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• Parameter identification of equivalent circuit model performed through9

Inverse Model;10

• Parameter search space is first constrained in feasibility regions;11

• Inverse Models built through GPR, SVM and LS-SVM machine learn-12

ing regression models;13

• The identification results are shown for both synthetic and experimen-14

tal data;15

• Performance and Resource Usage of the embedded implementation are16

explored.17
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Abstract22

In this paper a computationally efficient optimization approach to the para-
metric identification of a fuel cell equivalent circuit model is presented. It
is based on the inverse model and on machine learning regressions. Dur-
ing the training phase, the inverse model is built numerically by means of
advanced regression approaches, i.e., the support vector machine regression,
the least squares support vector machine regression and the Gaussian pro-
cess regression. The training set is synthetically generated to the aim of
exploring the parameter space and to characterize different stack operat-
ing conditions, including normal and faulty ones. The accuracy of the con-
sidered approaches is investigated by employing a test set including many
experimental data, consisting of impedance spectra measured through the
electrochemical impedance spectroscopy and referring to very different stack
operating conditions. The results show that all the considered machine learn-
ing methods allow to identify the parameters of the fuel cell model with a low
computational burden, so that they fit with the hardware resources of low
cost embedded processors. This feature allows to envisage that the proposed
approaches are good candidates for a model-based on-line diagnosis of fuel
cell stacks.

Keywords: Parametric identification of Equivalent Circuit Model, Inverse23

Model, Machine Learning Regression24

1. Introduction25

Fuel Cells (FCs) and hydrogen-related technologies are a key point of the26

European Green Deal and of the Recovery Plan. In order to improve the27
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Life Cycle Assessment (LCA) of FCs’ stacks, a significant lifetime has to be28

reached. Monitoring and Diagnostic Tools (MDTs) are helpful in evidencing29

a malfunctioning and the occurrence of operating conditions that stress the30

stack and reduce its Remaining Useful Life (RUL). Although many diagnos-31

tic approaches and methodologies are proposed in literature, very often they32

employ laboratory measurement systems and/or algorithms requiring signifi-33

cant hardware resources. Consequently, their on-line and on-site application34

becomes very challenging. At the same time, some efforts are on course to35

develop MDTs employing hardware systems and requiring computational ef-36

forts that are compatible with FC systems costs, diagnostic accuracy and37

time response. For instance, some H2020 funded projects, e.g. [1], have been38

aiming at pursuing the objective of having an Electrochemical Impedance39

Spectroscopy (EIS) -based MDT using ordinary power electronics and em-40

bedded processors to perform frequency domain measurements and detect41

a number of faults through on-line diagnostic algorithms. The diagnostic42

methods usually work in two spaces: one is the frequency domain, i.e., the43

stack impedance spectrum in the Bode or in the Nyquist planes, and the44

other is the multidimensional space of the parameters of a suitable non lin-45

ear FC stack Equivalent Circuit Model (ECM). The latter requires a robust46

approach that takes the impedance spectrum as an input and gives at the47

output the set of ECM parameters. This task is quite challenging because of48

the number of parameters, of the wide search space and of the lack of a good49

guess solution. A further issue is the high non linearity between the function,50

which is usually considered as the objective of the optimization problem, e.g.,51

the Root Mean Square Error (RMSE) between the ECM impedance and the52

experimental data, and the parameters thereof. Some approaches are pro-53

posed in literature, e.g. in [2], but they are based on specific assumptions54

about the signal-to-noise level affecting the data; consequently, they do not55

always ensure the convergence towards the absolute minimum RMSE value56

or they have a significant computational burden.57

Machine learning (ML) has been using more and more in energy problems.58

An increasing number of ML-based approaches to monitoring, diagnosis and59

RUL prediction of batteries and FCs can be found in the recent literature. In60

[3, 4] multiple ML-based approaches have been employed to RUL estimation61

of a set of batteries by using charging, discharging, internal resistance and62

temperature data. The effectiveness of such approaches that operate on63

the battery early usage data is demonstrated. In [5], the battery state of64

health is estimated by employing mechanical and electrical features through65
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an Autoencoder and a Gaussian Process Regression (GPR) based estimation66

model. In [6, 7] an artificial neural network is used to estimate the remaining67

battery capacity. In [8], a number of variables, e.g., stack current and voltage,68

air supplier control signal, temperatures, air flow rates, is monitored and their69

values are compared with those ones computed through a suitable model.70

The patterns of the resulting differences are used to train supervised ML71

methods that are then able to classify different faults. In order to ensure72

a simultaneous faults detection, instead then addressing independent faults73

only, in [9] a deep learning network called stacked sparse autoencoder is74

proposed. The stack voltage is also the subject of the study presented in [10]:75

