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Abstract: Sustainable mobility has recently become a priority of research for on-road vehicles. Shifting
towards vehicle electrification is one of the most promising solutions concerning the reduction in
pollutant emissions and greenhouse gases, especially for urban areas. Nevertheless, battery electric
vehicles might carry substantial limitations compared with other technologies. Specifically, the
electric range could be highly affected by the ageing process, non-optimal thermal management
of the battery and cabin conditioning. In this paper, a model for the estimation of the residual
range of electric vehicles is proposed accounting for the influence of battery state of health, battery
pack temperature, power consumption of the main vehicle auxiliaries, and battery pre-heating on
the residual driving range. The results of the model application to an L7 battery electric vehicle
highlighted that the electric range can be highly affected by several factors related to real-world
driving conditions and can consistently differ from nominal values.

Keywords: electric vehicles; battery; residual range; state of charge; state of health; tempera-
ture; HVAC

1. Introduction

The environmental crisis being experienced by modern societies poses a tangible threat
to the preservation of ecosystems and human health, hence requiring immediate action to
reverse the phenomenon [1]. Several European countries have recognized environmental
issues as an urgent subject to be dealt with through long-term strategies aimed at the
radical reduction in pollutants (e.g., NOx and PM) and green-house gases (GHG) emissions
(i.e., CO2). As far as the road transportation sector is concerned, emissions are lower
compared with those of year 2000 while still accounting for a considerable proportion of
overall emissions [2]. With reference to GHG emissions, the transportation sector accounts
for roughly 25% of overall European emissions, which have been increasing every year
since 2014 and are forecasted to further increase due to oil-dependent transports [3]. In
terms of climate mitigation and local emission reduction, battery electric vehicles (BEVs)
appear to be a valid technology to reach a substantial reduction in both pollutant and
GHG emissions [2,3]. Osei et al. [4] have estimated that a fleet electrification scenario
could reduce NOx, PM and CO2 emissions down to 35–37.9%, 44.3–48.3% and 46.9–50.3%,
respectively. Nevertheless, understanding the socio-economic, psychological and technical
aspects influencing drivers to switch to electric alternatives is pivotal to meet the current
mitigation strategies.

Transitioning from conventional to electrified powertrains can principally be attributed
to drivers’ individual concerns and technical issues [5]. Specifically for drivers’ involve-
ment, new paths for research about on-road green transportation have concerned range
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anxiety (i.e., the uncertainty of reaching the travel destination without a complete depletion
of the battery) and range perception [6]. The solutions entail not only the technical field
(e.g., improved state of charge estimation [7]) but also socio-economic aspects related
to improvements in charging infrastructure [6], parking layout, international regulation
procedures, and national policies [8]. Neubauer and Wood [7] described the effects of
additional charging infrastructures at workplaces and public charging on range anxiety,
while discovering a significant decrease in the latter along with an increase of commuters’
covered distances. Likewise, Bonges and Lusk [8] found a negative correlation between
BEV sales and range anxiety, with higher range anxiety associated with lower rates of BEV
sales. Thus, they suggested that BEV sales could be increased by providing BEV reserved
parking lots, free charging, and through the development of an etiquette of unplugging
fully charged vehicles, all contributing to a reduction in range anxiety. Additionally,
Rauh et al. [9] evaluated the causes of range anxiety in drivers, inferring that BEV drivers’
inexperience might be the main influencing factor, hence demonstrating the complexity and
psychological implications of the issue. Finally, Pevec et al. [10] carried out a comparative
analysis between BEV and non-BEV owners aimed at exploring differences in range anxiety,
as a result of the actual battery state of charge (SoC) and residual range. They found a
higher misperception of range in non-BEV owners, proposing that their lack of experience
with BEVs could be a key factor in the generation of range anxiety. Therefore, a reliable
estimation of residual range is needed to reduce range anxiety and help the transition to
electric driving.

