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Abstract: The signal quality limits the applicability of phonocardiography at the patients’ domicile.
This work proposes the signal-to-noise ratio of the recorded signal as its main quality metrics.
Moreover, we define the minimum acceptable values of the signal-to-noise ratio that warrantee an
accuracy of the derived parameters acceptable in clinics. We considered 25 original heart sounds
recordings, which we corrupted by adding noise to decrease their signal-to-noise ratio. We found
that a signal-to-noise ratio equal to or higher than 14 dB warrants an uncertainty of the estimate
of the valve closure latencies below 1 ms. This accuracy is higher than that required by most
clinical applications. We validated the proposed method against a public database, obtaining results
comparable to those obtained on our sample population. In conclusion, we defined (a) the signal-to-
noise ratio of the phonocardiographic signal as the preferred metric to evaluate its quality and (b) the
minimum values of the signal-to-noise ratio required to obtain an uncertainty of the latency of heart
sound components compatible with clinical applications. We believe these results are crucial for the
development of home monitoring systems aimed at preventing acute episodes of heart failure and
that can be safely operated by naïve users.

Keywords: phonocardiography; signal-to-noise ratio; heart failure; heart valve timing; automated
quality assessment; telemonitoring

1. Introduction

Heart sounds are acoustic waves mainly generated by the closing of heart valves [1].
Their noninvasive recording by means of a microphone gives origin to a biomedical signal
known as phonocardiogram (PCG). Even though traditional auscultation has suffered a
decline over the years due to its lack of objectivity, its digital counterpart is growing in
importance [2]. PCG analysis was proved as a valuable tool for the follow-up of patients
affected by cardiovascular diseases (CVDs), the first world cause of death according to the
World Health Organization [3].

In a previous study [4], we presented an automated algorithm for the segmentation of
heart sounds within a PCG recording and for the user independent measurement of the
timing of heart sound components: mitral and tricuspid components in first heart sound
(S1), and aortic and pulmonary components in second heart sound (S2). The knowledge
of the latency of heart sound components is helpful in studying the electromechanical
coupling of the heart muscle fibers of a subject and consequently a variety of pathologies,
such as heart failure [4–8].

The recent n-SARS-CoV-2 pandemic had a tremendous impact to homecare, due to
the need of reducing as much as possible patient access to hospitals. This tragic situation
forced many countries to speed up the development of homecare services, particularly for
patients affected by chronic diseases or recovering after surgery or severe acute events. At
this time, the need for devices and techniques developed for naïve users, able to collect
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reliable information at the patient domicile and, when necessary, to transfer data to medical
centers or physicians providing homecare services, is widely recognized.

In developed countries, 20% of healthy people between 40 and 50 has a high probability
of developing a heart failure condition in the elderly. The prevalence of heart failure in
Europe is approximately 2% [9], while incidence is approximately 0.30% in Sweden [10].

In the field of signal processing, a typical problem is to evaluate which constraints an
algorithm is subjected to and in which conditions it provides reliable results. This is crucial
in the biomedical area because improper use of an algorithm may lead to incorrect results
and hence to a wrong evaluation of the patient’s conditions, which could negatively affect
the treatment planning and outcomes.

This issue becomes particularly critical when users are unskilled (naïve users), as
in domiciliary applications [11,12]. In a home monitoring context, the availability of a
robust, automated, easy-to-use tool for the assessment of the quality of the estimation
of the closure timing of the heart valves would tremendously increase the possibility of
correctly evaluating the status of the patient’s heart conditions. This would enable the
early treatment of pathologies related to valvular abnormalities and acute episodes of heart
failure [13].

Defining the minimum signal-to-noise value (SNR) necessary to obtain accurate results
appears of key importance for delimiting the field of use and the range of applicability of
an algorithm [11,14].

To date, a critical aspect that limits the applicability of clinical phonocardiography
is the technical difficulty of acquiring high-quality PCG signals. This is due to two main
reasons:

• The quality of the recordings strongly depends on the positioning of the digital
stethoscope [15–18].

• An impressive amount of noise and artifacts affects PCG recordings [19].

To provide reliable results, algorithms for heart sound segmentation and classifica-
tion require a good-quality PCG signal [19]. The application of heart-sound processing
algorithms to poor-quality signals may lead to diagnostically misleading results [12,14].
Figure 1 shows an example of a good-quality and a poor-quality signal: the two signals
were recorded in similar conditions, and both have been digitally filtered for noise reduction.
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Figure 1. Comparison between (a) a good-quality signal (SNR = 31 dB) and (b) a poor-quality signal
(SNR = 4 dB). The extraction of valve timing and even the SNR computation is evidently questionable
in case (b).

