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Abstract—This paper analyzes a recently proposed energy
harvester model, based on a harmonic chain of coupled oscillators
connected to a piezoelectric transducer. We discuss first how
random mechanical vibrations can be modelled as a superposition
of sinusoidal signals with random amplitude and phase. Using a
mechanical-electrical analogy, we derive equivalent circuits in the
form of two-port networks, for both the single mass and the N -
mass energy harvester. The transfer functions for both the single
mass and the N -mass (valid for any number of masses in the
harmonic chain) devices are then obtained cascading the two-port
representations of the individual sections, and we give expressions
for computing the output power and the power efficiency. Pros
and cons of the harmonic chain model are also briefly discussed.

I. INTRODUCTION

The quest for renewable energy sources, driven by the
now widely recognized necessity to transition from a pure
exploitation economic model to the sustainable development
paradigm, suggested the research community to explore al-
ternative energy technologies based on tapping the available
ambient energies [1]–[5]. As electrical power sources represent
a highly flexible energy form perfectly adapt to implement the
Internet of Things scenario made of networks of electronic and
electro-mechanical systems that are not only miniaturized, but
also wireless connected, we focus here on the harvesting of
ambient energy sources yielding electrical energy.

Among the various flavors of ambient energy, e.g. electro-
magnetic radiation, temperature gradients and many others,
mechanical energy is the most ubiquitous [6]–[10], and thus
it represents probably the most common energy harvesting
input. The energy conversion from mechanical to electrical
of course calls for the availability of a transducer: the high
electro-mechanical coupling factor and piezoelectric coeffi-
cient, as compared to other approaches such as electrostatic,
electromagnetic, and triboelectric conversion, make piezoelec-
tric transduction the prominent choice for mechanical energy
harvesters [11], [12].

From the modeling standpoint, the mathematical representa-
tion of the energy sources should reflect their random nature:
a stochastic process is the natural candidate, thus leading to
the development of the so-called stochastic energy harvesters.
The piezoelectric harvester, on the other hand, is represented

as an oscillator, whose proper frequencies must be adapted to
the spectral region where most of the mechanical energy is
available [13], [14].

In this contribution, we derive a novel, cascaded two-
port model for the analysis of linear, piezoelectric stochastic
energy harvesters. After expressing the stochastic process
representing random mechanical vibrations as a superposition
of stochastic harmonic functions characterized by a random
frequency distribution and random amplitudes, we turn the
attention to the modeling of the mechanical and electrical
sections of the harvester. Single and multi-modal piezoelectric
harvesters are described in the frequency domain by means of
the corresponding transmission matrix, a choice that matches
the representation of the random inputs as a superposition
of harmonics. The input and output power can therefore be
easily recovered as a function of the relevant transfer functions
derived from the equivalent transmission matrix, as well as the
harvester efficiency.

The starting point of the present work has been the piezo-
electric harvester model discussed in [15], where an harmonic
chain of oscillating masses is compared to the customary
single mass device: we have modified the original proposal
by connecting the chain of oscillating masses to the transducer
with a spring, which seems a more physical representation of
the device. After describing the representation of the random
vibrations as a superposition of sinusoidal signals with random
amplitudes and frequency components, we focus the attention
on deriving a cascaded two-port description of both the har-
monic chain of masses and of the piezoelectric transducer in
terms of the transmission matrices of the electrical equivalent
for all of the harvester sections. The main advantage of this
procedure is the derivation of the relevant transfer functions
allowing for the estimation of the output power and of the
power collecting efficiency. According to our description of
the harvester, the advantages of the multiple masses device
are clearly traced back to the presence of several resonant
frequencies as opposed to the case of a single resonance
structure.

