defined with respect to a space of polynomials of
degree m ∈ ℕ, the resulting kernels are used e. g. to guarantee a certain polynomial
exactness of the given approximation scheme, and they are often employed in certain
methods for the solution of PDEs.

9.2.2 Examples and construction of kernels

Despite the abstract definition, there are several ways to construct functions K : Ω ×
Ω → ℝ which are (strictly) positive definite kernels, and usually the proper choice of
the kernel is a crucial step in the successful application of the method. We list here a
general strategy to construct kernels, and some notable examples.

An often used, constructive approach to designing a new kernel is via feature
maps as follows.

Proposition 9.1 (Kernels via feature maps). Let Ω be a nonempty set. A feature mapΦ
is any function Φ : Ω → H, where (H , ⟨⋅, ⋅⟩H ) is any Hilbert space (the feature space).
The function

K(x, y) := ⟨Φ(x),Φ(y)⟩H x, y ∈ Ω,

is a PD kernel on Ω.

Proof. K is a PD kernel since it is symmetric and positive definite, because the inner
product is bilinear, symmetric and positive definite.
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Inmany cases,H is eitherℝm with very largem or even an infinite dimensional Hilbert
space. The computation of the possibly expensive m- or infinite-dimensional inner
product can be avoided if a closed form for K can be obtained. This implies a signifi-
cant reduction of the computational time required to evaluate the kernel and thus to
execute any kind of algorithm.

We see now some examples.

Example 9.1 (Expansion kernels). The construction comprises finite dimensional lin-
ear combinations, i. e., for a set of functions {vj}mj=1 : Ω → ℝ, the function K(x, y) :=
∑mk=1 vk(x)vk(y) is a positive definite kernel, having a feature map

Φ(x) := (v1(x), v2(x), . . . , vm(x))
T
∈ H := ℝm. (9.2)

This idea can be extended to an infinite number of functions provided {vj(x)}∞j=1 ∈
H := ℓ2(ℕ) uniformly in Ω, and the resulting kernels are called Hilbert–Schmidt or
expansion kernels, which can be proven to be even SPD under additional conditions
(see [49]). As an example in d = 1, we mention the Brownian Bridge kernel K(x, y) :=
max(x, y) − xy, defined with a feature map vj(x) := √2(jπ)−1 sin(jπx) for j ∈ ℕ, which
is SPD on Ω := (0, 1). We remark that the kernel can be extended to (0, 1)d with d > 1
using a tensor product of one-dimensional kernels.

This featuremap representation proves also that dim(H) =: m < ∞means that the
kernel is not SPD in general: e. g., if Xn contains n pairwise distinct points andm < n,
then the vectors {Φ(xi)}ni=1 cannot be linearly independent, and thus the kernel matrix
is singular.

Example 9.2 (Kernels for structured data). Feature maps are also employed to con-
struct positive definite kernels on sets Ω of structured data, such as sets of strings,
graphs, or any other object. For example, the convolution kernels introduced in
[20, 26] consider a finite set of features v1(x), . . . , vm(x) ∈ ℝ of an object x ∈ Ω, and
define a feature map exactly as in (9.2).

Example 9.3 (Polynomial kernels). For a ≥ 0, p ∈ ℕ, x, y ∈ ℝd, the polynomial kernel

K(x, y) := (⟨x, y⟩ + a)p = (
d
∑
i=1

x(i)y(i) + a)
p

, x := (x(1), . . . , x(d))T , (9.3)

is PD on any Ω ⊂ ℝd. It is a d-variate polynomial of degree p, which contains the
monomial terms of degrees j := (j(1), . . . , j(d)) ∈ J, for a certain set J ⊂ ℕd0. If m := |J|, a
feature space is ℝm with feature map

Φ(x) := (√a1x
j1 , . . . , √amx

jm )T ,

for some positive numbers {aj}mj=1 and monomials xjm := ∏di=1(x
(i))j
(i)
m .
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Observe that using the closed form (9.3) of the kernel instead of the feature map is
very convenient, sinceweworkwith d-dimensional instead ofm-dimensional vectors,
where possiblym := |J| = (d+pd ) = dim(ℙp(ℝ

d)) ≫ d.

Example 9.4 (RBF kernels). For Ω ⊂ ℝd in many applications the most used kernels
are translational invariant kernels, i. e., there exists a function ϕ : ℝd → ℝ with

K(x, y) := ϕ(x − y), x, y ∈ Ω,

and in particular radial kernels, i. e., there exists a univariate function ϕ : ℝ≥0 → ℝ
with

K(x, y) := ϕ(‖x − y‖), x, y ∈ Ω.

A radial kernel, or Radial Basis Function (RBF), is usually defined up to a shape pa-
rameter γ > 0 that controls the scale of the kernel via K(x, y) := ϕ(γ‖x − y‖).

The main example of such kernels is the Gaussian K(x, y) := e−γ
2‖x−y‖2 , which is

in fact strictly positive definite. An explicit feature map has been computed in [56]: If
Ω ⊂ ℝd is nonempty, a feature map is the function Φγ : Ω→ L2(ℝd) defined by

Φγ(x) :=
(2γ)

d
2

π
d
4

exp(−2γ2‖x − ⋅‖2), x ∈ Ω.

In this case it is even more evident how working with the closed form of K is much
more efficient than working with a feature map and computing L2-inner products.

RBF kernels offer a significant easiness of implementation in arbitrary space di-
mension d. The evaluation of the kernel K(⋅, x), x ∈ ℝd, on a vector of n points can
indeed by realized by first computing a distance vector D ∈ ℝn, Di := ‖x − xi‖, and
then applying the univariate function ϕ on D. A discussion and comparison of differ-
ent algorithms (inMatlab) to efficiently compute a distancematrix can be found in [15,
Chapter 4], andmost scientific computing languages comprise a built-in implementa-
tion (such as pdist21 in Matlab and distance_matrix2 in Scipy).

Translational invariant and RBF kernels can be often analyzed in terms of their
Fourier transforms, which provide proofs of their strict positive definiteness via the
Bochner theorem (see e. g. [65, Chapter 6]), and connections to certain Sobolev spaces,
as we will briefly see in Section 9.2.3.

Among various RBF kernels, there are also compactly supported kernels, i. e.,
K(x, y) = 0 if ‖x − y‖ > 1/γ, which produce sparse kernel matrices if γ is large enough.
Themost used ones are theWendlandkernels introduced in [63],which are even radial
polynomial within their support.

1 https://www.mathworks.com/help/stats/pdist2.html
2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance_matrix.html
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There are, in addition, various operations to combine positive definite kernels and
obtain new ones. For example, sums and products of positive definite kernels and
multiplication by a positive constant a > 0 produce again positive definite kernels.
Moreover, if K′ is a positive definite kernel and K′′ is symmetric with K′ ≼ K′′ (i. e.,
K := K′′ − K′ is PD) then also K′′ is positive definite. Furthermore, if Ω = Ω′ × Ω′′

and K′, K′′ are PD kernels on Ω′, Ω′′, then K(x, y) := K′(x′, y′)K′′(x′′, y′′) and K(x, y) :=
K′(x′, y′) + K′′(x′′, y′′) are also PD kernels on Ω, i. e., kernels can be defined to respect
tensor product structures of the input.

Further details and examples can be found in [45, Chapters 1–2].

9.2.3 Kernels and Hilbert spaces

Most of the analysis of kernel-based methods is possible through the connection with
certain Hilbert spaces. We first give the following definition.

Definition 9.2 (Reproducing Kernel Hilbert Space). Let Ω be a nonempty set, ℋ an
Hilbert space of functions f : Ω → ℝ with inner product ⟨⋅, ⋅⟩ℋ. Then ℋ is called a
Reproducing Kernel Hilbert Space (RKHS) onΩ if there exists a functionK : Ω×Ω→ ℝ
(the reproducing kernel) such that
1. K(⋅, x) ∈ ℋ for all x ∈ Ω,
2. ⟨f ,K(⋅, x)⟩ℋ = f (x) for all x ∈ Ω, f ∈ ℋ (reproducing property).

The reproducing property is equivalent to state that, for x ∈ Ω, the x-translate
K(⋅, x) of the kernel is the Riesz representer of the evaluation functional δx : ℋ → ℝ,
δx(f ) := f (x) for f ∈ ℋ, which is hence a continuous functional inℋ. Also the converse
holds, and the following result gives an abstract criterion to check if a Hilbert space is
a RKHS.

Theorem 9.1. An Hilbert space of functions Ω → ℝ is a RKHS if and only if the point
evaluation functionals are continuous inℋ for all x ∈ Ω, i. e., δx ∈ ℋ′, the dual space of
ℋ. Moreover, the reproducing kernel K ofℋ is strictly positive definite if and only if the
functionals {δx : x ∈ Ω} are linearly independent inℋ′.

Proof. The first part is clear from the reproducing property, while strict positive defi-
niteness can be checked by verifying that the quadratic form in Definition 9.1 cannot
be zero for α ̸= 0 if {δx : x ∈ Ω} are linearly independent.

We see two concrete examples.

Example 9.5 (Finite dimensional spaces). Any finite dimensional Hilbert space ℋ of
functions on a nonempty set Ω is a RKHS. Ifm := dim(ℋ) and {vj}mj=1 is an orthonormal
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basis, then a reproducing kernel is given by

K(x, y) :=
m
∑
j=1

vj(x)vj(y), x, y ∈ Ω.

Indeed, the two properties of Definition 9.2 can be easily verified by direct computa-
tion.

Example 9.6 (The Sobolev space H1
0(0, 1)). The Sobolev space H1

0(0, 1) with inner
product ⟨f , g⟩H1

0
:= ∫

1
0 f
′(y)g′(y) dy is a RKHS with the Brownian Bridge kernel

K(x, y) := min(x, y) − xy, x, y ∈ (0, 1)

as reproducing kernel (see e. g. [8]). Indeed, K(⋅, x) ∈ H1
0(0, 1), and the reproducing

property (2) follows by explicitly computing the inner product.

The following result proves that reproducing kernels are in fact positive definite
kernels in the sense of Definition 9.1. Moreover, the first two properties are useful to
deal with the various type of approximants of Section 9.4 and Section 9.5, which will
be exactly of this form.

Proposition 9.2. Letℋ be aRKHSonΩwith reproducing kernel K. Let n, n′ ∈ ℕ, α ∈ ℝn,
α′ ∈ ℝn

′
, Xn,X′n′ ⊂ Ω, and define the functions

f (x) :=
n
∑
i=1

αiK(x, xi), g(x) :=
n′
∑
j=1

α′jK(x, x
′
j ), x ∈ Ω.

Then we have the following:
1. f , g ∈ ℋ,
2. ⟨f , g⟩ℋ = ∑

n
i=1∑

n′
j=1 αiα

′
jK(xi, x

′
j ).

3. K is the unique reproducing kernel ofℋ and it is a positive definite kernel.

Proof. The first two properties follow from Definition 9.2, and in particular from ℋ
being a linear space and from the bilinearity of ⟨⋅, ⋅⟩ℋ.

For Property (3), the fact that K is symmetric and positive definite, hence a PD
kernel, follows from Property (1) of Definition 9.2, and from the symmetry and positive
definiteness of the inner product. Moreover, the reproducing property implies that, if
K,K′ are two reproducing kernels ofℋ, then for all x, y ∈ Ω we have

K(x, y) = ⟨K(⋅, y),K′(⋅, x)⟩ℋ = K
′(x, y).

It is common in applications to follow instead the opposite path, i. e., to start with
a given PD kernel, and try to see if an appropriate RKHS exists. This is in fact always
the case, as proven by the following fundamental theorem from [2].
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Theorem 9.2 (RKHS from kernels – Moore–Aronszajn theorem). Let Ω be a nonempty
set and K : Ω × Ω → ℝ a positive definite kernel. Then there exists a unique RKHS
ℋ := ℋK(Ω) with reproducing kernel K.

Proof. The theorem was first proven in [2], to which we refer for a detailed proof. The
idea is to deduce that, by Property (1) of Proposition 3, a candidate RKHSℋ of K needs
to contain the linear space

ℋ0 := span {K(⋅, x) : x ∈ Ω}

of finite linear combinations of kernel translates.Moreover, fromProperty (2) of Propo-
sition 9.2, the inner product on thisℋ0 needs to satisfy

⟨f , g⟩ℋ =
n
∑
i=1

n′
∑
j=1

αiα
′
jK(xi, x

′
j ). (9.4)

With this observation inmind, the idea of the construction ofℋ is to start byℋ0, prove
that (9.4) defines indeed an inner product onℋ0, and that the completion ofℋ0 w. r. t.
this inner product is a RKHS havingK as reproducing kernel. Uniqueness then follows
from Property (3) of the same proposition.

As it is common in the approximation literature,wewill sometimes refer to this unique
ℋ as the native space of the kernel K on Ω.

Remark 9.1 (Kernel feature map). Among other consequences, this construction al-
lows one to prove that any PD kernel is generated by at least one feature map. Indeed,
the function Φ : Ω → ℋ, Φ(x) := K(⋅, x), is clearly a feature map for K with feature
spaceℋ, since the reproducing property implies that

⟨Φ(x),Φ(y)⟩H = ⟨K(⋅, x),K(⋅, y)⟩ℋ = K(x, y) for all x, y ∈ Ω.

Remark 9.2. For certain translational invariant kernels it is possible to prove that the
associated native space is norm equivalent to a Sobolev spaces of the appropriate
smoothness, which is related to the kernels’ smoothness (see [65, Chapter 10]). This is
particularly interesting since the approximation properties of the different algorithms,
including certain optimality that we will see in the next sections, are in fact optimal
in these Sobolev spaces (with an equivalent norm).

The various operations on positive definite kernels mentioned in Section 9.2.2
have an analogous effect on the corresponding native spaces. For example, the scal-
ing by a positive number a > 0 does not change the native space, but scales the
inner product correspondingly, and, if K′ ≼ K′′ are positive definite kernels, then
ℋK′ (Ω) ⊂ ℋK′′ (Ω). We remark that the latter property has been used for example in [71]
to prove inclusion relations for the native spaces of RBF kernels with different shape
parameters.
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9.2.4 Kernels for vector-valued functions

So far we only dealt with scalar-valued kernels, which are suitable to treat scalar-
valued functions. Nevertheless, it is clear that the interest in model reduction is typ-
ically also on vector-valued or multi-output functions, which thus require a general-
ization of the theory presented so far. This has been done in [35], and it is based on the
following definition of matrix-valued kernels.