On the other hand, the phenomenon of BEV-related range anxiety is clearly also linked
with important technical aspects. First of all, the real capacity of energy storage systems
can play a crucial role, since it can be used to estimate the BEV residual range. Empowering
drivers’ range perception can therefore be obtained through this value [11]. To this end,
Varga et al. [12] analysed the variables involved in range estimation, and found that the
battery SoC accounted for 54%, ambient temperature for 25%, driver behaviour for 10%,
route conditions for 6%, and traffic for 5%. Since the actual SoC values can be considered as
a direct function of battery capacity and energy consumed/regenerated, the SoC variation
at the beginning of any driving experience appears to be the most important variable to
be analysed. Consequently, two aspects should be taken into account regarding the real
estimation of the SoC variation through time: battery state of health (SoH) and end of life
(EoL). The real capacity available to the battery is significantly affected by the SoH [13],
therefore the ageing process of the on-board energy storage system becomes a fundamental
sub-variable to be controlled. In fact, as the usage level of a battery increases, the number
of maximum life-cycles reduces because of the reduction in the available battery capacity.
Moreover, the battery EoL is typically determined when the residual capacity is reduced
by 20% of its initial value [14]. Raman et al. [15] showed that the number of life-cycles of a
lithium-ion battery varies according to different depth of discharge (DoD) values, dropping
from 1,000,000 cycles with DoD equal to 3%, down to 3000 cycles with DoD equal to 100%.
Thus, premature ageing of the battery can be avoided by excluding deep discharge cycles.

The second most influential variable on range estimation is ambient temperature.
High ambient temperatures can produce a reduction in battery nominal life-cycles [16,17]
due to thermal degradation, while low ambient temperatures (e.g., zero and sub-zero
Celsius) might result in capacity losses because of low battery conductivity, which affects
its performance [18]. Therefore, battery thermal management is considered as a major
concern both for high and low ambient temperatures [12]. To this end, battery pack tem-
peratures, in addition to the efficiency of the battery thermal management system (BTMS)
thermal control [16,19], are additional prominent aspects to be considered. Moreover, the
effect of ambient temperatures defined in [12] also considers heating, ventilation and air
conditioning (HVAC) system demands for the cabin conditioning. Zhang et al. [20] calcu-
lated the range reductions in the New European Driving Cycle (NEDC) under different
environmental conditions and showed a drop between 17.2% and 37.1% in the remaining
range during summer, versus a 17.1% to 54.1% reduction in winter. Similarly, Iora and
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Tribioli [21] found that the residual range of a Nissan Leaf changed from more than 150 km
at 20 ◦C, to nearly 85 km at 0 ◦C, with a decrease of approximately 43% in the federal urban
driving cycle (FUDC) and NEDC driving cycles. As a result, the main draining source
beyond the traction power required by the battery of a BEV is represented by the HVAC
system [22].

An assessment of the effects produced by each above-mentioned variable on a BEV
cannot explain the real driving range estimation if the entire set of variables is not consid-
ered simultaneously. To this end, a model considering all the different variables including
battery SoC variations, ambient temperatures, driver behaviour, route, as well as traffic
conditions, has not yet been developed and validated. In the present paper, a model with
the capability of estimating the real residual range of a L-7 BEV quadricycle is presented.

As a first step, the vehicle model was developed and validated based upon real-world
data. The battery SoC variations were estimated through the enhanced coulomb counting
(ECC) method, considering the effects of the ambient temperature and battery ageing level.
Driver behaviour, route and traffic conditions have been implicitly considered by using the
experimental driving missions conducted with an L-7 electric vehicle in the H2020 STEVE
project [23]. Sensitivity analyses of vehicle mass, the recharging current during regenerative
braking, and the vehicle drag coefficient were carried out to determine the relation between
the quantities and the SoC fluctuations. Then, the influence of the SoH over the available
battery capacity was considered according to two different battery discharging scenarios
in order to analyse the best trade-off between battery longevity and performance. HVAC
power demands were introduced within the charge consumed estimation, to assess the
impact of the cabin conditioning auxiliaries. Finally, the beneficial effects of heating the
battery pack on the overall range were investigated through a self-heating model of BTMS.