II. RANDOM VIBRATION MODELLING

The theory of periodically driven linear systems is well
developed, thus following [16], we model random mechanical



TABLE I
MECHANICAL-ELECTRICAL ANALOGY

Mechanical Electrical
Force, f Voltage, v

Displacement, x Charge, q
Momentum mẋ Flux linkage, φ

Mass, m Inductance L
Compliance, k−1 Capacity, C

Damping, γ Resistance, R

vibrations with the parametric stochastic process

f(t) =

n∑
k=1

σk (Ak cos(ωkt) +Bk sin(ωkt)) (1)

where σk are constants, while Ak and Bk are Gaussian
distributed, uncorrelated random variables, with zero expecta-
tion value and unit variance. For the angular frequencies ωk,
different choice criteria have been proposed [17]. To guarantee
that the process is not periodic, it is sufficient that ωm/ωn is
not rational, for at least one pair1 m,n ∈ N . For the sake of
simplicity, we shall consider random frequencies, uniformly
distributed on the interval ]0, ωmax]. Therefore, the stochastic
process (1) is characterized by zero expectation, and by the
correlation function

r(t1, t2) = E[f(t1)f(t2)] =

n∑
k=1

σ2
k cos(ωk(t1 − t2)) (2)

where E[·] denotes the expected value operator. Being sta-
tionary, we can describe the second order moment through
the power spectral density

S(ω) =

n∑
k=1

σ2
k

2
(δ(ω − ωk) + δ(ω + ωk)) (3)

Exploiting mechanical-electrical analogies (see table I), forces
are replaced by voltages. Thus the stochastic process (1) can be
represented by a series of ideal independent voltage sources,
as shown in figure 1. We shall make the substitution

f(t) → vin(t) =

n∑
k=1

Vin,k cos(ωkt+ θk) (4)

where Vin,k = σk

√
A2

k +B2
k and θk = − arctan(Bk/Ak).

III. HARMONIC CHAIN-BASED ENERGY HARVESTER:
MODELLING

Any energy harvester for parasitic mechanical vibration
scavenging, is composed by three main parts: A mechanical
structure designed to capture the kinetic energy of para-
sitic mechanical vibration; a transducer, responsible for the
mechanical-to-electrical energy conversion, and an electrical
circuitry for electric power supply.

1From the implementation point of view, this condition is never satisfied, as
the finite precision of digital computers implies that ratio ωm/ωn is always
rational. For practical purposes, however, it is sufficient to consider a large
enough value for m/n.

+
−

+
−

+
− Vin,1 cos(ω1t + θ1), V

Vin,2 cos(ω2t + θ2), V

Vin,n cos(ωnt + θn), V

+
−vin(t)

Fig. 1. Equivalent one port for the random vibration force.
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Fig. 2. Schematic representation of a single mass (single mode) (a), and a
N -masses harmonic chain based energy harvester (b).

Irrespective of the working principle, energy harvesters
typically rely upon oscillators to capture energy from ran-
dom mechanical vibrations. Efficiency of linear oscillators
is restricted by their limited bandwidth, because they act as
passband filters. Recently, it has been suggested that energy
harvesters based upon a harmonic chain, e.g. a chain of cou-
pled harmonic oscillators as shown in figure 2(b), may offer
better performance, exploiting a larger number of operating
modes and thus a wider bandwidth [15]. Notice that with
respect to [15], we have connected the harmonic chain to the
transducer through a spring, so that the single mass device
becomes a special case of the harmonic chain (N = 1).

In this section, we develop a cascaded two-port network
model for energy harvesters with piezoelectric transducers,
that exploits a harmonic chain to capture random vibrations
kinetic energy. The advantage of using cascaded two-ports is
twofold: First, the network model can be easily adapted to
any number of oscillators in the chain (and the associated
number of admissible oscillation modes). Second, the model
can be easily analyzed in the frequency domain to estimate
the transfer function and power performance.

A. Piezoelectric transducer: Two-port model

First we derive a two-port network model for piezoelectric
transducers. The constitutive equations for a linear piezoelec-
tric material are [18][

S
D

]
=

[
sE d

dT εT

] [
T
E

]
(5)



where S and T are the mechanical strain and stress tensors, D
and E are the dielectric displacement and electric field vectors,
sE and d are the compliance (evaluated at constant electric
field) and the piezoelectric charge constants tensors, while εT

is the absolute permittivity evaluated at constant stress [19].
Finally, T denotes the transpose.