some relevant features are extracted and allow ML approaches to identify the76

fault.77

FC degradation prediction in presence of a variable load is performed in78

[11] and [12] through a method based on a Genetic Algorithm (GA) and an79

Extreme Learning Machine (ELM). The long term dynamic behavior of the80

stack voltage is exploited in [13] to predict the performance degradation by81

using a Grid Long Short-Term Memory (G-LSTM) Recurrent Neural Net-82

work (RNN). A Support Vector Machine (SVM) classifier is adopted in [14]83

for detecting FC faults by using a 3D model. The validation of the multi-84

scale hybrid degradation index formulated in [15] and of the the approach85

aimed at predicting the FC RUL presented in [16] is done through a ML tool86

operating on experimental data. Moreover, a ML algorithm has been used87

in [17] to find the best trade off between the EIS measurement time and the88

fault detection accuracy through the impedance spectrum. The diagnosis is89

conducted in the frequency space only, without any parametric identification90

process. To this regard, the adoption of ML techniques for system parame-91

ters identification is quite rare in literature. Few examples refer to dynamical92

systems identification: e.g., in [18] the systems considered are described by93

differential-algebraic equations and the sum of the squared deviations of the94

values of the state vector’s coordinates from their exact counterparts obtained95

through measurements at different time instants is considered as the objec-96

tive function whose value is minimized through the adaptive random search97

method. In [19], transfer learning methods are used to address a challenge in98

state-space linear parameter-varying model identification and learning. Ker-99

nelized ML is adopted when the distributions of the training and testing sets100

are different.101

This paper shows that the parametric identification of a Polymer Elec-102

trolyte Membrane (PEM) FC ECM can be effectively performed by using103

3



the inverse model [20]. A mathematical model, i.e., a multivariate func-104

tion, is achieved as first. Then, it exploits a set of experimental EIS spectra105

to identify the parameters of the widely recognised ECM presented in [21].106

Since the parameters identification is carried out via a straightforward eval-107

uation of the inverse model over the experimental values of the EIS spectra,108

the proposed approach ensures a good compromise between computational109

burden and accuracy, thus a performance that is better than the one the110

stochastic identification techniques presented in literature are able to guar-111

antee [22][23][24].112

The construction of the inverse model, which is the core of the proposed113

method, is not straightforward. Indeed, the inverse map is usually extremely114

non-linear and ill-posed, this meaning that a given EIS spectrum might be115

generated by more than one set of the ECM parameters. In order to mitigate116

the above issue, in this paper three advanced ML regression methods are117

considered. Specifically, the SVM regression [25], the Least Squares SVM118

regression (LS-SVM) [26] and the GPR [27] are adopted to construct the119

inverse model from synthetic data. The above techniques have been selected120

for two main reasons. First of all, they are non-parametric techniques in121

which the number of unknowns to be estimated during the model training122

is independent from the dimensionality of the input space, i.e., from the123

number of frequency points in the EIS spectrum. This allows to minimize124

the number of training samples required by the model training and thus the125

model complexity. Moreover, the regularizer used by the SVM and LS-SVM126

regressions, as well as the noise term in the GPR, can be used to mitigate the127

ill-posedness of the inverse model [28, 29]. The proposed approaches have128

been also implemented in a low cost embedded system to demonstrate their129

on-site and on-line potential; their performance is validated through a large130

test set consisting of experimental EIS spectra.131

The experimental test set has been obtained during the HEALTHCODE132

H2020 project [1] on a PEM stack having 46 cells and an active area of 100133

cm2. The stack was tested at 0.4 A/cm2 under different hydrogen and oxygen134

utilization and for different humidity levels. The considered dataset refers135

to cells number 1, 2, 23, 45, and 46 with measurements performed in the136

range from 50 mHz to 2 kHz for a total of 157 spectra. Further details on137

the testing procedure and on the study of the impact of water management138

and reactant utilization through EIS are disclosed in [30][31].139

The paper is organized as follows. Section II is aimed at describing the140

proposed ML-based identification approach and Section III gives the details141
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of the application of the ML methods adopted. Section IV shows the proce-142

dure used to produce the synthetic data that have been used for the learning143

phase. Sections V and VI provide the analysis of the results based on syn-144

thetic and experimental data, respectively. Section VII shows the results of145

an approach validation performed through an embedded platform that is a146

candidate for the on-line application of the proposed approaches. The com-147

putational burden of the proposed approach in comparison with that one148

of an accurate stochastic approach proposed in literature is also provided.149

Conclusions end the paper.150

2. Gray-Box System Identification via Forward Models151

System identification aims at building a mathematical model on the basis
of measured data [32]. Given the experimental FC impedance values Zexp =
[Zexp(f1), . . . , Zexp(fNf )]

T ∈ CNf in a given frequency range, the goal is to
identify the optimal configuration x∗ of the Np = 6 free parameters x =
[x1, . . . , xNp ]

T of the Fouquet ECM Z̄F (f ; x) (see the Appendix and [21] for
additional details), such that:

Zexp(f) ≈ Z̄F (f ; x∗), (1)

