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Summary

Due to the technology scaling, lower supply voltages and higher operating frequencies,
modern electronic devices become more and more vulnerable to transient faults. At
the same time the number of transistors in a single chip and the complexity of modern
systems is increasing. This creates a challenge for performing a reliability assessment
on today’s circuits and requires many resources in terms of human efforts, processing
power and cost. The thesis addresses some of these issues by advancing current analysis
techniques on higher abstraction levels, especially focusing on a functional analysis.

In the first part, two newmachine learning based approaches are presented to assist
the functional failure analysis of complex circuits. The methodologies aim to reduce the
efforts needed to determine the functional failure rate of the circuit’s sequential logic.
The machine learning models use a feature set which was developed to characterizes
each sequential element in the circuit. The features combine attributes from static ele-
ments and dynamic elements.

The objective of the first approach is to accelerate a fine grained functional failure
analysis. It reduces computational cost to determine the Functional De-Rating (FDR)
factors of the circuit’s sequential logic. The aim is to predict factors per individual in-
stances, which is particularly difficult to obtain using classical approaches such as clus-
tering, selective fault simulation or fault universe compaction techniques. The method-
ology was applied in a practical example where several machine learning models were
evaluated, predicting different failure classes. It was shown that the cost of a fault in-
jection campaign can be reduced by a factor of 2 up to 5 in comparison to a classical
statistical fault injection campaign. Further, the ability of the method to be used in early
design phases has been assessed. Therefore, a feature subset was identified which can
be extracted from an elaborated Register-Transfer Level (RTL) description of the design.
The results have shown that the impact on the prediction performance was marginal.

The secondmachine learning basedmethodology uses clustering techniques to group
flip-flops together which are expected to have a similar contribution to the overall func-
tional failure rate. In this way the fault space is reduced which allows a more efficient
fault injection strategy. The advantage in comparison to already other already exist-
ing clustering approaches is that this approach is more flexible and no assumption of
the circuit or its representation is made. The effectiveness of the grouping by different
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machine learning clustering algorithms was evaluated on a practical example and com-
pared to a random and ideal solution. With the approach it was possible to reduce fault
injection efforts by a factor of 5× to 20×.

Typical design flows are hierarchical and rely on assembling many individual tech-
nology elements from standard cells to complete boards. Providers use compact models
to provide simplified views of their products to their users. Designers group simpler ele-
ments in more complex structures and have to manage the corresponding propagation
of reliability and functional safety information through the hierarchy of the system,
accompanied by the obvious problems of IP confidentiality, the possibility of reverse
engineering, etc. Therefore, in the second part of the thesis, a methodology is proposed
which aims to help experts to deal with the complexity of hierarchical modelling of re-
liability and functional safety metrics. The presented approach allows the use, elabora-
tion and distribution of compact machine learning models in a uniform and systematic
manner, minimizing both human and CPU efforts while maintaining high accuracy and
fidelity. The trained machine learning models will be able to quickly evaluate a large
variety of effects, encapsulating very useful reliability and functional safety data in a
compact and efficient solution that can be used and reused further down the design and
manufacturing flow.

In the third part of the thesis, the focus is shifted to Single-Event Transients (SETs) in
Clock Distribution Networks (CDNs). A methodology is proposed to analyse how SETs
in the clock distribution network are impacting the functional behaviour of a circuit.
A methodology and a fault model are presented which implement the main radiation-
induced effects in clock networks. The method enables the computation of the func-
tional failure rate in a logic-level simulation based on the RTL description of the design.
Thus, a faster evaluation can be performed than by simulating on the electrical level or
gate-level. The analysis is extended by introducing a Temporal Masking effect for SETs
in clock distribution networks. The Temporal Masking is based on the shortest input
path delay of the flip-flops and the shortest output path delay, which are defining an
SET Timing Window within the clock cycle. SETs occurring outside of this window
are masked. The fault model was extended considering this Temporal Masking effect
which allows to compute the functional failure rate weighted with Temporal De-Rating
(TDR) of a circuit. The approach was applied in a practical example where SET were
injected into the clock network of the circuit under test in a fault injection campaign.
It was shown that the proposed Temporal Masking implementation is able to compute
a pessimistic worst case.
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Chapter 1

Introduction

The advancement in technology enabled the development of complex electronic sys-
tems and made it possible to embed more and more functionality into single devices
and manufacture Integrated Circuits (ICs) with tens of millions of transistors. This
trend led to a higher integration of electronics in our day-to-day lives, including criti-
cal applications where human lives is at stake. Especially, for these critical applications
a reliable operation is extremely important.

A significant threat to the reliable operation of a system are transient faults induced
by natural radiation. Without any mitigation the fault can propagate and manifest
as an error in the system. This generated error can then lead to misbehaviour of the
functionality and thus, creating a failure [57].

In the past radiation induced faults were mainly a problem for applications which
demand a very high reliability, such as aero-space, nuclear facilities, and medical de-
vices. However, due to the technology advancements the size of transistors is scaling
down, devices operate with lower supply voltages and at higher operating frequen-
cies which makes them more vulnerable to faults induced by radiation [8, 9]. Thus,
radiation induced faults become also a greater hazard for systems working in normal
environments and it is no longer possible to ignore them.

Today’s reliability standards and customers’ expectations set tough targets for the
quality of electronic devices and systems. Among other reliability threats, the transient
faults are known to contribute significantly to the overall failure rate of the system and
possibly exceeding the set reliability targets. As an example, standard flip-flops and
Static Random-Access Memory (SRAM) memories, manufactured in relatively recent
technologies exhibit error rates of hundreds of events (Failure in Times (FITs); failures
that can be expected in one billion working hours of operation) [9, 67]. Complex cir-
cuits using such cells can easily overshoot 10 FIT target mandated by the ISO 26262
standard [38] for an automotive ASIL D application.

A vast amount of research is devoted to analyse and mitigate these effects, with the
focus on achieving accurate results when analysing relatively small circuits. Current
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Introduction

trends show, however, that the total number of ICs is growing and a large part of per-
formance increase nowadays comes from parallelism, which translates in an increase
of the total number of transistors per IC (Moore’s Law [52]). This results in larger and
more complex systems and the required effort, in terms of human resources, computa-
tion power and cost, is vastly increasing.

1.1 Structure of the Thesis
The focus of the thesis is on the advancement of the soft error analysis on higher ab-
straction levels. The main contributions consist of improvement in fault-injection sim-
ulations, a technique to reduce the fault space and a technique to model Single-Event
Transients (SETs) in Clock Distribution Networks (CDNs) on the functional level.

The thesis will be organized as follows:

• Chapter 2: This chapter provides a summary of single-event effects, their causes
and the basic masking mechanism. An overview of techniques to analyse fault
propagation and determine the de-rating factors are described. Finally, the com-
mon methodology to calculate the overall Soft Error Rate (SER) is presented.

• Chapter 3: This chapter investigates the usage of machine learning techniques
for the fault analysis on the functional level. Two new machine learning based
methodologies are presented, which are using a feature set developed to charac-
terise each sequential element in the circuit.

The first approach aims to accelerate fine grained functional fault analysis on
sequential cells. It uses regression models in a supervised approach to train ma-
chine learning models on the functional failure rates of the sequential cells in the
circuit. The objective of the second approach is to reduce the fault space of the
functional fault analysis. The technique is based on machine learning clustering
techniques and groups flip-flops together which are expected to have a similar
sensitivity to faults.

• Chapter 4: This chapter proposes amachine learning basedmethodology to tackle
the complexity of hierarchical modelling of reliability and functional safety met-
rics. The presented approach allows the use, elaboration and distribution of com-
pact machine learning models in a uniform and systematic manner, minimizing
both human and CPU efforts while maintaining high accuracy and fidelity.

• Chapter 5: This chapter describes a methodology to simulate Single-Event Tran-
sients in the Clock Distribution Network on a higher abstraction level. A fault
model was developed which implements the main radiation induced faults in
clock networks by performing logic-level simulation. Additionally, the Temporal
Masking effect for this type of faults is explored and the fault model is extended
accordingly.

2



1.1 – Structure of the Thesis

• Chapter 6: This is the last chapter and concludes the thesis and discusses plans
for future work.

Overall, the thesis seeks to advance the fault analysis on the functional level. There-
fore, chapter 2 describe the state-of-the-art methodologies and Chapter 3 applies Ma-
chine Learning techniques and thus, present novel methods to increase the efficiency of
the fault analysis. Chapter 5 shifts the focus to the analysis of SETs in CDNs. Together,
these techniques facilitate the analysis of radiation induced faults in complex integrated
circuits on a higher abstraction level.

3
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Chapter 2

Single-Event Effects

The amount of information processed of modern system is increasing which requires a
higher performance and results in a higher complexity of the implemented circuits. This
trend is also requested in markets which demand a high reliability and are usually run-
ning safety-critical applications, such as aerospace and the automotive market. These
new requirements lead to the usage of smaller transistors technology, lower voltages
and higher operating frequencies which makes them more prone to radiation induced
transient faults. In order to cope with the additional complexity and new technologies
of modern systems the research aims at the development of new assessment andmitiga-
tion techniques for transient faults and new test methodologies for complex electronic
systems.

Due to technology scaling, lower supply voltages and higher operating frequencies,
modern circuits become more and more vulnerable to reliability threats. Additionally,
today’s reliability standards and customers’ expectations set tough targets for the qual-
ity of electronic devices and systems. Especially, transient faults, such as Single-Event
Upsets and Single-Event Transients in the individual sequential and combinational cells,
have been identified as the leading contributor to the overall failure rate for many ap-
plications [8, 9, 66].

2.1 Mechanism and Classification
Single-Event Effects (SEEs), are caused by a single, energetic particle striking through
a silicon device and depositing electrical charge, as shown in figure 2.1. On ground,
the main sources of these energetic particles are alpha particles, high-energy neutrons
and thermal neutrons [9]. The radiation environment in space is much harsher. Pri-
marily, there are cosmic rays which are consisting of protons, alpha particles and heavy
nuclei [35]. The earth’s atmosphere and magnetic field blocks most of these cosmic par-
ticles. However, these particles can strike atoms in the atmosphere and create chains
of secondary and tertiary particles [82].

5



Single-Event Effects

Gate

Drain Source

P-Substrate

N+ N+

Ionizing
Particle

Figure 2.1: Energetic particle striking through a transistor.

The occurring subsequent effects in an electronic circuit, due to radiation effects,
depend on the type of circuit, the energy of the particles and the nature of the strike.
The effects can be classified in hard errors, soft errors and cumulative effects. While
it may be possible to recover from soft errors by a reset of the application, a power
cycle of the device, or by overwriting the corrupted information, hard errors are non-
recoverable. In the following a summary of the different effects is provided.

2.1.1 Soft Errors
Single-Event Transient

This effect occurs when the energetic particle is depositing the charge near the combi-
national logic cells of the circuit. The charge is then collected at one of the transistor
nodes of the logic cells and thus, creating a transient current pulse, also called SET. SETs
usually appear in the combinational cells of the circuit. They can also appear in the se-
quential element (such as a flip-flop or a latch) in the case the Single-Event only affects
the output stage but not the internal feedback loop of the cell [3]. When a single parti-
cle affects more than one combinational gate, the effect is called Single-Event Multiple
Transient (SEMT) [34]. This fault becomes an error when it propagates through the
combinational logic and eventually is latched by at least one of the sequential elements
during the sampling window [29].

Single-Event Upset

A Single-Event Upset (SEU) occurs when the induced charge of the energetic particle
is causing the logic state of a discrete sequential element, such as a latch, a flip-flop
or a memory cell, to change. In the case where a single particle affects more than one
sequential cell, the effect is called Single-Event Multiple Upset (SEMU) [21].

6



2.1 – Mechanism and Classification

Single-Event Functional Interrupt

The Single-Event Functional Interrupt (SEFI) refers to a loss of functionality in a more
complex device, e.g. Dynamic Random-Access Memory (DRAM), Field Programmable
Gate Array (FPGA), Microprocessor, etc. This can be the case, for example, when an
SEU occurs in the control logic of the circuit. An SEFI does not lead to a permanent
damage and can be recovered by resetting the device or performing a power cycle.

Single-Event Latch-up

A Single-Event Latch-up (SEL) is a latch-up caused by a radiation induced event. The
deposited charge by the energetic particle triggers a parasitic structure in a transistor
and thus, creating a short circuit from power to ground [68]. This disrupts the function
of the transistor and due to the increased current consumption, can lead to a destruction
of the part and thus, to a hard error. A power cycle is required in order to restore to
normal operation.

2.1.2 Hard Errors
Single-Event Burnout

When the energetic particle causes a power Field Effect Transistor (FET) to enter a
second breakdown, the event is called Single Event Burnout (SEB). This results in a
very high current and causes the device metal traces to vaporize, bond wires to fuse
open and silicon regions to melt due to the thermal increase [68].

Single-Event Gate Rapture

The Single-Event Gate Rapture (SEGR) is initiated when the energetic particle strikes
through aMetal-Oxide-Semiconductor (MOS) power transistor. The additional induced
carriers are accelerated by the electric field, which in turn increases the field and even-
tually may cause the dielectric to breakdown [68]. This permanently damages the tran-
sistor.

2.1.3 Cumulative Effects
Cumulative effects describe the long-term effects on the electronic devices, and the
resulting degradation, due to exposure to radiation.

Total Ionizing Dose

The deposited charge by the radiation can be trapped in the oxide layer of the transistor.
This can cause a shift in the switching characteristics, increased device leakage and
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power consumption, and timing changes. This leads to a decreased functionality of the
transistor and in the worst case can cause a circuit failure.

Displacement Effects

When highly energized particles striking the device they may displace the atoms in the
silicon lattice. Although Complementary Metal-Oxide-Semiconductor (CMOS) devices
are known not to be sensitive to displacement damage, bipolar and optical devices are
very sensitive to this effect.

2.1.4 Summary of Radiation Effects
In order to analyse the overall SEE sensitivity of a system, all the described effects must
be considered. However, in large digital circuits, the majority of failures are usually
caused by SEU and SET. Therefore, the focus of this thesis is on analysing these effects.

2.2 Masking Mechanisms
When a radiation induced fault propagates in the system it can lead to observable effects
up to the system level. Fortunately, not all faults necessarily manifest themselves as
errors or failures in the system. There are several effects which can mask the event
and de-rate the raw rate of faults. These effects are quantified by the de-rating factors
which then can be used to determine the effective error rate.

The de-rating factor in this work is defined in such a way that, a value of 1.0 indi-
cates that the faults are not masked and all of them propagate, leading to an error. A
value of 0.0 on the other hand indicates that all faults are masked and none of them
propagates.

In [55, 2] four main masking mechanisms are defined with their corresponding de-
rating factors which can reduce the effect of SEEs on the actual error rate significantly.

2.2.1 Electrical Masking
Digital logic operates between logical zero and one values. To discriminate between
these values the signals have to cross a switching threshold. The current pulse created
from an SET may not be strong enough to change the voltage above the switching
threshold on the effected node. Further, due to the capacitance and limited slew rates
of the digital logic gates, a transient current pulse is usually narrowed and its rise and
fall time is increased during the propagation. By the time it reaches the end of the path,
either it has been completely filtered or the voltage transition is below the switching
threshold! [32, 75]. The reduction of the fault rate due to these effects can be described
as Electrical De-Rating (EDR).
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2.2.2 Temporal Masking
Almost all digital circuits are synchronous. This means for a fault to propagate, it must
be sampled by the sequential elements. A fault must occur within an opportunity win-
dow (OW) to be latched by a sequential element on the downstream path. If the fault
misses this opportunity window it does not affect the behaviour of the circuit and is
masked [65, 56, 30, 13]. The Temporal De-Rating (TDR) describes the reduction of the
fault rate due to these effects and can be calculated depending on the type of fault.

Temporal De-Rating for SEUs

An SEU in a sequential logic must occur sufficiently early in the clock cycle in order
to meet the setup time of the flip-flops on the downstream path. Figure 2.2 shows the
masked and unmasked case of an SEU in a flip-flopwhich is propagating to the flip-flops
connected on the downstream path. Unless the SEU is masked otherwise, the fault will
always propagate through the combinational network and reach the next sequential
logic stage. The faulty flip-flop value remains on the output until the new value is
latched in the next clock cycle.

The occurrence of an SEU can be considered uniform within the clock cycle. The
opportunity window depends on the slack of the considered path, as well as the setup
and hold time of the flip-flop on the downstream path [57]. The Temporal De-Rating
for SEUs TDRSEU is then defined as the ratio between the opportunity window and the
clock period 𝑇cycle

TDRSEU =
𝑡slack +

𝑡setup
2 − 𝑡hold

2
𝑇cycle

(2.1)

According to the equation it can be derived that the opportunity window for an
SEU is increasing with the slack of the downstream path and thus, the probability of an
SEU being captured. In the case the SEU caused a setup or hold validation it is uncertain
whether the fault is captured or not. The Temporal De-Rating can also be approximated
with the ratio of the path slack to the clock period

TDRSEU ≈
𝑡slack
𝑇cycle

(2.2)

For the critical path in the circuit the slack is very low. For these paths the opportu-
nity window is quite short which reflects in a low probability for the fault to propagate.
Therefore, it can be reasoned that the Temporal Masking of SEUs is increasing with
higher clock frequencies and vice versa, is increasing with lower clock frequencies.