Even though the recording conditions and processing methods are equal for the two
signals, their quality strongly depends on the physical characteristics of the subject and
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on the positioning of the microphone. It is evident that trying to extract valve timing
information from the poor-quality signal would be impossible.

The aim of this work is to evaluate the sensitivity to noise of an algorithm we previ-
ously developed [4]. Specifically, in this work, we present the minimum SNR values of the
signals to be processed that grant an accuracy of the valve timing estimate adequate for
different clinical needs. A ready application of this study is the possibility of developing
an automated tool for performing a real-time quality assessment of PCG signals.

2. Materials and Methods

This section presents the rationale of this study and shows the metrics we used to
assess the signal quality and to evaluate the reliability of the results of the algorithm. In the
end, we describe the sample and the validation populations used to test and validate the
presented methodology.

2.1. Rationale

In this work, we used real PCG recordings with original SNR values ranging from 7 dB
to 25 dB (computed with the methodology presented in Section 2.2) and we progressively
reduced the original SNR by adding a noise process with increasing power. Recordings
were performed on healthy subjects in a laboratory setting.

The following equation shows the model of the signal corrupted by the original noise
and by the additive noise, artificially introduced to decrease the SNR:

x(t) = s(t) + n(t) + ni(t), (1)

where s(t) is the original acoustic signal as emitted by the heart, before any noise is super-
imposed; n(t) is the additive noise originally superimposed to the signal in the recording
phase (the sum of s(t) and n(t) is the actual recording); ni(t) is the noise artificially added
to the original signal to decrease its SNR; x(t) is the resulting signal, that was used to
compute the latencies of the heart sound components.

The original signal s(t) and the noise originally superimposed n(t) were assumed
as uncorrelated. The noise process ni(t) was generated as a white stochastic process
uncorrelated to s(t) and n(t). We modeled the noise process ni(t) as a Gaussian white
stochastic process because we found the noise originally superimposed n(t) to present a
normal distribution with a zero mean in the large majority of heartbeats. We applied the
Chi-square goodness of fit test to the segment between 70% and 85% of each cardiac cycle
when no heart sound is expected to occur [1], against the normal distribution, which we
hypothesized as a suitable noise model (α = 0.05). Over more than 16,000 heartbeats, the
null hypothesis, stating that the samples come from a normal distribution, could not be
rejected in 84% of the noise segments. Therefore, a Gaussian white stochastic process was
found as a suitable noise model.

From each original recording, we obtained a set of signals in which SNR progressively
decreased by 0.1 dB steps. Specifically, for each signal xi(t), additive noise ni(t) was
generated with a standard deviation equal to:

σi = σ0 ·
√

10
0.1·i
10 − 1, (2)

where σ0 is the average standard deviation of noise in the original recording, computed
within 70% and 85% of the cardiac cycle when no heart sound is expected to occur [1]. To
segment the PCG signals into cardiac cycles, R-peaks of a simultaneous electrocardiogram
were used as reference.

The SNR is expected to decrease by approximately 0.1 dB at each iteration. The
computation of SNR relies on the correct identification of heart sounds within the signal:
when the signal quality is very poor, the resulting SNR value may be inaccurate. Therefore,
when the computed value of SNR stops decreasing in two consecutive iterations, the stop
condition is met. Figure 2 represents the flowchart of the process.
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2.2. PCG Quality Assessment

Few methods for PCG quality assessment were previously proposed in the literature,
as expanded in Section 4. In most cases, it was suggested to assess the quality of a
PCG signal based on its physiological characteristics, by extracting a set of features from
the signal itself, which are then used to feed a machine learning algorithm or to build
some criteria.

In this study, we propose to evaluate the signal quality by means of elementary numer-
ical methods applicable to the single heartbeat. Our purpose is to have a quality evaluation
that does not depend on signal features that may vary in case of pathological conditions.
Moreover, we want to evaluate the signal quality directly on the raw recordings, prior to
any filtering process. Our aim was to develop a straightforward methodology to assess
the signal quality in real time, to provide inexperienced users with direct feedback, easy to
understand. This requires a quality assessment algorithm easily implementable onboard of
the recording system: it follows that simple numerical computations are preferable.
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Moreover, a robust evaluation of the quality of the recordings is of key importance for
use in telehealth applications, where no human feedback is available.

Consequently, we performed PCG quality assessment only based on the SNR of PCG,
which takes into account the level of noise of the recorded signal and is independent of its
characteristics and on the presence of any pathological state.

