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Abstract 

Demand side management at district scale plays a crucial role in the energy transition process, being 

an ideal candidate to balance the needs of both users and grid, by managing the volatility of renewable 

sources and increasing energy flexibility. The presented study aims to explore the benefits of a 

coordinated approach for the energy management of a cluster of buildings to optimise the electrical 

demand profiles and provide services to the grid without penalising indoor comfort conditions. The 

proposed methodology makes use of a fully data-driven control scheme which exploits Long Short-

Term Memory (LSTM) Neural Networks, and Deep Reinforcement Learning (DRL). A simulation 

environment is introduced to train a DRL controller to manage the operation of heat pumps and chilled 

and domestic hot water storage for a cluster of four buildings. LSTM models are trained with synthetic 

data set created in EnergyPlus and are integrated into simulation environment to evaluate the indoor 

temperature dynamics in each building. The developed DRL controller was tested against a manually 

optimised Rule Based Controller (RBC). Results show that the DRL algorithm is able to reduce the 

overall cluster electricity costs, while decreasing the peak energy demand by 23% and the Peak to 

Average Ratio (PAR) by 20%, without penalizing indoor temperature control. 
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1. Introduction  

Building sector accounts for 40% of global energy consumption, thus playing a key role in the energy 

transition process [1]. The increasing population and rapid urbanization are causes of the growing 

energy demand, which can be sustainably satisfied by exploiting in a great extent renewable energy 

source (RES). However, the volatility of renewable energy production can lead to potential grid 

instability [2]. In that scenario, demand side management (DSM) has become relevant, considering 

the high operating and maintaining cost of flexibility sources on supply side [3]. In addition, proper 

DSM strategies can represent an additional source to increase supply efficiency and reducing 

investment cost related to facilities for the centralised generation, transmission and distribution [4].   

DSM strategies can contribute to exploit building energy flexibility, defined as the ability of adapting 

energy consumption without compromising technical and comfort constraints [5]. This could be 

achieved especially by means of thermal and electric storage, that allow to decouple energy demand 

and local production, shifting the energy consumption from period of high electricity price  to period 

of low electricity price. However, the adoption of price-based programs could lead to new undesirable 

peaks of demand (peak shifting) during periods with low electricity prices [6]. Moreover, the energy 

flexibility of a single building is typically too small to be bid into a flexibility market, highlighting 

the necessity to analyse the aggregated flexibility provided by a cluster of buildings [7]. To overcome 

these limitations, a novel approach to energy management is represented by the coordinated energy 

management for cluster of buildings, which aims to exploit the benefits of DSM and demand response 

(DR) programs while avoiding peak rebounds on the grid and enhancing energy flexibility. 

Coordinated management of buildings can be addressed with a centralised or decentralised control 

[8]: in the first case a single controller is assumed to have the information on the current states of the 

entire building cluster, while in the second case decentralised controllers can act at single building 

level [9]. By means of a coordinated energy management a number of buildings can cooperate or 

compete to achieve global objectives (e.g., cost minimisation, peak shaving) [10]. The following 



subsection provides an overview on coordinated energy management related works, together with 

identified literature gaps and paper contributions. 

1.1 Related works 

The coordinated approach in building energy management has recently received a lot of interest, with 

particular attention to the participation in demand response programs [11,12] mainly through the 

exploitation of electric vehicles charging strategies [13], schedulable appliances [14,15], peer-to-peer 

transactions [16] and incentive based programs [17].  

Despite many studies have demonstrated the advantages of optimal management of HVAC systems, 

by means of adaptive [18] and predictive [19,20] control strategies, few efforts have been devoted to 

the coordination of their operation for a cluster of buildings. In fact, most of recent works reported in 

literature exploited co-simulation environment based on white-box modelling such as Modelica [21] 

and EnergyPlus [22] to perform energy management strategies at single building scale. However, 

when the interest shifts from a single building to a cluster of buildings, the computational cost 

associated to the simulation of energy performance of building and HVAC system is not negligible, 

making the forward approach unsuitable for the effective implementation of online control strategies. 

Early studies tried to face the computational burden of district energy management by decoupling 

building energy demand and local production, focusing the attention on the formulation of control 

strategy for supply systems coupled with thermal [23,24] and electrical storage [25]. In those cases, 

the control strategies act on HVAC system or storage operation to meet ideal building energy demand 

that are pre-calculated by considering fixed schedule of indoor set-point conditions. By adopting this 

modeling approach, storage control strategies have showed to be effective in providing grid services 

at both single building [26] and multiple buildings scale [27,28] or in improving energy management 

[29]. However, this approach poses limitations to the exploitation of building thermal mass and indoor 

temperature control as additional flexibility source.  

The authors in [30] discussed the importance of modeling building dynamics to control HVAC 

systems operation for the effective implementation of DR programs. Moreover, in [31] and [32] the 



trade-off between thermal demand reduction and acceptable indoor temperature was analyzed; while 

in [33] the same concept was extended to a cluster of buildings,  highlighting the role of indoor set 

point temperature as a key flexibility source.  

Some recent works [34,35] assessed the advantages to implement model predictive control (MPC) 

for regulating HVAC systems and controlling indoor temperature in a cluster of  buildings.  

However, the main barriers behind the implementation of district energy management are represented 

by i) the computational cost necessary to properly model local supply systems and energy demand 

considering indoor temperature control in each building of the cluster ii) the complexity associated 

to the optimization of a district of buildings, characterized by different energy systems and energy 

demand patterns. 

To overcome computational cost necessary to model multiple buildings considering the indoor 

temperature evolution, a recent approach takes advantage from the implementation of data driven 

models (e.g., artificial neural networks (ANN). This opportunity has gained popularity in recent years, 

due to the increasing availability of building-related data and to the necessity of computationally 

lightweight the predictive models of indoor environmental conditions. Ruano et al. [36] proposed a 

radial basis function neural network to predict the indoor air temperature of a public building, while 

in  [37] and [38] nonlinear autoregressive models were exploited for the same purpose. In [39] a long-

short term memory (LSTM) neural-network was employed to predict the indoor air temperature in a 

multi zone building..  

Due to their versatility, neural networks have been exploited to predict the indoor microclimatic 

conditions, also coupling them with advanced control strategies.  Huang et al. [40] implemented a 

predictive controller coupled with a neural network predicting the indoor air temperature of a multi-

zone building, to optimise the start and stop of an HVAC system. In [41] the application of an 

autoregressive neural network for the indoor temperature prediction integrated in a fuzzy logic 

controller was implemented to regulate the volumetric flow rate supplied by the HVAC system..  