A lumped parameter model, describing the macroscopic
behavior in terms of the force fpz applied to the mechanical
part due to the electrical domain, displacement x, charge q and
voltage e, can be derived from the microscopic description (5)
through spatial integration. In the quasi-static regime, neglect-
ing the stiffness of the piezoelectric material, the governing
equations read

fpz(t) = −α e(t) (6a)

q(t) = αx(t)− Cp e(t) (6b)

where α is the electromechanical coupling (in N/V or As/m),
and Cp is the electrical capacitance of the mechanical uncon-
strained system.

System (6) describes an electro-mechanical two port. At
the left (input) port the effort (or across) variable is the force
fpz(t), and the flux (or through) variable is the velocity ẋ(t).
At the right (output) port, the effort is the voltage e(t) and
the flux is the current i(t) = q̇(t). Using the mechanical-
electrical analogy, an equivalent circuit for the piezoelectric
transducer can be derived, as shown in the right part of figure
3. In the complex frequency domain, the state equations for
the equivalent two-port network are[

Vpz(s)

Ipz(s)

]
=

[
α 0

sCp
α

1
α

]
︸ ︷︷ ︸

Tpz

[
V ′

pz(s)

I ′pz(s)

]
(7)

where Tpz(s) denotes the transmission matrix for the two-port
model of the piezoelectric transducer.

B. Single mass energy harvester: Two-port modelling

We shall now discuss the problem of modelling the me-
chanical part of the energy harvester as a cascaded two-port
network. First we consider the case of the single mass (single
mode) oscillator shown in figure 2(a). The equation of motion
is

mẍ(t) + kx(t) + γẋ(t) = fext(t) (8)

where m is the inertial mass, k is the stiffness constant of the
spring, γ is a dissipation constant and fext(t) = f(t) + fpz(t)
is the net force applied to the oscillator. It is convenient to
rewrite (8) as a first order system

ẋ =
y

m
(9a)

ẏ =− kx− γ

m
y + f(t) + fpz(t) (9b)

Using the mechanical-electrical analogy in table I, the
equivalent two-port network shown in the left part of figure

R LC
Cp

α i′1

i1 i′1 i′pz

v1 v′1 v′pz
+

−

+

−

+

−
Piezoelectric
transducerMechanical part

+−vpz

+

− αv′pz

ipz

Fig. 3. Equivalent circuit for a single mass energy harvester with piezoelectric
transducer.

3 is obtained2. The state equations in the complex frequency
domain read

[
V1(s)

I1(s)

]
=

[
1 R+ sL+

1

sC
0 1

]
︸ ︷︷ ︸

T1

[
V ′
1(s)

I ′1(s)

]
(10)

where T1(s) is the transmission matrix for the two-port
network model of the single mass oscillator.

When the harmonic oscillator is connected to the piezoelec-
tric transducer, a cascaded two-port network is obtained. The
transmission matrix for the cascaded two-port is

T(s) = T1(s)Tpz(s)

=

 α+
sCp

α
(R+ sL+

1

sC
)

1

α
(R+ sL+

1

sC
)

sCp

α

1

α


(11)

C. Harmonic chain-based energy harvester: Two-port mod-
elling

Now we consider the N -masses harmonic chain shown in
figure 2(b). We assume that the external source of mechanical
vibrations is applied to the first oscillator, and that the piezo-
electric transducer absorbs energy from the N -th oscillator.
While we let the masses to be different, we simplify the
system considering the connecting springs to have the same
stiffness constant k. It is worth mentioning that, differently
from the original work [15], the N -th mass is connected
to the transducer through a spring, which is absent in [15].
Inclusion of the connecting spring introduces a zero in the
transfer function at ω = 0 rad/s. Conversely, if the N -th mass
is directly connected to the transducer as in [15], the transfer
function has a non-zero gain at ω = 0 rad/s, a condition whose
physical consistency seems questionable.