In particular, we computed the SNR value separately for the first and second heart
sounds, thus obtaining two SNR values for each heartbeat.

We assume PCG signals as quasi-periodic and the additive noise as a stochastic process.
Therefore, we defined SNR as in Equation (3):

SNR = 20 log10
AS

4 σN
, (3)

where

• AS is a measure of the signal amplitude, defined as the peak-to-peak amplitude of the
heart sound of interest;

• 4 σN is a measure of the noise amplitude, corresponding to the amplitude of the 95%
band of noise. This is assumed as having a normal probability density function of its
amplitude. The latter is computed within 70% and 85% of the heart cycle when no
heart sound is expected to occur [4].

2.3. Criteria for the Evaluation of the Results

To assess the robustness of the algorithm towards the noise, we quantified the varia-
tions of the latencies of the two components of both S1 and S2 as a function of a progressive
decrease in the signal SNR.

Specifically, we considered:

• R-S1,M: the latency between the mitral component of the first heart sound and the
corresponding R-peak;

• R-S1,T: the latency between the tricuspid component of the first heart sound and the
corresponding R-peak;

• R-S2,A: the latency between the aortic component of the second heart sound and the
corresponding R-peak;

• R-S2,P: the latency between the pulmonary component of the second heart sound and
the corresponding R-peak.

The technique for the estimation of the latencies is presented in a previous work [5].
Figure 3 shows a visual representation of the latencies.

Figure 4 shows an example of the dependency of R-S1,T on SNR in a signal with an
original SNR, for first heart sound, equal to 24 dB.

The test was repeated 10 times on every signal. For each test, we computed the value
of each latency for each SNR value. Thus, we obtained 10 curves similar to those presented
in Figure 4. In the end, we resampled all 10 curves at fixed SNR points, keeping the
resolution equal to 0.1 dB, and we computed the median curve, which we consider as
representative for the single subject.

Finally, we computed the minimum acceptable SNR value as the value that corre-
sponds to the first measurement of the latency, in decreasing SNR order, which significantly
differs from the initial (true) value. We considered as “significantly different” a value for
which two conditions were met:

1. Presence of a trend. It was identified by applying Wald–Wolfowitz runs test (α = 0.05) [20];
2. Difference from the reference higher than 1 ms, i.e., higher than the resolution of the

acquisition system.

In Figure 4, a vertical line shows the minimum SNR value we may accept on the
sample R-S1,T set of curves assuring a 1 ms resolution.
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The criteria adopted grant the same resolution that the acquisition system offers (1 ms).
Nevertheless, in the clinical context, in most cases, a higher measurement uncertainty could
be accepted.

Therefore, we computed the minimum acceptable SNR again, with the same methodol-
ogy described above, for different time-resolution values. The scope is to allow for consider-
ing the minimum SNR value that may be acceptable, depending on the clinical application.

We repeated the computation by considering as measurement uncertainty subse-
quently higher percentages of the mean value of the latency over the sample population
(2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%).

We believe that a measurement with an uncertainty higher than 20% of its value is
too rough for any kind of clinical application. In fact, when considering the first heart
sound, which commonly shows a split as long as 20–30 ms in healthy subjects [4,21], a
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measurement uncertainty of more than 20% over values of approximately 40–50 ms [4,22]
could negatively affect the capability of the algorithm of distinguishing between the mitral
and the tricuspid components in several subjects.

2.4. Sample Population

The sample population for this study consisted of 25 healthy volunteers. The study
was retrospectively conducted based on the signals recorded for the previous study we
published in [4]. The experimental protocol conformed to the Helsinki declaration and
subjects signed an informed consent form. For each subject, we recorded 10 min of PCG
and ECG signals.

We performed recordings using a commercial acquisition system for biomedical
signals (ReMotus®, It-MeD, Torino, Italy) and a custom-made microphone probe based on
a condenser electret microphone.

A more detailed description of the technical features of the acquisition system can
be found in [4]. A recording from the sample population is provided as example in the
Supplementary Material, along with 5 versions of the same recording where noise was
added to decrease its SNR value down to respectively 25 dB, 20 dB, 15 dB, 10 dB, 5 dB.

2.5. Validation against a Publicly Available Database

To validate the proposed methodology and the resulting minimum acceptable SNR
values, we relied on a public database. For this purpose, we used the PhysioNet CinC
Challenge 2016 database, which comprises recordings from eight publicly available heart
sound databases [23]. Among the available recordings, only those from the Massachusetts
Institute of Technology heart sound database (training set “A”) had a simultaneous record-
ing of an ECG associated, which is a fundamental requirement for the scopes of our
method. Therefore, we selected the recordings from the MIT database and extracted the
ones classified as “Normal”, i.e., from patients with no history of cardiopathy, to match
the characteristics of our sample population. Of this database, 117 recordings satisfied
the requirements.