However, while this approach seems to be well-established at single building scale, it has not been 

fully explored at district level, due to the computational complexity associated to model based control. 

Moreover, MPC showed good performances when applied at single building scale but at the expense 

of defining detailed models, whose development requires a great effort. 

Recent research has tried to develop more efficient model-free control, such as Reinforcement 

Learning (RL). Reinforcement learning is less expensive to be implemented because it does not 

require a model of the system and could learn through the interaction with both the environment and 

historical data. Moreover, a peculiarity of the RL lies in its adaptability [43], making it able to 

automatically adapt to the environment’s changes, as well as to human preferences, that can be 

directly integrated into the control logic.  

RL controllers have proven to be effective to control the operation of several energy systems in 

residential or commercial buildings, including gas boiler [44], electric water heater [45], domestic 

hot water (DHW) [46] or heat pumps [47]. In addition, [48] deeply reviewed the application of RL 

for demand response, emphasizing the opportunity provided by such control approach. Recently, few 

studies have started to put emphasis on the application of reinforcement learning for the cooperative 

and competitive coordination mechanisms [49] to account for demand peak shifting in cluster of 

buildings [24]. 

In Figure 1 a Venn diagram is reported, with the aim to underline the different main contributions 

provided by some relevant papers presented in literature in the field of the building energy 

management. The diagram shows that most of the previous works focused on the energy management 

strategies with specific objectives at single building scale, namely on demand response and grid-

interaction, demand side management and indoor temperature control, or demand independent supply 

side management. Few papers have been focused on multiple building coordination, albeit analysing 

only specific aspects of the energy management problem. This paper intends to provide a contribution 

that accounts the multi-objectives nature of energy management at a district scale. 



 

Figure 1: Venn diagram displaying the four pillars of advanced control for district energy management: buildings coordination, 

grid-interaction, indoor comfort and storage technologies  

 

In summary, the following gaps have been identified from the existing literature, which require 

further investigations: 

1. Current energy management strategies for multiple buildings mainly focused on the 

coordination of schedulable appliances, neglecting the potentialities of controlling HVAC 

systems. 

2. Coordinated district energy management was often implemented only on local production 

side, considering pre-computed ideal building energy demand. This approach disregards to 

assess user comfort and to exploit the indoor temperature control as an additional flexibility 

source. 



3. The control optimization of multiple energy systems is challenging with MPC, which requires 

huge effort for model development and lacks adaptability. In this context, RL seems to provide 

a viable alternative that needs to be still analysed for large scale environment. 

 

To overcome current limitations of district energy management, this paper proposes a fully data-

driven framework to coordinate multiple energy systems (heat pumps and thermal storage) for a group 

of four buildings modelling the building thermal dynamics and the indoor temperature evolution by 

means of deep neural networks (DNN). 

To this purpose a new simulation environment, CityLearn [50], was used and specifically built to 

enable training and evaluation of reinforcement learning models in a cluster of buildings. The 

centralised DRL controller was designed to coordinate the energy demand of four buildings, by 

controlling the cooling power supplied by the heat pump and the operation of cold and DHW thermal 

storage for optimising both operational costs and peak demand without jeopardizing indoor 

temperature control. 

The primary contributions of the present paper can be summarized as follows:  

1. A number of LSTM neural networks were developed to predict the indoor temperature 

evolution of different buildings with the aim of reducing computational cost needed to take 

into account of the building dynamics at district level. 

2. The forecasting models were integrated into a data-driven simulation environment 

(CityLearn), with the possibility to coordinate the control of heat pumps and thermal storage 

considering the indoor temperature evolution during the optimization process. 

3. A Soft Actor Critic (SAC) reinforcement learning agent was implemented to coordinate the 

energy demand, indoor comfort, and grid-interaction for a cluster of four buildings, analysing 

the effect of the coordinated management on multiple levels. 

The paper is organised as follows: Section 2 introduces the methods adopted, including LSTM neural 

network architecture and RL algorithm. Then, Section 3 describes the case study and the control 



problem. Section 4 introduces the proposed methodological framework, while Section 5 describes the 

implementation of the methodology, with particular attention to the training process and controller 

design. Section 6 presents the results of the training and deployment phase, while discussion of results 

is given in Section 7. Lastly, conclusion and future works are reported in Section 8.  

2. Methods 

2.1. Long Short-Term Memory Neural Networks 

Long Short-Term Memory networks, usually just called “LSTMs”, are a special kind of recurrent 

neural networks, capable of learning long-term dependencies [51]. This property of LSTMs is due to 

a particular gating mechanism and to the presence of two states: 

 Hidden state: responsible of maintaining the short-term memory. 

 Cell state: responsible of maintaining the long-term memory and capturing long term 

dependencies. 

The scheme of the LSTM cell is shown in  Figure 2.: 

 

Figure 2: LSTM architecture 



 

The main feature of LSTMs is the cell state, which is responsible for maintaining long term 

dependencies: information is removed or added to the cell state by means of three gates.. The forget 

gate decides what information has to be deleted from the cell state, the update gate decides which 

information is going to be stored in the cell state and the output gate is used to compute the output of 

the LSTM. 

2.2.Reinforcement Learning 

Reinforcement learning is a branch of machine learning specialized in solving control problems. It 

combines the advantages of dynamic programming, with a trial-and-error approach. RL uses an agent-

based control, in which the agent learns through the interaction with the controlled environment. 

Reinforcement learning can be formalized as a Markov decision process (MDP), a discrete-time 

stochastic control process [52]. MDP is useful when the decision maker deals with partly random or 

unknown environment.  

Markov Decision Process are represented using a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅) made up of: 

1. S: State space 

The states represent a mathematical description of the environment.  

2. A: Action space 

The action is the decision made by the agent on how to control the environment. 

3. P: Transition probability 

The transition probability 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 𝑃: 𝑆 × 𝐴 × 𝑆
′ is the probability that, 

starting in s and performing action a at the time t, the next state will be s’. 

4. R: Reward function 

The reward function is used to map the immediate reward 𝑟 with the tuple  𝑆 × 𝐴 × 𝑆′. 