Definition 9.3 (Matrix-valued PD kernels). Let Ω be a nonempty set and q ∈ ℕ. A func-
tionK : Ω×Ω→ ℝq×q is amatrix-valued kernel if it is symmetric, i. e.,K(x, y) = K(y, x)T

for all x, y ∈ Ω. It is a PD (resp., SPD) matrix-valued kernel if the kernel matrix A ∈
ℝnq×nq is positive semidefinite (resp., positive definite) for all n ∈ ℕ and for all sets
Xn ⊂ Ω of pairwise distinct elements.

Thismore general class of kernels is also associated to a uniquely defined native space
of vector-valued functions, where the notion of RKHS is replaced by the following.

Definition 9.4 (RKHS for matrix-valued kernels). Let Ω be a nonempty set, q ∈ ℕ, ℋ
an Hilbert space of functions f : Ω→ ℝq with inner product ⟨⋅, ⋅⟩ℋ. Thenℋ is called a
vector-valued RKHS onΩ if there exists a functionK : Ω×Ω→ ℝq×q (thematrix-valued
reproducing kernel) such that
1. K(⋅, x)v ∈ ℋ for all x ∈ Ω, v ∈ ℝq,
2. ⟨f ,K(⋅, x)v⟩ℋ = f (x)Tv for all x ∈ Ω, v ∈ ℝq, f ∈ ℋ (directional reproducing prop-

erty).

A particularly simple version of this construction can be realized by considering
separablematrix-valuedkernels (see e. g. [1]), i. e., kernels that are defined asK(x, y) :=
K̃(x, y)B, where K̃ is a standard scalar-valued PD kernel, and B ∈ ℝq×q is a positive
semidefinite matrix. In the special case Q = I (the q × q identity matrix), in [70] it is
shown that the native space of K is the tensor product of q copies of the native space
of K̃, i. e.,

ℋK(Ω) = {f : Ω→ ℝ
q : fj ∈ ℋK̃(Ω), 1 ≤ j ≤ q}

with

⟨f , g⟩ℋK
=

q
∑
j=1
⟨fj, gj⟩ℋK̃

.

This simplification will give convenient advantages when implementing some of the
methods discussed in Section 9.4.
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9.3 Data based surrogates
Wecannow introduce in general terms the two surrogatemodeling techniques thatwe
will discuss, namely (regularized) kernel interpolation and Support Vector Regression
(SVR).

For both of them, the idea is to represent the expensive map to be reduced as a
function f : Ω → ℝq that maps an input x ∈ Ω to an output y ∈ ℝq. Here f is assumed
to be only continuous, and the set Ω can be arbitrary as long as a positive definite
kernel K can be defined on it. Moreover, the function does not need to be known in
any particular way except than through its evaluations on a finite set Xn := {xk}nk=1 ⊂ Ω
of pairwise distinct data points, resulting in data values Yn := {yk := f (xk)}nk=1 ⊂ ℝ

q.
The goal is to construct a function s ∈ ℋ such that s(x) is a good approximation of

f (x) for all x ∈ Ω (and not only for x ∈ Xn), while being significantly faster to evaluate.
The process of computing s from the data (Xn,Yn) is often referred to as training of the
surrogate s, and the set (Xn,Yn) is thus called training dataset.

The computation of the particular surrogate is realized as the solution of an infi-
nite dimensional optimization problem. In general terms, we define a loss function

L : ℋ × Ωn × (ℝq)
n
→ ℝ≥0 ∪ {+∞},

which takes as input a candidate surrogate g ∈ ℋ and the values Xn ∈ Ωn, Yn ∈ (ℝq)n,
and returns a measure of the data-accuracy of g. Then the surrogate s is defined as a
minimizer, if it exists, of the cost function

J(g) := L(g,Xn,Yn) + λ‖g‖
2
ℋ,

where the second part of J is a regularization term that penalizes solutions with large
norm. The tradeoff between the data-accuracy termand the regularization term is con-
trolled by the regularization parameter λ ≥ 0.

For the sake of presentation, we restrict in the remaining of this section to the case
of scalar-valued functions, i. e., q = 1. The general case follows by usingmatrix valued
kernels as introduced in Section 9.2.4, and the corresponding definition of orthogonal
projections.

The following fundamental Representer Theorem characterizes exactly some so-
lutions of this problem, and it proves that the surrogate will be a function

s ∈ V(Xn) := span {K(⋅, xi), xi ∈ Xn}

i. e., a finite linear combination of kernel translates on the training points. A first ver-
sionof this resultwasproven in [27],whilewe refer to [52] for amore general statement.

Theorem 9.3 (Representer Theorem). Let Ω be a nonempty set, K a PD kernel on Ω,
λ > 0 a regularization parameter, and let (Xn,Yn) be a training set. Assume that
L(s,Xn,Yn) depends on s only via the values s(xi), xi ∈ Xn.
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Then, if the optimization problem

argmin
g∈ℋ

J(g) := L(g,Xn,Yn) + λ‖g‖
2
ℋ (9.5)

has a solution, it has in particular a solution of the form

s(x) :=
n
∑
j=1

αjK(x, xj), x ∈ Ω, (9.6)

for suitable coefficients α ∈ ℝn.

Proof. We prove that for every g ∈ ℋ there exists s ∈ V(Xn) such that J(s) ≤ J(g). To
see this, we decompose g ∈ ℋ as

g = s + s⊥, s ∈ V(Xn), s
⊥ ∈ V(Xn)

⊥.

In particular, since K(⋅, xi) ∈ V(Xn), we have by the reproducing property of the kernel

s⊥(xi) = ⟨s
⊥,K(⋅, xi)⟩ℋ = 0, 1 ≤ i ≤ n,

thus g(xi) = s(xi) + s⊥(xi) = s(xi) for 1 ≤ i ≤ n, and it follows that L(g,Xn,Yn) =
L(s,Xn,Yn). Moreover, again by orthogonal projection we have ‖g‖2ℋ = ‖s‖

2
ℋ + ‖s

⊥‖2ℋ.
Since λ ≥ 0, we obtain

J(s) = L(s,Xn,Yn) + λ‖s‖
2
ℋ = L(g,Xn,Yn) + λ‖s‖

2
ℋ

= L(g,Xn,Yn) + λ‖g‖
2
ℋ − λ‖s

⊥‖2ℋ = J(g) − λ‖s
⊥‖2ℋ ≤ J(g).

Thus, if g ∈ ℋ is a solution then s ∈ V(Xn) is also a solution.

The existence of a solution will be guaranteed by choosing a convex cost function
J, i. e., since the regularization term is always convex, by choosing a convex loss func-
tion. Then the theorem states that solutions of the infinite dimensional optimization
problem can be computed by solving a finite dimensional convex one.

This is a great result, but observe that the evaluation of s(x), x ∈ Ω, requires the
evaluation of the n-terms linear combination (9.6), where n is the size of the dataset.
Assuming that the kernel can be evaluated in constant time, the complexity of this op-
eration is𝒪(n). Thus, to achieve the promised speedup in evaluating the surrogate in
place of the function f , wewill consider in the followingmethods that enforce sparsity
in s, i. e., which compute approximate solution where most of the coefficients αj are
zero. If the nonzero coefficients correspond to an index set IN := {i1, . . . , iN } ⊂ {1, . . . , n},
the complexity is reduced to𝒪(N).

Taking into account this sparsity anddenotingXN := {xi ∈ Xn : i ∈ IN } and α := (αi :
i ∈ IN ), we can summarize in Algorithm 9.1 the online phase for any of the following
algorithms, consisting in the evaluation of s on a set of points Xte ⊂ Ω. Here and in the
following, we denote by s(X) := (s(x1), . . . , s(xm))T ∈ ℝm the vector of evaluations of s
on a set of points X := {xi}mi=1 ⊂ Ω.
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Algorithm 9.1: Kernel surrogate – online phase.

1: Input: XN ∈ ΩN , α ∈ ℝN , kernel K (and kernel parameters), test points Xte :=
{xtei }

nte
i=1 ∈ Ω

nte

2: Compute the kernel matrix Ate ∈ ℝnte×N , (Ate)ij := K(xtei , xij ).
3: Evaluate the surrogate s(Xte) = Ateα.
4: Output: evaluation of the surrogate s(Xte) ∈ ℝnte .

Remark 9.3 (Normalization of the cost function). It is sometimes convenient toweight
the loss term in the cost function (9.5) by a factor 1/n, which normalizes its value with
respect to the number of data.We do not use this convention here, andwe only remark
that this is equivalent to the use of a regularization parameter λ = nλ′ for a given
λ′ > 0.

9.4 Kernel interpolation
The first method that we discuss is (regularized) kernel interpolation. In this case, we
consider the square loss function

L(s,Xn,Yn) :=
n
∑
i=1
(s(xi) − yi)

2
,

whichmeasures the pointwise distance between the surrogate and the target data.We
have then the following special case of the Representer Theorem.We denote by y ∈ ℝn

the vector of output data, assuming again for now that q = 1.

Corollary 9.1 (Regularized interpolant). Let Ω be a nonempty set, K a PD kernel on Ω,
λ ≥ 0 a regularization parameter. For any training set (Xn,Yn) there exists an approxi-
mant of the form

s(x) =
n
∑
j=1

αjK(x, xj), x ∈ Ω, (9.7)

where the vector of coefficients α ∈ ℝn is a solution of the linear system

(A + λI)α = y, (9.8)

where A ∈ ℝn×n, Aij := K(xi, xj), is the kernel matrix on Xn. Moreover, if K is SPD this is
the unique solution of the minimization problem (9.5).

Proof. The loss L is clearly convex, so there exists a solution of the optimization prob-
lem, and by Theorem 9.3 we know that we can restrict to solutions in V(Xn).
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We then consider functions s := ∑nj=1 αjK(⋅, xj) for some unknown α ∈ ℝn. Comput-
ing the inner product as in Proposition 9.2, we obtain

s(xi) =
n
∑
j=1

αjK(xi, xj) = (Aα)i, ‖s‖
2
ℋ =

n
∑
i,j=1

αiαjK(xi, xj) = α
TAα.

The functional J restricted to V(Xn) can be parametrized by α ∈ ℝn, and thus it can be
rewritten as ̃J : ℝn → ℝ with

̃J(α) = ‖Aα − y‖22 + λα
TAα = (Aα − y)T (Aα − y) + λαTAα

= αTATAα − 2αTATy + yTy + λαTAα,

which is convex in α sinceA is positive semidefinite. SinceA is symmetric, its gradient
is

∇α ̃J(α) = 2A
TAα − 2ATy + 2λAα = 2A(Aα − y + λα),

i. e.,∇α ̃J(α) = 0 if and only ifA(A+λI)α = Ay, which is satisfiedby α such that (A+λI)α =
y. If K is SPD then both A and A + λI are invertible, so this is the only solution.

The extension to vector-valued functions, i. e. q > 1, is straightforward using the
separable matrix-valued kernels with B = I of Section 9.2.4. Indeed, in this case the
data values are vectors yi := f (xi) ∈ ℝq, and thus in the interpolant (9.7) also the coef-
ficients are vectors αj ∈ ℝq. The linear system (9.8) has the same matrix, but instead
α, y ∈ ℝn×q are defined as

α := (α1, . . . , αn)
T , y := (y1, . . . , yn)

T . (9.9)

We remark that in the following the values xi, yi, s(x), and αk have always to be under-
stood as row vectors when q > 1. This notation is very convenient when representing
the coefficients as the solution of a linear system. Furthermore, the representation of
the dataset samples (x, y) is quite natural when dealing with tabular data, where each
column represents a feature and each row a sample vector.

For K SPD and pairwise distinct sample locations Xn we can also set λ := 0 and
obtain pure interpolation, i. e., the solution satisfies L(s,Xn,Yn) = 0, or

s(xi) = yi, 1 ≤ i ≤ n.

Observe that this means that with this method we can exactly interpolate arbitrary
continuous functions on arbitrary pairwise distinct scattered data in any dimension,
as opposite tomany other techniqueswhich require complicated conditions on the in-
terpolation points or a grid structure. Moreover, this approximation process has sev-
eral optimality properties inℋ, which remind one of similar properties of spline inter-
polation.
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Proposition 9.3 (Optimality of kernel interpolation). Let K be SPD, f ∈ ℋ, and λ = 0.
Then s is the orthogonal projection of f in V(Xn), and in particular

‖f − s‖ℋ = min
g∈V(Xn)
‖f − g‖ℋ.

Moreover, if S := {g ∈ ℋ : g(xi) = f (xi), 1 ≤ i ≤ n}, then

‖s‖ℋ = min
g∈S
‖g‖ℋ,

i. e., s is the minimal norm interpolant of f on Xn.

Proof. The proof is analogous to the proof of the Representer Theorem, using a de-
composition f = g + g⊥, and proving that s = g.

We will see in Section 9.7 a general technique to tune λ using the data, which
should return λ = 0 (or very small) when this is the best option. Nevertheless, also for
an SPD kernel there are at least two reasons to still consider regularized interpolation.
First, the data can be affected by noise, and thus an exact pointwise recovery does not
makemuch sense. Second, a positive parameter λ > 0 improves the condition number
of the linear system, and thus the stability of the solution. Indeed, the 2-condition
number of A + λI is

κ(λ) := λmax(A + λI)
λmin(A + λI)

=
λmax(A) + λ
λmin(A) + λ

,

which is a strictly decreasing function of λ, with κ(0) = κ(A) and limλ→∞ κ(λ) = 1.
Moreover (see [66]) this increased stability can be achieved by still controlling the
pointwise accuracy. Namely, if f ∈ ℋ, we have

󵄩󵄩󵄩󵄩yi − s(xi)
󵄩󵄩󵄩󵄩2 ≤ √λ‖f ‖ℋ 1 ≤ i ≤ n.

We can then summarize the offline phase for regularized kernel interpolation in
Algorithm 9.2.

Algorithm 9.2: Regularized Kernel interpolation – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ (ℝq)n, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0.

2: Compute the kernel matrix A ∈ ℝn×n, Aij := K(xi, xj).
3: Solve the linear system (A + λI)α = y.
4: Output: coefficients α ∈ ℝn×q.
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Remark 9.4 (Flat limit). The matrix A can be seriously ill-conditioned for certain ker-
nels, and this constitutes aproblemat least in the case of pure interpolation. It canalso
be proven that kernels which guarantee a faster error convergence result in a worse
conditioned matrix [48].

For RBF kernels, this happens especially for γ → 0 (the so called flat limit), and it
is usually not a good idea to directly solve the linear system. In the last years there has
been very active research to compute s via different formulations, which rely on dif-
ferent representations of the kernel. We mention here mainly the RBF-QR algorithm3

[18, 31] and the Hilbert–Schmidt SVD4 [16] . Both methods are limited so far to only
some kernels, but they manage to achieve a great accuracy, which is usually impossi-
ble to obtain with the direct solution of the linear system.