Temporal Masking for SETs

Similar to SEUs, SETs can also be subject to temporal masking. Single-Event Transients
cause short pulses on the output of the affected cell. This transient pulse has to occur
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Figure 2.2: Temporal Masking of SEUs.

and propagate to the input of the sequential logic during its latching window. The
masked and unmasked cases of an SET are shown in figure 2.3.

Unless otherwise masked, the SET is propagating thorough the combinational net-
work and eventually, will reach a sequential element. Since the occurrence of the SETs
can be considered as uniform within the clock cycle, a first approximation of the Tem-
poral De-Rating TDRSET can be calculated as the ratio of the transient’s Pulse Width
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Figure 2.3: Temporal Masking of SETs.

(PW) to the clock period 𝑇cycle

TDRSET =
∫𝑤=max(PW)

𝑤=min(PW) 𝑤 d𝑤

𝑇cycle
(2.3)

Many of today’s circuit still run with clock periods in the nanosecond range. For
recent technologies, studies show that the pulse duration of the combinational cells is
in the range of picoseconds [19]. With the equation (2.3) it can be concluded that the
Temporal Masking for SETs is quite high. However, the trend of modern circuits is
going to higher operating frequencies which decreases the Temporal Masking and as
further studies suggest, the effect of SETs become severe [56, 31, 47].

SETPulseAlignmentCases The exact probability of the transient pulse to be latched
depends on when it arrives at the input of the sequential element and how it is aligned
to the sampling clock edge. Figure 2.4 shows all of these possible alignment cases. Fig-
ure 2.4a shows the case when the PW of the transient is longer than the setup-hold
window of the sequential element and figure 2.4a shows the case when the pulse width
is shorter. An OverlappingWidth is defined as the part of the pulse that falls within the
setup-hold window. In the case the pulse width is longer than the setup-hold window
(PW > 𝑡setup + 𝑡hold), the probability the fault is captured is considered to be propor-

tional to the ratio of Overlapping Width (OW) to the setup-hold window OW
𝑡setup+𝑡hold

. In

the case the pulse width is shorter than the setup-hold window (PW < 𝑡setup + 𝑡hold),
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the caused violations by the fault are treated together. The error latching probability is
assumed to be linear with the Overlapping Width ratio [19].

clk

a

b

c

d

e

f

g

𝑡setup 𝑡hold

(a) PW > 𝑡setup + 𝑡hold

clk

a

b

c

d

e

𝑡setup 𝑡hold

(b) PW < 𝑡setup + 𝑡hold

Figure 2.4: SET pulse alignment cases.

For each case the corresponding latching probability is shown in table 2.1. Since an
SET can occur uniformlywithin the clock cycle, the latching probability can be averaged
over the full clock period. The overall latching probability for both cases is then PW

𝑇cycle
.

For this analysis, the discussed pulse width in figure 2.4 and table 2.1 is the one seen
at the input of the sequential element. As the transient pulse propagates through the
combinational network, it might be distorted. This effect is called Propagation Induced
Pulse Broadening (PIPB) [26, 73, 27].

2.2.3 Logical Masking
If the propagation of a fault is prevented due to the state of the combinational network
the fault is considered as logically masked. This can be due to a controlling input of a
gate such as a zero value on a 2-input AND gate, as shown in figure 2.5. An SEU can
either be masked in the same cycle it occurs (figure 2.5a), or it may be masked several
cycles later (figure 2.5b). An SET can masked in the same way as SEUs as shown in
figure 2.5c [57, 78].

The reduced fault rate due to these effects are quantified by the Logical De-Rating
(LDR). For the evaluation of the LDR only a representation of the circuit without any
knowledge of the function is required. Usually, the propagation of the fault starting
from the output of the affected cell to the inputs of a sequential element is considered.
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Table 2.1: SET Pulse Alignment Cases and Corresponding Capture Probabilities

Pulse Width Case Error Probability Comments

a 0 correct value latched

b 1
𝑇clk

⋅ ∫
𝑡setup
0

OW
𝑡setup+𝑡hold

dOW setup time violation

c 1
𝑇clk

⋅ ∫
𝑡setup+𝑡hold
𝑡setup

OW
𝑡setup+𝑡hold

dOW hold time violation

PW > 𝑡setup + 𝑡hold d
PW−𝑡setup−𝑡hold

𝑇clk
wrong value latched

e 1
𝑇clk

⋅ ∫
𝑡setup+𝑡hold
𝑡hold

OW
𝑡setup+𝑡hold

dOW setup time violation

f 1
𝑇clk

⋅ ∫𝑡hold
0

OW
𝑡setup+𝑡hold

dOW hold time violation

g 0 correct value latched

a 0 correct value latched

b 1
𝑇clk

⋅ ∫
𝑡setup
0

OW
𝑡setup+𝑡hold

dOW setup time violation

PW < 𝑡setup + 𝑡hold c
PW⋅(𝑡setup+𝑡hold−PW)

𝑇clk⋅(𝑡setup+𝑡hold) metastability

d 1
𝑇clk

⋅ ∫𝑡hold
0

OW
𝑡setup+𝑡hold

dOW hold time violation

e 0 correct value latched

Overall - PW
𝑇clk

-

2.2.4 Functional Masking
For the functional masking the fault is considered at an applicative level and takes the
actual usage of the circuit and the function of the system into account. This means
even when an SEU or SET is able to propagate (is not masked by any other masking
effect), the impact at the function of the circuit can vary. The SEU or SET might signifi-
cantly change the state of the circuit, however in many cases is benign. The fault could,
for example, lead to a faulty pixel in a video stream or cause a delay of a data packet
in a networking application. The effect on the functional behaviour in these cases is
probably very minor.

The de-rating due to the functional behaviour of the circuit is referred to as Func-
tional De-Rating (FDR) and can be quite significant [71, 57]. In comparison to the other
masking effects the de-rating highly depends on the criteria defining the acceptable be-
haviour of the circuit during the execution of an application. This can include objective
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Figure 2.5: Logical Masking of SEUs and SETs.

aspects, as well as subjective aspects to define a fault-free or faulty behaviour of the
system. An objective criterion would be for example, the behaviour of the primary out-
puts of the Circuit Under Test (CUT). Any difference to the fault-free reference could be
classified as a failure. A subjective criterion, however, might take the actual criticality
of the observed difference into account. The observed difference in the primary output
might not be relevant for specific cases or applications and thus, can be ignored for the
analysis. Usually, the effects of errors are divided into classes based on their system-
level severity (correctable, uncorrectable, not detected by the hardware but detected by
the software, if a retry is possible, if there is a time limit to receive the correct result,
etc.).

This means, that there is subjectivity involved in the failure classification. The func-
tional failure analysis is largely driven by the actual usage of the circuit and different
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function modes or applications will lead to different failure rates. In the cases the cir-
cuit under test has a clearly defined function, the functional failure analysis has to take
this specific function into account and the Functional De-Rating characterises faults
masked due to this functional behaviour. The analysis becomes more complex for more
general circuits, such as Central Processing Units (CPUs), since the actual application
is unknown and the usage field is large.

The Functional Masking analysis takes the propagation of the fault over several
clock cycles into account. Commonly it is evaluated if the fault has been silentlymasked
and does not have any further effect on the functional behaviour of the circuit. Another
usual criterion which is evaluated is, if the fault remains in the circuit in a latent sate
which does not have any observable effect on the function. Additionally to these eval-
uations usually, several failure classes are defined for a given application which result
in not just a single Functional De-Rating factor.

2.2.5 Summary of Masking Mechanisms
The describedmasking/de-ratingmechanisms are used to evaluate the probability of the
propagation of a fault and are usually determined by using probabilistic algorithms and
simulation-based approaches. All the different evaluation steps can require significant
investment in terms of human efforts, processing resources and licenses for different
tools. Thereby, especially the simulation-based approaches to determine the Functional
De-Rating are very computationally intensive. Techniques to determine the different
de-rating factors and how to calculate an over error rate induced by soft errors are
described in the next section.

2.3 Soft Error Analysis
While in the past Single-Event Effects were mostly considered in radiation harsh envi-
ronments, such as space, recent technologies may suffer from Single-Event Effects even
in terrestrial applications [8, 9]. For instance, Single-Event Effects may happen even at
high altitude for avionic applications, close to nuclear reactor or just from the natural
decay in the device material itself. Therefore, it is fundamental to investigate and char-
acterize the susceptibility of a device to Single-Event Effects. Hence, in the last decades
research put a lot of efforts in estimating the devices and applications dependability
with respect to SEUs and SETs [45, 58, 10, 46, 20].

As discussed in the previous sections, the majority of faults does not propagate due
to the various masking mechanism. It is necessary to determine the corresponding de-
rating factors, in order to obtain a realistic failure rate of the system which is not fully
overestimated. A high-level view of the Single-Event Effects analysis from the fault to
system level failures is shown in figure 2.6. The faults which are induced by the se-
quential elements and the combinational cells are shown on the left. Due to the various
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masking effects many of the faults are not propagating (Electrical Masking, Temporal
Masking and Logical Masking). The lowering of the probability is quantified by the
respective de-rating factors. After applying the de-rating factors, the effective rate of
observable errors is calculated. Afterwards the effect of the errors on the functional be-
haviour of the system is analysed. This is done in the Functional Masking analysis and
quantified by the Functional De-Rating. Obtained are the results which characterises
the probability for the defined failures on the system level [23].

SEU
TDR

LDR

SET
EDR
TDR
LDR

FDR

Failure
Class 1

Failure
Class 2

…

Failure
Class 𝑁

Sequential Cells

Combinational Cells

Raw Fault Rates Effective Error Rates
System Failure Rates
(per failure class)

Figure 2.6: Single-Event Effects analysis.

The objective of the Soft Error analysis is to determine the probability of radiation
induced faults resulting in a system-level error. The considered system-level failures
must be defined prior to the analysis. With the quantify failure rates of the defined
failure classes it can be ensured that the design meets the specified targets and com-
plies with certain standards and regulations (e.g., ISO 26262 [38], DO-254 [25], IEC
61508 [37]]).

To summarize, the Soft Error analysis aims to compute the rate of system-level fail-
ures starting from the rate of technology level faults due to soft errors. In the following
the three main steps are presented to perform a SER analysis. The technology SER
characterization of standard cells and memory blocks, the various de-rating factors and
finally the overall SER calculation. The SER methodology presented focuses on non-
destructive SEEs: Bit Upsets in sequential cells, Transients in combinational cells.
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2.3.1 Technology Soft Error Rate Characterization
The technology SER characterization is the first step of the SER analysis. Raw SER data
should be provided in terms of raw (intrinsic) rate/probability of occurrence of logic SEU
or SET for combinational, sequential and memory cells for a specific environment. The
final operating environment should be also carefully analysed, of a particular interest
to most commercial and aeronautical applications is the natural background, terres-
trial environment characterized by a natural contribution of atmospheric neutrons and
internal alpha particles from contaminants. The neutron SER is specific to the technol-
ogy and the environment (altitude and localization). The alpha contribution depends
strongly on the sensitivity of the cell to alpha particles and the alpha emissivity rate of
the packaging materials.

2.3.2 De-Rating Characterization
The most common techniques to evaluate the propagation of a fault are based on fault
injection or analytical approaches. In the fault injection analysis, many faults are in-
jected into the circuit while it is measured if there is any observable effect. The fault
injection can be performed on a model of the circuit. Depending on the used imple-
mentation of the design, such as the RT-level description or the gate-level netlist, the
accuracy of the results might differ and which de-rating factors can be obtained.

An alternative to the fault injection techniques are the analytical approaches. They
use a mathematical or abstracted model of the circuit to evaluate the effect of faults.
Further techniques are based on a formal representation of the circuit as well as a defi-
nition of properties the circuit has to meet. Using tools for model checking or symbolic
simulation, it can be verified whether the properties hold in the presence of faults. An-
other set of approaches is based on associating probability distributions to the nodes
in a circuit and then using these to compute the probability that faults on a given node
will propagate to an output.

2.3.3 Computing the Overall Soft Error Rate
To obtain the overall Soft-Error Rate (SER) for a full chip the SER of the used technology
needs to be combined with the determined de-rating factors. For a given application
and a specific failure class, the overall failure rate SERtotal can be calculated by

SERtotal = SERseq + SERcomb (2.4)

where SERseq is the contribution of the sequential elements, such as flip-flops and
latches, and SERcomb the contribution of the combinational elements, such as gates.
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The individual parts are then calculated by

SERseq = ∑
𝑖∈Flip-Flops

FITSEU,𝑖 ⋅ TDR𝑖 ⋅ LDR𝑖 ⋅ FDR𝑖 (2.5)

SERcomb = ∑
𝑖∈Gates

∫
𝑤max

𝑤min

FITSET,𝑖(𝑤) ⋅ EDR𝑖(𝑤) ⋅ TDR𝑖(𝑤) ⋅ LDR𝑖 ⋅ FDR𝑖 d𝑤 . (2.6)

where

• FITSEU,𝑖 represents the SEU rate for the sequential element 𝑖,

• FITSET,𝑖(𝑤) represents the SET rate of the combinational element 𝑖 depending on
the transient pulse width 𝑤 and

• the corresponding de-rating factors EDR𝑖, TDR𝑖, LDR𝑖, FDR𝑖 for element 𝑖

18



Chapter 3

Machine Learning Techniques for
Functional Failure Rate Analysis

3.1 Introduction
In chapter 2 it was discussed that flip-flops are the major contributor to the overall Soft-
Error Rate of integrated circuits and one of the major metrics used in today’s functional
safety analysis are de-rating or vulnerability factors. Using classical methods, such as
fault simulations, to obtain accurate per-instance Functional De-Rating data for the full
list of circuit instances is a complex and computationally intensive task. Therefore,
the objective of the work presented in this chapter is to explore how machine learning
techniques can be used to advance the functional failure analysis of complex circuits.

Previous works have shown that certain characteristics of the circuit, such as struc-
tural properties and signal probabilities, can be related to the masking effect and thus,
used to estimate vulnerability factors [14, 79, 61, 63]. Since machine learning algo-
rithms are very suitable to learn even complex relationships, it can be expected that
these models are able to learn and predict the Functional De-Rating by using similar
circuit features.

Two approaches are proposed in the following sections which accelerate and assists
the functional failure analysis with the help of machine learning techniques. They aim
in reducing fault injection efforts in terms of computing resources, human efforts and
tool licenses. The first approach uses supervised machine learning algorithms to learn
and estimate the Functional De-Rating factors for individual flip-flops in the circuit.
The second approach uses machine learning clustering techniques to group flip-flops
with a similar sensitivity to faults together and thus, reducing the fault space.
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3.2 Machine Learning
Machine Learning is the concept of a machine learning from examples and making
predictions based on its experience, without being explicitly programmed. Machine
learning algorithms are usually built upon a mathematical model which uses sample
data (also called training data) in order to make predictions. The machine learning
process generally consists of two phases, namely the training or learning phase and the
prediction phase. The learning phase can be further grouped in [5, 12]

• supervised learning,

• unsupervised learning and

• reinforcement learning

The supervised learning algorithms try tomodel the dependency between the inputs
and the target output in such a way that the output values for new data points can be
predicted based on the learned relationships. The input data is used for training and
consists of a set of training samples. A training sample describes the input values and
the corresponding and expected output value. For the mathematical model, the training
samples are represented by a vector, also called feature vector. The full training data
is then represented by a matrix. in an iterative optimization process the training data
is used to adjust parameters of the underlying mathematical function of the model.
The learned function can be used to predict an output associated with new data input
samples, which were not a part of the training data [62, 51, 5].

The main tasks of supervised learning models are classification and regression.
While classification algorithms are used when the outputs are restricted to a limited
set of values, regression algorithms are used when the outputs may have any numeri-
cal value within a range [5].

In contrary to supervised learning, unsupervised learning models try to find struc-
tures in the data set without external labelling or classification. This means, that the
training data samples contain only input values for the model and not the expected
corresponding output values. Instead of optimizing a mathematical function, unsuper-
vised learning algorithms search for similarities in the training data. The reaction of
the model on new data inputs is based on the found similarities and depends on how
close each new data point resembles to the already trained data [12].

The twomain tasks in this type of unsupervisedmachine learningmethods are clus-
tering and dimensionality reduction. In the cluster analysis the set of training data is
divided into subsets, called clusters. Data points within the same cluster are similar
according to the predefined criteria, while data points from different clusters are dis-
similar. The various clustering algorithms make different assumptions on the structure
of the data and therefore, use different similarity metrics to evaluate the similarity of
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the members of the same clusters or evaluate the difference between clusters. The di-
mensionality reduction is a process to reduce the dimension of the feature set, often by
eliminating or extract features.