The ultimate goal of the agent is to find the optimal control Policy (𝜋). A control policy is a mapping 

between states and actions 𝜋: 𝑆 → 𝐴, and it has the aim to maximize the cumulative reward over a 

time horizon, called return 𝐺 = ∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 . Return is defined as a discounted cumulative where 

https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Optimal_control_theory


𝛾 ∈ [0,1] is the discount factor for future rewards. An agent employing 𝛾 equal to 1 considers future 

rewards as important as current ones, while an agent with 𝛾 equal to 0 assign higher values to states 

that lead to high immediate rewards. For sake of clarity an example with an energy system is provided 

in Figure 3. 

In that case the controller (agent) is connected to a heat pump. The controller has the role of 

minimising electricity cost while guaranteeing comfort conditions (reward function). The amount of 

cooling power delivered to the building (actions) influences both terms of the reward charging and 

discharging (actions) the storage to satisfy the demand. The exploitation of information such as heat 

pump efficiency or low electricity price period (states) allows the controller to find the optimal policy 

and maximize the reward. 

 

Figure 3: Reinforcement learning control framework 

 

Among RL algorithms, the most used one, due to its simplicity, is Q-learning [53]. In Q-learning 

transitions can be represented with a tabular approach that stores the state-action values (Q-values) 

that are updated as follows: 

 

𝑄(𝑠, 𝑎) ⃪𝑄(𝑠, 𝑎) + 𝜇[𝑄(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥
𝑎
 (𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]                                       (1) 



Where s’ is the next state and µ ∈ [0,1] is the learning rate, which determines to what degree new 

knowledge overrides old knowledge. When µ is equal to 1 new knowledge completely substitutes old 

knowledge, while for µ set equal 0 no learning happens. Despite the advantages, a tabular 

representation of real-world problem may be unfeasible, due to large state and action spaces that 

needs to be stored.  

2.2.1. Soft actor critic 

The combination of RL and high-capacity function approximators such as deep neural networks 

renewed the interest for the RL topic and promoted its extension to complex problems [54]. Among 

Deep Reinforcement Learning (DRL) algorithms, an actor-critic method was selected for its ability 

to combine advantages of both value-based and policy-based methods.  

The key components of soft actor-critic [55] are: 

 An actor-critic architecture used to map policy and value function with different networks. 

 The off-policy formulation that allows reusing previously collected data, stored in a replay 

buffer (𝐷) to increase data efficiency. 

 The entropy maximization formulation, that helps stabilize the algorithm and the exploration. 

Differently from the standard RL algorithm, maximum entropy reinforcement learning optimises 

policies to maximize both the expected return and the expected entropy of the policy as follows: 

𝜋∗ = argmax
𝜋𝜙

∑ 𝔼(𝑠𝑡,𝑎𝑡)~𝜌𝜋  [𝑟(𝑠𝑡, 𝑎𝑡) +  𝛼𝐻 (𝜋𝜙(∙ |𝑠𝑡))]
𝑇
𝑡=0                          (2) 

Where (𝑠𝑡, 𝑎𝑡)∼𝜌𝜋is a state-action pair sampled from the agent’s policy, and 𝑟(𝑠𝑡, 𝑎𝑡) is the reward 

for a given state-action pair. Due to the entropy term, 𝐻, the agent attempts to maximize the returns 

while behaving as randomly as possible.   

SAC is influenced by the temperature parameter 𝛼, that determines the relative importance of the 

entropy term against the reward, and thus controls the stochasticity of the optimal policy. A high 

value of the temperature parameters may lead to a uniform behaviour, while a low value of the 

temperature parameter will only maximize the reward. To reduce the effort of tuning this hyper-



parameter, this paper exploits a recent version of the SAC that employs alpha automatic optimization 

[56]. To ease the comprehension, the algorithm is summarized in Table 1. 

Table 1: soft actor-critic 

Input: 𝜃1, 𝜃2, 𝜙 Initial parameters 

    𝜃̅1 ⃪  𝜃1, 𝜃̅2 ⃪  𝜃2 Initialize target network weights 

    𝒟   ⃪  0 Initialize an empty replay buffer 

    for each iteration do  

        for each environment step do  

        𝑎𝑡 ~ 𝜋𝜙(𝑎𝑡|𝑠𝑡) Sample action from the policy 

        𝑠𝑡+1 ~ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) Sample transition from the environment 

        𝒟 ⃪ 𝒟 ∪ {(𝑠𝑡, 𝑎𝑡, 𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1)}  Store the transition in the replay buffer 

        end for  

        for each gradient step do  

            𝜃𝑖  ⃪ 𝜃𝑖 − 𝜆𝑄𝛻𝜃𝑖𝐽𝑄(𝜃𝑖) for 𝑖 ∈ {1,2} Update of the Q-function parameters 

            𝜙𝑖  ⃪ 𝜙𝑖 − 𝜆𝜋𝛻𝜙𝐽𝜋(𝜙) Update policy parameters 

            𝛼   ⃪ 𝛼 − 𝜆𝛻𝛼𝐽(𝛼)  Adjust temperature 

            𝜃̅𝑖  ⃪ 𝜏𝜃̅𝑖 + (1 − 𝜏)𝜃̅𝑖  for 𝑖 ∈ {1,2} Soft update of the target network weight 

        end for  

    end for  

Output: 𝜃1, 𝜃2, 𝜙 Optimised parameters 

  

 

2.3.The CityLearn simulation environment  

To train and deploy the developed RL controller CityLearn simulation environment [57] was adopted. 

The aim of the environment is to ease and standardize the implementation of RL agents in smart 

cities. In particular, it allows to control multiple energy storage devices within each building of a 

cluster, including domestic hot water and chilled water tanks for the storage of cooling and heating 

energy. The cooling energy is supplied by air-to-water heat pumps, and the heating energy is supplied 

by electric heaters, taking into account the presence of photovoltaic plants. The environment is highly 

flexible, allowing the implementation of both centralised and decentralised control agents, together 



with the possibility to easily add other technologies and state variables. A detailed description of the 

CityLearn environment and its architecture is presented in [50], while the code is available at [58]. 

3. Case study and control problem 

The proposed methodology, described in detail in next section, is applied to a cluster of 4 commercial 

buildings, including a small office, a retail, a restaurant and a medium office. The four buildings 

analyzed belong to commercial reference buildings developed by U.S. Department of Energy (DOE). 