Literature results allow to assume that the Fouquet model is able to fit, with152

a good accuracy, the experimental spectra.153

The chosen ECM has a closed-form and it provides a gray-box model, i.e.,154

a model built from a-priori knownledge, for the system identification. The155

Fouquet model is a forward map, or forward model, that for any configuration156

x of its parameters is able to provide the corresponding impedance value157

Z̄F (f ; x) at the desired frequency value f .158

The identification problem (1) can be also formulated by means of an159

objective function whose value has to be optimized through a suitable al-160

gorithm. For instance, the configuration x∗ can be estimated as the one161

that minimizes the average of the magnitudes of the squared error computed162

between the experimental impedance values collected in Zexp and the cor-163

responding ones predicted by the Fouquet model Z̄F in a given frequency164

range:165

x∗ = arg min
x

1

Nf

Nf∑
i=1

|Zexp(fi)− Z̄F (fi; x)|2. (2)
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The properties of such an optimization problem, e.g. its convexity, depend166

on the structure of the forward model Z̄F . As an example, the problem at167

hand turns out to be convex when the model Z̄F is so simple that it can be168

written as a linear combination of its input parameters x. However, such169

minimization problem can be usually classified as a non-convex optimization170

with several local minima [33], which might require advanced optimization171

algorithms, as in [22][23].172

Alternatively, provided that the candidate model Z̄F (f ; x) can be inex-173

pensively evaluated for any set of the input parameters x, the above optimiza-174

tion problem can be tackled via a grid search approach. It is a brute force op-175

timization scheme, in which the Np parameters can be interpreted as uniform176

distributed random variables in a given range (i.e., xi ∼ U(xi,min, xi,max)),177

then the model Z̄F (f ; x) is evaluated for a large number of realizations of the178

input random parameters drawn according to their probability distribution179

functions (PDFs). Thus, the optimal parameters set x∗ can be estimated180

among all the considered realizations as the one that minimizes the cost181

function of the optimization problem (2). This approach is straightforward182

and does not require to calculate the gradient function of the cost function,183

but it turns out to be quite cumbersome and computational expensive. In184

fact, the accuracy and the reliability of optimal solution x∗ predicted by such185

brute force approach heavily depends on the number of calls to the model186

Z̄F , and thus on the number of realizations of the random variables x con-187

sidered during the optimization process. This limits the online use of such188

an approach through embedded systems.189

3. Inverse Model for System Identification190

The inverse model approach presented in this paper is an effective candi-191

date for the FC ECM identification [20].192

The inverse model denoted as M−1 goes in the opposite direction with
respect to forward model Z̄F (f ; x) used in the conventional optimization
approach (2); it is:

x∗ =M−1(Zexp), (3)

where, the vector x∗ ∈ RN
p collects the identified system parameters, Z is193

a vector collecting the experimental impedance values evaluated at the fre-194

quency f = [f1, . . . , fNf ]
T and the inverse map M−1 : CNf → Rd.195

6



Specifically, starting from the experimental impedance values Zexp, the196

inverse map M−1 is able to directly provide, without requiring to solve any197

optimization problem or to use an iterative algorithm, the optimal configu-198

ration of the ECM parameters x∗. Indeed, by means of the inverse model,199

the identification task becomes as simple as a trivial function evaluation.200

Unfortunately, for realistic cases in which the inverse map cannot be201

computed explicitly from the forward one, the construction of the inverse202

model is rather challenging. First of all, even if a mathematical relationship203

for the forward model is known, the inverse model might not be available204

in a closed-form. In such cases, the model must be constructed numerically205

with the help of regression or interpolation techniques, starting from a set of206

experimental and/or synthetic training data provided by the forward model.207

Moreover, inverse models are often ill-posed, since they can lead to a one-to-208

many map (i.e., the inverse model turns out to be a non-injective function),209

in the sense that a given set of value of the model output might be generated210

by more than one combinations of the system parameters.211

Advanced ML regression techniques are promising candidates for building212

an accurate approximation of the inverse map in a high dimensional space. In213

this paper, the effectiveness of three ML regressions, i.e., SVM regression [25],214

LS-SVM regression [26] and the GPR [27], is investigated.215

3.1. SVM and LS-SVM regression216

Let us consider the problem of constructing the inverse mapM−1, start-
ing from a set of Ns training samples D = {(xl,yl)}Nsl=1, in which the vector
xl ∈ RNp collects the training realizations of the system parameters and
yl = [Re {Z1,l} , . . . ,Re