The first developed approach which is presented in section 3.5 is based on super-
vised learning models and predicting Functional De-Rating factors of individual flip-
flops by performing a regression. The second approach presented in section 3.6 uses
clustering analysis to group flip-flops together with a similar sensitivity to faults in or-
der to decrease the faults space. Both approaches are based on a feature set which is
presented in the next section.

3.3 Flip-Flop Feature Set
For the machine learning based approaches proposed in the following sections a feature
set was developed, which characterises each flip-flop in the circuit. The extraction of
the flip-flop feature set needs to be efficient in order to compete with the classical fault
injection approach. Therefore, the developed feature set to characterise each flip-flop
instance, contains only simple characteristics which are easy and fast to obtain. This
feature set combines static elements, such as cell properties, circuit structure and syn-
thesis attributes, as well as dynamic elements, such as the signal activity. The initial
version of the feature set was published in [42] and was then extended in [44] and [43].
The features are described in detail in table 3.1.

The feature set can be divided into 3 parts. The structural related features which de-
scribe a flip-flop in relation with other flip-flops without taking the (technology depen-
dent) combinational logic into account. The synthesis related features which describe
a flip-flop with their assigned cell attributes and the combinational logic at the input
and output. These synthesis related features can differ from one technology to another.
To consider the workload of the circuit, a variety of features are evaluated to describe
the dynamic behaviour of the flip-flops. As an initial approach it was considered that
the information related to the signal activity (state distribution, transitions) could be an
appropriate starting set of features.

The structural and synthesis related features can be extracted from the gate-level
netlist of the circuit. The gate-level netlist is converted into a graph representation.
Graph algorithms, such as Dijkstra’s algorithm to find the shortest path, can be used to
extract the features. The structural related features, can also be extracted just by using
the elaborated RTL description of the design. The elaboration of the RTL description
is faster than performing a full synthesis and does not necessarily need a full-fledged
synthesis tool. This has the advantage that the analysis can already be performed in
an early design stage. The signal activity related features are extracted by running a
simulation using the corresponding testbench instantiating the RTL description or the
gate-level netlist of the circuit and tracing the simulation signals.
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3.4 – Circuit Under Test

3.3.1 Feature Preprocessing
In general, machine learning algorithms perform better if the data set is standardised.
Ideally the data set is normally distributed with zero mean and unit variance. Fur-
ther, for most machine learning algorithms categorical values have to be represented as
numbers. They can be converted by using an ordinal encoder. However, such a number
representation could be interpreted as if the categories are in a specific order. This is
often not the case and therefore, a one-hot encoding should be used. This encoding
transforms each categorical feature with 𝑛 categories into 𝑛 binary features.

The presented feature set consists of two different types of features, the numerical
and categorical type. The numerical features are expressed as a number and the cat-
egorical features can be expressed by a number, label or Boolean value. The number
representation for the numerical feature does have a meaning as a measurement. How-
ever, if a categorical feature is represented by a number, it does not have a mathematical
meaning and the assignment is arbitrary.

For the presented approach in this chapter, the feature set can be extracted for the
full circuit before the training of the models. This has the advantage that the distribu-
tion of the values is already known beforehand. Therefore, the standardisation on the
numerical features and the one-hot encoding on the categorical features is applied on
the full feature set before the training.

3.4 Circuit Under Test
The two proposed techniques which are presented in the following sections are applied
on a practical example. The used circuit under test is the Ethernet 10GE MAC Core
from OpenCores. This circuit implements the Media Access Control (MAC) functions
as defined in the IEEE 802.3ae standard [36]. The 10GE MAC core has a 10Gbps inter-
face (XGMII TX/RX) to connect it to different types of Ethernet PHYs and one packet
interface to transmit and receive packets to/from the user logic [6]. The circuit consists
of control logic, state machines, First-In First Outs (FIFOs) and memory interfaces. It
is implemented at the Register-Transfer Level (RTL) and is publicly available on Open-
Cores.

The corresponding testbench writes several packets to the 10GE MAC transmit
packet interface. As packet frames become available in the transmit FIFO, the MAC
calculates a Cyclical Redundancy Check (CRC) and sends them out to the XGMII trans-
mitter. The XGMII TX interface is looped-back to the XGMII RX interface in the test-
bench. The frames are thus processed by the MAC receive engine and stored in the
receive FIFO. Eventually, the testbench reads frames from the packet receive interface
and prints out the results [6]. During the simulation all sent and received packets to and
from the core are monitored and recorded. This record is used as the golden reference
for the fault injection campaign.

The elaboration of the RTL implementation of the circuit identifies 1234 flip-flops.
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The design was synthesised with Synopsys Design Compiler by using the NanGate
FreePDK45 Open Cell Library [74]. Due to logic optimization by the synthesis tool the
obtained gate-level netlist contains 1202 flip-flops, 32 flip-flops less than the elaborated
RTL implementation.

3.4.1 Failure Classes and Fault Injection Campaign
In order to evaluate the performance of the developed machine learning approaches
in the following sections, the sensitivity of the considered design was measured by
performing an exhaustive flat statistical fault injection campaign. In this way the sen-
sitivity of each flip-flop was determined and thus, the Functional De-Rating. For com-
parison, the fault injection campaign was performed on both, the RTL implementation
and gate-level netlist of the circuit. The fault injection mechanism is implemented by
inverting the value stored in a flip-flop using a simulator function.

For the analysis, three different failure classes are considered. In case the injected
fault propagates to the primary outputs of the circuit and thus, the output values are
altered in comparison to the golden reference, an Output Failure is counted. If the
payload of the final received packets is corrupted or the circuit stopped sending or
receiving any data, the simulation run was considered as an Application Failure. In
networking applications, such as the considered design, important data is protected by
checksums. This means that a minor payload corruption can be handled by the error
correction algorithm. However, in case the fault causes the circuit to stop working and
interrupting the flow of sending packages or data is continuously corrupted, then the
effect can be considered as critical and a Critical Failure is counted.

In each flip-flop 200 faults were injected at a random time during the active phase of
the test-case. The fault injection simulations were parallelised by using 7 independent
processes. To perform the fault injection campaign on the RTL design in total 12 hours
14minutes and 31 seconds were needed. Performing the campaign on the gate-level
netlist required in total 19 hours 38minutes and 3 seconds1. The failure rate of each flip-
flop is calculated by dividing the number of simulation runs which lead to a failure with
the number of total simulation runs. The failure classes Output Failure, Application
Failure and Critical Failure are considered separately and the overall results of the flat
statistical fault-injection campaign are presented in table 3.2.

Register-Transfer Level Design Versus Gate-Level Netlist

The elaborated RTL design is not optimized by a synthesis tool and thus, contains 32
more flip-flops than the final gate-level netlist. To perform a comparison, the flip-flops
from the gate-level netlist have beenmatchedwith the corresponding RTL signal names.

1Computations were performed on a PC with an Intel Xeon E5-2687W CPU (8 cores/16 threads
3.10GHz).
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3.4 – Circuit Under Test

Table 3.2: SEU Fault Injection Campaign Results

RT-Level Gate-Level Netlist

Total Per Injection Total Per Injection

Injection Targets (FFs) 1234 - 1202 -
Injected Faults (SEU) 246800 - 240400 -
Output Failure 90306 36.59 % 84159 35.01 %
Application Failure 55187 22.36 % 53756 21.78 %
Critical Failure 14012 5.68 % 12332 5.13 %

The fault injection simulation campaign on the RTL design was performed with the
same parameters (number of injections and injection time) as for the gate-level netlist.
The failure rates for almost all flip-flops were identical, except of the additional flip-
flops and some flip-flops which are connected to/by these additional flip-flops. The
difference between the failure rates were less than 2 %.

3.4.2 Feature and Target Pre-Analysis
With the considered circuit under test and the results from the performed fault injection
campaigns, the relationship between the features itself and the features and the target
output can be pre-analysed. The gate-level netlist and the testbench of the circuit under
test are used to extract the respective features described in 3.3 for each flip-flop. The
feature extraction is automated and overall, takes 186 seconds.

The Pearson Correlation is used to analyse the relationship between the features
and the targets. The Pearson Correlation is a measure of linear correlation between
two sets of data, by calculating the covariance of two variables and dividing it by the
product of their standard deviations. It is essentially a normalised measurement of the
covariance, which reflects a linear correlation between the variables. The results of the
Pearson Correlation are shown in figure 3.1

The matrix in figure 3.1 shows that some features have light correlation between
each other. This can indicate some redundancy in the feature set. Analysing the cor-
relation between the features and the target output, the Functional De-Rating factors,
some correlation can be observed between the failure rate and

• the total number of connections from the flip-flop FF𝑖 to the primary output,

• the number of flip-flop stages to the primary output (minimum, average, maxi-
mum),

• the feedback loop and the depth of the feedback loop and

• the bus the flip-flop FF𝑖 is part of.
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Figure 3.1: The Pearson Correlation of features and targets.

The correlation is decreasing for the different failure classes, starting highest from the
Output Failure class, Functional Failure class to the Critical Failure class.

Some minor correlations can be observed for

• the total number of connections from and to the flip-flop FF𝑖,

• the total number of connections from the primary input to the flip-flop FF𝑖 and

• the module the flip-flop FF𝑖 belongs to.

Here, the correlation is also decreasing for the different failure classes.
The observed correlation is a first indication that machine learning models might

be able to learn the relationship between the derived features and the failure rate. It
should be noted however, that the Pearson Correlation only shows linear correlation.
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Depending on the machine learning model, it might even be able to learn more complex
relationships than linear dependencies.

3.5 Machine LearningRegression for Predicting Func-
tional De-Rating Factors

Determine accurate de-rating factors of each instance in the circuit is an exhaustive
procedure and especially on the functional level computationally intensive fault injec-
tion campaigns are necessary. In this section a machine learning based methodology
is proposed which estimates the Functional De-Rating factors for individual flip-flops
in the circuit with the help of supervised regression models. These models try to learn
the dependency between a set of input features and the target output variable, usually
based upon a mathematical model. The initial methodology was presented in [42], an
improved approach with an extended analysis was published in [44]. In the next sec-
tions, the proposed methodology is presented in detail with an extended evaluation of
the performance.

3.5.1 Methodology
The approach aims to predict the Functional De-Rating (FDR) factor of individual flip-
flop instance. The target variable, the Functional De-Rating factor, is a continues vari-
able with values in the range of [0.0; 1.0] (see section 2.2) which makes regression mod-
els suitable for the learning and prediction task.

The implemented methodology uses a supervised approach to train the regression
models and is shown in figure 3.2. The RTL description or the gate-level netlist (GLN)
of the circuit and a corresponding testbench are used to extract the features for each
flip-flop in the circuit, as described in section 3.3. These extracted features function
as the input of the model. The circuit description and the testbench are also used in
a statistical fault injection simulation to determine the FDR factors for one part of the
circuit. The determined FDR factors per flip-flop and the associated flip-flop features
form the training data set, used to train the machine learning model. Eventually, the
trained model can be used to estimate the FDR values of the remaining flip-flops which
were not used for the training.

An important parameter of the procedure is the training size. The training size
defines the size of the training data set. This is connected to the number of reference
FDR factors needed for the training and thus, determines how many fault injection
simulations need to be performed. This basically means, that the training size also
controls the savings of fault injection efforts gained by the presented approach. A larger
training size would probably result in more accurate prediction results, but more efforts
for the fault injection simulation campaigns. In contrary, very low training size would
require low efforts for the fault injection campaigns butmight result in a poor prediction
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Figure 3.2: Functional De-Rating estimation and evaluation flow.

accuracy. It is important to find a good training size in order to save sufficient fault
injection efforts, but maintain a good prediction accuracy. This will be analysed in
detail in section 3.5.2.
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Model Training and Hyperparameter Optimisation

Machine learning models are usually represented by internal parameters or an internal
state. These parameters or the state are determined during the training process by the
machine learning algorithm. Additionally, most of the machine learning algorithms can
be controlled by hyperparameters. In contrast to the internal parameters or state, these
hyperparameters are not derived by the training algorithm and need to be manually set
before the training process.

The problem of finding the optimal set hyperparameters for the model is called
hyperparameter optimisation. Therefore, several instances of the model need to be
trained and evaluated for different tuples of hyperparameters. The tuple that minimises
a predefined loss function or evaluation metrics yields an optimal model. A common
approach to perform the optimisation is a random search method combined with a
grid search method. There, the model is first evaluated for parameter values randomly
generated in a given distribution. Afterwards a more detailed grid search is performed
within the region of the values obtained by the random search [11]. This is the used
approach in the proposed methodology and indicated in figure 3.2.

Model Performance Evaluation

The performance of the machine learning model is required to perform the hyperpa-
rameter optimisation. Further, in the following section the performance of a model is
used to compare and evaluate various regression models with using different training
data sizes.

In order to measure and evaluate the performance of a machine learning model
different metrics are used to cover certain aspects of the prediction performance. In
the following description of the considered metrics, ̂𝑦𝑖 is the value of the 𝑖-th sample
predicted by the model and 𝑦𝑖 is the corresponding true/expected value.

Mean Absolute Error The mean absolute error (MAE) describes the average ab-
solute difference of the expected values to the predicted values. It is calculated over
𝑛samples by the following equation (values closer to zero are better)

MAE(𝑦, ̂𝑦) = 1
𝑛samples

𝑛samples

∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖| (3.1)

MaximumAbsolute Error The maximum absolute error (MAX) describes the max-
imum difference of the expected values to the predicted values. The equation

MAX(𝑦, ̂𝑦) = max
𝑖∈[1,𝑛samples]

|𝑦𝑖 − ̂𝑦𝑖| (3.2)

calculates the metrics (values closer to zero are better).
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RootMean Squared Error The root-mean-square error (RMSE) describes the square
root of the quadratic error of the expected values. In comparison to the mean absolute
error the root-mean-square error gives a higher weight to larger errors. It is calculated
over 𝑛samples by the following equation (values closer to zero are better)

RMSE(𝑦, ̂𝑦) =
√√√

⎷

1
𝑛samples

𝑛samples

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (3.3)

Explained Variance The Explained Variance (EV) measures the proportion to which
a model accounts for the variation (dispersion) of a given dataset. If Var(𝑋) is the vari-
ance, the square of the standard deviation, of a random variable 𝑋 then the explained
variance is calculated by

EV(𝑦, ̂𝑦) = 1 −
Var(𝑦 − ̂𝑦)
Var(𝑦)

(3.4)

The best possible value is 1 and lower values are worse.

Coefficient ofDetermination The coefficient of determination (𝑅2) provides amea-
sure of how well future samples are likely to be predicted by the model. If ̄𝑦 is the mean
of the expected values, the coefficient of determination can be calculated by

𝑅2(𝑦, ̂𝑦) = 1 −
∑

𝑛samples

𝑖=1 (𝑦𝑖 − ̂𝑦𝑖)2

∑
𝑛samples

𝑖=1 (𝑦𝑖 − ̄𝑦)2
(3.5)

and the best possible value is 1 (lower values are worse).

Cross-Validation A problem when evaluating the performance of a machine learn-
ing model can occur, when only one training and test data set is used to calculate the
considered performance metrics. The used training and test data set can be particu-
larly good or bad and bias the results in a certain direction. Cross-validation is used
to ensure that the model is not only trained for one particular training and test data
set. There, the model is trained and evaluated against multiple train and test splits of
the data. Several subsets, or cross validation folds, of the data set are created and each
fold is used to train and evaluate a separate model. Thus, instead of relying only on
one single training and test data set, a more stable performance measure is obtained
which indicates how the model is likely to perform on average [40]. For the detailed
evaluation in the next section a cross-validation of 10 is used.

3.5.2 Evaluation ofMachine LearningRegressionModels for Pre-
dicting Functional De-Rating Factors

In this section the presented methodology is applied on a practical example and various
machine learning models are evaluated and compared with using different training data
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sizes. Therefore, the results of the full flat statistical fault injection campaign described
in section 3.4.1 are used to get the Functional De-Rating factors for each flip-flop of
the gate-level netlist. The netlist and the testbench of the described circuit are used to
extract the respective features for each flip-flop. The full dataset provides an objective
measure to evaluate the presented technique. Part of the dataset is used to train the
machine learning models. The remaining part of the dataset which was not used for
training, is used to evaluate the trained models.

The performance of the prediction is evaluated for different training sizes by us-
ing several metrics. Additionally, the fit and prediction time for different training sizes
were measured and compared to each other, as well as the time to perform the hyper-
parameter optimisation, which is compared against the full fault injection campaign2.

Evaluated Regression Models

Several machine learning models were used to predict the two failure classes, Output
and Application Failure. Therefore, the data obtained from the fault injection campaign
and the extracted flip-flop features form the training and test data set. All evaluated
models are implemented using Python’s scikit-learnMachine Learning framework [59].

Prior to the model training, the feature set is preprocessed, by removing the mean
and scaling to unit variance on the numerical features and applying a one-hot encoding
on the categorical features. Further, since the FDR factors are within the range of 0 to 1,
the predicted values are clipped to the expected output range. For the hyperparameter
search and evaluation a cross validation fold of 10 and a training size of 50 % are used.
In order to keep the computational time low and get a substantial advantage over the
fault injection simulation, the number of hyperparameter combinations was chosen,
such that the total needed training time is about 30minutes.