The energy demand of the buildings was evaluated from June to October considering the Albuquerque 

(New Mexico, 4B climate zone) climatic conditions.   

Each building is equipped with a heat pump, hot and cold thermal storage and electric heater to meet 

heating, cooling and domestic hot water energy demand respectively. Figure 4 shows a schematic of 

the control architecture with a detail on energy systems for a representative building. Heat pump 

serves for both space heating and cooling, with the possibility to charge the cold storage and/or to 

directly supply cooling energy in order to control indoor temperature, while electric heater and hot 

storage meet DHW demand. Moreover, the heat pump operation at part load conditions was modelled 

according to UNI EN 14825 [59]. The energy systems are managed by a centralised controller, which 

conceived to optimise operational costs and to flatten the aggregated load profile of the entire cluster 

reducing peaks on the grid.  



 

Figure 4: Schematics of the district energy management systems analysed 

 

To simulate a realistic scenario, a variable electricity price was considered, with a tariff varying from 

0.03025 $/kWh during off-peak night-time period (8 p.m. - 7 a.m.) to 0.06605 $/kWh during on-peak 

day-time period (7 a.m. - 8 p.m.). Table 2 reports the geometrical features and the nominal capacity 

of the different systems for each building analyzed, including the PV capacity installed only in 

Building 4.  

 

Table 2: Building and energy systems properties 

 Type Surface 

[m2] 

Volume 

[m3] 

 Heat 

Pump 

Capacity 

[kW] 

Cold 

Storage 

Capacity 

[kWh] 

Hot 

Storage 

Capacity 

[kWh] 

PV 

Capacity 

[kW] 

Building 1 Small Office 511 2280  31 53 0 0 

Building 2 Retail 2294 13993  130 225 6 0 

Building 3 Restaurant 511 2415  95 162 50 0 

Building 4 Medium Office 4981 19777  295 505 13 120 

 

Figure 5 summarizes the electric load profile for three days of simulation for each building calculated 

with EnergyPlus, together with aggregated load profile of the entire cluster of buildings.  In detail, 

the bottom part of the figure shows the aggregated load profile, highlighting the contribution of the 



photovoltaic generation on the right. The breakdown of the total electrical load is reported on the left, 

considering appliances (non-shiftable), DHW and cooling demand. This representation is useful to 

underline cooling and DHW contribution, on which controller can act to enhance the flexibility of the 

cluster of buildings. Due to the high cooling demand needed to maintain indoor comfort condition, 

the analysis was focused only on the summer period (1st June to 31st August). 

 

Figure 5: Load profile for each building (up) and cluster electricity profile and PV production (down) 

4. Methodology 

The methodology takes advantage of two machine learning techniques to fully exploit the energy 

flexibility associated to a cluster of buildings using a coordinated energy management approach. As 

shown in Figure 6 the methodological framework exploits LSTM neural networks to predict indoor 

temperature evolution for each building. The neural networks were trained with synthetic datasets 

obtained through the modelling of each building with EnergyPlus. LSTM models were then coupled 

with CityLearn simulation environment to enable also the possibility to act on heat pump to control 

the indoor temperature, overcoming a limitation of the CityLearn environment, which allowed to 

work only with a pre-computed building energy demand. 

 



 

Figure 6: Proposed framework for the district energy management 

 

Then, a centralised DRL controller based on SAC algorithm was trained and deployed to perform a 

coordinated control of the energy systems of the cluster of buildings. Eventually, after a trial-and-

error interaction with the environment, the agent learnt how control indoor temperature in the 

different buildings, coordinating heat pump and storage operation to reduce costs and peak demand. 

4.1.Development of artificial neural networks  

In order to generate a labelled dataset for training and testing LSTM models, the four buildings of the 

cluster were preliminary modelled and simulated through EnergyPlus. For each building, several 

simulations were performed to analyse the effect of supply cooling load on indoor temperature. In 

particular, the set of simulations designed to create the synthetic data set include the variation of the 

percentage of cooling load supplied with respect to EnergyPlus ideal load. 

The synthetic dataset resulted of 11520 rows with an hourly granularity corresponding to 4 months 

of hourly simulations obtained by randomly varying the supply cooling load.  The variables reported 



in Figure 7 were used as input variables of the DNNs to predict indoor temperature for each building. 

In particular, to assess the feasibility towards a real-world implementation, were selected time 

variables, weather variables, together with the cooling load and the internal temperature related to 

previous time steps. Temporal variable was encoded using sine and cosine transformation and data 

was normalized using a min-max normalization. Then, a series-to-supervised procedure was 

performed using a sliding window. Since the aim of the problem is to forecast the internal 

temperature, the latter has a lag of one hour with respect to the other variables.   

 

Figure 7: Sliding window approach and DNN inputs 

 

To select the best architecture for each LSTM model, different hyperparameters were analysed. A 

sensitivity analysis was performed changing batch size, number of hidden neurons and layers, 

lookback and learning rate iteratively and finally selecting the set of parameters, after a training period 



of 100 epochs, leading to the highest accuracy. The accuracy was evaluated computing the following 

metrics: 

 𝑅𝑀𝑆𝐸 = √
∑ (𝐲̂𝐢−𝐲𝐢)
𝑛
𝑖=1

𝑛
 

 𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝐲̂𝐢−𝐲𝐢

𝑦𝑖 
|𝑛

𝑖=1  

The selected parameters resulted from the sensitivity analysis for each neural network are reported in 

Table 3: 

Table 3: Hyperparameters for each building model 

 

 

 

 

 

 

4.2.Deployment strategy of the neural network 

The trained neural networks were then tested both in one step ahead and recursive configuration. This 

latter is a strategy to perform multi step ahead predictions in simulation mode as shown in Figure 8. 

More in detail, a single model is trained to perform one-step ahead forecast given the input sequence. 

Then, during the operational phase, the forecasted output is recursively fed back and used as input 

for the next predictions. The recursive neural networks were integrated into CityLearn environment, 

adding the possibility to simulate the evolution of the indoor temperature in each building of the 

district. 

 Small Office Retail Restaurant Medium Office 

Batch size 100 100 100 100 

n° hidden 8 8 8 50 

Lookback 12 12 12 12 

Learning rate 

n° layers 

0.008 

2 

0.005 

2 

0.008 

2 

0.005 

1 



 

Figure 8:Recursive strategy used to perform indoor temperature prediction 

 

The coupling of the trained neural networks with CityLearn, provided twofold advantages: first, in 

addition to controlling storage operation, the possibility to control the cooling energy supplied by 

heat pumps; furthermore, the interactions of the neural networks with the controller allowed to 

evaluate the indoor temperature evolution in each building, with the opportunity to find the trade-off 

between comfort, energy consumption and grid requirements.  