{
ZNf ,l

}
, Im {Z1,l} , . . . , Im

{
ZNf ,l

}
]T ∈ R2Nf is a real

value vector collecting the corresponding real and imaginary parts of the FC
impedance values, the latter being synthetic or experimental data. The pri-
mal space formulation of the inverse model M̃−1

i for i-th component of the
parameter vector x built via the SVM and LS-SVM regression, writes [25, 26]:

xi ≈M−1
i (y) = 〈wi,φ(y)〉+ bi (4)

where φ : RNp → RD is a vector collecting D-basis functions 1, wi ∈ RD is a217

vector collecting the regression unknowns and bi is the bias term. The above218

formulation can be repeated to model all the components of the vector x.219

1For the sake of simplicity, it has been assumed that all the components of parameter
vector xi share the same basis functions.
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For the LS-SVM and SVM regressions, the unknowns (i.e., wi and bi) are
estimated by solving the following optimization problem:

min
wi,bi

1

2
‖wi‖2

L2
+ γi

Ns∑
l=1

`(xi,l, 〈wi,φ(yl)〉+ bi) (5)

where `(·) is a cost function proving the error of the model on the training220

samples. This means that the coefficients wi and the bias term bi are esti-221

mated by minimizing the average of the cost function evaluated between the222

training data and the model predictions penalized by a L2 regularizer (i.e.,223

‖wi‖2). The latter term adds a penalty to the model accuracy on the training224

samples, thus mitigating the detrimental effects of the ill-posed problem and225

also reducing overfitting [34]. The effect of the regularizer in the optimiza-226

tion problem in (5) is tuned by the hyperparameter γi, usually estimated via227

cross-validation (CV) during the model training. A squared loss function is228

used as cost function for the LS-SVM regression2, whereas the SVM regres-229

sion uses the ε-insensitive loss function. Interested readers can refer to [25]230

for additional details.231

It is important to notice that the primal space formulation of the LS-SVM232

and SVM regression provides a parametric model, in which the number of233

unknowns to be estimated (i.e., the cardinality of the vector |w| = D) is equal234

to the number of basis functions considered in the liner expansion in (4).235

This means that the obtained model suffers the curse of dimensionality (i.e.,236

a reduction of the model efficiency when either the model complexity and237

the number of parameters increases).238

The dual formulation available for the LS-SVM and SVM regression al-
lows mitigating the above issue and writes:

xi =
Ns∑
l=1

αi,lk(y,yl) + bi, (6)

where the coefficients αi,l and the bias term bi are estimated by the regression239

algorithm during the training process and k(·, ·) : R2Nf×2Nf → R is the kernel240

function defined as the inner product of between the basis function vectors,241

i.e., k(y,yl) = 〈φ(y),φ(yl)〉. Thanks to the kernel function k(·, ·), the dual242

2For mathematical convenience, in the LS-SVM regression the squared loss function is
multiplied by a constant term 1/2.
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space formulation in (6) does not require an explicit definition of the basis243

functions φ(y). This is the so-called “kernel trick” [25]. Several kernel func-244

tions with different mathematical properties and features are available [35].245

The most common ones are:246

• linear kernel: k(y,yl) = yTyl;247

• polynomial kernel of order q: k(y,yl) = (1 + yTyl)
q;248

• Gaussian radial basis function (RBF) kernel: k(y,yl) = exp (−‖y − yl‖2/2σ2),249

where σ is the kernel hyperparameter.250

Hereafter, in this paper the Radial Basis Function (RBF) kernel will be251

adopted, since it has shown an excellent performance in high nonlinear re-252

gression problems [25, 28].253

In the above dual formulation of the SVM and LS-SVM regression, the254

number of regression unknown αi,l turns out to be independent from the di-255

mensionality of the input space (i.e., the cardinality of y). This is extremely256

useful to overcome the curse-of-dimensionality issue. Moreover, the regular-257

izer used in the primal space formulation allows us to mitigate the ill-posed258

problem resulting from the inverse map.259

It should also be noted that the unknowns of the dual form of the LS-260

SVM formulation can be suitably estimated as a solution of a linear problem261

by inverting a square matrix [26]. On the other hand, due to the ε-insensitive262

loss function, the convex optimization problem for the case of the SVM leads263

to a sparse solution, but it must be solved numerically [25].264

3.2. GPR Regression265

Differently from the LS-SVM and SVM regression, the GPR can be used
to build a probabilistic version of the inverse surrogate model. Starting from
the Ns training samples D = {(xl,yl)}Nsl=1, the GPR allows to train a prob-
abilistic inverse model able to estimate for any configuration of the input
parameters a statistical interpretation of its prediction in terms of a Gaus-
sian distribution, which provides additional information on its reliability [27].
Specifically, for any test sample y∗, the output of a GPR model is:

xi,∗ ∼ p(xi,∗|y∗,D) = N (µy∗ , σ
2
y∗) (7)
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in which µy∗ and σ2
y∗ are the so-called posterior mean and variance, computed

as follows:

µy∗ = kT∗ (K + σ2
nI)−1x (8)