The MIT database is particularly suitable for the validation of the proposed methodol-
ogy for the PCG quality assessment because the recordings were performed in an uncon-
trolled environment and, partially, in a domicile context. Therefore, the phonocardiograms
are affected by a large variety of noise contributions. On the other hand, the ECG sig-
nals were not always good-quality ones: sometimes their SNR or morphology were not
sufficient to accurately identify the R-wave peak to be used as a reference for the esti-
mation of the latencies. For this reason, we discarded the recordings not satisfying the
following criteria:

1. The amplitude of the R-peak must be at least three times wider than the amplitude of
the noise 95% band (14 signals were discarded).

2. The first high-amplitude wave of the QRS complex (R-wave) must have the same
polarity as the T-wave (15 signals were discarded).

In this way, we used 88 out of 117 recordings. In the following, “sample population”
will refer to our recordings, which we used to build and test the proposed method for PCG
quality assessment, whereas “validation population” will refer to the population used for
the validation of the method, which we extracted from the MIT database.

The validation was carried out by comparing the minimum acceptable SNR value
obtained for each of the recordings of the validation population to the minimum acceptable
SNR values computed for the sample population. To better match our database, only
recordings with an original SNR before corruption higher than 14 dB were used (42 signals).
We used the percentage of recordings with a minimum acceptable SNR value lower or
equal to the one computed over the sample population as metrics to verify the robustness
of the methodology.
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3. Results

In this section, first, we present the minimum SNR values considered as acceptable
respectively for the latency of the mitral, tricuspid, aortic, and pulmonary components.
These values were computed to grant a measurement uncertainty of the latencies equal to
the resolution of the acquisition system (1 ms).

Then, we show how the minimum SNR values change when an increasing uncertainty
may be acceptable, as often happens in clinical conditions.

3.1. Minimum Acceptable SNR Values with 1-ms Uncertainty

Table 1 presents, for each subject, the initial SNR value for each heart sound, which is
an index of signal quality, and the computed minimum value of SNR considered adequate
for the estimation of each latency parameter. The initial SNR values (SNR1, SNR2) are
computed on the raw PCG signal, before applying any digital filtering.

Table 1. Minimum acceptable SNR values (1-ms uncertainty). For each subject of the sample population, this table presents
the initial SNR value and minimum acceptable SNR threshold for each latency. The overall SNR threshold is the maximum
value obtained for each parameter. A “N/A” value (not available) is associated with signals where no threshold could be
computed for a parameter because the condition was never met.

Subj ID
Initial SNR Values (dB) Minimum Acceptable SNR Values (dB)

S1 S2 R-S1,M R-S1,T R-S2,A R-S2,P

subj01 26 23 N/A 10 12 11
subj02 8 7 6 6 5 5
subj03 11 10 8 8 8 7
subj04 14 14 6 9 7 9
subj05 24 20 10 9 N/A 11
subj06 14 10 8 10 7 6
subj07 18 15 7 12 8 10
subj08 14 10 7 8 6 8
subj09 15 12 8 7 7 8
subj10 21 20 6 13 6 10
subj11 14 17 9 9 9 13
subj12 13 14 N/A 8 9 9
subj13 12 8 N/A 9 5 N/A
subj14 12 9 7 6 6 6
subj15 13 13 8 8 6 9
subj16 16 18 10 10 11 9
subj17 10 7 6 7 5 5
subj18 9 7 7 7 5 6
subj19 19 14 N/A 11 9 9
subj20 7 7 6 6 N/A 6
subj21 15 11 8 7 N/A 8
subj22 10 10 8 8 7 8
subj23 8 9 6 6 8 7
subj24 23 26 7 14 10 7
subj25 18 15 12 N/A N/A 9

Minimum acceptable SNR values over the population 12 14 12 13

It should also be highlighted that, in some cases, all the computed values differed
less than 1 ms from the reference value, for any SNR value. Therefore, in those cases no
threshold could be computed and, in Table 1, they are reported as “N/A”.

The minimum acceptable SNR values over the population are computed as the maxi-
mum acceptable value of SNR found over the entire group of subjects for each parameter
(worst case) and are shown in the last row of Table 1.
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Observing the results, we can conclude that raw recorded signals with an original
SNR value higher or equal than 14 dB for both heart sounds may be considered as adequate
for estimating the latency of heart sound components with an uncertainty of 1 ms.