The investigated models are briefly described in the following (for a more detailed
description see [53], [51] or [5]) and the prediction performances for the two failure
classes are given in table 3.3. For a selection of models, the prediction of one test data
fold is shown in figure 3.3 for the Output Failure and figure. 3.5 for the Application
Failure. Further, figure 3.4 and figure 3.6 show the learning curves, which describes the
performance of the model for different training sizes.

Linear Least Squares Regression The Linear Least Squares algorithm is based on
a linear model. The target output variable is represented as a linear combination of
the input feature variables. Thereby, the algorithm targets to minimise the sum of
squared residuals, the squared sum of the difference between the true value in the train-
ing dataset and the predicted value by the linear approximation.

2All computations were performed on a PC with an Intel Xeon E5-2687W CPU (8 cores/16 threads
3.10GHz).
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3.5 – Machine Learning Regression for Predicting Functional De-Rating Factors

k-Nearest Neighbors Regression The 𝑘-Nearest Neighbor (𝑘-NN) algorithm ex-
ploits feature similarity to predict values of new data points. During the training phase,
the training data set is only indexed and stored into a database. Then, the value of a
new data point is predicted based on how closely it resembles to the points in the train-
ing set. A weighted average of the 𝑘-nearest neighbors is used to predict the value,
where the weight is calculated by the inverse of the distances and the distance itself
can be any metric measure, such as the Manhattan or Euclidean distance. Hence, the
model hyperparameters are the number of nearest neighbors 𝑘 taken into account and
the used distance metrics.

During the hyperparameter optimisation it was found that the model performed the
best with 𝑘 = 5 and Manhattan distance as metric measure for both failure classes.

Decision Tree Regression Decision Trees in machine learning are models which
recursively partitioning the input feature space by inferring simple decision rules from
the training data. This is usually represented by a tree structure where the decision
rules are defined in the branches of the tree and the leaves contain the trained value.
In general, the deeper the tree, the more different decision rules it has which results in
a more complex model. However, this can also lead to over-complex trees that do not
generalise the training data, also called overfitting.

The considered hyperparameters for this model are controlling the structure of the
tree, such as the maximum depth, the maximum number of leaf nodes and the balance
of the tree. Further parameters defined by the framework are set to their default values.

The hyperparameter optimisation has shown that the model performs at best for
both failure classes when the tree structure is not restricted (no maximum for the depth
and number of leaf nodes is set and no restriction to balance the tree).

Kernel Ridge Regression The Ridge regression algorithm is modifying the ordinary
least squares regression by imposing a penalty on the size of the coefficients (regular-
isation). Another advantage of the Ridge regression is, that it can be extended to use
kernel functions. These functions perform a transformation of the input values and
map them to a higher dimensional space. Thus, it is possible to learn a linear function
in the space induced by the respective kernel. For non-linear kernels, this corresponds
to a non-linear function in the original space. This is useful for regression problems
which cannot adequately be described by linear models.

The hyperparameter of the model are the regularisation hyperparameter 𝛼, 𝛾 to
control the kernel function, 𝑑 to define the degree of the polynomial kernel and the
independent term 𝑟 in the polynomial and sigmoid kernel.

The best performance when using a Ridge regression with a polynomial kernel was
found with degree of 𝑑 = 2 for both failure classes.
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(d) Ridge w/ Polynomial Kernel
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(e) SVR w/ RBF Kernel
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(f) MLP Neural Network

Figure 3.3: Prediction of the Output Failure for one test data fold (training size = 50 %).
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(a) Linear Least Squares
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(e) SVR w/ RBF Kernel
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(f) MLP Neural Network

Figure 3.4: Learning curve and fit time predicting the Output Failure (cross validation
= 10).
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Support Vector Regression The Support Vector Regression (SVR) is similar to the
Ridge Regression where the loss function is modified in such a way that predictions
only depend on a subset of the training data, known as support vectors. The goal is to
find a function where each training data points within an 𝜀-tube are not penalised, and
at the same time is as flat as possible. SVR can also operate with the kernel trick and the
used ML framework provides the same kernels as for the Ridge Regression. The model
defines several hyperparameters, such as the penalty factor 𝐶, the size of the 𝜀-tube, 𝛾
to control the kernel function, 𝑑 to define the degree of the polynomial kernel and the
independent term 𝑟 in the polynomial and sigmoid kernel.

The SVR with a polynomial kernel operated the best when a polynomial degree of
𝑑 = 2 for both failure classes was chosen.

Multilayer Perceptron Neural Network A multilayer perceptron (MLP) belongs
to the class of feedforward artificial neural networks (ANN). An MLP Neural Network
consists of at least three layers of nodes. The first layer is the input layer, followed by
one or more hidden layers and an output layer. Except for the input nodes, each node is
a perceptron. A single perceptron has one or more inputs, a bias, an activation function,
and one output. The received input is multiplied by a weight and passed to the activa-
tion function, which produces the output. MLP utilizes a supervised learning technique
called backpropagation for training. Thereby, the predicted output of the network, is
compared to the expected value and the internal weights are adjusted accordingly. This
process is repeated until a maximum number of iterations or an acceptable error rate is
reached.

The scikit-learn framework supports 4 different activation functions. The identity
or linear function, the logistic or sigmoid function, the hyperbolic tan function and
the rectified linear unit (RELU) function. This activation function together with the
network topology define the hyperparameters of the model which will be optimised.
Therefore, random networks are generated with a size for the hidden layer in the range
of [1; 25] and each layer can consist of [1; 250] perceptrons.

RELU was the optimal activation function for both classes. The optimal network
topology was achieved with a (219, 85, 94) hidden network layer when predicting the
Output Failure and a (170, 87, 140, 244, 113) hidden network layer when predicting the
Application Failure.

Comparison and Discussion

Prediction Performance Comparing the general performance of the different mod-
els shown in table 3.3, it can be seen that the Linear Least Squares regression and the
regression models using sigmoid kernels are rated the worst. The Decision Tree re-
gression, instance-based 𝑘-NN algorithm, as well as the kernel-based algorithms using
regularisation on the parameters performing much better (except by using the Sigmoid
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(e) SVR w/ RBF Kernel
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(f) MLP Neural Network

Figure 3.5: Prediction of the Application Failure for one test data fold (training size =
50%).
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(a) Linear Least Squares

0

20

40

60

80

100

Fi
tT

im
e
/m

s

0% 20% 40% 60% 80% 100%
0

0.2

0.4

0.6

0.8

1

Training Size

𝑅
2
Sc
or
e

Train Score Test Score Fit Time

(b) 𝑘-Nearest Neighbors

0

20

40

60

80

100

Fi
tT

im
e
/m

s

0% 20% 40% 60% 80% 100%
0

0.2

0.4

0.6

0.8

1

Training Size

𝑅
2
Sc
or
e

Train Score Test Score Fit Time

(c) Decision Tree
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(e) SVR w/ RBF Kernel
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(f) MLP Neural Network

Figure 3.6: Learning curve and fit time predicting the Application Failure (cross valida-
tion = 10).
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3.5 – Machine Learning Regression for Predicting Functional De-Rating Factors

kernel). Especially, the 𝑘-NN and SVR with RBF kernel yield very good overall predic-
tion results.

The prediction performance of the Output Failure compared to the Application Fail-
ure is quite similar in all cases. This demonstrates that the presented approach and the
used feature set is suitable to learn both failure classes. It should be noted that for
training sizes lower than 50 % the models predict Output Failure slightly better.

The learning curves in Fig. 3.4 and Fig. 3.6, show that the performance does not sig-
nificantly improve with training sizes higher than 50 %. This means, by using the pro-
posed method to assist a fault injection campaign, the time needed to obtain a detailed
list of Functional De-Rating factors can be reduced by half. For most of the models,
the cost can even be reduced further, in exchange of a slight reduction in accuracy of
about 5 − 10 %. Thus, a more aggressive optimisation, a cost reduction up-to 5×, can
be achieved.

Training and Prediction Time The fit and prediction time of a model defines how
many hyperparameter combinations can be tested in order to find the best performance
in a reasonable amount of time. As mentioned before, the time for the hyperparame-
ter optimisation was restricted to about 30minutes. Thus, the total time to extract the
features and train a model would be less than 2% of the total time needed to perform
the full fault injection campaign. In addition, it should be noted that the used machine
learning framework does not require any licenses and offers several functions to paral-
lelise the computation on clusters. Some machine learning frameworks even support to
accelerate the computation by using GPUs. Hence, testing the hyperparameter combi-
nations can be accelerated more easily than accelerating the fault injection campaign.

Looking at the fit time in relation to the training size, shown in Fig. 3.4 and Fig.3.6, it
can be observed that withmore training data the time needed to fit amodel is increasing.
Especially, the Ridge algorithm and SVR are known for a quadratic dependency of the
training data. In contrary, the fit time of the 𝑘-NN and Decision Tree algorithm is
increasing linearly with the training data [53]. This might make them more suitable to
learn very large circuits with a high number of flip-flops.

3.5.3 Functional De-Rating Prediction on the Register-Transfer
Level

As mentioned in section 3.3 some features can already be extracted from the RTL de-
scription of the circuit. The structural related features can be obtained after an elabo-
ration of the RTL description. The elaboration of the design can be performed much
faster than a full synthesis and additionally, the elaborated design is technology inde-
pendent. Further, the signal activity related features can be obtained when simulating
on RT level.

Using the approach on the RT level has the advantage, that the analysis can be per-
formed in an early design stage and the target technology does not need to be known.
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Critical circuit parts could be identified in an early design phase and mitigation tech-
niques could be applied accordingly. Further, RT level simulations can usually be per-
formed faster than on the gate-level netlist. Thus, a fault injection simulation can be
performed quicker.

Nevertheless, by using only the RTL description of the design, it is not possible to
extract the synthesis related features. These might be beneficial for the overall per-
formance of the prediction. Therefore, in this section the approach will be applied on
the RTL description of the circuit from section 3.4. The prediction performance will be
compared to the performance when the full feature set, extracted from the gate-level
netlist, is used.

The structural related and signal activity related features were extracted from the
elaborated design. The actual values of the features extracted from the elaborated RTL
were compared the actual values of the features extracted from the gate-level netlist.
The only difference was observed in features which characterise the relation of the
target flip-flop FF𝑖 to the other flip-flops in the circuit and when the additional flip-
flops were involved (such as # FF at Startpoint/Endpoint, # Connections from/to FF and
Bus Length).

Evaluate RTL Based Functional Failure Rate Prediction

Table 3.4 compares the prediction performance (in terms of the 𝑅2 score) when the full
feature set (Structural, Signal Activity and Synthesis related features), extracted from
the gate-level netlist, is used against a partial feature set, extracted from the RTL de-
scription (Structural and Signal Activity related features). Additionally, the prediction
performance is shown when only the structural related features are used. Ridge and
Support Vector Regression with a Sigmoid kernel are not considered in the table due to
their low performance.

In the table it can be seen that the overall performance is getting lower when a
reduced feature set (structural and signal activity related features) is used for most of
the models. Interestingly, it can be also noted that when only the structural related
features are used, the prediction performance is increasing. This can suggest two things:
First, the here used signal activity related features are not linked with the Functional
De-Rating. In this case new features need to be identified which better represent the
workload of the circuit. Second, it is well known, that a high number of features can
decrease the performance due to the curse of dimensionality [76]. By using a smaller
feature subset this effect can increase the observed prediction performance.

Nevertheless, the differences in the prediction performance in all the cases ismarginal.
This means the presented approach is also applicable on the RT level with only a small
impact, if any, on the overall prediction performance. It seems that the strongest corre-
lation between the features and the Functional De-Rating lies in the structural related
features. Results are technology independent and can be obtained faster without per-
forming a full synthesis and thus, the approach is suitable in an early design phase.

40



3.6 – Machine Learning Clustering for Selective Mitigation

Table 3.4: Performance Comparison by Using Different Feature Subsets
(With Cross Validation = 10 and Training Size = 50 %)

(a) Output Failure

𝑅2 Score

Regression Model
Strucutral

+ Signal Activity
+ Syntehsis

Strucutral
+ Signal Activity

Strucutral

Linear Least Squares 0.794 0.794 0.797
𝑘-Nearest Neighbors 0.903 0.902 0.9
Decision Tree 0.887 0.871 0.875
Ridge w/ Linear Kernel 0.889 0.889 0.89
Ridge w/ Polynomial Kernel 0.893 0.893 0.893
Ridge w/ RBF Kernel 0.894 0.891 0.892
SVR w/ linear kernel 0.879 0.88 0.88
SVR w/ polynomial kernel 0.878 0.879 0.879
SVR w/ RBF Kernel 0.906 0.904 0.904
MLP Neural Network 0.892 0.894 0.882

(b) Application Failure

𝑅2 Score

Regression Model
Strucutral

+ Signal Activity
+ Syntehsis

Strucutral
+ Signal Activity

Strucutral

Linear Least Squares 0.784 0.795 0.794
𝑘-Nearest Neighbors 0.917 0.913 0.922
Decision Tree 0.904 0.871 0.865
Ridge w/ Linear Kernel 0.927 0.927 0.927
Ridge w/ Polynomial Kernel 0.926 0.926 0.926
Ridge w/ RBF Kernel 0.922 0.923 0.922
SVR w/ linear kernel 0.922 0.922 0.924
SVR w/ polynomial kernel 0.909 0.908 0.909
SVR w/ RBF Kernel 0.927 0.924 0.926
MLP Neural Network 0.907 0.906 0.911

3.6 Machine Learning Clustering for Selective Miti-
gation

Especially, the Soft Errors in flip-flops are a major concern and countermeasures have
to be taken into consideration by using hardening techniques, such as Triple Modular
Redundancy (TMR). However, a fully protected chip might not meet the system require-
ments in terms of area, power or target frequency. Since for many applications it is not
necessary to decrease the vulnerability to a possible minimum, Selective Mitigation can
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be used. Thereby, only themost critical elements of the circuit are protected against Soft
Errors and thus, the failure rate of the system is decreased to meet all requirements [60,
50, 77].

In order to perform Selective Mitigation an exhaustive failure analysis is required
to identify and rank the most vulnerable elements of the circuit. Especially, the failure
analysis on a functional level grows with the design size, the number of workloads to
analyse and the duration in cycles of each workload. A detailed functional failure anal-
ysis requires a significant investment in terms of human efforts, processing resources
and tool licenses. Studies have shown that exhaustive fault simulation is not feasible
for today’s complex circuits [81].

Identifying and ranking the sequential elements which are most vulnerable to tran-
sient faults, usually requires computationally intensive fault-injection simulation cam-
paigns. This procedure can be optimized by grouping flip-flops together which are
expected to have a similar sensitivity to faults. Fault injection campaigns can then
be performed on a per-group basis and thus, significantly reduce the time and cost of
the evaluation [22]. However, this optimization heavily relies on the effectiveness of
the grouping methodology. Therefore, the second machine learning based techniques
proposed in this chapter, is an approach to effectively group flip-flops together which
are expected to have a similar sensitivity to functional failures. The approach is based
on machine learning clustering techniques by using the prior described set of features
which characterises each flip-flop in the circuit (see section 3.3). Machine learning clus-
tering algorithms are evaluated and compared to an ideal selective mitigation obtained
by exhaustive fault-injection simulation.

3.6.1 Clustering Techniques for Selective Mitigation
The approach of protecting only the smallest set of elements in a circuit to meet a
specified reliability target is called selective mitigation. Therefore, the individual circuit
elements of a circuit need to be ranked from the most to the least sensitive. In the case
of transient faults in the sequential logic which lead to a functional failure this usually
requires exhaustive fault injection simulation, which might not be feasible for large and
complex circuits.

In order to reduce the mentioned fault injection efforts, fault simulation campaigns
can be performed on a group basis. Therefore, prior any simulations, flip-flops are
grouped together and the statistical fault injection is performed on each of these groups.
This can significantly reduce the time and cost of the evaluation. However, the accuracy
of this coarse-grained fault injection solely relies on an effective approach to group flip-
flops together which have highly similar sensitivity to faults.

Current clustering techniques are based on buses, design hierarchy, or a hybrid
approach using buses, hierarchy and signal naming information [22]. These approaches
have several drawbacks. The bus based and hierarchical based approach are only able
to provide a fixed number of clusters. Thereby, the hierarchical based approach often
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provides a low number of clusters which can be very heterogeneous. The bus based
approach often results in a high number of clusters with small number of flip-flops
per cluster and one larger cluster containing all the flip-flops which do not belong to
any bus. Thus, the reduction of the number of fault injections is limited and the large
cluster tends to be heterogeneous which negatively impacts the effectiveness of the
clustering. The hybrid approach overcomes the problem of the fixed number of clusters
by combining the bus and hierarchy based approaches and also taking the signal names
into account. The approach assumes that flip-flops with a similar naming also have a
similar function and thus, have a similar sensitivity to faults. However, this relies on
a consistent naming convention and strong correlation between the naming and the
function within the circuit.