σ2
y∗ = k∗∗ − k∗(K + σ2

nI)−1kT∗ (9)

where y = [y1, . . . , y2Nf ], K ∈ RNs×Ns is the correlation matrix in which the266

covariance function k is evaluated on pairs of the training data (i.e., Kij =267

K(yi,yj)), k∗ = [k(y1,y∗), . . . , k(yL,y∗)]
T is a column vector, k(y∗,y∗) is268

a scalar, I ∈ RNs×Ns is the identity matrix and σ2
n is an hyperparameter269

representing the variance of a possible additive noise corrupting the training270

dataset. Similarly to the kernel function, the covariance function used in the271

GPR defines the correlation between the values of pairs of model output at272

different point in the parameters space. Hereafter in this paper, a squared273

exponential covariance function, also known as RBF kernel, is used for the274

GPR, i.e., k(y,y′) = exp (−‖y − y′‖2/2σ2
l ) [27], where σl is a hyperparame-275

ters estimated during the model training.276

4. Learning framework for the inverse model277

The LS-SVM, the SVM and the GPR regression models learn the inverse278

model through a suitable framework. To learn the inverse function of the279

Fouquet model through a data-driven regression technique, it is necessary to280

observe both the domain and the co-domain of the function x = M−1(y).281

However, given the very high dimensionality of the two spaces, one depend-282

ing on the number of frequencies, the other on the number of parameters,283

an unconstrained generation of observations would be computationally in-284

tractable. It is worth to note that, since the forward model Z̄ = Z̄F (x, f)285

is available, the sampling can be limited to the parameters space and the286

spectrum obtained through the evaluation of the direct model for each sam-287

pled parameters’ set. However, even in this case, the training procedure288

would benefit from a bounded search space. From a computational perspec-289

tive, bounding the parameters values between specific maxima and minima290

values drastically reduce the training time. Additionally, from a physical291

perspective, only certain combinations of parameters are feasible and lead to292

a meaningful impedance spectra, thus only certain regions of the parameters293

space are worth to be explored.294
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Figure 1: Generation of the training set. Each set of parameters is sampled through the
LHS method and is processed with the Fouquet model in the Grid Search Procedure.

A synthetic dataset, which is obtained through a specific data-generating295

procedure shown in Fig. 1, has been employed for training purposes. It em-296

ploys the grid search optimization briefly described in Sec. 2 together with297

the Fouquet ECM in which the candidate sets of parameters are sampled298

from the search space via a Latin Hypercube Sampling (LHS) scheme. In299

the figure, Ns refers to the number of training samples, Np = 6 is the num-300

ber of parameters involved in the Fouquet ECM, i.e. the dimension of the301

parameters vector x, and Nf = 48 is the number of frequency values.302

4.1. Parameters Space Sampling303

Fig. 1 shows that, at the beginning of the procedure, the parameters304

space is sampled in the range between xm and xM . These limits have been305

set after having analysed the experimental impedance spectra corresponding306

to the extreme fault conditions. Indeed, the experimental data have been307

obtained by inducing stack faults with an increasing level of severity. By308

moving the stack operating condition away from the nominal one, impedance309

modulus and phase change and lead to visible effects on the spectra, e.g. in310

terms of a magnification or reduction of the arcs in the Nyquist diagram.311

The effect depends on the specific fault, on its severity, and on the duration312

of the fault condition. For a specific operating condition imposed at stack313

level, the spectra of its cells that are connected in series may not exhibit the314

same alteration, because of inhomogeneities in the gas flows, constructive315

mismatching among cells and differences in cells degradation rate.316
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Figure 2: EIS Impedance curves (top panel) in nominal and faulty conditions identified
offline and the corresponding parameters (bottom panel) defining the parameters space.

Thus, the boundaries for each parameter range have been fixed by picking,317

in a subset of curves referring to the same operating condition, the spectrum318

that is the farthest from the nominal one. The resulting spectra are consid-319

ered as extreme ones and selected for a robust identification. The parametric320

identification has been performed according to the approach described in [36].321

The fluctuation of the experimental measurements around the GA-based322

identified impedance curve is shown in Fig. 2. In the figure, the curves refer323

to the fitting while the dots are the EIS measurements of the farthest curves324

from the reference. Among the selected curves, the extreme values of each325

parameter are considered. Fig. 2 also shows the coverage of the parameters326

space obtained through the described procedure, together with the obtained327

identified parameters set for each specific operating condition. The colors328

are used to distinguish the different FC working conditions: Air Starvation329

(as), Anode and Cathode Drying (an and ca), Anode and Cathode Flooding330

(fc and fa) Fuel Starvation (fs) and Normal Conditions (nc).331

4.2. Grid Search Optimization and the reduced parameters space332

The parameters space defined in the previous subsection and depicted333

in Fig. 1 with the left-most stem plot, is sampled through a LHS proce-334

dure and evaluated during the grid search optimization to obtain the set335

of solutions XMC = [x1, ...,xNs ] for the experimental impedance spectra336

[Zexp,1, ...,Zexp,Ns ]. Thereby, the set of solutions XMC is used to reduce the337

initial parameters space and build a prior discrete Np-dimensional distribu-338

tion of the parameters. This is represented by the rightmost stem plot in339
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Fig. 1. The obtained discrete distribution is smoothed with a Kernel Density340