It must be emphasized that signals which are considered below threshold in this step
are not necessarily inadequate for clinical applications.

Figure 5 presents the plots of respectively R-S1,M, R-S1,T, R-S2,A and R-S2,P in the
function of the SNR of the signal for all 25 subjects. All values were normalized with
respect to the value corresponding to the highest SNR for the purposes of comparison.
Each colored line represents a subject, whereas the vertical line is the minimum acceptable
SNR value for the population.

Figure 5 shows that, even at SNR values lower than the computed threshold, the
variation of the latency with respect to the reference value is not particularly relevant,
especially when considering the second heart sound.
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3.2. Minimum Acceptable SNR Values as Function of Uncertainty

In a clinical context, the uncertainty considered acceptable is usually expressed as a
percentage of the value of the measurement.

In this study, we examined the effect of uncertainties ranging from 2.5% to 20% of
the latency estimate, which may be considered reasonable in most clinical applications.
For each heart valve, the minimum and maximum latencies RSx,y THS (with x = 1, 2 and
y = M, T, A, P) that give the percentage uncertainty ε% were computed according to
Equation (4):

RSx,y THS = RSx,y REF ± ε%

100
∗ RSx,y REF, (4)

where RSx,y REF is the reference latency, i.e., the median of the latency computed over the
sample population. Table 2 reports the median values (along with 25th percentile and 75th
percentile values) for the four latencies over the sample population, used as references to
compute the percentage uncertainties.

Table 2. Median, 25th percentile, and 75th percentile values for the four latencies over the sample
population. The median value is used as reference for the computation of the percentage uncertainties.

R-S1,M (ms) R-S1,T (ms) R-S2,A (ms) R-S2,P (ms)

Median 44 77 368 392
25th percentile 38 69 353 377
75th percentile 60 96 393 432

The minimum acceptable SNR value is the SNR corresponding to the first latency
outside the range in decreasing SNR order. Figure 6 presents the minimum SNR as a
function of the measurement uncertainty considered as acceptable. The reported values
are the maximum values found over the sample population (worst case).

The estimates of the latencies of S1 components are more sensitive to noise than those
of S2 components. Moreover, the measurement of the closing time of the valves of the
left side of the heart is more robust towards SNR than their counterpart in the right heart,
especially in the case of atrioventricular valves. This makes sense since left heart pressure
gradients are higher than right heart ones.

For the second heart sound components, it was not possible to define a minimum
acceptable SNR value for high uncertainties (higher than 10% for aortic, higher than 12.5%
for pulmonary valves). In fact, in the tested conditions, the estimated latencies never differ
from the initial value by more than 10% and 12.5%, respectively. Therefore, the minimum
SNR reached was chosen as the minimum acceptable SNR value. For the second heart
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sound components, it is possible to obtain a 5% uncertainty with signals showing an SNR
as low as 6 dB, which may be obtained on almost every subject with a good acquisition
system and an experienced user.
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3.3. Results of the Validation against a Public Database

As mentioned in Section 2.5, we evaluated the robustness of the computed minimum
SNR values as a function of the acceptable percentage uncertainty against recordings from
a publicly available dataset. Figure 7 presents the results.

The height of each bar in Figure 7 represents the percentage of recordings from the
validation population that satisfies the corresponding percentage uncertainty when their
SNR is decreased down to the minimum acceptable value defined above (Figure 6) on
our database.

It should be highlighted that, differently from Section 3.2, the “0” column corresponds
to an absolute uncertainty smaller than the 95% confidence interval (CI95) of the estimate
of the latency, instead of the 1 ms resolution of the acquisition system. This is due to the fact
that the duration of the recordings belonging to the validation population (12 to 36 s) is one
order of magnitude shorter than that of the recordings belonging to the sample population
(10 min). Since the estimate of the latency is computed as the average of the latency values
over the recorded heartbeats, the availability of a significantly lower number of heartbeats
negatively affects the robustness of the estimate.
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4. Discussion

Monitoring of patients suffering from a form of cardiomyopathy that makes them
exposed to episodes of acute heart failure is of paramount importance to avoid the acute
episode and the hospitalization of patients. It is well known that each acute episode
significantly compromises the life expectance of the patient [24,25]. Approximately 10–20%
of patients that develop an acute episode will die within 30 days [25], and, considering a
period of 5 years from the first acute episode, only 50% of patients will survive [24]. In
developed countries, the prevalence of chronic heart failure is approximately 1% in the
population aged from 54 to 65 years, it increases up to 3% between 65 and 74 years, shows
a further increase to approximately 7% from 75 to 84 years, and reaches a percentage as
high as 10% for people over 84 years of age [25]. At this time, people aged from 40 to 50
years have a probability of developing a form of chronic heart failure up to 21% all during
their life, and this probability increases up to 28% for forty-year-old people affected by a
form of hypertension [25].