Remark 9.5 (Error estimation). For SPD translational invariant kernels there is a very
detailed error analysis of the interpolation process (λ = 0), for which we refer to [65,
Chapter 11]. We only mention that these error bounds assume that f ∈ ℋ, and are of
the form

‖f − s‖L∞(Ω) ≤ Chpn‖f ‖ℋ,
where C > 0 is a constant independent of f , and hn is the fill distance of Xn in Ω, i. e.,

hn := hXn ,Ω := supx∈Ω
min
xj∈Xn
‖x − xj‖,

which is the analogue of the mesh width for scattered data. Moreover, the order of
convergence p > 0 is dependent on the smoothness of the kernel. In particular, these
error bounds can be proven to be optimal when the native space of K is a Sobolev
space.

Moreover, these results have been recently extended to the case of regularized
interpolation (λ > 0) in [43, 66].

9.4.1 Kernel greedy approximation

The surrogate constructed via Corollary 9.1 involves a linear combination of n terms,
wheren is the size of thedataset. In general, there is no reason to assume that the result
has any sparsity, i. e., in general all the αj will be nonzero, and it is thus necessary to
introduce some technique to enforce this sparsity.

A very effective way to achieve this result is via greedy algorithms. The idea is to
select a small subset XN ⊂ Xn, N ≪ n, given by indices IN ⊂ {1, . . . , n}, and to solve the

3 http://www.it.uu.se/research/scientific_computing/software/rbf_qr
4 http://math.iit.edu/~mccomic/gaussqr/
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corresponding restricted problem with the dataset (XN ,YN ) to compute a surrogate

sN (x) := ∑
k∈IN

αkK(x, xk), (9.10)

where the coefficient vectors are computed based on (9.8), and are in general different
from the ones of the full surrogate. If we manage to select IN in a proper way, we will
obtain sN (x) ≈ f (x) for all x ∈ Ω, while the evaluation of sN (x) is now only of order
𝒪(N).

An optimal selection of XN is a combinatorial problem and thus is very expensive
and in practice computationally intractable. The idea of greedy algorithms is instead
to perform this selection incrementally, i. e., adding at each iteration only the most
promising new point, based on some error indicator.

The general structure of the algorithm is described in Algorithm 9.3. For the mo-
ment, we consider a generic selection rule η : Xn × ℕ × Ωn × (ℝq)n → ℝ≥0 that selects
points based on the value η(x,N ,Xn,Yn). This is a compact notation to denote that the
selection rule assigns a score to a point x ∈ Ω, and it is computed using various quan-
tities that depend on the dataset (Xn,Yn) and on the iteration number N, including in
particular the surrogate computed at the previous iteration. The algorithm is termi-
nated by means of a given tolerance τ > 0.

Algorithm 9.3: Kernel greedy approximation – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ (ℝq)n, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, selection rule η, tolerance τ.

2: Set N := 0, X0 := 0, V(X0) := {0}, s0 := 0.
3: repeat
4: Set N := N + 1
5: Select xN := argmaxx∈Xn\XN−1 η(x,N ,Xn,Yn).
6: Define XN := XN−1 ∪ {xN } and V(XN ) := span {K(⋅, xi), xi ∈ XN }
7: Compute the surrogate sN with dataset (XN ,YN ) with (9.8).
8: until η(xN ,N ,Xn,Yn) ≤ τ
9: Output: surrogate sN (i. e. coefficients α ∈ ℝN×q).

Remark 9.6. In the case that the maximizer of η the line 5 of Algorithm 9.3 is not
unique, only one of the multiple points is selected and included in XN .

In line 7 of the algorithm, we need to compute the surrogate sN with dataset
(XN ,YN ). This step can be highly simplified by reusing sN−1 as much as possible,
thus improving the efficiency of the algorithm. As a side effect, with this incremental
procedure it is easy to update the surrogate if the accuracy has to be improved.
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This can be achieved using the Newton basis, which is defined in analogy to the
Newton basis for polynomial interpolation. It has been introduced in [37, 39] for K
SPD, and extended to the case of K PD and λ > 0 in [47], and we refer to these papers
for the proof of the following result.

Proposition 9.4 (Newton basis). Let Ω be non empty, λ ≥ 0, K be PD on Ω or SPD when
λ = 0. Let Xn ⊂ Ω be pairwise distinct, and let IN ⊂ {1, . . . , n}. Let moreover Kλ(x, y) :=
K(x, y) + λδxy for all x, y ∈ Ω, and denote its RKHS asℋλ.

The Newton basis {vj}Nj=1 is defined as the Gram–Schmidt orthonormalization of
{Kλ(⋅, xi)}i∈IN inℋ, i. e.,

v1(x) :=
Kλ(x, xi1 )
‖Kλ(⋅, xi1 )‖ℋλ

=
Kλ(x, xi1 )

√Kλ(xi1 , xi1 )
,

ṽk(x) := Kλ(x, xik ) −
k−1
∑
j=1

vj(xik )vj(x),

vk(x) :=
ṽk(x)
‖ṽk‖ℋλ

=
ṽk(x)

√ṽk(xik )
, 1 < k ≤ N .

Moreover, for all 1 ≤ k ≤ N, we have

vk(x) =
N
∑
j=1

βjkKλ(x, xij ),

and, if B ∈ ℝN×N , Bjk := βjk , and V ∈ ℝN×N , Vjk := vk(xj), then B,V are triangular,
B = V−T , and

AN + λI = VV
T

is the Cholesky decomposition of the regularized kernel matrix AN + λI ∈ ℝN×N , Ajk :=
K(xij , xik ), with pivoting given by IN .

Observe that this basis is nested, i. e., we can incrementally add a new element
without recomputing the previous ones. Even more, with this basis the surrogate can
be computed as follows.

Proposition 9.5 (Incremental regularized interpolation). Let Ω be non empty, λ ≥ 0, K
be PD on Ω or SPD when λ = 0. Let (XN ,YN ) be the subset of (Xn,Yn) corresponding to
indices IN , for all N ≤ n.

Let ̃s0 := 0, and, for N ≥ 1, compute the following incremental function

̃sN (x) =
N
∑
k=1

ckvk(x) = cNvN (x) + sN−1(x), cN :=
yiN − ̃sN (xiN )
vN (xiN )

. (9.11)
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Then, for all N, the regularized interpolant can be computed as

sN (x) =
N
∑
j=1

αjK(x, xij ) where α := V−Tc.

Remark 9.7. In the case λ = 0 and K SPD, the function ̃sN coincides with the inter-
polant sN . We refer to [39, 47] for the details.

We are now left to define the selection rules, represented by η, to select the new
point at each iteration.

For this, we first need to define the power function, which gives an upper bound
on the interpolation error, and it can be defined using the Newton basis as

PN (x)
2 := Kλ(x, x) −

N
∑
j=1

vj(x)
2. (9.12)

Its relevance is due to the fact that it provides an upper bound on the pointwise (reg-
ularized) interpolation error, i. e., if x ∉ Xn, and K is PD, or SPD when λ = 0, we have
for all f ∈ ℋ that

󵄨󵄨󵄨󵄨f (x) − sN (x)
󵄨󵄨󵄨󵄨 ≤ Pn(x)‖f ‖ℋ. (9.13)

This function is well known and has been studied in the case of pure interpolation
(see e. g. [65, Chapter 11]), for which the upper bound holds for all x ∈ Ω, and it can be
easily extended to the case of regularized interpolation (see [47]). In both cases, it can
be proven that Pn(x) = 0 if and only if x ∈ Xn, and its maximum is strictly decreasing
with N .

Remark 9.8. This interpolation technique is strictly related to the krigingmethod and
to Gaussian Process Regression (see e. g. [38, 42]). In this case the kernel represents
the covariance kernel of the prior distribution, and the power function is the Kriging
variance, or variance of the posterior distribution (see [50]).

We can then define the following selection rules. We assume to have a dataset
(Xn,Yn), and to have already selected N points corresponding to indices IN−1. We use
the notation [1, n] := {1, . . . , n}, and we have
– P-greedy: iN := argmaxi∈[1,n]\IN−1 PN−1(xi);
– f -greedy: iN := argmaxi∈[1,n]\IN−1 |yi − sN−1(xi)|;
– f /P-greedy: iN := argmaxi∈[1,n]\IN−1 |yi−sN−1(xi)|PN−1(xi) .

Observe that all the selections are well defined, since PN−1(xi) ̸= 0 for all i ∉ IN−1 if
XN are pairwise distinct, and they can be efficiently implemented by using the update
rules (9.11) for sN and (9.12) for PN . Moreover, they aremotivated by different ideas: The
P-greedy selection tries tominimize the Power function, thus providing a uniform up-
per bound on the error for any function f ∈ ℋ via (9.13); the f - and f /P-greedy (which
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reads “f -over-P-greedy”), on the other hand, use also the output data, and produce
points which are suitable to approximate a single function and thus are expected to
result in a better approximation. In the case of f -greedy this is done by including in the
set of points the locationwhere the current largest error is achieved, thus reducing the
maximum error. The f /P-greedy selection, instead, reduces the error in the ℋ-norm,
and indeed it can be proven to be locally optimal, i. e., it guarantees the maximal pos-
sible reduction of the error, in theℋ-norm, at each iteration.

We can nowdescribe the full computation of the greedy regularized interpolant in
Algorithm 9.4. It realizes the computation of the sparse surrogate sN by selecting the
points XN via the index set IN , and computing only the nonzero coefficients α. More-
over, using the nested structure of the Newton basis and the incremental computation
of Proposition 9.5, the algorithm needs only to compute the columns of the full kernel
matrix corresponding to the index set IN , and thus there is no need to compute nor
store the full n × n matrix, i. e., the implementation is matrix-free. In addition, again
using Proposition 9.5 most of the operations are done in-place, i. e., some vectors are
used to store and update the values of the Power Function and of y. In the algorithm,
we use a Matlab-like notation, i. e., A(IN , :) denotes the submatrix of A consisting of
rows IN and of all the columns.Moreover, the notation v2 denotes the pointwise squar-
ing of the entries of the vector v.

Algorithm 9.4: Kernel greedy approximation – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ (ℝq)n, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, selection rule η, tolerance τ.

2: Set N := 0, I0 := 0, V := [⋅] ∈ ℝn×0, p := diag(Kλ(Xn,Xn)) ∈ ℝn

3: repeat
4: Set N = N + 1
5: Select iN := argmaxi∈[1,n]\IN−1 η(xi,N ,Xn,Yn).
6: Generate column v := Kλ(Xn, xiN )
7: Project v := v − VV(iN , :)T

8: Normalize v = v/√v(iN )
9: Compute cN := y(iN )/v(iN )
10: Update the power function p := p − v2

11: Update the residual y := y − cNv
12: Update IN := IN−1 ∪ {iN }
13: Add the column V = [V , vN ]
14: Update the inverse CT = V(IN , :)−1

15: Add the coefficient c = [cT , cN ]T

16: until η(xN ,N ,Xn,Yn) ≤ τ
17: Set α = Cc
18: Output: α ∈ ℝN×q, IN .
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The set of points XN defined by IN , and the coefficients α, can then be used in the
online phase of Algorithm 9.1.

Remark 9.9 (Vector-valued functions and implementation details). Algorithm9.4 and
the overall procedure are well defined for arbitrary q ≥ 1. Indeed, using the separable
matrix-valued kernel of Section 9.2.4, the Newton basis only depends on the scalar-
valued kernel K, while the computation of the coefficients is valid by considering that
now c, α are matrices instead of vectors. In particular, the computation of cN (line 14)
and the update of y (line 11) has to be done via column-wise multiplications.

Moreover, observe that in line 12we employ a standard technique to update the in-
verse of a lower triangular matrix, i. e., given VN ∈ ℝN×N lower triangular with inverse
V−1N , we define

VN+1 = [
VN 0
vT w

]

for v ∈ ℝN , w ∈ ℝ, and compute V−1N+1 by a simple row-update as

V−1N+1 = [
V−1N 0
−vTV−1N /w 1/w

] .

The present version of the algorithm for vector-valued functions has been intro-
duced in [68] and named Vectorial Kernel Orthogonal Greedy Algorithm (VKOGA). We
keep the same abbreviation also for the regularized version, which has been studied
in [47].

Remark 9.10 (Convergence rates). When the greedy algorithm is run by selecting
points over Ω instead of XN , there are also convergence rates for the resulting approx-
imation processes. For pure interpolation (i. e., K SPD, λ = 0) convergence of f -greedy
has been proven in [36], of P-greedy in [46], and of f /P-greedy in [68], while in [47]
the convergence rate of P-greedy has been extended to regularized interpolation. All
the results make additional assumptions on the kernels, for which we refer to the
cited literature. Nevertheless, we remark that the convergence rates for interpolation
with P-greedy are quasi-optimal for translational invariant kernels, while the results
for the other algorithms guarantee only a possibly significantly slower convergence
rate. These results are believed to be significantly sub-optimal, since extensive ex-
periments indicate that f - and f /P-greedy cases behave much better. This seems to
suggest that there is space for a large improvement in the theoretical understanding
of the methods.

Remark 9.11 (Other techniques). There are other techniques that can be applied to re-
duce the complexity of the evaluation of the surrogate s, which do not use greedy
algorithms but instead different approaches. First, there is a domain decomposition
technique, known as Partition of Unity Method, which partitions Ω into subdomains,
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solves the (regularized) interpolation problem restricted to each patch, and then com-
bines the results by a weighted sum of the local interpolants to obtain a global ap-
proximant. This method has the advantage that this offline phase can be completely
parallelized. Moreover, when evaluating the surrogate only the few local interpolant
having a support containing the test points have to be evaluated, thus requiring the
evaluation of a few, small kernel expansions, thus providing a significant speedup.
The efficiency of this technique relies on an efficient search procedure to determine
the local patches including the given points, which is the only limitation in the appli-
cation to high dimensional problems. Both theoretical results and efficient implemen-
tations are available [7, 64].

Moreover, other sparsity-inducing techniques have been proposed, namely, the
use of an ℓ1-regularization term [10], and the method of the Least Absolute Shrinkage
and Selection Operator (LASSO) [61].

9.5 Support vector regression
The second method that we present is Support Vector Regression (SVR) [53], which is
based on different premises, but it still fits in the general framework of Section 9.3. In
this case, we consider the ε-insensitive loss function

L(s,Xn,Yn) :=
n
∑
i=1

Lε(s(xi), yi), Lε(s(xi), yi) := max(0, |s(xi) − yi| − ε),

which is designed to linearly penalize functions s which have values outside of an
ε-tube around the data, while no distinction is made between function values that are
inside this tube.