Estimate (KDE) procedure so that it can be sampled to obtain an expanded341

training set of arbitrary dimension [37]. This procedure ensures that the342

three regression algorithms are focused on the plausible regions of the pa-343

rameters space, which are those ones leading to impedance spectra that are344

representative of the FC operating conditions. Moreover, the availability of a345

continuous distribution from which an arbitrary number of spectra is drawn,346

allows to benchmark the performance of the regression algorithms by using347

different sizes of the training set.348

5. Results on synthetic data349

The proposed approaches are firstly validated by using the synthetic350

dataset. Both the training and test sets are sampled from the reduced pa-351

rameters’ space that is obtained as it has been described in Section 4.2. The352

reduced parameters’ space is obtained by using the 30% and 70% of the353

experimental spectra, in order to create the training and the testing sets354

respectively. Thus, at this stage, the fractions of the experimental dataset355

reported above are exploited to estimate the parameters’ distributions. The356

resulting distributions for the training and test sets are then sampled and357

processed through the Fouquet ECM to obtain the corresponding synthetic358

impedance spectra that are used for training and test purposes.359

The use of spectra that do not come from experimental measurements360

but that have been generated by using the Fouquet ECM allows to analyse361

the performance of the regression algorithms. Indeed, to each synthetic spec-362

trum, belonging either to the training set or to the test set, corresponds a set363

of parameters of the Fouquet ECM that guarantees the perfect fitting of the364

spectrum thereof. Consequently, modelling inaccuracies of the Fouquet ECM365

for the available experimental data do not affect the identification result and366

the performance of the regression approaches can be analysed in detail. The367

use of synthetic data also allows to study the impact of the number of train-368

ing samples and of the noise affecting the data in the Nyquist plane, the369

latter being added through a simple numeric procedure applied to the test370

set. The noise has been added to the smooth impedance generated through371

the Fouquet ECM. The spectroscopy measurements are known to be affected372

by a stochastic noise, whose standard deviation is a function of the frequency373

and the magnitude of the impedance vector [38]. Therefore, to mimic the374
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noise of the available experimental spectra, the impedance used to build the375

synthetic test set has been altered according to (10):376

Z(f) = Z̄F (f ; x∗) + (βre(f) + jβim(f))︸ ︷︷ ︸
n(f)

, (10)

where βre(f), βim(f) ∼ N (0, σ2(f)) are Gaussian distributed stochastic vari-377

ables describing a non-stationary additive noise n(f), in which the standard378

deviation is computed according to (11):379

σ(f) =
|Z̄F (f ; x∗)|

α
(11)

and α is used to change the noise level.380

The amplitude of the noise term n(f) is proportional to the impedance381

modulus, and affects its real and imaginary parts independently.382

Fig. 3 shows the average performance, over three consecutive runs, of383

the three algorithms on the test set. The algorithms are trained to infer384

the vector of parameters x∗ starting from the impedance Z. The evaluation385

of the Fouquet model returns the estimated impedance Z̄F (f)(f ; x∗). The386

average MSE norm between the estimated spectra and the ones of the test387

set is used to compare the results. In Fig. 3(a) the LS-SVM performance388

underlines the impact of the noise level for two different sizes of the training389

set. For high levels of noise, thus α lower than 30, the average performance390

with 250 samples is worst than the one obtained with the reduced sample size391

of 30. When the noise level decreases, the impact of the increased dataset size392

becomes visible. At α = 100 the performance index is halved. Similar results393

are also obtained for the GPR model (Fig. 3(c)) and very similar results394

between the two dataset dimensions have been reached when considering395

α = 100. It follows that, with the proposed parameters space sampling, the396

impact of a reduced training set size is marginal and the size of the training397

set becomes important only for low levels of noise.398
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Figure 3: Influence of the number of training samples and of noise level α on the average
MSE computed on the synthetic test set: (a) LS-SVM (b) SVM (c) GPR. Each point is
the average of three training runs.
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5.1. Hyperparameters optimization399