Under these assumptions, the equations of motion take the

2It is worth mentioning that a two-port network representation can be
derived for the mechanical system directly, in terms of forces and velocity,
without reformulating the problem as an electrical equivalent circuit.
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Fig. 4. Equivalent circuit for a N -masses harmonic chain energy harvester
with piezoelectric transducer.

form

f(t) = m1ẍ1 − k(x2 − x1) + γẋ1 (12a)
...

0 = miẍi − k(xi+1 + xi−1 − 2xi) i = 2, . . . , N − 1
(12b)

...
fpz(t) = mN ẍN − k(xN−1 − 2xN ) (12c)

Using the mechanical-electrical analogy, the equivalent cir-
cuit for the N -masses harmonic chain based energy harvester
as a cascaded two-ports network shown in figure 4 is obtained.

The transmission matrices for each of the two-ports repre-
senting the harmonic chain are

T1(s) =

[
1 + sC(R+ sL1) R+ sL1

sC 1

]
(13)

Ti(s) =

[
1 + s2LiC sLi

sC 1

]
i = 2, . . . , N − 1 (14)

TN (s) =

[
1 sLN + 1

sC
0 1

]
(15)

The total transmission matrix between input (v′pz, i
′
pz) and

output (v1, i1) simply becomes

T(s) =

(
N∏

k=1

Tk(s)

)
Tpz(s) (16)

IV. ANALYSIS

We shall now make use of the models derived in the previ-
ous section to analyze the response and the power performance
of the single mass and of the N -masses harmonic chain-based
energy harvester, assuming that a given load is connected to
the harvester.

Consider the two-port network closed on a load with
impedance ZL(s), as shown in figure 5, where the transmission
matrix T, given by (11) or by (16), respectively, is rewritten
in the general form3

T(s) =

[
A(s) B(s)
C(s) D(s)

]
(17)

3The transmission matrix is also known as ABCD matrix.

T
+
−Vin(s)

Iin(s)

ZL(s)

Vo(s)

Io(s)

+

−

Fig. 5. Equivalent circuit for a N -modes piezoelectric energy harvester.

It is straightforward to derive the relevant transfer functions

Yin(s) =
Iin(s)

Vin(s)
=

C(s) +D(s)YL(s)

A(s) +B(s)Y L(s)
(18)

H(s) =
Vo(s)

Vin(s)
=

1

A(s) +B(s)YL(s)
(19)

where YL(s) = ZL(s)
−1 is the load admittance.

It should now be clear the advantage of modelling random
vibrations as the sum of harmonics presented in section II.
In the frequency (s = jω, or phasor) domain, for the input
voltage described by (4), the output voltage is

vo(t) =

n∑
k=1

Vo,k cos(ωkt+ ∠V̂o,k) (20)

where Vo,k is the amplitude of the k-th harmonic, and the
phasors V̂o,k are given by

V̂o,k = |H(ωk)|Vin,ke
j(∠H(ωk)+θk) (21)

The input current is

iin(t) =

n∑
k=1

Iin,k cos(ωkt+ ∠Îin,k) (22)

where the phasors Îin,k are

Îin,k = |Yin(ωk)|Vin,ke
j(∠Yin(ωk)+θk) (23)

Because frequencies ωk are all different, the total average
power is the sum of the average power at each single fre-
quency. The average input power is therefore

Pin = lim
T→+∞

1

T

∫ T

0

vin(t) iin(t)dt (24)

=
1

2

n∑
k=1

V 2
in,k|Yin(ωk)| cos(∠Yin(ωk)) (25)

while the average output power reads

Pout = lim
T→+∞

1

T

∫ T

0

vo(t) io(t)dt (26)

=
1

2

n∑
k=1

V 2
in,k|H(ωk)|2GL(ωk) (27)

where GL(ω) = Re[YL(ω)] is the load conductance. The
power efficiency can finally be calculated as

η =
Pout

Pin
(28)



Fig. 6. Bode diagram for the magnitude of the input admittance Yin(ω)
(above) and the voltage ratio H(ω) (below), for the circuits shown in figures
3 and 4. For the sake of simplicity all parameters are normalized to 1, except
α = 0.5.