Approximately 1–2% of the costs of health expenses are due to cardiac heart failure [26],
and approximately 60% of these costs is due to hospitalization [26,27]. On the average, an
acute episode requires one week hospitalization of the subject, that, in turns, costs over
USD 10,000 in the U.S. [27,28], as well as in Europe.

These data suggest that inexpensive methods and devices for preventing acute
episodes of cardiac heart failure would warrantee a considerable increase in active life
expectancy to predisposed people while allowing sanitary systems to save a large amount
of money. A typical win–win approach.

For patient monitoring to be effective, tolerable, and low cost, it should be based
as much as possible on the monitoring of compensated patients, which are known to be
exposed to episodes of cardiac acute heart failure. Monitoring should be performed at their
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domicile by means of inexpensive, reliable, and easy-to-use devices. A naïve user, typically
the patient or a caregiver, should be able to operate these monitoring devices, which
should be able to identify elevated risk conditions and to suggest patients to contact their
cardiologist. A set of significant data should be transferred by the system at the patient’s
domicile to the physician in charge, to allow her/him to take proper countermeasures to
prevent the acute episode.

Platforms allowing for the follow-up of patients prone to cardiac failure at their
domicile are already in use, they are generally recognized as useful [29,30], but their
effectiveness still needs to be improved.

From a physiological point of view, an episode of heart failure is most frequently
generated by a decreased pumping capacity of the cardiac muscle, often due to a decrement
in the effectiveness of the electro-mechanical coupling in ventricular muscle fibers. In
turn, a decrement of the contractile force of ventricles causes a delay in the closure times
of the heart valves, measured, generally, taking the R-wave (ventricular depolarization)
as a reference. It has been demonstrated that diminished effectiveness of heart pumping
is reflected in an increment in the closure latencies of the heart valves. Moreover, the
possibility of measuring the specific latency between the R-wave and the closure of each
heart valve also allows for discriminating among different forms of heart failure (i.e., left
heart failure, right heart failure, or a failure affecting both heart ventricles).

To the best of our knowledge, at this time, there is a single report in the literature that
describes how to extract the latencies of the closure of the four heart valves with reference
to the depolarization of ventricles [4] without resorting to cardiac catheterization. Though
the cited methodology has been proven as effective in a normal population, no data are
currently available to predict the accuracy of the estimated latencies as a function of the
signal quality. In fact, the quality of PCG signals is very variable also in normal subjects
and may be further compromised in subjects that are developing an acute form of heart
failure. Hence, to maximize the reliability of follow-up procedures at the patient domicile
by means of devices based on PCG signals, it is of paramount importance to define a
metric that allows to automatically detect when the quality of the recorded signal is not
sufficient for its clinical interpretation. It must also be considered that the different clinical
conditions of different patients may be compatible with different accuracies of the latencies
of the closure of valves with respect to the ventricular depolarization. Hence, the physician
should be allowed to choose an accuracy of the estimates that fits the conditions of each
specific patient.

In the literature, methods for PCG quality assessment are not abundant, although in
the latest years this issue gained an increasing interest within the scientific community.

A first family of proposed approaches, published approximately ten years ago, based
the quality assessment on the periodicity of the PCG signal. Li et al. [31] proposed an
automated algorithm to select a subset of subsequent heartbeats based on their degree
of periodicity. Kumar et al. [32] based their quality assessment on the periodicity of
heartbeats, by selecting a heartbeat characterized by a low noise level within the recording
and comparing the remaining ones with it by spectral matching. A good-quality signal
was characterized by a high level of matching.