For the SVM and the LS-SVM regressions, the optimization of the model400

hyperparameters is performed through a 10-fold CV [34] scheme and a Bayesian401

optimization [39]. Whilst, the GPR hyperparameters are optimized by max-402

imizing the likelihood on the training set via a grid search approach. The403

above implementations automate the parameters tuning procedure, thus en-404

abling the applicability of the methods to different ECMs with small changes,405

often outperforming the standard hand-tuning approaches. The procedure406

is executed on the hyperparameters domain defined as it follows. For the407

SVM and the LS-SVM these are defined in the range C : (1× 10−6, 5× 104),408

γ : (1×10−6, 5×104) and ε : (1×10−11, 1×102) (only tuned for the SVM re-409

gression). For The GPR, the hyperparamers’ ranges are σl : (1×10−5, 1×105)410

and σ2
n : (1× 10−5, 1× 105).411

6. Experimental Results412

The described procedure has been tested on an experimental dataset [1]413

described in the Introduction. The parameters space is built by using the414

procedure described in the previous section and the grid search optimization415

is employed to narrow the search space operating on 70% of the dataset,416

corresponding to 110 impedance spectra, while 30% of the set is left for the417

results evaluation. The histogram plots shown in Fig. 4 give a comprehensive418

view of the obtained results in terms of the MSE resulting by the comparison419

of the experimental data with the Fouquet impedance at the same frequency420

values. The MSE is obtained by using the parameters sets that are inferred421

by the three regression algorithms on all the spectra of the testing set. Af-422

ter, for each inferred parameters set, the Fouquet impedance is computed423

and the MSE is calculated with respect to the corresponding experimental424

data. Consequently, the MSEs histograms shown in Fig. 4 summarize the425

performance of the three approaches on all the spectra of the test set. Tab. 1426

reports the identification results in terms of mean, median, and interquartile427

range (IQR) of the MSE and MAPE calculated over the spectra belonging to428

the test set. The mean is reported as an overall performance index and the429

median is provided to quantify the robustness of the result over the entire430

test set. The closer the mean and median values the better the identification431

performance. In this case, the error histogram approaches a normal distri-432

bution, indicating that there are no reconstructed spectra with an error that433
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Table 1: Mean, Median, and Interquartile Range (IQR) of the MSE and MAPE computed
on the whole test set

MSE (×10−5) MAPE
Mean Median IQR Mean Median IQR

GPR 0.3179 0.2419 0.2017 0.9985 0.9858 0.0358
SVM 0.3403 0.2325 0.2109 1.0875 1.0844 0.0492

LS-SVM 0.7387 0.5537 0.5407 1.0863 1.0779 0.0438

differs significantly from the mean. The interquartile range is also provided434

to assess the variability of the obtained result.435
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Figure 4: Histogram of the MSE errors computed between the inverse model reconstruc-
tions of the impedance spectra and the experimental measurement of the testing set.
Each bar corresponds to the number of spectra of the test set giving an MSE falling in
the corresponding range.

The GPR regression, for a larger number of test set spectra, gives a436

smaller error, both in comparison with those ones ensured by the other meth-437

ods. Moreover, the reduced spread of the values of the histogram plot in-438

dicates that the obtained performance is well generalized on the whole test439

set. The SVM shows an average performance similar to the GPR but with440

an increased spread of the error histogram. Contrarily, the LS-SVM shows a441

performance degradation and higher variability of the result. It is important442

to point out that the low performance of the LS-SVM regression could be443

due to the quite large range of variation the hyperparameters explored during444

the training phase. To quantify the results, different degrees of performance445

have been considered.446

Experimental EIS spectra are affected by an evident noise and artifacts,447

thus those ones resulting with an error below 2 × 10−6 are considered as448

correctly identified. Fig. 4 shows that GPR and SVM guarantees that the449
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45% and the 41%, respectively, of the spectra in the test set are very well450

identified, because the error keeps below the defined threshold. The LS-451

SVM gives a 10% of the spectra that are identified with an error due to noise452

artifacts. The identification performance is reported in Fig. 5. In both the453

cases, the GPR and SVM spectra show optimal results with an MSE below454

2 × 10−6. The results shown in Fig. 5(a) and (b) are obtained through LS-455

SVM and are reconstructed with an error equal to 2.8× 10−6 and 1.5× 10−5,456

respectively.457

Also, the range 2×10−6 < MSE < 2.5×10−6 is giving valuable solutions.458

For the GPR, SVM and LS-SVM models, respectively 11% and 14% and 4%459

of the test set are reconstructed with this error. An example of the quality460

of the reconstruction obtained in this range is shown in Fig. 6.461
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Figure 5: Best identification performance obtained by the GPR and SVM inverse models.

7. On Field Results462

An important point of strength of the proposed inverse model is the short463

execution time observed during the phase of inference. Although the training464

is computationally expensive due to the dimensionality of the space to be ex-465

plored and due to the automatic hyperparameters tuning, the trained model466

consists of a simple function, whose evaluation on the measured impedance467

spectra returns the set of parameters. For this reason, differently from other468

standard model identification procedures relying on iterative algorithms, the469

inference through the inverse model is a good candidate for the implemen-470

tation on a low cost embedded system, since the impact on the resources471
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Figure 6: Middle quality identification obtained by the three inverse models.