Machine Learning Clustering Techniques

In order to tackle the drawbacks of the previous studied clustering approaches a ma-
chine learning clustering techniques was developed. Clustering techniques in the ma-
chine learning domain belong to the unsupervised learning category (see section 3.2).
In general, these algorithms try to group similar objects together based on a given set of
features. The feature set characterizes the objects and the clustering algorithms group
objects together which have similar feature values, while objects from a different group
should have highly dissimilar feature values [12]. The proposed Machine learning clus-
tering approach uses the feature set described in section 3.3 to group flip-flops together.
The first version of the approach was published in [43].

3.6.2 Methodology
The proposed methodology is based on clustering techniques for selective mitigation.
In contrary to previous work the clustering approach uses machine learning clustering
algorithms and a feature set to characterize each flip-flop in the circuit. In this way no
assumptions are made about the design and a general methodology is provided.

The steps to perform a selective mitigation are illustrated in figure 3.7. First, the
features for each flip-flop in the design are extracted by using the RTL description or
gate-level netlist of the design and a corresponding testbench. Second, the machine
learning clustering algorithm is applied to the obtained feature set and the flip-flop
groups are obtained. The resulting number of groups 𝑁𝑐 can be adjusted by the param-
eters of the machine learning clustering algorithm. The number of groups also dictates
the effort needed for the next step: the statistical fault injection. The fault injection
campaign is performed on the computed flip-flop cluster and thus, needs more efforts
with a higher number of cluster and vice versa. Eventually, the sensitivity to faults for
each cluster is obtained and they can be ranked from the most sensitive to the least sen-
sitive. The selective mitigation will be applied starting from the most sensitive cluster
until the reliability requirement is met.
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Figure 3.7: Selective mitigation by using machine learning clustering.

3.6.3 Evaluating Machine Learning Clustering for Selective Mit-
igation

In this section the machine learning clustering approach is evaluated on a practical
example. Different clustering algorithms are used to group the flip-flops based on the
feature set presented in section 3.3. For this analysis, only the structural related features
are used, extracted from the RTL design of the circuit, and the sensitivity of the flip-flops
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to critical failures is considered.
The effectiveness of the clustering algorithms is measured by evaluating the created

flip-flop cluster. The goal is to create flip-flop groups which have a similar vulnerability
to critical failures. Therefore, the exhaustive full flat statistical fault injection campaign
is used, which provides the sensitivity to failures for each flip-flop as an independent
measure. This data is used to evaluate the different clustering algorithms against an
ideal and random approach.

Evaluated Clustering Algorithms

The effectiveness of the clustering is evaluated considering they would be used to se-
lectively mitigate against the critical failures. Therefore, the data obtained from the
exhaustive statistical fault injection is used to compute the sensitivity to critical faults
for each cluster. Then, the reduction of the overall sensitivity of the circuit was calcu-
lated by varying the number of groups being protected. For the protection it is assumed
that the considered flip-flops within the group are substituted by hardened cells, Triple
Modular Redundancy (TMR) or other approaches. It is assumed that after mitigation,
the sensitivity to Single-Event Upsets is zero3. The flip-flops to protect were selected
starting with the most sensitive clusters first. The results are compared against an ideal
and a random approach. In the ideal approach the most sensitive flip-flops are selected
based on the exhaustive fault injection campaign. The random approach selects flip-
flops to protect randomly (averaged over 100 independent runs).

The clustering algorithms were implemented by using Python’s scikit-learn Ma-
chine Learning framework [59] and applied to the extracted flip-flop feature set. This
process took only several seconds and is negligible. Each considered clustering algo-
rithm has different parameters which can be adjusted. They affect the performance of
the clustering and also the resulting number of clusters. For some of the algorithms
the number of clusters can be specified directly. Other algorithms try to find the op-
timal number clusters within the constrained parameters. In the following evaluation
the parameters were chosen in a way that the number of resulting clusters are about
20 %, 10 % and 5% of the number of flip-flops in the circuit. This would correspond to a
reduction of the fault injection efforts by 5×, 10× and 20× respectively.

K-Means Clustering K-Means clustering aims to partition the given data points into
𝑘 clusters. The algorithm computes the Euclidean distance for each data point in the

3This is a simplification and important aspects related to physical design are not considered. How-
ever, the here presented approach focuses on the evaluation on the functional level by using the RTL
description of the circuit. To obtain a more complete analysis, the presented approach could be com-
bined with e.g., the classical analysis for electrical and temporal masking by using post place and route
gate-level netlist.
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Figure 3.8: K-Means Clustering

feature space. The data samples are then separated in such a way the variance within
each cluster is equal. The algorithm requires the number of clusters 𝑁𝑐 to be specified.

Figure 3.8 shows the overall critical sensitivity when the grouping is performed by
the K-Means clustering with different number of clusters 𝑁𝑐. The flip-flops to protect
were selected starting with the most sensitive clusters first until all flip-flops are miti-
gated. It can be noted that the grouping performs better when the number of clusters
is higher.
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Figure 3.9: Agglomerative Clustering

Agglomerative Clustering Agglomerative Clustering performs a hierarchical clus-
tering by creating nested clusters, which are represented as a tree. The advantage of
hierarchical clustering is that any valid measure of distance can be used, in comparison
to K-Means clustering which performs on a Euclidean distance metric. Agglomerative
Clustering uses a bottom-up approach where each data point starts as its own cluster.
Clusters are merged together by following the linkage criterion. This criterion defines
the metric used for the merge strategy. It was noted that the best results were obtained
by using the maximum or complete linkage, which minimizes the maximum distance
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Figure 3.10: Mean Shift Clustering

between data points of pairs of clusters and a Manhattan distance metric (l1 norm).
In figure 3.9 the results of the selective mitigation are shown when Agglomerative

Clustering is used for different number of clusters 𝑁𝑐. Similar to the K-Means cluster-
ing the effectiveness of the selective mitigation is increasing with a higher number of
clusters. However, the improvements from 53 to 105 and 211 clusters are very minor.
When comparing the Agglomerative Clustering to K-Means Clustering it can be noted
that Agglomerative Clustering performs generally better.
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Mean ShiftClustering Mean Shift Clustering aims to find dense areas of data points.
The algorithm is based on a sliding-window which is shifted towards regions of higher
density. The density of the sliding-window is proportional to the number of data points
within the window it. The goal is to locate center points for each group in the dataset.
For the previous described clustering algorithms, the number of clusters had to be speci-
fiedmanually. InMean Shift clustering the number of clusters is determined by the algo-
rithm. Further, K-Means clustering assumes spherical distribution shape of the clusters
in the feature space. For the algorithm the window size 𝑤 needs to be specified.

A general problem when using Mean Shift Clustering is to choose the correct win-
dows size. In this analysis the window sizes were chosen in a way the resulting number
of clusters are close to the number of clusters used for the previous algorithms. By us-
ing window sizes of 𝑤 = 2.8, 𝑤 = 1.7 and 𝑤 = 0.85 the number of clusters were
resulting in 52, 105 and 210, respectively. Figure 3.10 shows the effectiveness of the
algorithm when using the obtained clusters for selective mitigation. As for the previ-
ous algorithms the effectiveness is increasing with a higher number of clusters (smaller
window sizes). It can be seen, that the results with a window size of 𝑤 = 0.85, which
results in 210 groups, is almost as good as the ideal solution.

Comparison and Discussion

The results of the considered clustering algorithms with different resulting number of
clusters are summarized in table 3.5. Since the number of resulting clusters was chosen
to be about the same, the average cluster size is identical or very similar. The stan-
dard deviation of the cluster sizes however shows that Agglomerative and Mean Shift
clustering tend to create cluster with more variety in the cluster size.

In order to quantify the effectiveness of the algorithm to create flip-flop groups with
similar functional failure rate, two metrics were derived from the results: the average
variance of the functional failure rate and the maximum difference of the functional
failure rate of flip-flops within the same cluster. An additional metrics was created
where the average variance of the functional failure rate within one cluster is weighted
with the cluster size. In this way a large cluster, which has the same variance within
the cluster as a small cluster, is penalized more.

The results verify what was observed from the figure 3.8, 3.9 and 3.10. In general,
the algorithms perform better with a higher number of clusters. Agglomerative Clus-
tering performs slightly better than 𝑘-Means and Mean Shift clustering performs worst
with low number of clusters and close to ideal with the highest considered number of
clusters.

Using an Independent Metric In order to evaluate the performance of the cluster-
ing algorithm without knowledge of the actual/reference values, several metrics exists
which quantify certain characteristics of the created clusters (such as the separation of
the data). These metrics can be used when the presented approach is applied to a new
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unknown circuit and different algorithms are evaluated or the algorithm parameters are
fine tuned. For this analysis the Davies-Bouldin index was used and results are shown
in table 3.5. This index can be used to evaluate the separation between the clusters.
It signifies the average similarity between clusters by comparing the distance between
clusters with the size of the clusters themselves. An index of 0 is the lowest possible
score and values closer to zero indicate a better partition.

The Davies-Bouldin index does not fully correlate with the functional failure vari-
ance or difference metrics. However, it follows the general direction and a lower index
can be observed with higher number of clusters. Further, similar scores are obtained
for the 𝑘-Means and Agglomerative Clustering as also seen when comparing the func-
tional failure metrics. The best index, the closest to zero, is also obtained for the best
result, Mean Shift clustering with 210 clusters.

3.7 Conclusion
Two machine learning techniques to assist the Functional Failure analysis of complex
circuits were proposed in this chapter. The presented methodologies reduce the com-
putational cost to determine the Functional De-Rating factors of the circuit’s sequential
logic.

For the presented approaches a feature set was developed. This feature set charac-
terise each flip-flop in the circuit. The features combine attributes from static elements
and dynamic elements.

The first approach aims to predict the De-Rating factors per individual instances,
which is particularly difficult to obtain using classical approaches such as clustering, se-
lective fault simulation or fault universe compaction techniques. The methodology was
applied in a practical example where several machine learning models were evaluated,
predicting two different failure classes, first, predicting the propagation of a fault to the
primary output and second, predicting the rate of a fault leading to a functional failure.
The performance comparison has shown the instance-based 𝑘-NN model, the Decision
Tree regression or kernel-based algorithm with non-linear kernels and training sizes of
20% to 50% are most suitable. This means, the cost of a fault injection campaign can be
reduced of a fault injection campaign can be reduced by a factor of 2 up to 5 times in
comparison to a classical statistical fault injection campaign. Further, the comparison
between the two failure classes has shown that the machine learning models are able
to learn and predict the fault propagation to the output, as well as the functional failure
rate.

Additionally, the ability of the method to be used in early design stages has been
assessed. Therefore, a feature subset was identified which can be extracted from an
elaborated RTL description of the design. It was shown that the impact on the predic-
tion performance was marginal and, in some cases, even increased. It was noted that
the performance increased, especially when the prediction was performed without the
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signal activity related features. This suggests that new features should be identified to
characterise the workload of a circuit more adequately.

The secondmethodology uses machine learning clustering techniques to group flip-
flops togetherwhich are expected to have a similar contribution to the overall functional
failure rate. The advantage in comparison to other existing approaches is that the ap-
proach is more flexible and no assumption of the circuit or its representation is made.
Further, the number of clusters can be chosen by the user, which determines the needed
efforts for the fault injection campaign.

The effectiveness of the grouping by different machine learning clustering algo-
rithms were evaluated on a practical example and compared to an ideal solution. Good
results were obtained by choosing the number of clusters with 5 % of the total number of
flip-flops in the circuit and results close to the ideal solution were obtained with num-
ber of clusters corresponding to 10 % to 20 % of the number of flip-flops. This would
mean that the fault injection efforts could be reduced by a factor of 5×, 10× or 20×
respectively.
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Chapter 4

Cross-Layer Reliability and
Functional Safety Assessment
Through Machine Learning

4.1 Introduction
High quality, reliable and safe electronics requires massive cooperation and exchanges
across all the partners of the supply, design and manufacturing chain. A huge quantity
of information, addressing functional and extra-functional qualities must be produced
accurately, exchanged without loss of fidelity and applied as intended.

One of the most self-evident examples of such flow of information is the typical

Foundry → Designer → Integrator

process. In this process, the technology provider prepares a complex Process Design
Kit (PDK) that includes technological data, simulation models, design rule information,
primitives and possible standard cell libraries from the foundry vendor. Designers make
use of this information during the preparation of cells, IP blocks and ultimately compo-
nents integrating the technology elements. Components are used by system integrators
on boards, sub-systems and systems. Some information (such as recommended supply
voltage) will be valuable through the whole flow while other data can be consumed in
one design stage to ensure the fulfilment of specific requirements.

Design paradigms, workflows, practices and expectations are progressing continu-
ously. While in the past the most important parameters for a typical Application Spe-
cific Integrated Circuit (ASIC) design process were area, frequency and power, today’s
requirements are presented as a vast set of functional and extra-functional specifica-
tions. Functional Safety (FuSa) and Reliability requirements are increasingly present
because of implicit or explicit customer expectations and formal standards such as
IEC 61508 [37], ISO 26262 [38] and others. These standards demand the calculation
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and presentation of functional safety and reliability metrics at system-level, in quanti-
tative and qualitative terms. However, computing the failure rate of a system to make
sure that it fulfils the < 10FIT requirement for an ASIL D product involves data that has
been produced by at least three individual entities and transformed by tens of engineers
(or even companies) during the design flow. There is a huge potential for loss of fidelity,
data misuse, omissions and translation errors. In addition, much of this information is
highly proprietary and the transmission of the information from one partner to another
can be misused by restrictions and disclosure limitations. Some of the data can also fa-
cilitate possible reverse engineering or at least disclose critical design information that
was intended to be kept secret.

In this chapter a uniform methodology is presented to evaluate reliability and func-
tional safetymetrics based on using compact models build withMachine Learningmod-
els. The compact models can be used at any design abstraction level. The compact
models of a design element (standard cell, IP, block, component, sub-system or system)
at a given hierarchical level can be combined through machine learning techniques in a
single compact model that can then be used for the next design stage or by the next user.
This approach ensures that relevant parameters are retained and impactful during the
design flow and that the contribution of the various design elements is well represented
at any calculation stage. Additionally, it may provide a way to obscure technology and
design information, safeguarding critical IP, while still equipping the users at any de-
sign stage with the information they need for their work. The approach was initially
published in [4].

4.2 Motivation
To motivate the approach a metric calculation flow and the associated risks and works,
the evaluation of SEEs to the failure rate of a system is considered: Firstly, the tech-
nology provider (foundry), in a possible collaboration with a library vendor must pro-
vide technological (raw) event rate for the various technology elements (standard cells,
memory blocks, analog IP such as Phase Locked Loops (PLLs), etc.) that is used by
the customer. Sequential cells can be affected by SEUs with rates that depend on the
cell state, voltage and temperature. SETs in combinational cells can depend on volt-
age and temperature and the cell fanout. Single Bit Upset (SBU), Multiple Bit Upset
(MBU) or Multiple Cell Upset (MCU) can impact the data stored in memory blocks and
their occurrence rate can depend on physical implementation (aspect, column muxing,
scrambling) or design choices such as error management schemes. Ideally, all this data
deserves to be captured in a detailed, high precision format that accurately reproduces
the error rate of the researched event according to a reasonable set of parameters.

Today’s PDK contain large databases, multi-index tables and process information
in a variety of formats. The current State-Of-The-Art to deliver the technological in-
formation of SEEs consists in PDF test reports or a spreadsheet with limited summary
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information. The component or IP designer must use this information as an input of its
own event rate calculation methodology. The unit SEU rates for instance, indicated by
the technology provider must be annotated to each flip-flop in the circuit and de-rated
according to the role of the flip-flop in the design (see section 2.3.3)

SERSeq = ∑
Flip-Flops

FITSEU ⋅ ∏
De-Rating

DR (4.1)

Memory SBU/MCU data is tailored according to each instance specified and the impact
of possible error management schemes (Error Correcting Code (ECC)) is integrated

SERMemory = ∑
𝑀𝑒𝑚𝑜𝑟𝑖𝑒𝑠 {

FITSBU ⋅ Size ⋅ MDR if no ECC
FITMBU ⋅ Size ⋅ MDR if ECC

(4.2)

The objective is to calculate at the Intellectual Property (IP) or design level the re-
quired overall reliability or functional safetymetrics. While in some rare circumstances,
the final deliverable is a number or a limited set of numbers, any realistic high-level
metric will be dependent on a variety of parameters. Firstly, some parameters (such as
voltage, temperature) inherited from the underlying technological layer will certainly
impact the SEE fault error rate. It may still be feasible at this stage to provide indexed
tables containing the necessary data for the possible combinations of a few given pa-
rameters. However, in more complex cases, this is not sufficient, as the design can be
configured differently or used in various scenarios, affecting the exhibited failure rate.
Complex ASICs can be configured to fulfil different function modes. Design settings
(speed, number of active cores, buffer or cache sizes, memory modes) can be set ac-
cording to each application requirements. Internal features (ECC, Error Detection Cor-
rection (EDC), safety mechanisms) can be activated or not with a direct impact on the
design failure rate. CPU-based designs can show various failures with different mani-
festations and rate that depend on how the CPU cores are used by a given application.
Additionally, the same design can have multiple physical implementations that can also
impact reliability. As an example, the usage of packaging materials with different alpha
emissivity rates will strongly impact the final SEU rate (from 1× to 1000×).