Several Authors reported different methods involving a wider set of physiological
features extracted from the signal in the time, frequency, or time-frequency domains. Some
Authors combined the selected features into the evaluation criteria. Naseri et al. [11]
proposed a quality assessment method that relies on features such as the logarithmic
energy of the signal, the level of noise outside the typical bandwidth of heart sounds and
murmurs (>700 Hz), and the duration of the segments corresponding to the heart sounds.
Grzegorczyk et al. [33] used three criteria based on the root mean square of successive
differences of the signal and the number of detected peaks over different moving windows.
More recently, Mubarak et al. [19] relied on voting among three criteria, which were the
root mean square value of successive differences between heart sounds, the ratio of zero
crossings in the signal, and the ratio of segments having a “normal” number of peaks.
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In the latest years, different Authors proposed several methods based on machine
learning which considered a large number of features. These methods typically define a
recording in a binary way, as either of sufficient quality or not. This kind of output is very
easy to interpret and is also well accepted by clinicians. Its limitation is represented by the
fact that it does not make available numerical quality metrics. Zabihi et al. [34] proposed
a quality assessment method based on an ensemble of 20 Neural Networks, fed with 40
features from the time, frequency, and time-frequency domains. It should be highlighted
that in later work the same authors used the SNR of the PCG signal to divide their dataset
into good vs. poor quality signals as a preprocessing step [35]. Springer et al. [12,36]
proposed nine signal quality indices, mostly based on the autocorrelation of the PCG
envelope, which they used to feed a support vector machine [36] and a logistic regression
classifier [12]. Very recently, Shi et al. [14] developed a method for assessing the quality of
heart sounds within radar-recorded signals. They proposed ensemble classification on a
wide range of extracted features, which they considered as a complement to Springer’s
quality indices [12]. They used the SNR of the signals, labeled as high-quality or low-quality
by a medical staff through visual inspection, as a reference for validation. An obvious
limitation of this approach is the need for expert operators to classify each single signal
recording. Also in 2020, Chakraborty et al. [37] published a work in which they used a
convolutional neural network fed with the spectrogram of the PCG signal to evaluate the
signal quality. In the same year, a paper by Grooby et al. [38] proposed the extraction
of as many as 187 features from neonatal PCG signals and classified their quality using
an ensemble classifier combining a support vector machine, a decision tree, K-nearest
neighbors, and a Gaussian Naïve Bayes classifier. A major limitation of this approach is the
difficulty in relating most of the 187 features to cardiac physiology or to visually inspect
signal features easily, thus binding the user to completely trust the methodology.

Most of the reviewed methodologies presented in the last five years imply the usage of
a wide range of features extracted from the signal, which are correlated to the morphology
of the signal, sometimes not so obvious. This makes it difficult for physicians to understand
why a specific signal is not considered of sufficiently quality, which is information that
could be relevant from a clinical point of view. Moreover, a large number of signal features,
even if physiological interpretation is not obvious, may be affected by the presence of a
pathological condition.

In this paper, we present a metric that is very easy to interpret and that may be, if
necessary, visually inspected in a very simple way by clinicians. A second very important
advantage of the usage of a numerical metric such as the SNR is that its meaning and
interpretation are independent of the health status of the subject.

Section 3 shows that SNR is a very robust metrics to assess the quality of a PCG
recording. As the monotonic trend in the curves of Figure 5 shows, the amount of error in
the estimation of the latency of heart sound components appears positively correlated to
the decrease in the SNR of the signal, as expected. We believe that relying on an SNR-based
quality assessment of the PCG signal quality grants direct feedback regarding the reliability
of results obtained by home monitoring systems.

As highlighted in the Results session, we found that an SNR as low as 14 dB is sufficient
for obtaining an estimate of the closure latencies of hearth valves with an uncertainty lower
than 1 ms, which is definitely higher than that generally required in clinics. By means of
the algorithm, we previously published [4], phonocardiography recordings of such quality
could be obtained with an average electronic stethoscope, also at the patient’s domicile,
as soon as other technical problems (e.g., the positioning of microphones over the chest)
are solved.

We already stated that, to our best knowledge, at this time there is no other possibility
for obtaining a day-to-day follow-up of the timing of the closure of heart valves with non-
invasive techniques, in residential environments, and without requiring the intervention
of an expert user with a clinical background. This is an important point of strength of
this technique.
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The second strength of our approach is represented by the possibility of adapting
the minimum acceptable SNR value to the clinical needs of the specific patient. In fact,
since an estimation accuracy as high as 1 ms is generally unnecessary in most clinical
situations, Figure 6 shows that it is possible to adapt the minimum acceptable SNR value to
the acceptable percent error of the estimation of the latencies of the closure of heart valves
with respect to ventricular depolarization. Figure 6 also shows that the dependence of the
estimation error on the SNR is different for different heart valves. Those involved in the
generation of the second tone (aortic and pulmonary valves) are more robust to a lower
SNR than those responsible for the first tone (mitral and tricuspid valves).

We validated the presented results against a publicly available dataset. The validation
shows that the minimum SNR values we computed on the sample population grant the
corresponding uncertainty over the estimate in more than 90% of the recordings. We
believe that this result allows us to demonstrate that our findings are independent of the
sample population, the user, the recording system, and the context.