4.3. Training of the centralised DRL 

After defined the environment, the control problem was formulated. Firstly, the action-space was set, 

which represents the set of possible control actions performed by the agent. Then the state-space, a 

set of variables related to the controlled environment, was defined and fed to the agent to learn the 

optimal control policy. Lastly, the reward function was formulated to optimise the operation of the 

agent according to the control objectives. The agent was trained in an offline fashion using a training 

episode multiple times to constantly refine the control policy [47]. 

4.4.Deployment of the centralised DRL 

The agent was statically deployed in the same climatic conditions used during the training phase, to 

assess the effect of the control policy on the objectives. The performances of the DRL controller were 



benchmarked against a RBC controller by evaluating several key performances indicators (KPI) 

including: system costs, maximum peak, average daily peak, peak-to-average ratio (PAR), daily peak-

to-average ratio, and flexibility factor [60]. The latter KPI is defined as the ratio between off-peak 

energy consumption and total energy consumption.  

The KPIs have been selected to highlight the advantages of DRL control strategies at single building 

scale (electricity cost), district scale (maximum peak and peak-to-average ratio) and to evaluate the 

effect of the coordinated energy management on the grid (average daily peak, daily peak-to-average 

ratio and flexibility factor). 

5. Implementation  

The section describes the design of baseline control strategy used as benchmark, followed by a 

detailed description of the DRL controller design. 

5.1.Baseline control 

A manually designed rule-based controller was used as a baseline in order to evaluate the performance 

of the SAC algorithm.  

This control strategy was designed to control for each building the heat pump operation to satisfy 

building cooling demand, and the operation of hot and cold storage. In particular, the heat pump 

control strategy was designed to satisfy the ideal load of the building, defined as the load necessary 

to always ensure 26°C when the building is occupied, evaluated through EnergyPlus. This strategy 

was considered as benchmark to evaluate the effect of a control strategy to meet the ideal cooling 

load of the building cluster. 

In the RBC strategy the actions to control the operation of the storage were optimised to reduce energy 

costs, taking advantage from the electricity price tariffs. In particular, to limit peak demand, hot and 

cold storage units are uniformly charged during the night period, exploiting the lower electricity tariff, 

and discharged during the day homogeneously to flatten the load profile of the entire cluster of 

buildings. 



5.2.Design of the DRL controller 

SAC control strategy was conceived to manage energy demand of each building, while satisfying 

indoor comfort conditions and flattening the aggregated load profile at district level. In the next sub-

sections, action space design is presented, along with the description of the state-space and the reward 

function. 

5.2.1. Action-space design 

The case study deals with multiple buildings, each one equipped with a heat pump and thermal 

storage, whose operation can be controlled. The size of the action space is equal to 11 since all 

buildings except the small office have 3 controlled variables: the heat pump cooling power supply, 

the chilled water storage charge/discharge and the DHW storage charge/discharge. The actions related 

to the heat pump cooling power can vary from 0 to 1; the selected action is then multiplied by the 

available nominal thermal power of the heat pump in the corresponding time step. Moreover, the 

cooling power delivered to the building is set to 0 during non-occupancy period. The control actions 

on the storage can vary between -1 and 1. However, considering that a full charge/discharge in a 

single timestep is not feasible, in this work, the action space was constrained into the interval [-

0.33,0.33], imposing therefore a complete charge or discharge time of 3 hours according to [61]. 

5.2.2. State-space design 

The agent learns the optimal control policy observing the effects of its actions on the environment 

states. The definition of the state space, together with the reward function, is crucial to help the 

learning process of the controller. In particular, a robust space of states should include variables easy 

to measure and meaningful. The variables selected are reported in Table 4 and further described 

below. 

 

 

Table 4: State-space variables 

Variable Unit 



Weather    

Temperature [°C] 

Temperature Forecast (6,12,24h)   [°C] 

Direct Solar Radiation [W/m2] 

Direct Solar radiation Forecast (6,12,24h)   [W/m2] 

Diffuse Solar Radiation [W/m2] 

District  

Electricity Price [€/kWh] 

Electricity Price forecast (1,2,3h) [€/kWh] 

Hour of day [h] 

Day of the week [-] 

Month [-] 

Building   

Non-shiftable load [kW] 

Heat pump efficiency [-] 

PV generation [kW] 

Chilled water Storage SOC [-] 

DHW storage SOC [-] 

Heat pump supply cooling power @t-1 [kW] 

Temperature Setpoint [°C] 

ΔT Setpoint - LSTM indoor temperature @t-1 [°C] 

Occupancy [-] 

 

The variables are classified as weather, district and building related variables. Weather information 

such as the outdoor air temperature and solar radiation were included into the state space considering 

the strong influence they have on the cooling load and heat pump efficiency. Moreover, weather 

forecasts have been introduced to exploit the predictive nature of the controller.  

District states include variables common to all buildings, such as hour of day, day of the week, month, 

electricity price and electricity price forecast.  



Building states include variables related to the electricity production (PV generation) and 

consumption of the buildings (non-shiftable load). Additionally, heat pump efficiency, cooling and 

domestic hot water state of charge of storage were included. Lastly, to characterize building indoor 

environment, heat pump supply cooling power chosen by the agent and temperature difference 

between the indoor setpoint and that predicted trough the LSTM model during the previous hour (ΔT 

Setpoint - LSTM indoor temperature @t-1) were introduced, together with occupancy information. 

Figure 9 shows the variables included in the state-space and the actions of the DRL controller. The 

centralised controller receives high-level information (district and weather variables), and low-level 

information (building variables), to optimise building and district electric electrical load profile. 

 

Figure 9: State and action spaces of the control strategy 

 

5.2.3. Reward function  

The reward function describes how the agent should behave; it has to be representative of the control 

problem under attention. In this case study, definition of the reward function was particularly 

challenging to properly take into account the cluster electrical load profile without jeopardizing 



indoor thermal comfort in each building of the cluster. As a result, the defined reward is a combination 

of different contributions formulated as:  

𝑅 =  ∑ 𝐶𝑜𝑚𝑓𝑝
𝑛
𝑖=1 + ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑝

𝑛
𝑖=1 + 𝑃𝑒𝑎𝑘𝑝                                (3) 

where n is the number of buildings. 