In this setting it is common to use the regularization parameter to scale the cost by
a factor 1/λ, and not the regularization term by a factor λ. The two choices are clearly
equivalent, but we adopt here this different normalization to facilitate the comparison
with the existing literature, and because this offers additional insights in the structure
of the surrogate.

Since the problem is not quadratic (and not smooth), we first derive an equiva-
lent formulation of the optimization problem (9.5). Assuming again that the output is
scalar, i. e., q = 1, the idea is to introduce non-negative slack variables ξ+, ξ− ∈ ℝn

which represent upper bounds on L via

ξ+i ≥ max(0, s(xi) − yi − ε), 1 ≤ i ≤ n, (9.14)
ξ−i ≥ max(0, yi − s(xi) − ε), 1 ≤ i ≤ n,

and to minimize them in place of the original loss. With these new variables we can
rewrite the optimization problem in the following equivalent way.
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Definition 9.5 (SVR – primal form). Let Ω be a nonempty set,K a PD kernel onΩ, λ > 0
a regularization parameter. For a training set (Xn,Yn) the SVR approximant (s, ξ+, ξ−) ∈
ℋ × ℝ2n is a solution of the quadratic optimization problem

min
s∈ℋ, ξ+ , ξ−∈ℝn 1λ1Tn (ξ+ + ξ−) + ‖s‖2ℋ (9.15)

s. t. s(xi) − yi − ε ≤ ξ
+
i , 1 ≤ i ≤ n

−s(xi) + yi − ε ≤ ξ
−
i , 1 ≤ i ≤ n

ξ+i , ξ
−
i ≥ 0, 1 ≤ i ≤ n,

where 1n := (1, . . . , 1)T ∈ ℝn.

For this rewriting of the optimization problem, we can now specialize the Repre-
senter Theorem as follows.

Corollary 9.2 (SVR – alternative primal form). Let Ω be a nonempty set, K a PD kernel
on Ω, λ > 0 a regularization parameter. For any training set (Xn,Yn) there exists an SVR
approximant of the form

s(x) =
n
∑
j=1

αjK(x, xj), x ∈ Ω, (9.16)

where (α, ξ+, ξ−) ∈ ℝ3n is a solution of the quadratic optimization problem

min
α,ξ+ ,ξ−∈ℝn 1λ1Tn (ξ+ + ξ−) + αTAα (9.17)

s. t. (Aα)i − yi − ε ≤ ξ
+
i , 1 ≤ i ≤ n

−(Aα)i + yi − ε ≤ ξ
−
i , 1 ≤ i ≤ n

ξ+i , ξ
−
i ≥ 0, 1 ≤ i ≤ n,

with 1n := (1, . . . , 1)T ∈ ℝn, and A ∈ ℝn×n, Aij := K(xi, xj), the kernel matrix on Xn.
Moreover, if K is SPD this is the unique solution of the minimization problem (9.5).

Proof. The result is an immediate consequence of Proposition 9.5, where we use the
form (9.16) for s and compute its squared norm via Proposition 9.2.

The slack variables (9.14) have a nice geometric interpretation. Indeed, the opti-
mization process clearly tries to reduce their value asmuch as possible, while respect-
ing the constraints. We state a more precise result in the following proposition, and
give a schematic illustration in Figure 9.1.

Proposition 9.6 (Slack variables). Let α, ξ+, ξ− ∈ ℝn be a solution of (9.17), and let s be
the corresponding surrogate (9.16). Then, for each index i ∈ {1, . . . , n}, the values ξ+i , ξ

−
i

represent the distance of s(xi) from the ε-tube around yi, and in particular
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Figure 9.1: Illustration of the role of the slack variables in (9.17).

1. If s(xi) > yi + ε, then ξ+i > 0 and ξ
−
i = 0.

2. If s(xi) < yi − ε, then ξ+i = 0 and ξ
−
i > 0.

3. If yi − ε ≤ s(xi) ≤ yi + ε, then ξ+i = 0 and ξ
−
i = 0.

In particular, only one of ξ+i and ξ−i can be nonzero.

Instead of solving the primal problem of Corollary 9.2, it is more common to derive
and solve the following dual problem. Here again we denote by y ∈ ℝn the vector of
all scalar training target values.

Proposition 9.7 (SVR – dual form). Let Ω be a nonempty set, K a PD kernel on Ω, λ > 0
a regularization parameter. For any training set (Xn,Yn) there exists a solution (α+, α−) ∈
ℝ2n of the problem

min
α+ ,α−∈ℝn 14 (α− − α+)TA(α− − α+) + ε1Tn (α+ + α−) + yT(α+ − α−)

s. t. α+, α− ∈ [0, 1/λ]n, (9.18)

which is unique if K is SPD. Moreover, a solution of (9.17) is given by

s(x) :=
n
∑
j=1

α−j − α
+
j

2
K(x, xj), x ∈ Ω, (9.19)

with ξ+i := max(0, s(xi) − yi − ε), ξ−i := max(0, yi − s(xi) − ε).

Proof. We give a sketch of the proof, although a formal derivation requires more care,
and we refer to [53, Chapter 9] for the details. The idea is to first derive the Lagrangian
ℒ := ℒ(α, ξ+, ξ−; α+, α−, μ+, μ−) for the primal problem (9.17) using non-negative La-
grange multipliers α+, α−, μ+, μ− ∈ ℝn for the inequality constraints, and then derive
the dual problem by imposing the Karush–Kuhn–Tucker (KKT) conditions (see e. g.
Chapter 6 in [53]).

The Lagrangian is defined as

ℒ =
1
λ
1Tn (ξ
+ + ξ−) + αTAα + (μ+)T(−ξ+) + (μ−)T(−ξ−) (9.20)

+ (Aα − y − ε1n − ξ
+)

Tα+ + (y − Aα − ε1n − ξ
−)

Tα−
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= (α + α+ − α−)TAα + ( 1
λ
1n − α

+ − μ+)
T
ξ+ + ( 1

λ
1n − α

− − μ−)
T
ξ−

− ε1Tn (α
+ + α−) − yT(α+ − α−).

Using the symmetry of A, the partial derivatives of ℒ with respect to the primal vari-
ables can be computed as

∇αℒ = 2Aα + A(α
+ − α−), ∇ξ+ℒ = 1λ1n − α+ − μ+, ∇ξ−i ℒ = 1λ1n − α− − μ−, (9.21)

and setting these three equalities to zero we obtain equations for α, μ+, μ−, where in
particular α = 1

2 (α
− − α+) (which is the unique solution if A is invertible). Substituting

these values in the Lagrangian we get

ℒ = (α + α+ − α−)TAα − ε1Tn (α
+ + α−) − yT(α+ − α−)

= −
1
4
(α− − α+)TA(α− − α+) − ε1Tn (α

+ + α−) − yT(α+ − α−).

The remaining conditions in (9.18) stem from the requirements that the Lagrangemul-
tipliers are non-negative, and in particular 0 ≤ μ+i = 1/λ − α+i , i. e., α

+
i ≤ 1/λ, and

similarly for α−i .

This dual formulation is particularly convenient to explain that the SVR surro-
gate has a built-in sparsity, i. e., the optimization process provides a solution where
possibly many of the entries of α = 1

2 (α
− − α+) are zero. This behavior is in strong con-

trast with the case of interpolation of Section 9.4 where we needed to adopt special
techniques to enforce this property. The points xi ∈ Xn with αi ̸= 0 are called support
vectors, which gives the name to the method.

In particular, as for the slack variables there is a clean geometric description of
this sparsity pattern, this gives additional insights into the solution. To see this we
remark that, in addition to the stationarity KKT conditions (9.21), an optimal solution
satisfies also the complementarity KKT conditions

α+i (s(xi) − yi − ε − ξ
+
i ) = 0, α−i (yi − s(xi) − ε − ξ

−
i ) = 0, (9.22)

ξ+i (1/λ − α
+
i ) = 0, ξ−i (1/λ − α

−
i ) = 0. (9.23)

We then have the following:
1. Equation (9.22) states that α+i ̸= 0 only if s(xi) − yi − ε− ξ

+
i = 0, and similarly for α−i .

Since ξ+i ≥ 0, this happens only when s(xi) − yi ≥ ε, i. e., only for points (xi, s(xi))
which are outside or on the boundary of the ε-tube.

2. In particular, if α+i ̸= 0 it follows that s(xi) − yi ≥ ε, and thus yi − s(xi) − ε − ξ
−
i ̸= 0,

and then necessarily α−i = 0. Thus, at most one of α+i and α
−
i can be nonzero.

3. Equation (9.23) implies that α+i , α
−
i = 1/λ whenever ξ

+
i , ξ
−
i is nonzero, i. e., when-

ever s(xi) is strictly outside of the ε-tube. The corresponding xi are called bounded
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support vectors, and the value of the corresponding coefficients is indeed kept
bounded by the value of the regularization parameter. Reducing λ, i. e., using less
regularization, allows solutions with coefficients of larger magnitude.

In summary, we can then expect that, if s is a good approximation of the data, it will
be also a sparse approximation.

We summarize the offline phase for SVR in Algorithm 9.5. We remark that in this
case the extension to vector-valued functions is not as straightforward as for kernel in-
terpolation, and it is thus common to train a separate SVR for each output component.

Algorithm 9.5: SVR – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ ℝn, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, tube width ε > 0.

2: Compute the kernel matrix A ∈ ℝn×n, Aij := K(xi, xj).
3: Solve the quadratic problem (9.18).
4: Set IN := {i : α−i ̸= 0 or α

+
i ̸= 0}.

5: Set αi := (α−i − α
+
i )/2 for i ∈ IN .

6: Output: α ∈ ℝN , IN .

Remark 9.12 (General Support Vector Machines). SVR is indeed onemember of a vast
collection of algorithms related to Support Vector Machines (SVMs). Standard SVMs
solve classification problems, i. e., Yn ⊂ {0, 1}. The original algorithm has been intro-
duced as a linear algorithm (or, in the present understanding, as limited to the linear
kernel, i. e., the polynomial kernel with a = 0, p = 1), and it has later been extended
via the kernel trick to its general kernel version in [4]. The SVRalgorithmshave instead
been introduced in [53].

Moreover, the version presented here is usually called ε-SVR. There exists also an-
other non equivalent version called ν-SVR, which adds another term in the cost func-
tion multiplied by a factor ν ∈ [0, 1]. This plays the role of giving an upper bound on
the number of support vectors and on the fraction of training data which are outside
of the ε-tube (see Chapter 9 in [53]).

We also remark that it is sometimes common to include in any SVM-based algo-
rithm also an offset or bias term b ∈ ℝ, i. e., to obtain a surrogate s(x) = ∑nj=1 αjK(x, xj)+
b. This changes in an obvious way the primal problem (9.17), while the dual contains
also the constraint ∑ni=1(α

+
i + α
−
i ) = 0. However, we stick here to this formulation and

refer to [57] for a discussion of statistical and numerical benefits of not using this offset
term, at least in the case of SPD kernels.

Remark 9.13 (Error estimation). Also for SVR there is a detailed error theory, usually
formulated in the framework of statistical learning theory (see [62]). Results are ob-
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tained by assuming that the dataset (Xn,Yn) is drawn from a certain unknown prob-
ability distribution, and then quantifying the approximation power of the surrogate.
For a detailed treatment of this theory, we refer to [53, 55]. Moreover, recently also
deterministic error bounds for translational invariant kernels have been proven in
[43, 44].

9.5.1 Sequential minimal optimization

Although theoptimizationproblem (9.18) can inprinciple be solvedwith anyquadratic
optimization method, there exists a special algorithm, called Sequential Minimal Op-
timization (SMO) that is designed for SVMs and that performs possibly much better.

SMO is an iterativemethodwhich improves an initial feasible guess forα+, α− ∈ ℝn

until convergence, and the update is made such that the minimal possible number of
entries of α are affected. In this way, very large problems can be efficiently solved. The
original version of the algorithm has been introduced in [41] for SVM, and it has later
been adapted to more general methods such as SVR, which we use here to illustrate
the structure of its implementation.

The idea is to findat each iteration ℓ ∈ ℕ aminimal set of indices Iℓ ⊂ {1, . . . , n} and
optimize only the variables with indices in Iℓ. The procedure is then iterated until the
optimum is reached. If the SVR includes an offset term, as explained in the previous
section we have constraints

α+i , α
−
i ∈ [0, 1/λ], 1 ≤ i ≤ n, (9.24)

n
∑
i=1
(α+i + α

−
i ) = 0.

Given a feasible solution (α+i , α
−
i )
(ℓ) at iteration ℓ ∈ ℕ, it is thus not possible to update

a single entry of α+i or α
−
i without violating the KKT conditions (since at most one be-

tween α+i and α
−
i need to be nonzero) or violating the second constraint. It is instead

possible to select two indices Iℓ := {i, j} and in this case we have variables α+i , α
−
i , α
+
j , α
−
j

and we can solve the restricted quadratic optimization problem under the constraints

α+i , α
−
i ∈ [0, 1/λ], i ∈ I

ℓ, ∑
i∈Iℓ(α
+
i + α
−
i ) = R

ℓ := − ∑
i∉Iℓ(α
+
i + α
−
i ),

which can be solved analytically.
The crucial step is to select Iℓ, and this is done by finding a first index that does

not satisfy the KKT conditions and a second one with some heuristic. It can be proven
that, if at least one of the two violates the KKT conditions, then the objective is strictly
decreased and convergence is obtained. Moreover, the vectors α+ = α− = 0 ∈ ℝn

are always feasible and can thus be used as a first guess. In practice, the iteration is
stopped when a sufficiently small value of the cost function is reached.
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In the case of SVRwithout offset discussed in the previous section the situation is
even simpler, since the second constraint in (9.24) is not present and it is thus possible
to update a single pair (α+i , α

−
i ) at each iteration. Nevertheless, it has been proven in

[57] that using also in this case two indices improves significantly the speed of con-
vergence. Moreover, the same paper introduces several additional details to select the
pair, to optimize the restricted cost function, and to establish termination conditions.

A general version of SMO for SVR is summarized in Algorithm 9.6, where we as-
sume that the function η : {1, . . . , n} → {1, . . . , n} implements the selection rule of Iℓ.

Algorithm 9.6: SMO.
1: Input: training set Xn ∈ Ωn, Yn ∈ ℝn, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, tube width ε > 0, selection rule η, tolerance τ.

2: Set ℓ := 0 and (α+, α−)(0) := (0,0).
3: while (α+, α−)(ℓ) does not satisfy KKT conditions within tolerance τ. do
4: Set ℓ = ℓ + 1.
5: Set Iℓ := {i, j} := η({1, . . . , n}).
6: Set (α+k , α

−
k )
(ℓ) := (α+k , α

−
k )
(ℓ−1) for k ∉ Iℓ.