In conclusion, the set of parameters affecting the FuSa/Reliability metrics of a design
can be large and impactful. Themanufacturer will usually have difficulties in packaging
and transmitting this information to the user. There are several options:

• A maximum, worst-case metric. This way, the actual failure rate is guaranteed to
be lower than the indicated value. This approach can penalise some applications
or systems and can lead to over-engineering when trying to manage the failure
rate.

• A recommended utilization scenario. This scenario is intended to lead to a nomi-
nal, favourable error rate and is usually implemented through a “Safety Manual”
where the manufacturer describes his vision on how the component should be
used in order to fulfil safety goals and to lead to the desired failure rate
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• An analytical method. The provider explicitly describes a function to calculate
the actual failure rate according to the implementation. To give an example, when
a system which includes memory instances is considered, then their contribution
to the overall failure rate can be described similarly to the equation (4.2). How-
ever, this approach presents the drawbacks of disclosing to the user in a clear
format, internal circuit information or raw technology data which can be critical
pieces of IP or know-how.

Regardless of how the information is provided, the user of the design will use this
component in its own system and will need to evaluate the failure rate for its own im-
plementation. Moreover, a system integrator will typically use many individual com-
ponents from various providers. Translating, adapting and integrating various reliabil-
ity data is very challenging. Finally, the system integrator will have to deliver a final
product with ideally, a clear set of metrics that can be compared to the requirements.
However, even the system reliability metrics can depend on parameters that can vary
according to the usage. The same exact product can show different failure rates when
used in a data center, a car, an airplane or a satellite. The provider needs to express the
metrics of its products according to a set of parameters and has to provide the user with
a metric model with a set of parameters that are relevant for the given abstraction level.

The various collaborations between the providers and users of technology, com-
ponents and systems need to be supported by adequate tools, preferably developed for
reliability and functional safety efforts. Whilemore specific tools exist, standard spread-
sheet tools are widely deployed and used. Data import and export from these tools is
inadequate and prone to errors.

Recent standardization efforts from IEEE [15] and Accellera [1] aims at defining
an exchangeable interoperability format for functional safety analysis and functional
safety verification activities. A format for Reliability exchanges has been proposed pre-
viously [24, 64], providing a solution to suppliers and consumers to exchange reliability
information in a consistent fashion and to use this information to construct accurate
reliability models. All these efforts stress the importance of building models hierarchi-
cally and according to the design abstraction level. Accordingly, a uniform, universal
method to model functional safety or reliability metrics at any design stage or abstrac-
tion level and more importantly, combining the information available at the current
level to benefit the next efforts in the pipeline would be opportune and useful.

Using machine learning techniques to build such a model has several advantages.
Machine learning algorithms are known to efficiently learn even complex relationships.
Models can be built from various types of input data, such as tables or functions. There-
fore, it is suitable at any abstraction and hierarchical level. Several aspects can be com-
bined in a single model, which makes it compact and easy to use by the user in the next
design stage. Additionally, the representation of the Machine Learning model can be
fundamentally different to the original representation and thus, obscure critical tech-
nology and design information.
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4.3 Methodology
The proposedmethodology is conceptually straightforward and easy to implement. The
methodology relies on compact models build using Machine Learning (ML) regression
models (see section 3.2). The models are trained using reference data provided by State-
of-the-Art FuSa/Reliability assessment methods. The overall FuSa/Reliability metrics
for the current level can be then calculated and used as reference data to train a com-
pact Machine Learning model. The elaborated model can then fuel the analysis efforts
required for the next design stage or upper hierarchical level or abstraction and can be
shared with the corresponding engineer or user.

The methodology consists of three phases which are described in the following:

Phase I – Data collection Assuming that the current hierarchical level or design ab-
straction is a collection of elements (or components). Each element has one or
multiple attached FuSa/Reliability metrics and models. These models can be an-
alytical, data or Machine Learning based. Each individual metric 𝑖 can have a
collection of input parameters 𝑝𝑖

Metric𝑖 = 𝑓(𝑝𝑖,0, 𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑛(𝑖)). (4.3)

Phase II - Integration At the current level, State-of-the-Art approaches will allow
us to combine the existing data of the various elements in an overall, top-level
FuSa/Reliability metrics

Metricoverall = ∑
𝑖
Metric𝑖 = 𝑔(𝑝0, 𝑝1, 𝑝2,… , 𝑝𝑚). (4.4)

This overall metric will depend on all of the parameters of the element metrics,
including options, parameters and choices that are applicable at this design level.
Obviously, the parameter list can be simplified by optimizing the parameters that
are the same or equivalent. For instance, a supply voltage parameter can be ap-
plicable to several elements.

Phase III – Compact ML Model Elaboration The equations that composes the over-
all metric can be then exercised over the validity range of the parameters. The
overall metric can also be a collection of data valid over a specific range. The col-
lected data will be then used to train a machine learning model that will accept
as inputs the aggregated set of parameters and will extend to the area covered by
the available dataset. Once trained, the machine learning model is expected to
have good if not perfect accuracy over the valid range and is an ideal surrogate
or replacement for the discrete overall metric.

The main goal of the training is to create a model which accurately represents
the given metrics function or collection of data. The model should be able to
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accurately recall the trained values and depending on the learned metric, the
model should also be able interpolate and extrapolate the data.

In comparison to classical machine learning applications this approach is a bit
different. In classical applications the input parameter range is not always lim-
ited and known and for some cases more training data cannot be generated or
gathered. For the proposed methodology the opposite is true. The limit of the
desired input parameter range is known and, in most cases, it should be easier to
generate more reference data for the training. In this way the data to train the
model can be increased to improve the accuracy until a specified target is met.

Phase IV – Packaging and Reuse The elaboratedmachine learningmodel can be pro-
vided to the next user that can start applying this methodology on the next hier-
archical level, flow stage or design abstraction level.

The presented methodology shows distinct advantages. The approach is uniform
regardless the location in the design flow or design hierarchy. The machine learning
models are compact, the training is not computationally intensive and implementations
are available in a variety of language and programming frameworks, usually without
additional licenses required. In many cases the trained machine learning model will
hide or obscure sensitive design or technology information.

4.4 Demonstration on an Example
In this section the proposed methodology is exercised on a practical example. The ex-
ample is addressing the calculation of a system’s SER. For the purpose of the demonstra-
tion, simple and naive equations are used for modelling the error rates and aggregating
the contribution of the various elements. In real applications any method can be used
to generate the reference data.

Firstly, the following functions are introduced for the calculation of the various Soft
Error Rates (indicated in FITs/MegaBit or FITs/MegaCell):

• A Flip-Flop has a 100 FITs/Mb at the nominal 1.2 V supply voltage (𝑉𝑑𝑑). The SER
decreases at higher voltages and increases at lower.

SERSeq(𝑉𝑑𝑑) = 100 ⋅ (1 + (1.2 − 𝑉𝑑𝑑)) (4.5)

• A combinational cell can exhibit a spectrum of SETs with decreasing event rate
for larger, longer events. We will limit the minimal PW at 10 ps which is the
shortest transient that the selected technological process can propagate.

SERComb(𝑉𝑑𝑑, PW) = 50 ⋅ (1 + (1.2 − 𝑉𝑑𝑑)) ⋅ 50
PW

(4.6)

PW is the Pulse Width (in ps).
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The presented models for the error rate of the sequential and combinational logic
are analytical models (simple equations). They can also be delivered as different models,
even machine learning models accepting a voltage and a pulse width parameter.

The Soft Error Rate for natural working environments is dominated by the contribu-
tion of SEEs caused by alpha particles emitted by impurities in the packaging materials
and neutrons caused by the interaction of high-energy particles with the atmosphere.
Both contributions depend on a large number of parameters and it can be difficult to
provide a model that integrates the effect of all the parameters.

As an illustration, the neutron-induced SEE rate depends on many factors, includ-
ing physical location, altitude, solar activity, shielding, etc. Following the approach
from [39] the calculation is focused on altitude and cutoff (dependent on the location),
ignoring solar modulation. In this case, the actual Neutron Flux (NF) at a given location
can be expressed as

NF = NFref ⋅ GRF ⋅ 𝑒− 𝐴−𝐴ref
𝐿 (4.7)

where NFref is the neutron flux at the reference location (New York City, sea-level
equals 14 n/sq ⋅ cm/h). 𝐿 is the flux attenuation length for neutrons in the atmosphere
(∼148 g/cm2). Finally, 𝐴 is the areal density of the location of interest, 𝐴ref is the real
density of the reference location

𝐴 = 1033 − 𝑒−0.03813⋅( 𝑎
1000 )−0.00014⋅( 𝑎

1000 )2+6.4⋅10−7(⋅ 𝑎
1000 )3

(4.8)

While these factors can be described analytically and integrated in the various mod-
els, the GRF represents the Geomagnetic Rigidity Factor and varies according to the ge-
ographical position. As an example, values of geomagnetic vertical cutoff rigidity used
to calculate the relative neutron flux were provided by the Aerospace Medical Research
Division of the Federal Aviation Administration’s Civil Aerospace Medical Institute.
The cutoff data were generated by Shea and Smart using the International Geomag-
netic Reference Field for 1995 [69, 7, 54]. Therefore, the actual Geomagnetic Rigidity
Factor (GRF) values can only be provided as a table of data indexed according the lon-
gitude and latitude. This causes a number of issues, including the need to interpolate
between the available sparse, low granularity data and the difficulty to integrate tabular
data in a compact model.

Machine learning models can cope very efficiently with these difficulties. Firstly,
the training can be done on any type of data, analytical, tabular with any type of data
representation for the input parameters: linear (for the altitude) or specific (geograph-
ical coordinates). Moreover, it will also be able, provided that an adequate model is
used, to interpolate GRF data between the locations provided in the tables, allowing the
approximate calculation of the GRF for any location.

The neutron-induced error rate is provided as base value for the reference setting
(New-York, sea-level) that needs to be multiplied by an acceleration factor calculated
according to the actual location and altitude. To illustrate, the table 4.1 shows the accel-
eration factors for a selection of altitudes (table 4.1a) and location (table 4.1b). The final
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acceleration factor can be calculated bymultiplying the appropriate location factor with
the desired altitude factor. This part fulfils the Phase I of the proposed methodology.

Table 4.1: Neutron Flux Acceleration Factors

(a) Altitude-Depended Neutron Flux

Altitude
(feet)

Altitude
(m)

Neutron Flux
[n/sq ⋅ cm/h]

Neutron Flux
[n/sq ⋅ cm/s]

Neutron Flux
(relative to sea level)

0 0 14.0 0.003 889 1.0
0 0 14.0 0.003 889 1.0

1000 304.8 18.2 0.005 056 1.3
2000 609.6 23.4 0.0065 1.7
5000 1524 47.6 0.013 222 3.4

10 000 3048 134.6 0.037 389 9.6
20 000 6096 668.5 0.185 694 47.8
30 000 9144 2001.1 0.555 861 142.9
35 000 10 668 2993.2 0.831 444 213.8
40 000 12 192 4147.0 1.151 944 296.2

(b) Location-Depended Neutron Flux

Location
Neutron Flux

(relative to sea level)

Milpitas 0.92
Colorado Springs 4.42
Bangalore 1.02
Beijing 0.72
Grenoble, France 1.24

In Phase II, a simple de-rating approach is assumed to calculate the overall SER of
an ASIC with 1Mbit of flip-flops and 10Mbit of combinational cells. The overall error
rate SERASIC can be computed as the de-rated contribution of each individual element:

SERASIC = ∑
instance

SERSEU|SET ⋅ ∏
LDR,TDR,FDR

DR (4.9)

The applicable de-ratings are Logical De-Rating (LDR), Temporal De-Rating (TDR),
Functional De-Rating (FDR) (see section 2.2). The de-rating factors can be expressed
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Table 4.2: Generated SER Values

Sample
Parameters SER

[FIT]Voltage
[V] Environment

Frequency
[MHz] Location, Altitude

0 0.8 Neutrons 0.1 NYC, sea-level 238.55
1 0.8 Neutrons 0.15 NYC, sea-level 353.24

…
1129 1.5 Neutrons 1.95 N/A 2241.00
1130 1.5 Neutrons 2 N/A 2241.00
1131 0.8 Alpha 0.1 NYC, sea-level 238.55
1132 0.8 Alpha 0.15 NYC, sea-level 353.24

…
2260 1.5 Alpha 1.95 N/A 2241
2261 1.5 Alpha 2 N/A 2298.35
2262 0.8 Heavy-Ion 0.1 NYC, sea-level 238.55
2263 0.8 Heavy-Ion 0.15 NYC, sea-level 353.24

…
3391 1.5 Heavy-Ion 1.95 N/A 2241
3392 1.5 Heavy-Ion 2 N/A 2298.35

for instance, by the following simple equations or values:

TDRSeq(Freq) = Slack
Clock Period

= 1 −
Freq

2 ⋅ 106 (4.10)

TDRComb(PW, Freq) = PW
Clock Period

= PW ⋅ Freq (4.11)

LDR = 0.25 (4.12)
FDR = 0.25 (4.13)

Finally, the overall SER of the ASIC can be described as

SERASIC(PW, Freq,𝑉𝑑𝑑) = (1Mbit ⋅ SERSeq ⋅ TDRSeq
+10Mbit ⋅ SERComb ⋅ TDRComb) ⋅ LDR ⋅ FDR

(4.14)

This can be resolved to

SERASIC(PW, Freq,𝑉𝑑𝑑) = (1Mbit ⋅ 100 FIT/Mbit ⋅ (1 + (1.2 − 𝑉𝑑𝑑)) ⋅ (1 −
Freq

2 ⋅ 106 )

+10Mbit ⋅ 50 FIT/Mbit ⋅ (1 + (1.2 − 𝑉𝑑𝑑)) ⋅ 50
PW

⋅ PW ⋅ Freq) ⋅ 0.25 ⋅ 0.25

(4.15)
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Figure 4.1: Results of predicting the train and test data set by using Ridge regression
with polynomial kernel.

A final customization can be made to clarify the value or the value range for the Pulse
Width parameter which is a technology attribute and may not make sense to or be fill-
able by the final user. Therefore, the ASIC provider, in agreement with the technology
provider, may specify values for the PW according to the working environment. A
neutron environment (ground applications) with a typical PW of 50 ps, Alpha particles
with 10 ps and Heavy Ions with 100 ps could be considered.

From this example it can be noted that the overall SER equation can disclose unit
technology data (FIT rates per Mbit, typical pulse widths, etc.), design structure (1Mbit
of flip-flops and 10Mbit of combinational cells) or knowledge (such as calculation of
de-rating factors). In the next phase, the training of the machine learning model, this
sensitive information is obscured.

The next step, Phase III, is the machine learning model elaboration and consists in
exercising the overall SER equation over the range of valid values for the environment,
frequency and voltage. The results of this exploration are presented in table 4.2.

Phase III continues with the training of the machine learning models. The here
presented work is evaluating the applicability of different machine learning models for
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Figure 4.2: Results of predicting the train and test data set by using k-Nearest Neighbors
regression.

the intended usage. Accordingly, several machine learning regressionmodels have been
evaluated:

• Linear Models (Linear and Ridge),

• Kernel Ridge Regressor (with Linear, Polynomial, RBF, Sigmoid Kernels),

• Decision Tree Models,

• Neighbors-based Models (K-Nearest Neighbors and Radius Neighbors),

• Support Vector Machine Models (Linear SVR, SVR with various kernels, NuSVR)
and

• Multilayer Perceptron Neural Networks

All models have been trained with 60 % of the data set from table 4.2, the train data
set. After the training, the models are exercised over the full permitted parameters
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range. This allows, on the one hand, to measure the accuracy of the model to recall val-
ues which were already in the training data set. On the other hand, by testing the model
with data not used for training it is evaluated if the model is able to interpolate and ex-
trapolate the given data. The performance of the models is measured by comparing the
predicted values against the reference values and calculate the following metrics:

• MAE - Mean Absolute Error,

• MAX - Max Absolute Error,

• RMSE – Root Mean Squared Error,

• EV - Explained Variance and

• 𝑅2 - Coefficient of Determination

Table 4.3 presents the results for the most accurate and promising models.
The results show that the presentedMachine Learning models are able to accurately

recall the values from the train data set. The error metrics MAE, MAX, and RMSE are
very low and the correlation like metrics EV and R2 are 1 for most of the models. Pre-
dicting the test data set shows similarly good results, which means that the models are
also able to interpolate and extrapolate the given data. The k-Nearest Neighbors regres-
sion is able to perfectly recall the data the data used for training the model, due to the
nature of its algorithm. However, predicting new values from the test data set, which
were not used for training, shows the models weakness. The inter- and extrapolation
capability is less good in comparison to other models.