The comfort related term (Comfp) was introduced to minimize the temperature violations, with the 

aim to maintain the indoor air temperature within a comfort band ranging from 25°C to 27°C.  

The comfort term is structured as follows: 

𝐶𝑜𝑚𝑓𝑝 =

{
 
 

 
 −𝑚(𝑆𝑃 − 𝑇𝑖𝑛)

3, 𝑇𝑖𝑛 < 𝑇𝑙𝑜𝑤
−𝑚(𝑆𝑃 − 𝑇𝑖𝑛), 𝑇𝑙𝑜𝑤 ≤ 𝑇𝑖𝑛 < 𝑆𝑃

0, 𝑆𝑃 ≤ 𝑇𝑖𝑛 < 𝑇𝑢𝑝

−𝑚(𝑇𝑖𝑛 − 𝑆𝑃)
2, 𝑇𝑖𝑛 ≥ 𝑇𝑢𝑝

                                    (4) 

 

 

Figure 10: Comfort term of the reward function 

 

The comfort term of the reward, shown in Figure 10, was conceived to encourage the controller to 

stay as much as possible close to 26 °C, with slight preference towards the 27°C, to consume less 

energy. When the indoor temperature falls out of the lower or the upper bound of indoor temperature 

acceptability range, the penalty becomes exponential; for lower temperatures, the exponent is cubic 



instead of quadratic since it would generate both thermal discomfort and additional energy 

consumption. 

The storage price is the only positive term, and it is computed only during off-peak periods, 

encouraging charge during the night periods. This term is based on the storage state of charge (SOC) 

and it is calculated as follows:   

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑝 = max(0, Δ𝑆𝑂𝐶𝐷𝐻𝑊) ∗ 𝐾1 +max(0, Δ𝑆𝑂𝐶𝑐ℎ𝑖𝑙𝑙𝑒𝑑) ∗ 𝐾2                    (5) 

 

Lastly, the peak term is computed starting from the overall district energy consumption. Depending 

on the electricity price, it assumes different values according to the following equation:  

 

𝑃𝑒𝑎𝑘𝑝 = {
𝑐𝑒𝑙 = max(𝑐𝑒𝑙),        −max(0, 𝑒 − 𝑡ℎ1) ∗ 𝐾𝑝

𝑐𝑒𝑙 < max(𝑐𝑒𝑙) , −[max(0, 𝑒 − 𝑡ℎ2) ∗ 𝐾𝑝 + max(0, 𝑡ℎ3 − 𝑒) ∗ 𝐾𝑝]
         (6) 

 

Threshold 𝑡ℎ1 was set equal to 120 kW to limit peak demand during peak hours. Moreover, 𝑡ℎ2   

and 𝑡ℎ3, equal to 65 and 35 kW were used to flatten the load curve during off-peak hours. The values 

of the thresholds were chosen according to the RBC load duration curve, deeply described in 

6.2.2: 𝑡ℎ1 represents the 99th percentile of the load duration curve, 𝑡ℎ2 is the median value and 𝑡ℎ3 is 

the 10th percentile. 

The design of the reward function highly influences reinforcement learning performances, and the 

coefficients 𝑚,𝐾1, 𝐾2 𝑎𝑛𝑑 𝐾𝑝 in equation (6) weight the relative importance of temperature violations 

and peak shaving actions. Moreover, since the reward magnitude influences the behaviour of SAC 

algorithm [55], these coefficients were used to tune exploration-exploitation trade-off of the agent.  

Their values are shown in Table 5:  

Table 5: Reward function coefficients 

Coefficient Value 

𝑚 0.12 

𝐾1 3 



𝐾2 2 

𝐾p 0.6 

 

 

5.2.4. Hyperparameters setting of deep reinforcement learning 

Reinforcement learning is characterised by several hyperparameters, which highly influence agent 

behaviour. To allow the reproducibility of the results, the hyperparameter settings is reported in Table 

6. As explained in section 2.2, 𝛼 highly influences the outcome of the policy, therefore a version of 

SAC algorithm that optimises the temperature parameter was adopted. For temperature 𝛼 and entropy 

coefficient 𝐻 both starting value and optimised values are reported below. 

Table 6: Hyperparameter settings 

 

6. Results 

This section describes the results of the implemented framework. Firstly, the results related to the 

development and training of LSTM models are discussed. Then, the DRL agent performances are 

 Variable Value 

1 DNN architecture 2 Layers 

2 Neurons per hidden layer 256 

3 DNN Optimiser Adam 

4 Batch size 512 

5 Learning rate 𝜆 0.001 

6 Discount rate γ 0.9 

7 Decay rate 𝜏 0.005 

8 Temperature* 𝛼 Starting = 1, Final = 0.1 

9 Entropy coefficient* 𝐻 Starting = 8, Final = 5 

10 Target model update 1 

11 Episode Length 2196 Control Steps (92 days) 

12 Training Episodes 30 



reported at district level and single building level to show outcomes related to comfort and energy 

system operation. 

6.1. Artificial neural network testing results 

To check the quality of the developed models, mean absolute percentage error (MAPE) and root mean 

square error (RMSE) have been computed using a recursive deployment on a testing dataset. The 

results are summarized in the following table: 

Table 7: Evaluation metrics 

 MAPE [%] RMSE [°C] 

Small Office 0.80 0.28 

Retail 0.45 0.15 

Restaurant 0.78 0.26 

Medium Office 0.81 0.28 

 

As shown in Table 7  a MAPE smaller than 1% was obtained for all models, highlighting the ability 

of neural networks to capture building thermal dynamics, with a RMSE always smaller than 0.3 °C. 

Figure 11 shows on the left side the comparison between indoor temperature predicted with LSTM 

and EnergyPlus for the small office, while on the right is reported the temperature error distributions 

for each building of the cluster, highlighting the ability of the neural networks to provide an accurate 

forecasting. 

 
Figure 11: Comparison between indoor temperature predicted with LSTM model and simulated with EnergyPlus (left) and relative 

error distribution of indoor temperature predicted with LSTM models (right) 

 



6.2.Deployment of the deep reinforcement learning controller 

The section presents the results of the developed controller, with particular attention to the benefits 

provided at district scale, together with a detail on the results of the control strategy on the building 

indoor temperature control and energy systems operation. Finally, the section includes the results 

obtained at grid level. 