7: Solve the optimization problem restricted to Iℓ.
8: end while
9: Set IN := {i : α−i ̸= 0 or α

+
i ̸= 0}.

10: Set αi := (α−i − α
+
i )/2 for i ∈ IN .

11: Output: α ∈ ℝN , IN .

Remark 9.14 (Reference implementations). We remark that there exist commonly
used implementations of SVR (and other SVM-related algorithms), which are avail-
able in several programming languages and implement also some version of this
algorithm. We mention especially LIBSVM5 [9] and liquidSVM6 [58].

9.6 Model analysis using the surrogate
Apart from predicting new inputs with good accuracy and a significant speedup, the
surrogate model can be used to perform a variety of different tasks related to meta-
modeling, such as uncertainty quantification and state estimation. This can be done
in a non-intrusive way, meaning that the full model is employed as a black-box that
provides input–output pairs to train the surrogate, but is not required to be modified.

5 https://www.csie.ntu.edu.tw/~cjlin/libsvm/
6 https://github.com/liquidSVM/liquidSVM
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In principle, any kind of analysis that requires multiple evaluations can be signif-
icantly accelerated by the use of a surrogate, including the ones that are not compu-
tationally feasible due to the high computational cost of the full model. An example
is uncertainty quantification, where the expected value of f can be approximated by
a Monte Carlo integration of s using a set Xm ⊂ Ω of integration points, i. e.,

∫
Ω

f (x) dx ≈ 1
m

m
∑
i=1

s(xi).

Once the surrogate is computed using a training set (Xn,Yn), this approximate integral
can be evaluated also form ≫ n with a possibly very small cost, since the evaluation
of s is significantly cheaper than the one of f .

Another example, which we describe in detail in the following, is the solution of
an inverse problem to estimate the input parameter which generated a given output,
i. e., from a given vector y ∈ ℝq we want to estimate x ∈ Ω such that f (x) = y. This can
be done by considering a state-estimation cost function C : Ω→ ℝ defined by

C(x) := 1
2‖y‖22
󵄩󵄩󵄩󵄩s(x) − y

󵄩󵄩󵄩󵄩
2
2, (9.25)

and estimating x by the value x∗ defined as

x∗ := min
x∈Ω

C(x).

In principle, we could perform the same optimization also using f instead of s in (9.25),
but the surrogate allows a rapid evaluation of C. Moreover, if K is at least differen-
tiable, then also s is differentiable, and thus we can use gradient-based methods to
minimize C.

To detail this approach, we assume f : Ω → ℝq and to have a surrogate ob-
tained as in Section 9.4.1 with the separable matrix-valued kernel of Section 9.2.4, i. e.,
from (9.10) we have

sN (x) = ∑
k∈IN

αkK(x, xk).

As explained in (9.9), in the vector-valued case q > 1 we always assume that the output
sN (x) and the coefficients αk are row vectors, and in particular α ∈ ℝN×q and sN (x) ∈
ℝ1×q. In this case we have the following.

Proposition 9.8 (Gradient of the state-estimation cost). For x ∈ Ω ⊂ ℝd and y ∈ ℝq,
the gradient of the cost (9.25) can be computed in x ∈ Ω as

∇C(x) = 1
‖y‖22
(Dα)ET ,

where D ∈ ℝd×N with columns Dj := ∇xK(x, xj), and E := sN (x) − y ∈ ℝ1×q.
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Proof. By linearity, the gradient of sN in x can be computed as

∇sN (x) =
n
∑
j=1

αj∇xK(x, xj) = Dα ∈ ℝ
d×q,

and thus

∇C(x) = 1
‖y‖22
(sN (x) − y)∇x(sN (x) − y) =

1
‖y‖22
(sN (x) − y)∇s(x)

=
1
‖y‖22
(Dα)ET .

Observe in particular that whenever K is known in closed form thematrixD can be ex-
plicitly computed, and thus the gradient can be assembled using only matrix-vector
multiplications of matrices of dimensions N , d, q, but independent of n. The solution
x∗ can then be computed by any gradient-based optimization method, and each iter-
ation can be performed in an efficient way.

9.7 Parameter and model selection

For all the methods that we have seen the approximation quality of the surrogate de-
pends on several parameters,whichneed tobe carefully chosen to obtain good results.
There are both parameters defining the kernel, such as the shape parameter γ > 0 in
a RBF kernel, and model parameters such as the regularization parameter λ ≥ 0. To
some extent, also the selection of the kernel itself can be considered as a parametric
dependence of the model. Moreover, it is essential to test the quality of the surrogate
on an independent test set of data, since tuning it on the training set alone can very
likely lead to overfitting, i. e., to obtain a model that is excessively accurate on the
training set, while failing to generalize its prediction capabilities to unseen data.

In practical applications the target function f is unknown, so it cannot be used
to check if the approximation is good, and all we know is the training set (Xn,Yn). In
this case the most common approach is to split the sets into train, validation and test
sets in the following sense. We permute (Xn,Yn), fix numbers ntr, nval, nte such that
n = ntr + nval + nte, and define a partition of the dataset as

Xtr := {xi, 1 ≤ i ≤ ntr},
Xval := {xi, ntr + 1 ≤ i ≤ ntr + nval},
Xte := {xi, ntr + nval + 1 ≤ i ≤ n},

and similarly for Ytr, Yval, Yte.
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The idea is then to use the validation set (Xval,Yval) to validate (i. e., choose) the
parameters, and the test set (Xte,Yte) to evaluate the error. Having disjoint sets allows
one to have a fair way to test the algorithm.

For the process we also need an error function that returns the error of the sur-
rogate s evaluated on a generic set of points X := {xi}i ⊂ Ω w. r. t. the exact values
Y := {yi}i. We denote by |X| the number of elements of X. Common examples are the
maximal error and the Root Mean Square Error (RMSE) defined as

E(s,X,Y) := max
1≤i≤|X|
‖s(xi) − yi‖2 or E(s,X,Y) := √ 1

|X|

|X|
∑
i=1

󵄩󵄩󵄩󵄩s(xi) − yi
󵄩󵄩󵄩󵄩
2
2. (9.26)

Then one chooses a set of possible parameter instantiations {p1, . . . , pnp }, np ∈ ℕ
that has to be checked. A common choice for positive numerical parameters is to take
them logarithmically equally spaced, since the correct scale is not known in advance,
in general.

The training and validation process is described in Algorithm 9.7, where we de-
note by s(pi) the surrogate obtained with parameter pi. It works as an outer loop with
respect to the training of any of the surrogates thatwe have considered, and it has thus
to be understood as part of the offline phase.

Algorithm 9.7:Model selection by validation.
1: Input: Xtr,Xval,Xte, Ytr,Yval,Yte, {p1, . . . , pnp }
2: for i = 1, . . . , np do
3: Train surrogate s(pi) with data (Xtr,Ytr)
4: Compute validation error ei := E(s(pi),Xval,Yval)
5: end for
6: Choose parameter p̄ := pi with i := argmin ei
7: Train surrogate s(p̄) with data (Xtr ∪ Xval,Ytr ∪ Yval)
8: Compute test error Ē = E(s(p̄),Xte,Yte)
9: Output: surrogate s(p̄), optimal parameter p̄, test error Ē

A more advanced way to realize the same idea is via k-fold cross validation. To have
an even better selection of the parameters, one can repeat the validation step (lines
2–6 in the previous algorithm) by changing the validation set at each step. To do so
we do not select a validation set (so n = ntr + nte), and instead consider a partition of
Xtr,Ytr into a fixed number k ∈ {1, . . . , ntr} of disjoint subsets, all approximately of the
same size, i. e.,

Xtr := {xi, 1 ≤ i ≤ ntr} := ∪
k
i=1Xi

Xte := {xi, ntr + 1 ≤ i ≤ n},
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and similarly for Ytr := ∪ki=1Yi and for Yte. In the validation step each of theXi is used as
a validation set, and the validation is repeated for all i = 1, . . . , k. In this case the error
ei for the parameter pi is defined as the average error over all these permutations, as
described in Algorithm 9.8.

Algorithm 9.8:Model selection by k-fold cross validation.

1: Input: Xtr = ∪ki=1Xi,Xte, Ytr = ∪
k
i=1Yi,Yte, {p1, . . . , pnp }

2: for i = 1, . . . , np do
3: for j = 1, . . . , k do
4: Train surrogate s(pi) with data (∪ℓ ̸=jXℓ, ∪ℓ ̸=jYℓ)
5: Compute error e(j) := E(s(pi),Xj,Yj)
6: end for
7: ei := mean{e(j), 1 ≤ j ≤ k}
8: end for
9: Choose parameter p̄ := pi with i := argmin ei
10: Train surrogate s(p̄) with data (Xtr,Ytr)
11: Compute test error Ē = E(s(p̄),Xte,Yte)
12: Output: surrogate s(p̄), optimal parameter p̄, test error Ē

We remark that, in the extreme case k = N, this k-fold cross validation is usually called
Leave One Out Cross Validation (LOOCV).

9.8 Numerical examples
For the testing and illustration of the two methods of Section 9.4 and Section 9.5, we
consider a real-world application dataset describing the biomechanical modeling of
the human spine introduced and studied in [69]. We refer to that paper for further
details and we just give a brief description in the following.

The input–output function f : ℝ3 → ℝ3 represents the coupling between a global
multibody system (MBS) and a Finite Elements (FEM) submodel. The human spine is
represented as a MBS consisting of the vertebra, which are coupled by the interaction
through intervertebral disks (IVDs). The PDE representing the behavior of each IVD
is approximated by a FEM discretization, and it has the input geometry parameters
as boundary conditions, and computes the output mechanical response as a result
of the simulation. In particular, the three inputs are two spatial displacements and
an angular inclination of a vertebra, and the three outputs are the corresponding two
force components and the momentumwhich are transferred to the next vertebra. The
dataset is generated by running the full model for n := 1370 different input parameters
Xn and generating the corresponding set of outputs Yn.
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The dataset, as described in Section 9.7, is first randomly permuted and then di-
vided in training and test datasets (Xntr ,Yntr ), (Xnte ,Ynte ) with ntr := 1238 and nte = 132,
corresponding to roughly 90% and 10% of the data. We remark that the full model
predicts a value (0,0,0)T for the input (0,0,0)T and this sample pair is present in the
dataset. We thus manually include it in the training set independently of the permu-
tation. The training and test sets can be seen in Figure 9.2.

Figure 9.2: Input parameters (left) and corresponding outputs (right) for the training (top row) and
test set (bottom row).

The models are trained using a Matlab implementation of the algorithms. For VKOGA
we use an own implementation,7 while for SVR we employ the KerMor package,8

which provides an implementation of the 2-index SMO for the SVR without offset that
is discussed in Section 9.5.1. We remark that this implementation requires the output
data to be scaled in [−1, 1], and thus we perform this scaling for the training and val-
idation, while the testing is executed by scaling back the predictions to the original
range. To have a fair comparison, we use the same data normalization also for the
VKOGA models.

7 https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/vkoga
8 https://www.morepas.org/software/kermor/index.html
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The regularized VKOGA (with f -, P-, and f /P-greedy selection rules) and the SVR
models are trained with the Gaussian kernel. Both algorithms depend on the shape
parameter γ of the kernel and on the regularization parameter λ, while SVR addition-
ally depends on the width ε of the tube. These parameters are selected by k-fold cross
validation as described in Section 9.7. The values of k and of the parameter samples
used for validation are reported in Table 9.1, where each parameter set is obtained by
generating logarithmically equally spaced samples in the given interval, i. e., 400 pa-
rameter pairs are tested for VKOGA and 4000 triples for SVR. As an error measure we
use the max error in (9.26). We remark that the SVR surrogate is obtained by training
a separate model for each output, as described in Section 9.5, but only one cross val-
idation is used. This means that for each parameter triple three models are trained,
and then the parameter is evaluated in the prediction of the three-dimensional out-
put.

Table 9.1: Parameters ranges and sample numbers used in the k-fold cross validation.

k γmin γmax nγ λmin λmax nλ εmin εmax nε

5 10−2 101 20 10−16 103 20 10−10 10−3 10

Moreover, the training of the VKOGA surrogates is terminated when the square of the
power function is below the tolerance τP := 10−12, or when the training error is below
the tolerance τf := 10−6. Additionally, it would be possible to use a maximal number
of selected points as stopping criterion, and this offers the significant advantage of
directly controlling the expansion size, which could be reduced to any given number
(of course at the price of a reduced accuracy). In the case of SVR, instead, the number
N is a result of the tuning of the remaining parameters.

In Table 9.2 we report the values of the parameters selected by the validation pro-
cedure for the four models, as well as the number N of nonzero coefficients in the
trained kernel expansions. Observe that for SVR the three values ofN refer to the num-
ber of support vectors for the three scalar-valued models. Moreover, the number of
support vectors or kernel centers is only slightly larger for SVR than for the VKOGA
models, but, as discussed in the following, the VKOGA models give prediction errors
which are up to two orders of magnitude smaller than the ones of the SVR model.

We cannow test the fourmodels in thepredictionon the test set. Table 9.3 contains
various error measures between the prediction of the surrogates and the exact data.
We report the values of themaximum error Emax and the RMSE ERMSE defined in (9.26),
and the relative maximum error Emax,rel obtained by scaling each error by the norm of
the exact output.

To provide a better insight in the approximation quality of the methods, we show
in Figure 9.3 the distribution of the error over the test set. The plots show, for each sam-
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Table 9.2: Selected parameters and number of nonzero coefficients in the kernel expansions.

Method N ̄γ λ̄ ̄ε

VKOGA P-greedy 1000 4.9 ⋅ 10−2 10−11 –
VKOGA f -greedy 879 4.3 ⋅ 10−2 10−11 –
VKOGA f /P-greedy 967 6.2 ⋅ 10−2 10−9 –
SVR, output 1 359 1.8 ⋅ 10−1 102 7.7 ⋅ 10−7

output 2 378
output 3 405

Table 9.3: Test errors: maximum error Emax, RMSE error ERMSE, maximum relative error Emax,rel.