usage is negligible and the execution time is deterministic. Both the lat-472

ter aspects are in favor of the approach proposed in this paper with re-473

spect to any stochastic optimization procedure for parameters identifica-474

tion [22, 23, 40, 41, 42]. The three algorithms are implemented in Python475

and executed in a decentralized way. The training procedure, that is compu-476

tationally expensive due to the hyperparameters optimization procedure, is477

executed on the cloud by employing the Google Colab platform. The remote478

machine is equipped with a Dual-Core Haswell Intel Xeon processor at 2.30479

GHz and 12 GB of RAM. After the training procedure, the testing is exe-480

cuted on a Raspberry Pi 3 embedded system equipped with a Quad-Core 1.2481

GHz Broadcom BCM2837 CPU and 1 GB of RAM and the execution times482

of the three algorithms have been considered as benchmark. In Fig. 7(a),483

the training time of the three models is reported as a function of the size484

of the training set. The training time is not only affected by the number485

of samples in the training set, but also by the number of hyperparameters486

to be tuned and the optimization scheme. This explains the scale difference487

between the three techniques. In fact, the training of the SVM regression488

turns out to be the most expensive one, since it requires the tuning of three489
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hyperparameters via the CV. On the other hand, the training is faster for490

the GPR because the optimization of the hyperparameter is carried out on491

the training samples directly, without requiring to compute the CV error.492

Fig. 7(b) reports the execution time for the inference of a set of parameters.
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Figure 7: Training (a) and inference (b) execution times of the three regression algorithms.

493

The results clearly highlight the impact of the dimensionality of the training494

set on the inference time. Indeed, for the considered approaches, the model495

complexity increases with the number of training samples considered during496

the model training. The three algorithms infer the parameters set in few497

milliseconds. The chosen regressions trained with 110 samples perform the498

inference in 2 milliseconds for GPR and in slightly above 1 millisecond for499

the SVM and the LS-SVM models, respectively.500

It is worth to have a comparison in terms of computation time also with501

approaches based on parameters identification from EIS data through the502

minimization of an objective function value [22][23][43][40]. The objective503

function is computed by fixing a set of Fouquet ECM parameters and a set504

of frequencies, then evaluating the Fouquet impedance and computing the505

MSE between the generated impedance and the experimental data. This506

computation has been performed in Python, like the other inverse models507

solutions, and run on the same Raspberry Pi 3 mentioned above. The average508

execution time is equal to 0.7 ms. This means that a competitive optimization509

20



algorithm should be able to find the solution in less than 3 iterations to have510

an execution time that is comparable with that one of the GPR inference511

time, which is slightly above 2ms.512

8. Conclusions513

Machine learning regression models demonstrated to be an efficient choice514

to solve the inverse problem with minimal and deterministic execution time515

reported during inference. Leveraging the a priori knowledge on the ranges516

of the model parameters as well as the knowledge on the regions of the pa-517

rameters space that are more likely to correspond to actual impedance mea-518

surements, the problem becomes computationally treatable with a training519

time that is lower than one minute for the GPR.520

The three techniques, especially SVM and LS-SVM, have shown to be521

more sensitive to noise than to the dataset size. Moreover, for very high522

levels of noise, a big data set size has shown to be counterproductive. The523

LS-SVM showed weaker results in terms of reconstruction error due to its524

sensitivity to the hyperparameters’ tuning and execution times similar to525

the SVM. Therefore it can be considered a valuable option when a small and526

noisy training set is available. Indeed, in the latter case the poor performance527

of the three techniques are comparable and the simplicity of the method is528

better exploited. The GPR and the SVM have shown very promising results529

both in simulated and experimental environment. GPR has been able to530

give an optimal reconstruction of the 45% of the spectra and a moderately531

good reconstruction of a further 11%. SVR gives a slightly lower accuracy532

that is compensated by the execution time required for the inference of the533

parameters, which is almost halved with respect to the execution time of the534

GPR.535

Appendix A. Fouquet Equivalent Circuit Model536

The Fouquet equivalent circuital model has already been adopted in537

[21][36][2] for the identification of PEMFC operating in faulty conditions,538

and it is defined as follows.539

Z(f) = Z̄F (f ; x) = RΩ +
ŻCPE(ω)(Rct + ŻW(ω))

ŻCPE(ω) +Rct + ŻW(ω)
, (A.1)
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with540

ŻCPE(f) = 1
Q(jω)φ.

(A.2)

ŻW(f) = Rd
tanh

√
jωτd√

jωτd
, (A.3)

RΩ

ZCPE

Rct ZW

Figure A.8: The Fouquet equivalent circuit model.

Here ω = 2πf is the angular frequency. The equivalent circuit model541

makes use of a vector of Np = 6 parameters x = [RΩ, Rct, Q, φ,Rd, τd]T .542

RΩ takes into account the losses due to the resistance of the electrolyte to543

the flow of protons, whileRct represents the resistance at the electrode/electrolyte544

interface to the flow of charges. Q and φ are the parameter of the Constant545

Phase Element (CPE), used to model the frequency behaviour of the elec-546

trodes with rough or porous surfaces. The Warburg element is defined by547

Rd, that models the losses due to reactants’ diffusion. The time constant of548

the diffusion process is specified with the parameter τd. The model is evalu-549

ated at the same frequencies where the EIS experiment was performed and550

Nf = 48 impedance points have been obtained.551
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