6.2.1. Comparison at district level 

The carpet plots in Figure 12 shows a comparison between the aggregate energy consumption at 

cluster level with the RBC and the DRL controller.  

 

 

Figure 12: Carpet plot of RBC and coordinated energy consumption of the cluster of buildings 

 

The DRL controller is able to flatten the cluster load profile in comparison to RBC due to the optimal 

management of the charge and discharge process of the storage installed in each building. On the 



other hand, the carpet plot of the electrical load with RBC is characterized in average by higher 

electrical loads during the time period 14-18.  

Furthermore, the charging process with the DRL control strategy is more uniform: storage units are 

charged in the earlier hours of the night to reduce morning load peaks, when the heat pumps are turned 

on. To understand how these results have been achieved, Figure 13 shows charge and discharge 

process (SOC) of the four chilled water storage installed in each building of the cluster. The agent 

adopts a  control policy that spreads both charging and discharging over the day to prevent new 

undesirable peaks, while still exploiting the low electricity price during the night. The control policy 

exploits storage SOC information to optimise their operations, spreading the charge over the night 

period and reducing the peak loads. On the other hand, the discharge is optimised to increase energy 

efficiency during operation of the heat pumps.  

 

 

Figure 13: Chilled water storage control strategy 

 



Figure 14 shows the distribution of the indoor temperature for the four controlled buildings during 

occupancy period. As can be seen in Figure 14 both office and restaurant buildings show very limited 

discomfort periods, while retail is characterized by a higher discomfort rate. In particular, retail has a 

large number of lower violations, influenced by the external temperature during the early morning 

hours, when it is open.  

 

Figure 14: Indoor temperature distribution of the four buildings 

 

Moreover, to fully characterize the effects of the DRL control policy on the indoor temperature 

control the cumulative values of degrees associated to comfort violations, the number of hours of 

discomfort and the average temperature difference between the indoor temperature and the upper and 

lower threshold are reported in Table 8.  

Table 8: Metrics related to indoor temperature control 

 Cumulative 

T<25 [°C] 

Hours of 

Discomfort 

T<25 °C 

Average 

lower T 

discomfort 

[°C] 

Cumulative 

T>27 [°C] 

Hours of 

Discomfort 

T>27 °C 

Average 

upper T 

discomfort 

[°C] 

Small Office 2.1 13 0.15 6.2 21 0.29 

Retail 7.7 41 0.18 29.1 107 0.28 

Restaurant 1.8 10 0.18 27.7 94 0.29 

Medium Office 1.4 8 0.18 33.4 106 0.31 

 



The table shows that, considering the 3 months of simulation, discomfort conditions are highly 

unusual, and that the distribution of violations reflects the reward function behaviour, which penalizes 

high temperature violations. In particular, the control policy lead to higher cumulative values of 

indoor temperature exceeding the upper threshold, where violations are less penalized, as a result of 

a trade-off between thermal comfort and energy consumption. 

Figure 15 reports internal temperature evolution and storage operation for the small office for both 

control strategies, where the RBC uses an ideal load, considering a constant temperature at 26°C 

during occupancy periods. In detail, the Figure 15a) shows that, on average, the controller is able to 

maintain the indoor temperature close to the upper limit of the admitted range, leading to a reduction 

of energy consumption.  Figure 15b) shows how the DRL agent tries  to meet the cooling load either 

fully discharging the chilled water storage or running the heat pump ensuring its more efficient 

operation. Figure 15 c) focuses on the RBC strategy, whose control leads to the simultaneous 

operation of both heat pump and thermal storage to meet the cooling load. As a result, the heat pump 

often works  at partial load operation with lower efficiency. 



 

Figure 15: Temperature profile and cooling load 

 

6.2.2. Analysis at grid level 

The analysis was then shifted towards the benefits provided by the coordinated control strategy on 

the grid. In particular, Figure 16 shows the load duration curve for different control strategies 

considering as a benchmark the electrical load curve of the cluster resulting from no-storage 

installation., This benchmark makes it possible to highlight the impact on peak reduction of thermal 

storing in combination with control strategies.  The values of the cluster load peaks for the different 

cases (i.e., no storage, RBC, DRL) related to the entire period of simulation  are reported with 

horizontal dashed lines. In addition, in the bottom right of the figure can be noticed the increase of 

baseload as a result of storage installation,  leading to a more uniform use of energy.  



 

Figure 16: Load duration curve for the different control strategies  

 

Table 9 summarizes the performance of the two control strategies with respect to the main KPIs 

selected. To allow an easier comparison, the values are normalised on those resulted from the 

implementation of the RBC strategy.  

 

Table 9: Comparison between performances of the two control strategies 

 Electricity 

Cost 

Maximum 

Peak 

Peak-to-

average 

ratio 

(PAR) 

Average 

daily 

peak 

Average 

daily 

PAR 

Flexibility 

Factor 

Manually 

Optimised 

RBC 

1 1 1 1 1 1 

DRL 0.97 0.77 0.80 0.88 0.92 1.04 

 



DRL controller exploits the possibility to modulate the heat pump cooling power to avoid peak load 

and takes advantage from storage charge and discharge process to increase heat pump efficiency, 

while slightly reduces electricity costs. As pointed out by Table 9 and Figure 16, the coordinated 

approach shows very good results at district level, reducing maximum peak by 23% and average daily 

peak by 12%. Moreover, the PAR and average daily PAR reduction of 20 and 8% respectively 

highlights the benefits of building coordination that can be translated in a more uniform baseload. 

Finally, the controller also shows the ability to better exploit energy flexibility of the multiple energy 

systems highlighted by a 4% increase of flexibility factor. 

7. Discussion 

The presented paper aims to exploit DNN and model-free DRL to enhance district energy 

management. LSTM models have been exploited to develop lightweight building models, to predict 

indoor environment evolution with a low computational effort. Once trained and tested, the DNNs 

building models have been integrated into CityLearn, an openAI gym environment used to train the 

DRL controller.  

The centralised DRL controller was designed to coordinate electric load profile of the cluster of 

buildings, by regulating the heat pump supply cooling power and the operation of the thermal storage 

to optimise both economic costs and peak demand without jeopardizing indoor temperature control 

in each building. The main novelty is related to the introduction of DNN models coupled with DRL 

controller that enabled the opportunity of controlling indoor temperature through the modulation of  

heat pump operation, adding a flexibility sources to the control problem.  