Method Emax ERMSE Emax,rel

VKOGA P-greedy 1.6 ⋅ 102 22.3 2.2 ⋅ 10−1

VKOGA f -greedy 1.6 ⋅ 102 22.4 2.0 ⋅ 10−1

VKOGA f /P-greedy 1.6 ⋅ 102 23.2 8.8 ⋅ 10−1

SVR 1.3 ⋅ 103 1.6 ⋅ 102 1.4 ⋅ 101

Figure 9.3: Absolute errors as functions of the magnitude of the output, and relative error levels from
100 to 10−3 for the surrogates obtained with P-greedy VKOGA (top left), f -greedy VKOGA (top right),
f /P-greedy VKOGA (bottom left) and SVR (bottom right).
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ple (xi, yi) in the test set, the absolute error ‖yi − s(xi)‖2 as a function of the magnitude
‖yi‖2 of the output. Moreover, the black lines represent a relative error from 100 to 10−3.
It is clear that in all cases the maximum and RMS errors of Table 9.3 are dominated
by the values obtained for outputs of large norm, where the VKOGA models obtain a
much better accuracy than SVR. The relative errors, on the other hand, are not evenly
distributed for SVR, where most of the test set is approximated with a relative error
between 101 and 10−2 except for the samples with small magnitude of the output. For
these data, the model gives increasingly bad predictions as the magnitude is smaller,
reaching a relative errormuch larger than 1. TheVKOGAmodels, instead, obtain a rela-
tive error smaller than 10−2 on the full test set except for the entries of smallmagnitude.
For these samples, the f - and P-greedy versions of the algorithm perform almost the
same and better than the f /P-greedy variant, thus giving an overall smaller relative
error in Table 9.3. Moreover, these results are obtained with a significantly smaller ex-
pansion size for f -greedy than for P-greedy. Indeed, even if the SVR surrogates for the
individual output components are smaller than the VKOGA ones, the overall number
of nonzero coefficients is 359+ 378+ 405 = 1142, i. e., more than the one of each of the
three VKOGA models, thus leading to a less accurate and more expensive surrogate.

Regarding the runtime requirements, we can now estimate both the offline (train-
ing) and the online (prediction) times. The offline time required for the validation and
training of the models is essentially determined by the number of parameters tested
in the k-fold cross validation, while the training time of a singlemodel is almost negli-
gible. As a comparison, we report in Table 9.4 the average runtime T̃offline for 10 runs of
the training of the models for the fixed set of parameters of Table 9.2. All the reported
times are in the ranges of seconds (for VKOGA) and below one minute (for SVR). We
remark that this timing is only a very rough indication and not a precise comparison,
since the times highly depends on the number of selected points (for VKOGA) and the
number of support vectors for SVR, and both are dependent on the used parameters.
For example, we repeated the experiment for SVR with the same parameter set but
with ε = 10−1. In this case this value of ε is overly large (if compared to the one se-
lected by cross validation) and it likely produces a useless model, but nevertheless we
obtain an average training time of 0.03 sec.

Table 9.4: Average offline time (training only), online time, and projected speedup factor for the four
different models.

Method N ̃Toffline ̃Tonline ̃Tfull/ ̃Tonline

VKOGA P-greedy 1000 1.67 sec 9.97 ⋅ 10−6 sec 3.01 ⋅ 105

VKOGA f -greedy 879 1.41 sec 9.44 ⋅ 10−6 sec 3.18 ⋅ 105

VKOGA f /P-greedy 967 1.66 sec 9.92 ⋅ 10−6 sec 3.02 ⋅ 105

SVR (3 models) 1142 52.0 sec 2.28 ⋅ 10−5 sec 1.32 ⋅ 105
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A more interesting comparison is the online time, which directly determines the effi-
ciency of the surrogate models in the replacement of the full simulation. In this case,
we evaluate the models 5000 times on the full test set consisting of nte = 132 sam-
ples, and we report the average online time T̃online per single test sample in Table 9.4.
The table contains also again the number N of elements of the corresponding kernel
expansions, and it is evident that a smaller value leads to a faster evaluation of the
model.

In the original paper [69], it has been estimated that a 30 sec full simulation with
24 IVDs with a timestep Δt = 10−3 sec requires 7.2 ⋅ 105 evaluations of the coupling
function f , and these were estimated to require 600h. This corresponds to an average
of T̃full = 3 secper evaluationof f , giving a speedup T̃full/T̃online as reported inTable 9.4.

These surrogates can now be employed to solve different tasks that require mul-
tiple evaluations of f . As an example, we employ the f -greedy model (as the most ac-
curate and most efficient) to solve a parameter estimation problem as described in
Section 9.6. We consider the output values Ynte in the test set as a set of measures that
have not been used in the training of the model, and we try to estimate the values
of Xnte . For each output vector yi ∈ ℝ

3 we define a target value y := yi +η‖yi‖2v to define
the cost (9.25), where v ∈ ℝ3 is a uniform random vector representing some noise, and
η ∈ [0, 1] is a noise level. We then use a built-in Matlab optimizer with the gradient
of Proposition 9.8, with initial guess x0 := 0 ∈ ℝ3, to obtain an estimate x∗i of xi. The
results of the estimate for each output value in the test set are depicted in Figure 9.4 for
η = 0,0.1, where we report also the final value of the cost function C(x∗i ). In all cases,
the optimizer seems to converge, since the value of the cost function is in all cases
smaller than 10−4, which represents a relative value smaller than 10−3 with respect to
the magnitude of the input values. The maximum absolute error in the estimations
is quite uniform for all the samples in the test set, and this results in a good relative
error of about 10−1 for large inputs, while for inputs of very small magnitude the rel-
ative error is larger than 1, and a larger noise level leads to less accurate predictions.
This behavior is coherent with the analysis of the test error discussed above, since the
approximant is less accurate on inputs of small magnitude, and thus it provides a less
reliable surrogate in the cost function.

9.9 Conclusions and outlook

In this chapter we discussed the use of kernel methods to construct surrogate models
based on scattered data samples. These methods can be applied to data with general
structure, and they scale well with the dimension of the input and output values.
In particular, we analyzed issues and methods to obtain sparse solutions, which are
then extremely fast to evaluate, while still being very accurate. These properties have
been further demonstrated on numerical tests on a real application dataset. These
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Figure 9.4: Absolute errors of the input estimation as functions of the magnitude of the output (left),
and value of the cost function at the estimated input (right) for a noise level η = 0 (top row) and
η = 0.1 (bottom row) using the f -greedy VKOGA model. The dotted lines represent relative error
levels from 100 to 10−3.

methods can be analyzed in the common framework of Reproducing Kernel Hilbert
Spaces, which provides solid theoretical foundations and a high flexibility to derive
new algorithms.

The integration of machine learning and model reduction is promising and many
interesting aspects have still to be investigated. For example, surrogate models have
been used in [23, 24] to learn a representation with respect to projection-based meth-
ods, and generally amore extensive application ofmachine learning to dynamical sys-
tems requires additional understanding and the derivation of new techniques. More-
over, the field of data-based numerics is very promising, where classical numerical
methods are integrated or accelerated with data-based models.
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Jack P. C. Kleijnen
10 Kriging: methods and applications

Abstract: In this chapter we present Kriging—also known as a Gaussian process (GP)
model—which is a relatively simple metamodel—or emulator or surrogate—of the
corresponding complex simulation model. To select the input combinations to be
simulated, we use Latin hypercube sampling (LHS); these combinations may have
uniform and non-uniform distributions. Besides deterministic simulation we discuss
random—or stochastic—simulation, which requires adjusting the design and analy-
sis. We discuss sensitivity analysis of simulation models, using “functional analysis
of variance” (FANOVA)—also known as Sobol sensitivity indices. Finally, we discuss
optimization of the simulated system, including “robust” optimization.

Keywords: Gaussian process, metamodel, emulator, surrogate, optimization

10.1 Introduction

Kriging is the mathematical interpolation method that is named after the South
African mining-engineer Krige (who lived from 1919 through 2013). He solved the
problem of interpolating the outputs (or responses) that were obtained at a limited
number of locations for gold mining; see the details on Krige’s life in [32].

Next, Krige’s method was formalized by the French mathematician Matheron
(1930–2000), who developed a novel type of mathematical statistics—called geo-
statistics or spatial statistics. He based this formalization on the stationary Gaussian
process (GP). This stationarity implies that the GP has a constant mean (expected
value), a constant variance, and covariances that depend only on the distances be-
tween “points” in a (say) k-dimensional space; obviously, in spatial statistics k ≤ 3
(length, width, height). This GP defines a multivariate normal (or Gaussian) distribu-
tion. Spatial statistics is detailed in [14], which is a popular textbook with 900 pages;
other books that reflect the French tradition are [12] and [40]. Recent survey articles
are [4] and [13]. The connection between Krige and Materon is also discussed in [32].

Later on, these GPs were applied in machine learning, which is a “hot” subdisci-
pline within computer science. The best-known textbook on GPs in machine learning
is [35].

However, in this chapter we focus on the development and application of GPs in
experiments with computerized simulation models; this field is known as design and
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analysis of computer experiments (DACE). Obviously, these models may have many in-
puts, which implies k ≫ 1. The pioneering article on DACE is [36]; a recent textbook is
[38]. DACE publications focus on deterministic simulation, whereas we shall also dis-
cuss random or stochastic simulation (e. g., queueing simulation models). A random
simulation uses pseudo-random numbers (PRNs), which by definition are uniformly
distributed on [0, 1] and mutually independent. The design and analysis of experi-
ments with random simulation models require the development of novel statistical
methods, such as methods for sample-size determination and stochastic Kriging (SK).
Indeed,weneed to determine these sample sizes becausewe should select the number
of replications per simulated point (input combination) in order to control the noise
created by the PRNs (in Section 10.4 we shall see that this problem is not yet solved
satisfactorily). We need SK because we should account for the so-called “intrinsic”
noise created by the PRNs. The pioneering article on SK is [1].

We call a GP a metamodel of the underlying simulation model; i. e., this meta-
model is a simpler and explicit mathematical function that approximates the complex
and implicit function defined by the simulation model (this model is either determin-
istic or random). The DACE literature often calls themetamodel a surrogate or an emu-
lator. We shall see (in the next section) that Kriging also quantifies the uncertainty of
its predictor (say) ŷ; i. e., Kriging also gives Var(ŷ), whereas many other metamodels
(e. g., neural nets, splines) do not.

Kriging may have different goals; see [22, p. 9]. We shall discuss prediction, sen-
sitivity analysis, and optimization. Besides these goals, [2] also discusses uncertainty
quantification and uncertainty propagation.

Note: Simulation is applied in many scientific disciplines, which have their own
terminologies andmathematical symbols.Weuse the terminology and symbols in [22];
e. g., we write Gaussian and Kriging with capitals (because these words refer to the
proper names Gauss and Krige), and we use the symbol k (instead of d, which is used
in many other publications on GP). The hasty reader may skip paragraphs that start
with “Note:”.

Note: [30, 29] consider so-called intrinsicKriging (IK)—whichoriginated ingeostatistics—
and derive several IK types for deterministic simulations and random simulations,
respectively.

We base this chapter on the Chapters 5 and 6 in [22], butwe update these chapters,
adding novel methods and applications for Kriging. Furthermore, corrections and ad-
ditions for [22] are available on https://sites.google.com/site/kleijnenjackpc/home/
publications/corrections-additions-of-2015-springer-book.

Besides [22] we also use [24, 25].We do not use a Bayesian approach,which is used
in many publications on GP.

We organize the rest of this chapter as follows. In Section 10.2we present so-called
“Ordinary Kriging” (OK), comparing OK with popular linear-regression metamodels.
In Section 10.3wepresent Latinhypercube sampling (LHS) for selecting the input com-
binations to be simulated, which results in the input/output (I/O) data analyzed by
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OK. In Section 10.4 we consider the adjustments in the design and analysis of random
simulation when using Kriging. In Section 10.5 we discuss sensitivity analysis (SA) of
simulation models that are analyzed through Kriging; this SA may be global instead
of local, and use “functional analysis of variance” (FANOVA)—also known as Sobol
sensitivity indices. In Section 10.6 we discuss optimization of the simulated system
including “robust” optimization, using Kriging. In Section 10.7 we present our con-
clusions, including topics that require further research.

10.2 Ordinary Kriging
To explain OK, we start with the following linear-regression model (we assume that
the readers are familiar with this model; otherwise, they can read Chapters 2 and 3 in
[22]); we add the subscript “reg”, to distinguish between regression and OK models:

yreg = Xregβreg + ereg (10.1)

where yreg denotes the n-dimensional vector with the observations on the dependent
(explained) regression variable where n denotes the number of observed (simulated)
input combinations or “points”, Xreg is the n × qmatrix of independent (explanatory)
regression variables, βreg is the q-dimensional vector with regression parameters (co-
efficients), and ereg is the n-dimensional vector with the residuals E(yreg)−E(w)where
w is the n-dimensional vector with simulated outputs.Xreg consists of the n rows with
the q-dimensional vectors x′reg;i with i = 1, . . . , n. We assume a univariate (scalar) out-
put. The simulation model has k inputs xj (j = 1, . . . , k); an independent regression
variable may be identical to a simulation input or it may be a function of one or more
simulation inputs; e. g., xreg;2 = x21 or xreg;3 = x1x2. Classic regression analysis assumes
that ereg is white noise; i. e., ereg is normally (Gaussian) distributed with zero means,
constant variances (say) σ2, and zero correlations so the covariance matrix of ereg is
Σreg = σ2In×n where In×n denotes the n × n identity matrix.

Because white noise implies independent residuals, we cannot learn from the
residuals. Kriging, however, assumes that the residuals at two points (say) x and x′
have values that aremore similar, as x and x′ are closer; i. e., Kriging assumes that the
residuals are positively correlated.

The simplest Kriging model is the OK model

y(x) = μ +M(x) (10.2)

where μ is the constant mean E[y(x)] and M(x) is a zero-mean stationary GP (a more
complicated type of Kriging may replace this μ by a low-order polynomial; see uni-
versal Kriging or UK, discussed in the Note at the end of this section). M(x) is called
the extrinsic noise, because the term “intrinsic noise” is used for random simulation
analyzed through SK.
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The OKmodel leads to the linear predictor (say) ŷ(x0) for the new point x0 = (x0;j)
that combines the n old outputs collected inwn—or brieflyw—that are observed at the
n old points with k inputs, so the n × k matrix X has the rows xi = (xi;1, . . . , xi;k) with
i = 1, . . . , n and ŷ(x0) uses the n weights λi collected in the vector λ:

ŷ(x0) =
n
∑
i=1 λiw(xi) = λ′w. (10.3)

To derive the optimal λ, we use the best linear unbiased predictor (BLUP) criterion. By
definition, the predictor ŷ(x) is unbiased if E[ŷ(x)] = E[y(x)]. This implies that x = xi
gives ŷ(xi) = w(xi); i. e., ŷ(x) is an exact interpolator. Such interpolationmakes perfect
sense in deterministic simulation.