Figure 6 shows the Bode diagrams for the magnitude of
the input admittance Yin(ω) and the voltage ratio H(ω). As
expected, the transfer function for the single mass harvester
(black line) shows a typical band-pass behavior, with a well
defined maximum at the resonant frequency ω1 = 1/

√
L1C1.

The harvester is very efficient when the energy of mechanical
vibrations is concentrated in a narrow band centered at ω1, but
performance degrade rapidly outside the pass-band.

When several masses are connected to form the harmonic
chain, the performance at the resonant frequency ω1 gets
slightly worse, and new additional resonant frequencies appear.
If the energy of the mechanical vibrations is distributed over a
wide frequency interval, showing peaks located at two or more
frequencies, the harmonic chain may give better performance,
provided that the masses are chosen in such a way that the
additional resonant frequencies match the spectral components
that convey more energy. The number of masses in the
harmonic chain equals the number of resonant frequencies
(counted with their multiplicity). Thus increasing the number
of masses permits, in principle, to match a larger number of
spectral components, increasing the total power scavenged by
the harvester. Finally, it should be noted that, with respect

Fig. 7. Band limited power for different number of masses in the harmonic
chain. Parameters are the same of figure 6.

to the single mass case, the transfer function H(ω) for the
harmonic chain shows a steepest cutoff at high frequency.
However, this is not really a limiting factor, as the power
density for ambient random vibrations is mostly concentrated
at relatively low frequencies.

Figure 7 shows the cumulative band limited power

PBL(ωref) =
∑

ωk∈]0,ωref]

P (ωk) (29)

for different number of masses in the harmonic chain. It can
be seen that, as expected, increasing the number of masses
increases the harvested power, in particular at frequencies
different from resonance. It should be noted that in this
example, the harmonic chain performs better than the single
mass harvester at frequencies higher than resonance. This is
however a consequence of the choice made for the parameters.
As it is shown in figure 6, the transfer function H(ω) for the
harmonic chain shows peaks at frequencies higher than the
resonant frequency. Choosing different values for the masses
mi (inductances Li), the performance of the harmonic chain
can be modified to match the spectrum of the forcing random
vibrations. In this example, we assumed that the frequency
spectrum of the mechanical vibration is uniformly distributed
in the interval ω ∈]0, 3] rad/s. Therefore, PBL is constant
for ω > 3 rad/s, irrespective of the number of masses.
Finally, our numerical simulations suggest that there are no
particular advantages in increasing the number of masses
beyond a certain value, at least for the parameters chosen in
this example, inasmuch the total harvested power does not
vary significantly.

V. CONCLUSIONS

In this paper we have proposed a cascade two-port electrical
equivalent representation of a recently proposed model [15] for
an energy harvester based on an harmonic chain of coupled
masses, i.e. a chain of coupled harmonic oscillators, and
a piezoelectric transducer for mechanical energy harvesting
applications.



We have discussed how random mechanical vibrations can
be modelled as a superposition of sinusoidal signals, with
random amplitudes and phases. Exploiting the mechanical-
electrical analogy, such a model corresponds to ideal voltage
sources connected in series. We have also shown that the
harmonic chain harvester with piezoelectric transducer can be
described as a cascaded two-port network, and we have derived
the transmission parameters for both the single mass and the
N -masses harmonic chain. In the latter case, the model can
be applied to chains with an arbitrary number of masses.

The equivalent voltage source model and the cascaded two-
port network model are the ideal tool for the frequency domain
analysis of the harvester. The relevant transfer functions have
been derived in terms of the transmission parameters, and
analytical expressions for the output voltage, output average
power and power efficiency have been derived.

The effect of including more masses in the chain, with
specific reference to the advantages and disadvantages of
the harmonic chain harvesting approach, have been briefly
discussed.
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