Figure 4.1 shows the graphs representing the model prediction error for the train
and test data set, as well as the correlation between the actual and predicted values
when the Ridge Regression with polynomial Kernel is used. In comparison, the results
for the k-Nearest Neighbors regression are shown in figure 4.2. The graphs show as
well very clearly, that the k-Nearest Neighbors regression is perfectly able to recall the
training data but less efficient when predicting the test data.

The results show that certain machine learning models are able to learn the given
FuSa/Reliability metric function and it is a good approach for representing extensive
reference data sets. Depending on the data or function other models might be less
effective. Further, as seen in the example, they might only be appropriate to recall the
data but not to inter- and extrapolate it. Other models might be less effective in general.
This means for the given data several models need to be considered and evaluated.

Because of the limited and simple training data set, the training of the ML models is
fast and does not require computationally intensive resources. A single-shot execution
of a trained models is very fast for most models, with execution time inferior to the
nanosecond.

64



4.5 – Conclusion

Ta
bl
e
4.
3:

To
p
M
ac
hi
ne

Le
ar
ni
ng

M
od

el
Pe
rf
or
m
an
ce

M
L
M
od

el
D
at
a
Se
t

M
L
M
od

el
Er
ro
r/
C
or
re
la
tio

n
M
et
ri
cs

M
A
E

M
A
X

RM
SE

EV
R2

Ri
dg

e
Re

gr
es
si
on

w
/P

ol
yn

om
ia
lK

er
ne
l

Tr
ai
n

1.
68
8

×
10

−
6

1.
19
9

×
10

−
5

2.
11
9

×
10

−
6

1
1

Te
st

1.
69
5

×
10

−
6

1.
33
1

×
10

−
5

2.
10
6

×
10

−
6

1
1

Ri
dg

e
Re

gr
es
si
on

w
/R

BF
K
er
ne
l

Tr
ai
n

2.
71
6

×
10

−
5

2.
54
5

×
10

−
4

3.
53
0

×
10

−
5

1
1

Te
st

2.
90
7

×
10

−
5

6.
60
9

×
10

−
4

4.
42
1

×
10

−
5

1
1

k-
N
ea
re
st
N
ei
gh

bo
rs

Re
gr
es
si
on

Tr
ai
n

0
0

0
1

1
Te
st

21
.9
1

19
5.
2

30
.9
8

0.
99

0.
99

Su
pp

or
tV

ec
to
r
Re

gr
es
si
on

w
/P

ol
yn

om
ia
lK

er
ne
l

Tr
ai
n

1.
78
7

×
10

−
2

6.
83
0

×
10

−
2

2.
23
3

×
10

−
2

1
1

Te
st

1.
75
6

×
10

−
2

6.
24
3

×
10

−
2

2.
19
5

×
10

−
2

1
1

65



Cross-Layer Reliability and Functional Safety Assessment Through Machine Learning

4.5 Conclusion
In this chapter, a methodology has been proposed to help experts to approach the com-
plexity of hierarchical modelling of reliability and functional safety metrics. The pre-
sented approach allows the use, elaboration and distribution of compact machine learn-
ing models in a uniform and systematic manner, minimizing both human and CPU
efforts while maintaining high accuracy and fidelity. While the approach has been vali-
dated and seems to work effectively and efficiently on a modest example, further works
will have to consider more complex systems with expanded sets of parameters and with
more, non-linear fault models.

Finally, this approach can be used to integrate the effect of multiple failure mecha-
nisms (such as Total Ionizing Dose (TID), circuit aging) that can contribute to an overall
applicative failure rate. The effects of such mechanisms depend on generic (such as cir-
cuit structure, test-vector/workloads, Process, Voltage, Temperature (PVT), etc.) and
specific (total and rate of received dose, age of the circuit, etc.). These trained machine
learning models integrate a combination of Transient Faults/Soft Errors, TID and Ag-
ing Effects using the same fundamental platform of parameters plus a limited set of
effect-specific parameters. The trained machine learning models will be able to quickly
evaluate a large variety of effects, encapsulating very useful reliability and functional
safety data in a compact and efficient solution that can be used and reused further down
the design and manufacturing flow.
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Chapter 5

Functional Failures Induced by
Single-Event Transients in Clock
Distribution Networks

5.1 Introduction
As discussed in chapter 2, the main contributor of to the overall event rate of a system
are the Single-Event Upsets in the sequential logic and the Single-Event Transients in
the combinational cells. However, due to technology scaling, lower supply voltages
and higher operating frequencies, other circuit features such as the clock distribution
network (CDN), reset circuitry, etc. become also more vulnerable to transient faults [21,
70, 80, 16] and could cause circuit-wide effects that are more difficult to mitigate and
to correct. Indeed, clock buffers from the clock distribution networks have a high fan-
out and very few masking mechanism; Single-Event Transients occurring in these cells
can potentially reach many sequential cells and state elements and thus, significantly
contribute to the overall functional failure rate.

So far, only few works studied the impact of SETs in clock networks. To determine
the sensitivity of clock buffer cells to these events, some studies performed accelerated
radiation tests of dedicated test chips [80, 48]. Other approaches computed a static fail-
ure rate by performing circuit simulation on the electrical-level and thus, obtaining the
Electrical De-Rating per clock buffer, as well as the upset rate of the sequential logic
due to SETs in the clock network. This upset rate was combined with the functional
failure rate due to SEUs in the sequential logic obtained from a SEU fault injection cam-
paign [18, 17]. However, their SET fault injection simulations used only static inputs
and thus do not reflect any dynamic behaviour during the runtime of the circuit. Hence,
[33] extended this method by injecting SETs in the clock distribution network during
a dynamic electrical simulation and thus, obtaining the faulty latching activity of the
sequential logic.

Nonetheless, the previous work did not analyse the subsequent impact of SETs on
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the functional behaviour of the circuit and furthermore, they are all based on electrical
simulations. Since the complexity of today’s circuits is increasing, a dynamic simulation
of the full circuit on the electrical level is not feasible.

Contrary to the previous work, a new fault model is proposed which is based on
logic-level simulation and thus, extends the classical physical and electrical analysis.
The fault model is applicable for complex circuits and allows the calculation of a realis-
tic functional failure rate for SETs in the clock distribution network. An initial method-
ology was published in [41] which proposed a fault model for the functional level and
implements the effect of Single-Event Transients in the clock network on logic-level
simulation. This methodology was then extended to also consider temporal masking
effects. The proposed methods are evaluated by applying it on a practical example and
performing a fault injection campaign.

5.2 Single-Event Effect Mechanisms with Regard to
Clock Distribution Networks

In chapter 2 it was described how energetic particles can affect combinational cells of
a chip. This also includes the buffers in the clock tree [66] as well as the Phase Locked
Loop (PLL) [72, 28]. The four main structural de-rating mechanisms, Electrical De-
Rating (EDR), Temporal De-Rating (TDR), Logical De-Rating (LDR) and Functional De-
Rating (FDR), as described in chapter 2.2, are not directly applicable for transients in the
clock distribution network. For the propagation of a transient in the clock distribution
network, the Logical De-Rating and Temporal De-Rating is limited. Potentially, an SET
may be logically masked by a clock gating cell or an enable pin of a flip-flop. Temporal
De-Rating is limited as the clock input of the flip-flop is by definition asynchronous.

Seifert et al. identifies two main effects due to transients in the clock network:
radiation-induced jitter and radiation-induced race [66]. The effects are illustrated in
figure 5.1. Jitter occurs if a transient causes the clock edge to move forward or back-
ward. For the paths with the longest path delays, the most critical paths, the data just
arrives close to the rising clock edge and thus, can cause a timing violation (figure 5.1b).
A race condition occurs if a transient causes a flip-flop that is closed to become open
allowing data to “race” through to the next stage (figure 5.1c).

The methodology presented in this chapter aims to compute the error rate for func-
tional failures of a circuit with regards to Single-Event Transients in the clock network.
Therefore, the described radiation-induced effects are implemented in a fault model
based on logic-level simulation which is presented in the following section.
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Figure 5.1: Main effects caused by transients in the clock distribution network.

5.3 Methodology
To analyse how the functional behaviour is affected by SETs in the clock distribution
network (CDN), the main radiation-induced effects are implemented in a fault model.
In order to cope with the complexity of today’s circuits the proposed fault model is
based on logic-level simulation, which enables a faster analysis than simulations based
on the electrical level. Additionally, the temporal masking mechanism is discussed and
implemented in an extended fault model. By using the fault model in a fault simulation
campaign, the functional failure rate for each clock buffer and the whole network can be
calculated. Further, the vulnerability of the sequential logic in relation to these events
can be computed.

5.3.1 Fault Model for the Functional Level
The proposed fault model for the functional level implements the effect of Single-Event
Transients in one of the clock buffers of the clock network. The model is illustrated
in figure 5.2a. It is based on logic-level simulations and thus, only uses the Register-
Transfer Level (RTL) description of a design. To emulate the SET in the clock network,
first, a clock buffer is selected as injection target. Second, all flip-flops which are con-
nected to the endpoint of the selected clock buffer are identified. Then, during the RTL
simulation, for each identified flip-flop, the corresponding signal values at the flip-flop
output are modified at the injection time. The SET induced clock pulse is imitated by
copying the signal value from the flip-flop input signal 𝐷in to its output signal 𝑄out as
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shown in figure 5.2b. Thus, only flip-flops which would have changed their state in the
following clock cycle are impacted by the transient and others remain unchanged, as
shown in figure 5.2c.

Clock
Source

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

𝐷in 𝑄out

Buffer Stage 2 Buffer Stage 3Buffer Stage 1 /
Root

End-Point / Flip-Flop

Select Clock Buffer

Identify Connected FFs

Find Corresponding
Signal Names in RTL Model

Copy 𝐷in Signal Value
to 𝑄out Output Signal

(a) Procedure to inject an SET into a clock buffer

clk

𝐷in

𝑄out
copy

(b) Affected flip-flop (state changed)

clk

𝐷in

𝑄out

(c) Unaffected flip-flop (state unchanged)

Figure 5.2: Proposed fault model for Single-Event Transients in clock distribution net-
works based on logic level simulation.
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The proposed fault model does not take any electrical or timing behaviour into ac-
count and thus, is representing a worst-case scenario. However, it can be combined
with measured cross-sections of the clock buffer cells obtained during radiation exper-
iments, as shown in [48], or Electrical De-Rating factors obtained from electrical level
simulations (without taking the runtime behaviour into account) as described in [18].

Mapping of the RTL Signals to Clock Distribution Network

The proposed method relies on the RTL model of a design. Typically, these models do
not provide a clock distribution network. The clock network is obtained by performing
a clock network synthesis during the physical design stage of a chip.

In order to perform the fault injection on the RTL design, the clock network is
extracted from the placed and routed circuit. For each clock buffer in the network the
flip-flops connected at the endpoint are identified and mapped to the corresponding
signal name of the RTL design. Thus, a list is created which associates each RTL signal
with a buffer on each level of the clock network which is used in the presented fault
model.

Fault Injection Simulation Campaign

With the previous described fault model, a logic-level simulation based fault injection
campaign can be performed. Therefore, the RTL model of the considered design and a
testbench is needed. The testbench allows to verify the correct behaviour of the circuit.
This can be done, for example, by monitoring and recording all outputs of the circuit.
The record can be used as the golden reference and any difference is considered as a
functional failure.

In the fault injection campaign faults are injected into the clock buffers of the clock
network at a random point in time according to the described fault model. During each
fault injection the changed and unchanged flip-flops are captured and stored. After
the injection, the simulation is continued. The circuit output is monitored during the
whole simulation and compared to the golden reference. If, according to the monitored
output, no failure on the functional level was noted, the injected fault was masked and
the correct function is verified. If the functional behaviour is different to the reference,
the fault is considered as a functional failure.

Thismethod allows the computation of the Functional De-Rating factor for SETs in a
clock buffer and the complete clock network. Further, by tracking the flip-flop changes
which led to a functional failure the probability of the sequential logic element to cause
a functional failure can be calculated. Thus, the flip-flops which are most probable to
cause functional failures can be identified. This information can provide guidelines
to the circuit designer to improve robustness of the clock distribution network. For
example, techniques for selectively harden the most critical clock buffers are shown
in [16] and [49].
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5.3.2 Temporal De-Rating
As mentioned in section 5.2, due to the asynchronous behaviour of the clock network,
temporal masking of an SET propagating along the clock tree is very limited. How-
ever, considering the individual flip-flops at the endpoint of the clock buffer, the SET
can affect the flip-flop only within a certain timing window. This behaviour can be
considered as Timing De-Rating and is illustrated in figure 5.3 and 5.4.

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Clock
Buffer

Clock
Buffer

Clock
BufferClock

Source

𝐷T 𝑄T

𝐷1

𝐷2

𝐷3

Shortest
𝐷 Input
Path

Shortest
𝑄 Output

Path

Figure 5.3: Simplified extract of a clock network and connected flip-flops.

The figure 5.3 shows a simplified extract of a clock network with some of the target
flip-flops at the endpoint of the clock buffer. When looking at one flip-flop indepen-
dently, an SET is only effective within a certain timing window. For one target flip-flop,
marked in blue, the corresponding timing diagrams are shown figure 5.4.

The timing diagrams show that, in case the SET occurs early within the clock cycle,
the input 𝐷𝑇 of the target flip-flop is still equal to its current state and thus, the SET
is masked (figure 5.4a). If the SET occurs between than the shortest path delay 𝑡𝐷,best
and longest path delay 𝑡𝐷,worst of the input 𝐷𝑇, the impact of the SET is uncertain. The
input 𝐷𝑇 can change several times due to the states of the flip-flops of the previous
stage and the combinational logic. Thus, the SET may or may not affect the flip-flop.
In case the SET occurs after the longest 𝐷𝑇 input path delay, the input value of the
flip-flop is settled and depending on the current state of the flip-flop the SET might
cause the flip-flop to latch an erroneous value, as described in Section 5.3.1 (figure 5.4c).
However, considering the downstream path of the target flip-flop, the SET has to occur
early enough, in order for the erroneously latched value to propagate to the next stage
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(figure 5.4b).
Taking this timing behaviour into account, an SET Timing Window can be defined.

In case the SET occurs outside of this timing window it will definitely be temporally
masked. The left side of the timing window depends on the shortest input path delay
𝑡𝐷,best of the input 𝐷𝑇. To define the right side of the timing window, the assumption
was made that the, by the SET, erroneously latched value has to propagate to at least
one flip-flop in downstream path. Thus, the right side can be defined by the clock period
𝑇cyc subtracted by the shortest path delay 𝑡𝑄,best at the output 𝑄𝑇 of the flop-flop.

clk

𝐷𝑇
𝑄𝑇
𝐷1
𝐷2
𝐷3

SET Window

(a) Masked SET due to shortest input 𝐷
path delay 𝑡𝐷,best
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𝐷𝑇
𝑄𝑇
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𝐷2
𝐷3

SET Window

(b) Masked SET due to shortest output 𝑄
path delay 𝑡𝑄,best

clk

𝐷𝑇
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𝐷1
𝐷2
𝐷3

SET Window

(c) Notmasked SETwithin SET TimingWindow

Figure 5.4: Temporal masking mechanism for SETs in the clock distribution network.

Fault Injection Simulations

One possibility to analyse this temporal masking mechanism would be to inject faults
into the post place and route gate-level netlist of the design in a back annotated tim-
ing simulation. However, for complex circuits the post place and route simulation can
be very computationally intensive and time consuming. Therefore, the proposed fault
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model based on logic-level simulations from Section 5.3.1, was extended with the de-
scribed SET window. Therefore, the shortest path delays for the input and output of
each flip-flop have to be extracted from the post place and route circuit. This is usually
done within the normal design flow with a Static Timing Analysis (STA) tool. When
injecting the SET, additionally to the injection time, the time within the clock cycle
is given. According to the prior described fault model, the flip-flops connected to the
endpoint of the target clock buffer are identified. Then, for each flip-flop the SET Tim-
ing Window is considered separately. The fault mechanism is only applied when the
injection time falls inside the flip-flop’s SET Timing Window.

5.4 Fault Injection Campaign
In this section the presented methodology and implemented fault model is shown on
a practical example. Therefore, the circuit under test and the corresponding testbench
is described. Afterwards, the functional failure rate for each clock buffer and for the
complete network is computed.

5.4.1 Test Circuit, Testbench and Clock Distribution Network
For this case-study the Ethernet 10GE MAC Core from OpenCores is used, as in sec-
tion 3.4. The circuit implements theMedia Access Control (MAC) functions and consists
of control logic, state machines, First-In First Outs (FIFOs) and memory interfaces. It is
implemented at the RTL.

The corresponding testbench sends several packets via the 10GE MAC transmit
packet interface. The transmit interface is looped-back to the receiver interface in the
testbench. The frames are thus processed by the MAC receive engine and the testbench
reads frames from the packet receive interface and prints out the results [6]. During
the simulation all sent and received packets to and from the core are monitored and
recorded. This record is used as the golden reference for the fault injection campaign.