We believe that these original findings may have a relevant impact in designing
devices to be used in a telemedicine context at the patient domicile, since they would allow
the cardiologist to adapt the device to reject only those signals that are not of sufficient
quality with respect to the specific condition of every single patient, thus maximizing the
amount of reliable information collected. We consider these results as very promising and
we believe they will facilitate the design of user-independent, low-energy, and reliable
devices to be used in a telemedicine context to daily assess the condition of patients with a
significant likelihood of developing acute heart failure episodes.

A possible limitation of the applicability of this method could be hypothesized consid-
ering that the threshold values of SNR herein reported have been obtained by applying
the algorithm for the estimation of the latencies of heart sound components we previ-
ously published [4]. In fact, this algorithm includes a denoising step, discussed above
in Section 2.2, which increases the SNR value of the original recording by a minimum of
3 dB up to a maximum of 14 dB. In fact, this is not a real limitation, since most processing
techniques applied to PCG signals comprise denoising as a preprocessing step. Indeed, the
denoising algorithm we adopted gives results that are similar to those reported by other
Authors for state-of-the-art denoising algorithms applied to phonocardiography. In fact,
other researchers reported an increase in SNR between 3 dB and 15 dB by using a variety
of different algorithms [39–43]. Hence, since previous results reported in the literature
for different PCG denoising algorithms and those we obtained by applying the algorithm
described in Section 2.2 are very similar, we can hypothesize that applying a different noise
reduction approach will not negatively impact the estimation of the minimum values of
SNR that may be suitable to clinical applications.

One could argue that another obvious limitation of the proposed work is the unavail-
ability of signals recorded on pathological subjects. Indeed, this choice was formed on
purpose, to first test the approach on a normal population before extending it to pathologi-
cal subjects. Moreover, this approach is imposed by most ethical committees. Nonetheless,
we believe that the methodology herein presented is robust with respect to the health status
of the subject, since it relies on simple numerical methods and on a very basic characteristic
of the signal, instead of considering numerous signal features, which are more likely to
change in the presence of a pathology.

The computational cost of the vast majority of the algorithms proposed in the literature
makes them unsuitable for implementation in real time, even on 32-bit microprocessors
with a floating-point processing unit. The approach herein presented may be easily imple-
mented on high-end microprocessors and hence all the necessary data processing could
be carried out within the detection device, without relying on an external computer or
smartphone for computations.

To our best knowledge, only one previous research work implemented some quality
assessment in a real-life monitoring application. In particular, Nemcova et al. [44] forecast
a quality check on their app for blood pressure monitoring. The quality evaluation was
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performed visually by the user, by confirming that she/he could see periodical peaks
within the signal shown on the screen.

We believe that numerous naïve users could be unable of providing a reliable opinion
about the signal quality, even in an extremely simple way. This is particularly credible in
our application, considering that the target users belong to the elderly population, since
these subjects are most likely affected by CVDs.

Finally, it should be highlighted that more than half of the cited works related to PCG
quality assessment [11,12,14,19,31–38,44] were published in the last 3 years, implying that
this topic is gaining importance within the scientific community.

5. Conclusions

The aim of this work was to analyze the sensitivity to noise of the measurement of
the latency of the components of the first and second heart sounds, estimated by means
of an algorithm we previously developed [4]. We progressively added artificial noise
to real PCG recordings to obtain, signals with a lower SNR. At each iteration, we esti-
mated the four latency values associated to the closing of the mitral, tricuspid, aortic, and
pulmonary valves.

We found that, in the worst case, recordings with an SNR as low as 14 dB are sufficient
for obtaining a measurement uncertainty lower than 1 ms.

Since in most clinical applications clinicians can accept a measurement uncertainty
substantially higher than 1 ms, we assessed the variation of the minimum acceptable
SNR value as a function of the acceptable uncertainty. We concluded that the latencies
of the atrioventricular valves are typically more sensitive to noise than their semilunar
counterparts. An SNR equal to 10 dB is sufficient to obtain a 10% uncertainty on all
the latencies.

Since the prolongation of the latency of the closing of heart valves is strictly related
to a compromised ventricular function, which in turn may cause heart failure and other
dysfunctions, evaluating valve timing through PCG is a promising technique, especially
at the patient domicile in a telemedicine context. The user-independent evaluation of
the quality of PCG signals is crucial for allowing the development of reliable systems for
the home monitoring of patients prone to heart failure. Hopefully, this home monitor-
ing approach should strongly reduce the need for patient hospitalization and possible
negative outcomes.
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