Note: A regression model determines the optimal βreg in (10.1) through the crite-
rion of the best linear unbiased estimator (BLUE) of βreg where “best’ means “mini-
mum variance”; this BLUE is β̂reg = (X

′
regXreg)

−1X′regw. The BLUE β̂reg is identical to
the “maximum likelihood” (ML) estimator and the “least squares” (LS) estimator. LS
is amathematical instead of a statistical criterion; instead of this L2-norm, somemath-
ematical models use either the L1-norm or the L∞-norm. The BLUE is not always equal
to the MLE; e. g., the BLUE of σ2 has the denominator n − 1, whereas the MLE has n.
Obviously, ŷreg(x) = x′regβ̂reg is not am exact interpolator—unless n = q.

Furthermore, we can prove that the optimal λ′ in (10.3) is
λ′o = [σM(x0) + 1 1 − 1′Σ−1M σ(x0)

1′Σ−1M 1
]
′
Σ−1M (10.4)

where ΣM denotes the n × n matrix with the covariances between the metamodel’s
“old” outputs yi (so, ΣM = (σi;i′ ) = (Cov(yi, yi′ )) with i, i′ = 1, . . . , n), and σM(x0) de-
notes the n-dimensional vector with the covariances between the metamodel’s new
output y0 and the n old outputs yi (so, σM(x0) = (σ0;i) = (Cov(y0, yi))). Obviously, ΣM is
determined by the old I/O simulation data (X,w), whereas σM(x0) varies with x0 (so
we might write λo(x0) if we would want to point out that λo varies with x0, whereas
β̂reg remains constant). Furthermore, a stationary process implies that λi decreases
with the distance between x0 and xi. Substituting λo—defined in (10.4)—into (10.3),
and using 1n—to denote the n-dimensional vector with all elements equal to 1—gives

ŷ(x0) = μ + σM(x0)
′Σ−1M (w − μ1n). (10.5)

To denote Var(yi) (= σi;i = σ2i = σ2), we use the symbol τ2 (τ2 is the more usual symbol
in the Kriging literature). Then themean squared residual (MSE) of ŷ(x0) is

MSE[ŷ(x0)] = τ
2 − σM(x0)

′Σ−1M σM(x0) +
[1 − 1′nΣ−1M σM(x0)]2

1′nΣ−1M 1n
. (10.6)

Because ŷ(x0) is unbiased, MSE [ŷ(x0)] reduces to Var[ŷ(x0)]. If x0 = xi, then ŷ(x0) =
w(x0) and Var[ŷ(x0)] = 0.
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It is often convenient to switch from covariances to correlations. The correlation
matrix R = (ρi;i′ ) equals τ−2ΣM , and the correlation vector ρ(x0) equals τ−2σM(x0).
There are several types of correlation functions; see (e. g.) [35, pp. 80–104]. In simula-
tion, the most popular function is the Gaussian correlation function:

ρ(h, θ) =
k
∏
j=1 exp(−θjh2j ) = exp(− k

∑
j=1 θjh2j ) with θj ≥ 0 (10.7)

with distance vector h = (hj) where hj = |xg;j − xg′ ;j| and g, g′ = 0, 1, . . . , n, and with
θ = (θj) so R = R(θ). We collect the 2 + k Kriging (hyper)parameters inψ = (μ, τ2, θ′)′.
We estimateψ through themaximum likelihood (ML) criterion,which gives theMLesti-
mator (MLE) ψ̂. To compute ψ̂, it is convenient to switch to the log-likelihood function:

min
ψ

ln[󵄨󵄨󵄨󵄨τ
2R(θ)󵄨󵄨󵄨󵄨] + (w − μ1n)

′[τ2R(θ)]−1(w − μ1n) with θ ≥ 0 (10.8)

where |R| denotes the determinant of R. Solving (10.8) is a mathematical challenge;
e. g., different solutions ψ̂may result from different software packages or from initial-
izing the same package with different starting values; see [18]. The various software
packages for Kriging standardize the inputs such that the k inputs are limited to a
k-dimensional hypercube [0, 1]k .

In practice, ψ̂ is plugged into (10.5) and (10.6), which gives ŷ(x0, ψ̂) and ̂Var[ŷ(x0,
ψ̂)]. Most publications ignore the fact that ŷ(x0, ψ̂) becomes nonlinear, and ̂Var[ŷ(x0,
ψ̂)] underestimates the “true” Kriging variance. However, the true Kriging variance
is estimated in [22, pp. 191–197]—and also in [11]—applying the bootstrap method and
the related method called “conditional simulation”. Nevertheless, in this chapter we
shall simply plug-in ψ̂, and we shall not explicitly display the dependence of ŷ and
̂Var(ŷ) on ψ̂. This gives

s2[ŷ(x0)] = τ̂
2 − σ̂M(x0)

′Σ̂−1M σ̂M(x0) +
[1 − 1′Σ̂−1M σ̂M(x0)]2

1′Σ̂−1M 1
. (10.9)

We combine ŷ(x0) and s2[ŷ(x0)] in the following two-sided confidence interval (CI)with
nominal coverage 1−αwhere zα/2 denotes α/2-quantile of the standard normal N(0, 1):

ŷ(x0) ± zα/2s[ŷ(x0)]. (10.10)

The actual (true) coverage of this CI may be lower than 1 − α, because of the following
three factors: (i) the plug-in predictor ŷ(x0) is biased; (ii) the plug-in variance estima-
tor s2[ŷ(x0)] underestimates Var[ŷ(x0)]; and (iii) the absolute value of the Gaussian
quantile |zα/2| is lower than the absolute value of the Student quantile with (say) f de-
grees of freedom |tf ;α/2| if f < ∞, where tf ;α/2 with the proper (but unknown) f seems
to be the correct factor for a CI that uses an estimated variance.

Note: If we replace the constant μ = E(y) by a trend (e. g., E(y) = β′x), then we get
UK; details on UK are found in [22, pp. 197–198] and also in [9] and [33].
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10.3 Latin hypercube sampling
LHS is a popular type of space-filling design. Other types are orthogonal array, uni-
form, maximum entropy, minimax, maximin, integrated mean squared prediction er-
ror, and “optimal” designs; see [22, p. 198]. Furthermore, [3] discusses so-called bridge
designs, which are space-filling andmay satisfy various criteria and input constraints
such that the input space is not a k-dimensional cube. Finally, [9] shows that “there
is substantial variation in prediction accuracy over equivalent designs”.

Originally, LHS was invented as an alternative for Monte Carlo sampling in risk
analysis or uncertainty analysis through deterministic simulation models that have
(random) uncertain inputs; risk analysis estimates the probability of the output ex-
ceeding a given threshold as a function of an uncertain input xj; for details on risk
analysis we refer to [22, pp. 218–222] and [2]. LHS assumes that an adequate meta-
model is more complicated than a low-order polynomial, but LHS does not assume
a specific metamodel (e. g., a Kriging model). LHS usually assumes that the k inputs
are independently distributed (so their joint distribution is the product of the k in-
dividual marginal distributions); in this chapter we also use this assumption. Often
LHS assumes that these distributions are uniform (symbol U) in the interval [0, 1], so
xj ∼ U(0, 1). In risk analysis, however, LHS often assumes a specific non-uniform dis-
tribution for xj with its mode at x0;j where x0;j denotes the jth coordinate of x0 and
j = 1, . . . , k (standardization implies 0 ≤ x ≤ 1). This mode may be the value of the
input that the experts think is most likely. There are many non-uniform distributions;
see [26, pp. 286–305]. For example, we may use beta distributions, provided we select
the correct values for the twoparameters of the beta distribution;moreover, a different
combination of these parameters gives a different variation around the mode; see [26,
pp. 295–297]. We discuss a special case of the beta distributions; namely, a triangular
distribution with its mode at xm;j; we denote this distribution by T(xm;j). We shall de-
tail LHS for U(0, 1) and for T(xm;j) later on in this section. More details on LHS can be
found in [22, pp. 198–203]; recent algorithms are detailed in [16, 27].

Whatever themarginal distributions are, LHSwith a sample size (number of input
combinations) n defines nmutually exclusive and exhaustive subintervals (or classes)
with equal probability (namely, 1/n) for xj with j = 1, . . . , k. We denote these subinter-
vals by [lg;j, hg;j] with g = 1, . . . , n; the standardization 0 ≤ xj ≤ 1 implies l1;j = 0 and
hn;j = 1. Altogether, if Fj denotes the cumulative distribution function (CDF) of xj, then

P(lg;j ≤ xj ≤ hg;j) = Fj(hg;j) − Fj(lg;j) = Fj(gn) − Fj(g − 1n
) =

1
n

(10.11)

where min(g − 1)/n = (1− 1)/n = 0, so Fj((g − 1)/n) = Fj(0) = 0 because min xj = 0; like-
wise, max(g)/n = n/n = 1, so Fj(g/n) = Fj(1) = 1 because maxj x = 1. Obviously, (10.11)
implies that near the mode of T(xm;j) the subintervals [lg;j, hg;j] are relatively short,
compared with the other subintervals; however, if xj ∼ U(0, 1), then each interval has
the same length 1/n.
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LHS offers the following two options. Option (i) fixes xj to the n midpoints (sym-
bolmj) of its n subintervals, so xg;j = mg;j = (lg;j + hg;j)/2; e. g., if x ∼ U(0, 1), then these
midpoints are equispaced with distance 1/n over the interval [0, 1] so these midpoints
are 1/(2n), 3/(2n), . . . , 1−1/(2n) = (2n−1)/(2n). Option (ii) samples xj within its subinter-
val, accounting for Fj. Option (i) implies that xj has a discrete PDF, so (10.11) becomes

P(xg;j = mg;j) = Fj(hg;j) − Fj(lg;j) = Fj(gn) − Fj(g − 1n
) =

1
n
. (10.12)

Furthermore, LHS samples without replacement, so the midpointmj;g is sampled only
once in the sample of size n. We denote the inverse CDF by F−1j , so y = Fj(x) with 0 ≤
y ≤ 1 implies x = F−1j (y); we observe that U(0, 1) and T(xm) imply that Fj is continuous.
Altogether, xj is a permutation of the n values F−1j (0.5/n), F−1j (1.5/n), . . . , F−1j (1−0.5/n).
Option (ii) first samples r ∼ U(a, b) with a = (g − 1)/n and b = g/n where g = 1, . . . , n,
and then computes

x = F−1j (r) with r ∼ U(g − 1
n
,
g
n
). (10.13)

Algorithm 10.1 is a (pseudo)algorithm for LHS for option (i), which gives the n × k
design matrix XL (the subscript L stands for LHS); also see [22, pp. 200].

Algorithm 10.1:
1. Read n, k, Fj (j = 1, . . . , k).
2. Initialize: j = 1.
3. Use Fj to divide the range of xj into n mutually exclusive and exhaustive in-

tervals of equal probability with midpoint mj;g (g = 1, . . . , n), and find xj =
(mj;1,mj;2, . . . ,mj;n)′.

4. Randomly permute the n elements of xj, and save the result as column j of XL.
5. If j < k then j = j + 1 and go to Step 3; else stop.

For option (ii), Step 3 becomes: Use Fj to divide the range of xj into n mutually ex-
clusive and exhaustive intervals of equal probability, and apply (10.13) to find xj =
(xj;1, xj;2, . . . , xj;n)′.

For both options, however, the random permutations in Step 4 may give a “bad”
XL; to decide on a “good” XL, our algorithm needs a criterion. We use the max-
imin criterion, which maximizes the minimum Euclidean distance between the n
(k-dimensional) points in [0, 1]k . We perform these random permutations (say) M
times, and select the “best” design; e. g., MATLAB’s default isM = 5.

LHS does not impose a strict mathematical relationship between n and k. We ob-
serve that in Kriging n ≥ 10 implies that we can estimate the correlation parameters θj
with j = 1, . . . , k (see (10.7)) reasonably accurate, because LHS implies that projection
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of the n (k-dimensional) points onto the k individual axes gives n non-collapsing val-
ues per axis. If LHS uses a “small” n and a “large” k, then LHS covers [0, 1]k sparsely
(so there are only a few old points close to the new point) and the Kriging predictor
may be inaccurate.We note that [28] gives the rule-of-thumb n = 10k for LHS if Kriging
has SA as its goal; so, n ≥ 10 if k ≥ 1; [28] is revisited in [19].

There is much software for LHS. For example, Microsoft’s Excel spreadsheet soft-
ware has add-ins that include LHS; LHS is also included in Oracle’s Crystal Ball, Pal-
isade’s@Risk, andFrontline Systems’ Risk Solver. LHS is also available in theMATLAB
Statistics toolbox, the R package, and Sandia’s DAKOTA software. An interesting web-
site is http://www.spacefillingdesigns.nl/. However, some software (e. g., MATLAB)
does not allow a non-uniform distribution such as T(xm), so we now present LHS for
U(0, 1) and T(xm); for details we refer to [24].

The CDF of U(0, 1) is FU;j(x) = x if 0 ≤ x ≤ 1. This CDF and (10.12) imply that option
(i) samples U(0, 1) through

xj;g = mg;j if lg;j < xg;j < hg;j (g = 1, . . . , n).
This CDF and (10.13) imply that option (ii) samples U(0, 1) through the PRN r ∼ U(0, 1)
and computes

xj;g = lg;j + r(hg;j − lg;j) if lg;j < xg;j < hg;j (g = 1, . . . , n).
The CDF of T(xm) is (see [26, pp. 304–305]):

FT;j(x) = x2

xm;j if 0 ≤ x ≤ xm;j, (10.14)

FT;j(x) = 1 −
(1 − x)2

1 − xm;j if xm;j ≤ x ≤ 1,

so this CDF has a kink at xm;j. Combining this equation with (10.12), option (i) samples

xj;g = √xm;j(2g − 1)2n
with xg ≤ xm;j (g = 1, . . . , n), (10.15)

xj;g = 1 − √(1 − xm;j)[2n − (2g − 1)]2n
with xj;g ≥ xm;j.

Option (ii) samples xj (within the specific subinterval) via the first line of (10.14) if hg;j <
xm;j. If lg;j > xm;j, then it samples xj via the second line of (10.14). If lg;j < xm;j < hg;j,
then it first samples the PRN r ∼ U(0, 1); if r < xm;j, then it samples xj via the first line
of (10.14); if r > xm;j, then it samples xj via the second line of (10.14). Altogether, option
(ii) samples

xj;g = √xm;jr if either xm;j > hg;j or lg;j < xm;j < hg;j and r < xm;j, (10.16)

xj;g = 1 − √(1 − xm;j)(1 − r) if either xm;j < lg;j or lg;j < xm;j < hg;j and r > xm;j.