The elaboration of the RTL design identifies 1234 flip-flops. The design was syn-
thesised with Synopsys Design Compiler and Cadence Innovus was used for place and
route, and clock tree synthesis (CTS). These steps were implemented by using the Nan-
Gate FreePDK45 Open Cell Library [74] and a target frequency of 3.2 ns. The resulting
circuit consists of 1202 flip-flops and a clock tree with 5 levels and 33 clock buffers. The
last level clock buffers have 21 to 76 endpoints. figure 5.5 depicts the resulting tree.

Due to logic optimisation the final circuit has fewer flip-flops than the original RTL
design. In order to perform the fault injection on the logic-level the RTL signal names
have been mapped to the corresponding flip-flops in the gate-level netlist according to
their names. Thus, a list was obtained which maps the flip-flops from the RTL design
to the clock buffers of the clock distribution network.
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Figure 5.5: Obtained clock tree after clock tree synthesis.

5.4.2 Clock-SET Fault Injection Campaign
A fault injection campaign was performed to analyse the functional failure rate of SETs
in the clock distribution network (CDN). Therefore, the SETs were injected at 200 dif-
ferent clock cycles in each of the 33 clock buffer. The faults were injected only during
the active phase of the simulation, when packets are sent and received through the user
packet interface.

To take the temporal masking mechanism into account, additional fault injection
campaigns have been performed. Therefore, faults were injected at the same 200 clock
cycles as for the Functional De-Rating campaign. For each clock cycle 25 SETs were
injected at different random times within the clock period. In order to consider the
variation of the path delays at different operating conditions (Voltage, Temperature,
etc.) the simulations have been performed for three different corner cases, provided by
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the technology library:

• slow with Vdd=0.95 V and Tj=125.0℃

• typical with Vdd=1.1 V and Tj=25.0℃

• fast with Vdd=1.25 V and Tj=0.0℃

In order to obtain a reference for the Functional and Temporal De-Rating campaigns,
fault injection campaigns were performed by using the post place and route gate-level
netlist in a back annotated timing simulation. For the back annotated timing simulation
the Standard Delay Format (SDF) files were generated by the Synopsys Static Timing
Analysis Tool PrimeTime for the different operating conditions. As for the combined
Functional and Temporal De-Rating campaigns, SETs have been injected at the exact
same times, 25 per each of the 200 clock cycles.

The results for the campaigns are presented in table 5.1. The number of reached,
changed and unchanged flip-flops are listed for each campaign. Further, the number of
injections which lead to a functional failure are shown as well as the resulting Func-
tional Failure Rate/Functional De-Rating (FDR). As expected, the Functional De-Rating
analysis without the temporal masking effect shows the highest Functional Failure Rate
(RTL wo/ TDR). The failure rate is lowered by 5% to 17 % when the temporal masking
mechanism is taken into account, depending on the operating conditions (RTLw/ TDR).
The fault injection campaigns by using the post place and route netlist and injecting in
the back annotated timing simulation show (GLN w/ SDF) similar results. The biggest
difference can be seen at the slowest operating conditions.

Comparison of the Clock-SET Campaigns

Comparing the failure rates of the different campaigns, it was noted that the failure rates
differ depending on the considered operating condition. This can be explained by the
usually longer path delays for the slow corner and shorter path delays for the typical and
fast corners. The distributions of the shortest input path delay 𝑡𝐷,best and the shortest
output path delay 𝑡𝑄,best for each flip-flop are shown in figure 5.6. In these histograms
the slack of the shortest output path is shown which is calculated by subtracting the
shortest output delay 𝑡𝑄,best from the clock period 𝑇cyc. In this way the shortest input
path delay 𝑡𝐷,best reflects the left side of the SET Timing Window and the slack of the
shortest output path 𝑇cyc − 𝑡𝑄,best the right side. Further, the distribution of the length
of the SET Timing Window 𝑇SET TW is shown. It can be seen that the SET Timing
Window is shorter for the slow corner and gets longer for the typical and fast operating
conditions. This fact is illustrated for one flip-flop in figure 5.7.

In general, the time an SET can occur within the clock cycle can be assumed as
uniform. Figure 5.8 shows that this is also the case for the performed fault injection
campaigns. Thus, for longer SET Timing Windows higher failure rates can be expected
and vice versa lower failure rates with shorter SET TimingWindows. This also leads to
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the assumption that a circuit operating at a higher frequency and thus, has lower slack,
also has a higher clock-SET Temporal De-Rating, which results in a lower failure rate.

The Functional Failure Rates obtained by performing fault injection in the back
annotated timing simulation by using the gate-level netlist are similar to the corre-
sponding RTL fault injection campaigns with TDR. However, due to the more accurate
timing simulation, the results obtained with the post place and route netlist are lower
and more accurate. Nonetheless, especially for complex circuits a full post place and
route fault injection campaign is very computationally intensive and probably not fea-
sible. Thus, the proposed combined Functional and Temporal De-Rating approach are
useful to compute failure rates for pessimistic worst-case scenario.

5.4.3 Methodology to Approximate the Clock-SET Temporal De-
Rating

To evaluate the Temporal Masking effect and calculate a Temporal De-Rating in a fault
injection simulation campaign additional simulations are required compared with the
plain Functional De-Rating analysis. Hence, an estimation with a faster method might
be preferable and sufficient in some cases. The observations and discussion from the
previous section show that there is a strong dependency between the length of the SET
TimingWindow 𝑇SET TW and the Temporal De-Rating. Following this, an approach can
be derived which takes the average length of the SET Timing Window 𝑇SET TW of all
flip-flops in the circuit. Normalizing this value to the clock period 𝑇cyc gives a rough
estimate of the Timing De-Rating factor for the full circuit:

TDREstimated =
𝑇SET TW

𝑇cyc
(5.1)

This method was applied to the performed campaigns and the results are listed in
table 5.2. Therefore, the average length of each SET Timing Window was calculated
and normalized to the used clock period 𝑇cyc according to equation (5.1). The estimated
TDR factor obtained in this way are then multiplied with the Functional De-Rating
(FDR) value obtained from the plain Functional De-Rating simulations FDR = 71.58 %.
The resulting estimation, shown in the table, is close to the computed values obtained
from the exhaustive fault injection simulation campaigns (see table 5.1).

5.4.4 Results for Temporal Masking of SEUs in the Sequential
Logic

The functional failure rate caused by SEUs in the flip-flops is obtained by a classical full
flat statistical fault injection campaign. The SEU is emulated by modifying the stored
value of a flip-flop at a random point in time during the simulation. Similar to the SET
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Figure 5.6: Distribution of the shortest input path delay 𝑡𝐷,best, the slack of the shortest
output path and the SET Timing Window length 𝑇SET TW. The slack of shortest output
path is calculated as the difference between the clock period 𝑇cyc and shortest output
path delay 𝑡𝑄,best.
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Figure 5.7: Length of the SET Timing Window 𝑇SET TW for different operating condi-
tions.
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Figure 5.8: Distribution of the injection times within the clock cycle.

fault injection campaign, any difference in the send or received packages is considered
as a functional failure of the application.

For the campaign 200 SEUs were injected in each of the 1234 flip-flops. Thereby,
53756 of the injected faults showed a functional failure, which corresponds to a Func-
tional De-Rating factor of 21.78 %. Table 5.3 summarizes the overall results of the SEU
fault injection campaign.

As described in section 2.2 also an SEU in a flip-flop can be masked due to timing
behaviour. The SEU has to occur sufficiently early in the clock period in order not to
be temporally masked. The erroneous value is then able to meet the setup time of one
or more flip-flops in the downstream path. Intuitively, it is clear that as the available
slack time on the paths increases, so does the probability of an SEU being captured. The
Temporal De-Rating factor (TDR) for SEUs can be approximated by first, calculating the
ratio of the slack 𝑡slack to the clock period from each startpoint 𝑖 to each of its endpoints
𝑗:

TDRpath(𝑖,𝑗) =
𝑡slack,path(𝑖,𝑗)

𝑇cyc
(5.2)

After computing the TDR factors of each path, for each flip-flops its worst path value
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Table 5.2: Estimated Timing De-Rating Factors

Operating
Condition

Average SET
Timing Window

Averaged
TDREstimated

FDR × TDREstimated

slow 2.472 ns 77.25 % 55.30 %
typical 2.922 ns 91.30 % 65.35 %
fast 3.001 ns 93.78 % 67.13 %

Table 5.3: Results of the SEU Fault Injection Campaign

Total Per Injection

Injection Targets (FFs) 1234 -
Number of Injections (SEU) 246800 -
Functional Failure 53756 21.78 %

(highest TDR) is assigned. This corresponds to the consideration that an SEU is propa-
gating if the erroneous value has the time to propagate to at least one of the endpoints.

The Temporal De-Rating factors for each flip-flop were calculated for the consid-
ered operating conditions. Similarly, to the temporal analysis for the SETs in the clock
distribution network, the path delay/slack values were extracted for the three consid-
ered operating conditions by using Synopsys PrimeTime. Table 5.4 shows the averaged
TDR values for the full circuit and the weighted Functional Failure Rate.

5.4.5 Comparison and Discussion
To compare the functional failure rate due to SEUs in the sequential logic to the failure
rate due to SETs in the clock network table 5.5 summarizes the average Functional
and Temporal De-Rating factor per element. For the temporal masking the worst-case
corner, the fast operating condition, was considered. It can be seen that the Functional
De-Rating factor for the clock-SET events are about 3.5 times higher than for the SEUs
in the sequential logic and the Temporal De-Rating factors are about the same for both
events. However, the number of sequential elements is 40 times higher and thus, the
SEUs in flip-flops are the leading contributor to the overall functional failure rate of the
circuit.

Considering further physical effects the Functional De-Rating factor can be com-
bined with a Failure in Time (FIT) rate obtained from a characterized standard cell
library. In [19] FIT values for the NanGate FreePDK45 Open Cell Library [74] were
obtained by using dedicated tools to calculate the event rate of cells. The average val-
ues for D-Flip-Flops and clock buffers were considered. These show that the FIT value
for the sequential logic is about 2 times higher, which further lowers the effect of SETs
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Table 5.4: Results of the Sequential Temporal De-Rating Analysis

Operating Condition TDR FDR × TDR

slow 81.50 % 17.75 %
typical 90.66 % 19.75 %
fast 92.34 % 20.11 %

in the clock network.
Nonetheless, if a fully SEU hardened circuit is considered, the sensitivity of the

sequential logic is lowered. Depending on the implementation of the hardened cells, the
sensitivity is usually about one order of magnitude lower than the one of un-hardened
cells. Taking this into account, the Functional De-Rating factor would be lowered by the
same amount. Since the usual hardening techniques for the sequential logic is affecting
the sensitivity of the clock network to clock-SETs, the functional failure rates due to
SETs in the clock network become more relevant.

Table 5.5: Summary of the Functional Failure Rate Analysis of the 10GE MAC circuit

Event
Affected
Element

Number
of Elements

Average
TDR

Average
FDR FIT

Weighted
FIT

SEUs in Flip-Flops Flip-Flop 1234 0.92 0.22 148.33 37047
SETs in Clock Network Clock Buffer 33 0.93 0.72 72.0 1590

5.5 Conclusion
This chapter investigates how the impact of Single-Event Transients (SETs) in the clock
distribution network on the functional behaviour of a circuit can be analysed. There-
fore, a methodology and a fault model were presented which implement the main
radiation-induced effects in clock networks. The method enables the computation of
the functional failure rate in a logic-level simulation based on the register-transfer level
of the design. Thus, a faster evaluation can be performed than by simulating on the
electrical or gate level.

Further, a temporal masking mechanism for Single-Event Transients (SETs) in clock
distribution networks was introduced. The temporal masking is based on the shortest
input path delay of the flip-flops and the shortest output path delay, which are defining
an SET Timing Window within the clock cycle. SETs occurring outside of this window
are masked. The fault model was extended considering this temporal masking effect
which allows to compute the functional failure rate weighted with temporal de-rating.

The approach was applied on a practical example. SETs were injected into the clock
network of the circuit under test in a fault injection campaign. Thus, the functional
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failure rates of the clock network and the individual clock buffers were determined.
Further, the results of the extended fault model with temporal masking were verified
with a back annotated timing simulation of the post place and route netlist. It was
shown that the proposed temporal masking implementation is able to compute a pes-
simistic worst case.

Finally, the functional failure rate due to SETs in the clock network has been com-
pared to SEUs in the sequential logic. The discussion has shown that the SETs in the
clock network usually cause functional failures which results in a high functional fail-
ure rate. The comparison has also shown that the leading contribution to the overall
failure rate of the circuit are from SEUs in the sequential logic. However, considering
circuits which are only protected against SEUs, clock-SETs become more relevant.
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Chapter 6

Conclusion

Faults induced by radiation are one of the main sources of failures in today’s electronic
devices. Besides the typical high-reliability applications, also common systems must be
designed to consider the reliability impact of soft errors. The research community has
studied the physics behind the phenomena in detail and offers solutions for each step
of the design flow. However, the growth in complexity and number of transistors in a
device, vastly increases the required efforts to analyse a system. Thus, the assessment
of a modern complex design remains a challenging task. The methodologies presented
in this thesis are addressing these problems, by proposing new solutions on the higher
abstraction level. The thesis proposed new approaches to advance the fault analysis on
the functional level.

6.1 Machine LearningTechniques for Functional Fail-
ure Analysis

The first contribution of this thesis explored the use of machine learning techniques
for the functional fault analysis of complex circuits. In chapter 3 two different machine
learning based approaches are proposed which aim to reduce the required efforts to
determine the propagation probability of faults on a functional level. A feature set
to characterise each individual sequential element in the circuit was developed. This
feature set combines structural, synthesis and signal activity related attributes.

The first approach accelerates a fine-grained functional failure analysis by reduc-
ing the computational cost to determine the FDR factors of the circuit’s sequential logic.
The approach allows the prediction of FDR factors per individual instances. Several ma-
chine learning models were evaluated varying the training size and predicting different
failure classes. It was shown that the cost of a fault injection campaign can be reduced
by a factor of 2 up to 5 in comparison to a classical statistical fault injection campaign.
The method was also shown to be applicable in early design phases, working on the
RT-level of the design. A feature subset was identified which can be extracted from an
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elaborated RTL description of the circuit. The results have shown that the impact on
the prediction performance was marginal.

The second approach uses machine learning clustering to reduce the fault space by
grouping the sequential elements of the circuit together which are expected to have a
similar sensitivity to faults. This allows to perform fault injection campaigns more effi-
ciently. The approach advances already existing clustering approaches in the way that
it is more flexible and does not make any assumption of the circuit or its representation.
The effectiveness of the grouping by different machine learning clustering algorithms
was evaluated on a practical example and compared to a random and ideal solution.
With the approach it was possible to reduce fault injection efforts by a factor of 5× to
20×.

6.2 Cross-Layer Reliability and Functional Safety As-
sessment Through Machine Learning

Once the reliability analysis of a design was performed, the information is usually pro-
vided by using compact models to the end user. Since the typical design flow is hier-
archical and relies on assembling many individual technology elements, from standard
cells to complete boards, the designer has to group simpler elements in more complex
structures. Thereby, the designer has to manage the corresponding propagation of re-
liability and functional safety information through the hierarchy of the system, with
the additional problems of IP confidentiality, possibility of reverse engineering, etc. To
address these problems, the thesis contributes by presenting a machine learning based
approach which is able to integrate the many individual models of a subsystem’s ele-
ments in a single compact model that can be re-used and assembled further up in the
hierarchy. In this way, the machine learning model allows the technology/IP/compo-
nent/system provider to accompany their product with compact reliability and func-
tional safety models which provide consistency, accuracy, and confidentiality and can
be safely used by their users.

6.3 Functional Failures Induced by Single-EventTran-
sients in Clock Distribution Networks

Chapter 5 analyses SETs in Clock Distribution Network (CDN) on a functional level.
The thesis contributes by presenting a methodology and a fault model which imple-
ment the main radiation-induced effects in clock networks. The method enables the
computation of the functional failure rate in a logic-level simulation based on the RTL
description of the design. This allows a faster evaluation of faults on the functional
behaviour than by simulating on the electrical level or gate-level. Further, the Tempo-
ral Masking effect for SETs in clock distribution networks is introduced. The Temporal
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Masking is based on the shortest input path delay of the flip-flops and the shortest
output path delay, which are defining an SET Timing Window within the clock cycle.
The functional fault model was extended by including this Temporal Masking effect
which allows to compute the functional failure rate weighted with Temporal De-Rating
(TDR) of a circuit. The approach was applied in a practical example where SET were
injected into the clock network of the circuit under test in a fault injection campaign.
It was shown that the proposed Temporal Masking implementation is able to compute
a pessimistic worst case.

6.4 Summary
Electronics play a critical role in all aspects of the everyday life. The complexity of
integrated systems is increasing and creating a challenge for the reliability analysis.
There is a great need for new techniques to evaluate complex systems which are able to
scalewith the increasing complexity. The analysis has to be shifted to higher abstraction
levels to hide unnecessary details. The key contribution of this thesis is to provide new
techniques to analyse faults on a functional level which use higher abstraction levels
and thus, complement previous work on Soft Errors.
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