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Abstract: We propose a neural network-based automatic management system for N×
N optical switch in the context of a software-defined network. The proposed automatic
softwarized system operates in a completely agnostic manner in real-time. © 2021 The
Author(s)

1. Introduction

Recently a remarkable growth had been observed in exploiting Photonic integrated circuits (PICs) to perform
complex functions at the photonic level, avoiding the bottleneck of optoelectronic conversion. Today PICs are a
promising technology for next generation switching systems, due to their low energy consumption, lower latency
and small footprint. These PICs attributes are highly required, particularly in core optical networks and data centres
where high-speed data exchange is fundamental. This increasing application of large-scaled PIC-based switching
devices demands automatic management systems. In this scenario, Software-defined networking (SDN) becomes
an essential paradigm for the softwarized and automatize management of PIC-based switches.

Typically, PIC-based reconfigurable optical switches rely on the principle that the flow of light can be ma-
neuvered by electrically controlled elements, like Mach-Zehnder (MZ) interferometers [1] or optical micro ring
resonators (MRRs) [2]. A generic N×N photonic switch can be fabricated by combining multiple switching ele-
ments in different topologies, where N input signals at multiple wavelengths (λ1, λ2, λ3....λN) are routed to any N
output port with different wavelength combination ( λ2, λ3, λ1....λN) [3]. Some unique properties characterize each
topological configuration: basic switching element size, non-blocking routing, minimization of optical losses, pla-
narity, reduction of the circuit footprint and the operational power consumption [4]. Most of non-blocking optical
switching networks are based on multistage crossover structures, with 2× 2 crossbar switches as basic switch-
ing elements, which can be piloted through M control signals, toggling between the two switching states (M = 1
Cross-state ([0,1]→ [1,0]) and M = 0 Bar-state ([0,1]→ [0,1])). These structures are typically based on the Clos
network or the Banyan switch approach, which dictates the number of elements, stages, and interconnections.

One of the standard network topology for this class of networks is the Spanke-Beneš switch. This device is non-
blocking rearrangeable, enabling the routing of all input permutations to the output ports. The main characteristic
of this switch is the inter-stage planarity: while the Beneš, Clos or general Banyan networks usually relies on
crossing interconnects between the stages, in the Spanke-Beneš the links between the 2×2 elements do not overlap
with one another, as shown in Fig. 1a. The planarity achieved in this structure comes with a trade-off with respect
to alternative implementations, as the number of switches required grows as O(N2) with respect to the Beneš
structure, with a O(N · log(N)) dependency. This leads to a rapid increase in the number of control states available
in the network Nst = O(2N2

), making brute-force analysis and generalized topology-agnostic deterministic routing
algorithms ineffective in tackling the problem complexity, especially concerning the best available path selection,
which is the next step in the evolution of the proposed method. Due to this characteristic, the Spanke-Beneš
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Fig. 1: Examples of 10×10 Spanke-Beneš network (a), Software-defined Open optical networks (b).



Table 1: Dataset Statistics
Spanke-Benes size

N×N
Permutations

N!
Number of
switches M

Combinations
2M Dataset Train Set Test Set Neurons per

hidden-layer
8×8 40,320 28 268,435,456 300,000 210,000 90,000 70

10×10 3,628,800 45 35,184,372,088,832 1,000,000 700,000 300,000 90
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Fig. 2: Neural Network analysis (a), Neural Network prediction results (b).

network poses an effective benchmark in evaluating the effectiveness of a stochastic Machine learning (ML) based
approach.

In this work, we propose to train a topology agnostic ML agent to predict control signal states of N×N optical
switching system. The proposed approach is adopted in an SDN context which softwarized and automatized the
configuration of any PIC-based optical switching system depicted in Fig. 1b. Given a N ×N photonic switch
with any arbitrary internal topology, the proposed approach undertakes it as a black-box component and tries to
determine control states with a high level of accuracy.

2. Results & Conclusion

To generate the ML training and testing dataset, we considered a N×N Spanke-Beneš network. To demonstrate
the proposed approach’s scalability, two cases: N = 8 and 10; corresponding to the configurations with M = 28
and 45, internal switches are addressed. A subset of the total 2M control combinations are used for the generation
of the dataset, as reported in Tab. 1. The dataset is used to train a supervised neural network in the learning phase.
The proposed ML model uses a Deep neural network (DNN), developed by using the TensorFlow© platform: it
incorporates three hidden-layers. The proposed DNN model exploited ReLU as an activation function, and it is
evaluated by mean square error (MSE) as a loss function. The DNN model is configured for training-steps of 4,000
and a learning rate of 0.01. The train set for both networks consists of 70% of the dataset, while the test set uses
the remaining 30%, as reported in Tab. 1. Moreover, the proposed ML agent utilizes wavelengths at the output
ports as features and M control signals as labels.

The results in Fig. 2a(i) reveal the effect of increasing the number of neurons per hidden layer. An improvement
in the ML model’s prediction ability is observed, up to a certain extent, after which it remains constant. Along
with this, in Fig. 2a(ii), the effect of the total considered training data size reported in Tab. 1 is also revealed.
The trend shows that the prediction ability of the ML model improves with the increasing training data size. The
rate of correct prediction is summarized for both two considered Spanke-Beneš sizes by the blue bars in Fig. 2b.
We observe an excellent preliminary level of accuracy (>94%) for both the cases: N = 8, and 10. To further
improve the ML approach’s prediction capabilities, we added an auxiliary step based on a simple heuristic that
we developed from observing wrong configurations. In most of the wrong prediction cases, the correct control
sequence has a single switch element in an incorrect state. The proposed heuristic tries to correct a single ring
error by flipping one switch simultaneously and comparing the output sequence against the desired output. For
Spanke-Beneš 8×8 and 10×10, using ML assisted by heuristic, the accuracy improves to 99.87% and 98.31%.

In conclusion, we have demonstrated that a neural network can efficiently define control states for a generic
N×N photonic switch without any knowledge required on the topology. The proposed approach is easily scalable
to large N as a high level of accuracy is achieved with a limited size dataset.
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