Both options are compared in [24].
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We observe that [23] develops a method (or algorithm) that uses a sequential de-
sign for Kriging in deterministic simulation aimed at SA. That method considers—but
does not yet simulate—a set of candidate combinations selected through LHS, and
finds the candidate with the highest estimated predictor variance. That method is
also summarized in [22, pp. 204–206]. For constrained optimization in deterministic
simulation, [25] also uses Kriging and a sequential design based on LHS for selecting
candidate combinations, and finds the candidate with the highest criterion value; see
Section 10.6.1.

10.4 Random simulation: Kriging analysis and
experimental design

In random simulation we wish to control the noise of the simulation output at point
xi (i = 1, . . . , n), so we obtain (say)mi ≥ 1 replications; we shall return to the choice of
a value formi. To analyze the I/O data of a random simulation, [1] develops stochastic
Kriging (SK). This SK adds the intrinsic noise term εr(xi) ∼ N(0,Var[ε(xi)]) for repli-
cation r (r = 1, . . . ,mi). After averaging over the mi replications, SK uses the formulas
for the OK predictor ŷ in (10.5) and Var(ŷ) in (10.6), but replacesw byw andM(xi) by
M(xi) + ε(xi) where ε(xi) ∼ N(0,Var[ε(xi)]/mi) and ε(xi) is assumed to be indepen-
dent ofM(x). We use the symbol ψ+ε to denote ψ augmented with Var[ε(xi)]. The SK
predictor ŷ(ψ+ε) is not an exact interpolator anymore—which makes sense in random
simulation, which gives only estimates of the true simulation outputs. Obviously, Σε is
diagonal if no common random numbers (CRN) are used (if we applied CRN and used
mi = m, then Σε = Σε/m; however, we assume no CRN in this section). To estimate
Var[ε(xi)], SK may use the classic unbiased estimator

s2(wi) =
∑mi
r=1(wi;r − wi)

2

mi − 1
(i = 1, . . . , n). (10.17)

However, these s2(wi) are rather noisy estimators, so SK may use a second Kriging
metamodel for Var[ε(xi)]—besides the Kriging metamodel for the mean E[y(xi)]. This
second metamodel is only a rough approximation, because s2(wi) is not normally dis-
tributed. The transformation log[s2(wi)]may give a normal distribution. For more de-
tails we refer to [22, p. 208].

An alternative for SK is hetGP developed in [5]. This alternative assumes mi ≥ 1,
whereas SK assumes mi ≫ 1. Whereas SK gives a biased ψ̂+ε because SK fits Kriging
models for the mean and the intrinsic variances independently, hetGP couples these
models through a joint likelihood forψ+ε that is optimized in one shot. This alternative
requires computational time of the same order as SK does. A recent alternative for SK
is developed in [45].
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The output of a random simulation may be a quantile (not an average); e. g., a
quantile may be relevant in chance-constrained optimization. References are given in
[22, p. 208].

In our preceding discussion of Kriging, we assumed mi ≥ 1 replications at the
point xi with i = 1, . . . , n. In practice, wemust decide howmany points andwhich points
to simulate, and howmany replications to obtain for these points. Unfortunately, there
are no simple solutions for this problem. Actually, [6] and [41] present sequential de-
signs using the criterion called the integrated mean squared prediction error (IMSPE),
which integrates Var[ŷ(x)] for x in [0, 1]k . Obviously, this criterion assumes that the
goal of Kriging is SA. Furthermore, [42] extends [5], using advanced mathematical
analysis. If the goal of Kriging is optimization, then other criteria may be used (see
Section 10.6). The main problem is that mi with i = 1, . . . , n should depend on bothM
(external noise) and Σε (internal noise); also see [30].

Note: We observe that [10] allows some inputs to be qualitative. Furthermore, [47]
uses SK, accounting for the discrepancy between real observations and simulated ob-
servations, possibly using CRN. Finally, [37] uses “generalized integrated Brownian
fields” as simulation metamodels.

10.5 Sensitivity analysis

SA may be one of the goals of simulation modeling and Kriging. SA may be either
global or local. SA is also closely related to “what if analysis”, “gaining insight” , and
“prediction” . So, in practice, goals may be known under different names, andmay be
ambiguous. For further discussion of various goals we refer to [22, p. 9].

In this chapter we give the following definition: SA quantifies how the simulation
output changes, as one or more simulation inputs change. To start our discussion of
SA, we assume that the simulation is deterministic and that we change only one of the
k inputs and that this single input (say) x1 is continuous. Then we can quantify this
sensitivity at a given point x—so the SA is local—through 𝜕w/𝜕x1|x. This local SA is
simplest if we can adequately approximate the I/O behavior of the simulation model
by a first-order polynomial in x so 𝜕w/𝜕x1|x = β1. If we use a second-order polynomial,
then interactions between x1 and the other k − 1 inputs play a role and the marginal
effect of x1 is not constant.

Instead of local SA we may perform global SA: how does the simulation output
change, as one or more simulation inputs change over the whole area of interest
[0, 1]k? Moreover, “the” output may have a distribution (instead of a single value) if
the deterministic simulation has one or more inputs that are uncertain so we assume
a prespecified distribution for these uncertain inputs (as in LHS; see Section 10.3).
Now we discuss global sensitivity analysis (GSA) or functional analysis of variance
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(FANOVA), which uses variance-based indices originally proposed by the Russian
mathematician Sobol.

FANOVA decomposes σ2w—the variance of the random simulation output w—into
fractions that refer to sets of inputs:

σ2w =
k
∑
j=1 σ2j + k

∑
j<j′ σ2j;j′ + ⋅ ⋅ ⋅ + σ21;...;k (10.18)

with the main-effect variance σ2j = Var[E(w|xj)], the two-factor interaction variance
σ2j;j′ = Var[E(w|xj, xj′ )]−Var[E(w|xj)] - Var[E(w|xj′ )], etc. Thisσ2j gives the first-order sen-
sitivity index or themain-effect index ζj = σ2j /σ

2
w, which quantifies the effect of varying

xj alone—averaged over the variations in all the other k − 1 inputs—where the denom-
inator σ2w standardizes ζj to provide a fractional contribution. Altogether the sum of
the 2k−1 indices is 1. In practice, we assume that only the ζj—and possibly the ζj;j′—are
important, and that they sum up to a fraction “close enough” to 1.

To estimate thesemeasures, wemay use LHS and replace the simulationmodel by
a Kriging metamodel; see [22, pp. 216—218]. In practice, FANOVA may show that (say)
70% of σ2w is caused by x1, 20% by x2, and 10% by the interaction between x1 and x2.
Software for FANOVA is included in Open TURNS, discussed in [2]; a MATLAB toolbox
is presented in [34]. SA is the topic of many recent publications; see the website with
corrections and additions for [22] that was mentioned in Section 10.1.

10.6 Optimization
There aremanymethods for the optimization of a simulated system; see the references
in [22, p. 242]. Somemethods require relatively many input combinations; e. g., evolu-
tionary algorithms (EAs) and particle swarm optimization (PSO) do. Wemay therefore
apply thesemethods to a computationally cheapmetamodel of the underlying compu-
tationally expensive simulationmodel; e. g., PSO and Kriging are combined in [20]. In
this chapter, however, we focus on efficient global optimization (EGO) in Section 10.6.1
and robust optimization (RO) in Section 10.6.2.

10.6.1 Efficient global optimization

Originally, [21] developed EGO, which uses Kriging. EGO is a sequential method that
balances local and global search; i. e., EGO balances exploitation and exploration. We
detail only the basic EGO-variant for deterministic simulation. The goal of this variant
is to estimate the input combination x0 that minimizes the simulation output w(x).

We start with an initial or pilot sample of input combinations xi with i = 1, . . . , n,
selected through LHS. We use these xi as input for the simulation model, which
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gives (xi,wi) or (Xn,wn). We then find the best simulated output so far: wmin =
min1≤i≤n w(xi).

Next we select a new input combination, considering both ŷ and s(ŷ); e. g., if the
two combinations x and x′ have ŷ(x) ≈ ŷ(x′) and s[ŷ(x)] > s[ŷ(x′)], then we prefer x
because x has a higher probability of improvement (or PI) so it may give a smaller w.
We know that s[ŷ(xn+1)] increases as xn+1 lies farther away from xi (i = 1, . . . , n); see
(10.6). Actually, we estimate the maximum of the expected improvement (EI), which is
reached if either ŷ(xn+1) is much smaller than wmin or s[ŷ(xn+1)] is relatively large so
ŷ(xn+1) is relatively uncertain.

To obtain ŷ and s(ŷ), we fit a Krigingmetamodel. This gives EI(x) = E[max (wmin −
ŷ(x),0)]. Let Φ and ϕ denote the cumulative distribution function (CDF) and the PDF
of the standard normal variable z. Then [21] derives that the estimated EI for the input
combination x is

ÊI(x) = (wmin − ŷ(x))Φ(
wmin − ŷ(x)
s[ŷ(x)]

) + s[ŷ(x)]ϕ(wmin − ŷ(x)
s[ŷ(x)]

). (10.19)

Using (10.19), we find the x that maximizes ÊI(x); we denote this optimal combination
by x̂o (with the subscript “o” for “optimal”). To find this x̂o, we may use a relatively
large set of candidate input combinations that are selected through LHS (say) Xcand;
we do not simulate these candidates, but we find the candidate with the highest ÊI(x)
with x ∈ Xcand.

We use this candidate x̂o as the input combination that is simulated next, and
obtain w(x̂o). Then we re-estimate the Kriging metamodel from the I/O data (Xn,wn)
augmented with (x̂o,w(x̂o)) . We update n, and return to (10.19)—until we satisfy a
stopping criterion; e. g., ÊI(x̂opt) is “close” to 0 or the computer budget is exhausted.

There are many more EGO-variants, for deterministic simulation and random
simulation, constrained optimization, multi-objective optimization including Pareto
frontiers, RO, the “excursion set” or “admissible set”, estimation of a quantile, and
Bayesian approaches; see [22, pp. 267–269]. For example, a variant for constrained op-
timization in deterministic simulation—with one goal output and several constrained
outputs—is developed in [25].

10.6.2 Robust optimization

In [15] Krige’s (meta)model and Taguchi’s world view are combined. Taguchi de-
signed robust engineering products such as cars (at Toyota), emphasizing that in
practice some inputs are under complete control of the engineers (e. g., the car’s
design), whereas other inputs are not (the car’s driver, and the roads). He therefore
distinguished between (i) controllable or decision variables, and (ii) noncontrollable
or environmental noisy (or random) factors. So, the estimated optimum (see the pre-
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ceding section)may turn out to be inferior because this optimum ignores uncertainties
in some of the simulation inputs. Therefore we may proceed as follows.

To simplify our discussion, we sort the k simulation inputs such that the first
kC inputs are controllable, and the next kNC inputs are noncontrollable. We let zC
and zNC denote the vector with the kC controllable and the kNC noncontrollable orig-
inal (nonstandardized) inputs z. Taguchi assumes a single output (say) w, and fo-
cuses on its mean E(w) and its variance; obviously, this variance is caused by zNC,
so Var(w|zC) > 0. Taguchi combines E(w) and Var(w|zC) into a scalar loss function
such as the signal-to-noise ormean-to-variance ratio E(w)/Var(w|zC); see the detailed
discussion of Taguchi’s approach in [31, pp. 486–488], which is the classic textbook
on so-called response surface methodology (RSM).

Taguchi’s approach is successful in production engineering, but statisticians crit-
icize its statistical methods. We add that—compared with real-life experiments (dis-
cussed in [31])—simulation experiments have more inputs, more input values, and
more input combinations. Actually, [31, pp. 502–506] combines Taguchi’s worldview
with the statisticians’ RSM.

However, [15] uses E(w) and σ(w|zC) separately; obviously, σ(w|zC) has the same
scale as E(w) has.Mathematical optimization (MO) can then be used to solve the con-
strained optimization: minzC E(w|zC) such that σ(w|zC) ≤ cσ where cσ is a prespeci-
fied upper threshold for σ. Constrained optimization is also discussed in [31, p. 492].
Whereas [31] superimposes contour plots for E(w|zC) and σ(w|zC) to estimate the op-
timal zC, [15] uses MO.

This MO, however, requires specification of cσ (threshold for σ). In practice, man-
agers may find it hard to select a specific value for cσ . Therefore we try different cσ val-
ues, and estimate the corresponding Pareto-optimal efficiency frontier. This frontier,
is uncertain because it depends on the estimators of E(w|zC) and σ(w|zC). To estimate
the variability of the frontier, we may apply bootstrapping. For details on this type of
RO we refer to Dellino et al. [15], which is summarized in [22, pp. 280–284].

An application of RO using Kriging to estimate the Pareto frontier is [46]. Kriging
for RO is also used in [8], comparing this approachwith several alternativemetamodel
types (e. g., neural networks).

Note that [44] presents an approach that follows RO as developed in MO (instead
of Taguchian publications). RO in MO was originally developed by the Israeli mathe-
maticianBen-Tal anduses concepts suchas “uncertainty sets”, “robust counterparts”,
and “adjustable decision rules”. The approach in [44] does not need a known distri-
bution for the environmental inputs; i. e., this approach uses only experimental data
combined with so-called “phi-divergence” uncertainty sets. This approach is applied
to low-order polynomial metamodels, but may be extended to Kriging metamodels
(without introducing additional complexity to the problem formulation). RO for both
linear-regression and Kriging metamodels is detailed in [39].
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10.7 Conclusions and outlook

We provided an overview of a specific type of metamodel; namely, Kriging or Gaus-
sian process (GP). Kriging is popular in geostatistics andmachine learning, and is also
gaining popularity in the analysis of simulation experiments. However, many issues
remain in Kriging; e. g., should we use a simple constant mean or a low-order polyno-
mial trend? Shouldwe select a Gaussian or aMatérn correlation function?How should
we estimate the intrinsic variance of the simulation output for new input combina-
tions of the simulation model? Kriging in random simulation needs further research
on sequential designs for the selection of additional input combinations and the num-
ber of replications for old and new combinations. Kriging is used in classic “efficient
global optimization” (EGO); currently, many researchers also investigate random sim-
ulation and constrained optimization. Robust optimization (RO) has just started in
simulation, whereas it is a hot topic in Mathematical Optimization (MO). The appli-
cation of various types of Kriging for sensitivity analysis and optimization remains
challenging.

Future research may try to solve the curse of dimensionality in Kriging; currently,
the number of inputs is usually limited to (say) 20. To solve this problem, wemay pre-
cedeKriging by factor screening; several screeningmethods are presented in Chapter 4
of [22]. Other solutions are discussed in [7, 43].

Another topic of future research is big data, in which the number of input/output
combinations is so high that the computation of the inverse of the estimated covari-
ance matrix is impossible. Various solutions are discussed in [17, 24].
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