The optimal control policy of the agent is obtained through a trial-and-error interaction with the 

environment; in particular LSTM models receives as input the supply cooling power and return the 

corresponding indoor temperature in order to optimise heat pump operation, while electricity price 

information is used to optimise storage operation. 



To analyse the effectiveness of the proposed approach, a manually optimised RBC controller was 

introduced. The proposed RBC ensures an internal temperature of 26°C during occupied periods, 

while taking advantage of the low-price tariff to charge the storage. On the other hand, DRL was 

designed to maintain indoor comfort conditions, exploiting the comfort band to minimize energy 

consumption and thermal mass during start-up and shut-down periods. Moreover, the agent found a 

better control strategy for the thermal storage, consuming energy more efficiently and flattening the 

electric load profile.  

The paper analyses the role of the state-space and the reward function on the optimal control strategy. 

The reward function was designed with the aim of searching a trade-off between indoor temperature 

control, energy costs and grid requirements. Moreover, forecast information regarding weather 

conditions, occupancy information and electricity price resulted to be effective to learn the optimal 

control policy, highlighting the crucial role of the state-space design in the DRL problem.  

As a result, DRL outperformed RBC, proving to be simultaneously able to find a compromise 

between indoor temperature control and energy consumption, with the additional capability to 

coordinate the operation of multiple buildings to reduce peak demand and flatten the load profile.  

Lastly, the strength of the proposed approach lies in the lightness of the data-driven methodology, 

which helps the scalability of district energy management. In order to assess the computational cost 

advantages, a comparison between the proposed fully data-driven approach with a forward simulation 

environment coupling EnergyPlus and the DRL agent through BCVTB [22] was performed. The 

simulations were run on a single building using a workstation with i9-10900X CPU @ 3.7 GHz and 

128 GB RAM. The training period of the DRL agent for 30 episodes using the proposed approach 

took 1920 seconds, while the forward simulation run for 2300 seconds. During the deployment of the 

trained DRL agent, episode was run within 60 seconds by the proposed approach and 87 seconds with 

the alternative forward approach. In summary a computational advantage of 20% during training and 

around 50% during deployment was found. Moreover, it should be highlighted that as the number of 

buildings increases, the simulation environment coupling Energyplus with DRL through BCVTB 



needs to collect and share multiple idf files while the proposed fully data-driven approach shares data 

more efficiently exploiting the same environment for the entire district. 

The analysis highlights how building-related data could be exploited to develop data-driven models 

used to coordinate a district of buildings. Moreover, the adaptive nature of DRL is very effective in 

large evolving environments, such as districts, where consumption patterns can be modified by 

retrofitting operations, PV installation, EV charging or demand response programs.  

8. Conclusion & future perspectives 

The present work proved the feasibility and advantages of a data-driven and adaptive control scheme 

for district energy management. In the first part, the study focused on the development of LSTM 

models, one for each building, to describe thermal dynamics. DNNs were used to perform multi-step 

temperature forecasts with a recursive strategy. Successively, the models were integrated into 

CityLearn environment, where a centralised DRL controller was designed. The main contribution of 

the study regards the introduction of indoor temperature regulation into the control problem, which 

is the result of the interaction between the heat pump supply cooling power and the LSTM models.  

The developed DRL controller was able to maintain indoor comfort conditions for each building, 

while reducing costs of around 3%. In addition, the DRL controller allowed to reduce the peak by 

23% and PAR by 20%. Lastly, the DRL controller was able to exploit the interaction between 

different flexibility sources, increasing flexibility factor by 4%.  

In conclusion, the work has shown that a data-driven coordinated energy management is effective at 

district scale, being able to find an optimal trade-off between indoor temperature control, energy 

consumption and district electric load shape.  

Future works will be focused on: 

 The implementation and comparison between the proposed centralised controller with 

different management architectures, such as decentralised DRL approach, in which the 

controllers can cooperate or compete, or hierarchical multi-agent architecture, in which a 



high-level agent controls low-level agent. The analysis will introduce a comparison among 

the different architectures, highlighting pros and cons of the approaches in the district energy 

management.  

 The implementation of dynamic electricity price tariffs and demand response programs, to 

study building-to-grid interaction. The use of a dynamic electricity price tariff, together with 

the exploitation of indoor comfort conditions, can pave the way towards tailored demand 

response programs, in which each building can find the optimal compromise among costs and 

comfort.   

 The study of the effectiveness of transfer learning for the indoor environment representation, 

easing the extension of the proposed control architecture in different buildings and allowing 

the scalability of the methodology. Moreover, the analysis will study the feasibility of 

transferring the DRL control policy, to ease real-world implementation.  

 

Nomenclature 

Symbols 

A = Action space 

a = Action 

𝑐𝑒𝑙 = Electricity price 

𝒟 = Replay Buffer 

𝑒 = Energy consumption 

G = Return 

K1 = Reward hot storage weight 

K2 = Reward cold storage weight 

Kp  = Reward peak weight 

m = Reward temperature weight 



P = Transition Probabilities 

q = Action-value 

r = Reward 

S = State space 

SP = Set Point 

s = State 

T = Temperature 

th = Power thresholds 

α = Temperature parameter 

γ = Discount factor 

θ = Soft-Q network parameters 

λ = Learning rate 

ϕ = Policy network parameters 

τ = Decay rate 

𝐻 = Shannon Entropy of the policy 

π = Policy 

π* = Optimal Policy 

 

Abbreviations 

ANN = Artificial Neural Network 

COP = Coefficient of Performance 

DHW = Domestic Hot Water 

DNN = Deep Neural Network 

DR = Demand Response 

DRL = Deep Reinforcement Learning 

DSM = Demand Side Management 



HVAC = Heating, Ventilation and Air Conditioning 

KPI = Key Performance Indicator 

LSTM = Long-short Term Memory 

MAPE = Mean Absolute Percentage Error 

MDP = Markov Decision Process 

MPC = Model Predictive Control 

PAR = Peak-to-average ratio 

PV = Photovoltaic 

RBC = Rule Base Control 

RES = Renewable Energy Sources 

RL = Reinforcement Learning 

RMSE = Root Mean Square Error 

SAC = Soft Actor-Critic 

SOC = State-of-Charge 
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