2. Model and Methodology

The BEV model for an L-7 vehicle and the methods developed for achieving estima-
tions of the battery SoC variation and the residual driving range are presented within this
section. Both battery SoC and residual range were estimated by relying upon previous
battery power demand data acquired under real-world conditions. Since battery power
demands can be considered as directly related to the vehicle’s velocity along a driving
mission, the availability of experimental data was viewed as an important opportunity to
include driver behaviour, road and traffic conditions simultaneously in the analyses.

2.1. Vehicle Model

A schematic representation of the BEV model developed for the present study is shown
in Figure 1. Vehicle velocity was used as the only input signal to compute the traction
or braking power required for the vehicle. A backward-facing approach was therefore
employed for the analyses in which the power demanded by the road is back-propagated
throughout the driveline, starting from the wheels and reaching the battery. Consistently,
with traction or braking (i.e., battery regeneration) events, energy was considered to be
flowing out of (red arrow) or into (green arrow) the battery, respectively. Accordingly, the
resistant forces (and powers) were defined for each powertrain component (i.e., wheels,
frontal final drive, gearbox) until the motor/generator (MG). The latter was responsible for
providing the vehicle with the proper propulsion through the front axle (i.e., driven axle).
Finally, the electric power required by the MG was considered as the real power demand
of the battery.
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The resistant force Fres experienced by the vehicle can be calculated as the sum of
rolling Frol , aerodynamic (i.e., air drag) Faero, inertia Fin and grade resistances Fgr. The
complete formula is:

Fres = Frolling + Faero + Finer + Fgrade [N] (1)

Fres = m·g·Kr ·cosα +
1
2
·ρ·v2·A f ·Cx + Mat·a·v + m·g·sinα [N] (2)

where m is the vehicle mass, g is the gravitational acceleration, Kr is the rolling resistance
coefficient, α is the road slope, ρ is the air density, v is the vehicle velocity, A f is the vehicle
frontal area, Cx is the drag coefficient and a is the vehicle acceleration. The apparent
translating mass Mat is calculated as:

Mat = m + ∑
i

Ii·τi
2

rd
2 [kg] (3)

with rd as the rolling radius, i representing the i-th rotating component in the vehicle
(e.g., final drive), and I and τ representing the inertia coefficient and the transmission ratio
of the i-th rotating component, respectively. Once the resistant force is defined, the resistant
power can be calculated as:

Pres = Fres·v [W] (4)

Moreover, the value of the resistant force can be used to estimate the different torque
requests at any stage of the driveline, starting from the wheels turning in reverse to the MG.
The torques at the wheels Tw, final drive Tf d and gearbox Tg can be estimated as follows:

Tw = Fres·rd [Nm] (5)

Tf d =
Tw

η f d·τf d
[Nm] (6)

Tg =
Tf d

ηg·τg
[Nm] (7)
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where rd is wheel radius, τf d and η f d are the transmission ratio and the efficiency of the
final drive, respectively, and τg and ηg are the transmission ratio and the efficiency of the
gearbox, respectively. Both the τg and ηg depend upon the gearbox model involved in
the study. In this paper, a continuously variable transmission (CVT) has been modelled
and the transmission ratios were estimated as a function of the vehicle speed and resistant
power. The actual values of the CVT transmission ratio were derived from signals recorded
during the experimental driving missions. Specifically, starting from the vehicle speed and
electric motor traces, the look-up table (LUT) shown in Figure 2 was generated. Of note,
the considered range for the transmission ratio was between 2 and 4.5.
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The computation of the rotational speed at the wheels ωw, final drive ω f d, gearbox
ωg and motor ωm is important for the evaluation of the power requested by the MG and
hence to the battery. The equations used for the estimation of the rotational speed along
the driveline are:

ωw =
v
rd

[rpm] (8)

ω f d = ωw·τf d [rpm] (9)

ωm = ωg = ω f d·τg [rpm] (10)

Once Tg and ωg were evaluated, the motor torque Tm could be computed. In the
present paper, a positive torque was considered as representative of traction phases,
whereas a negative torque was considered as representative of braking phases. According
to traction scenarios, the torque demand of the MG was considered to be equal to the torque
at the gearbox level. On the other hand, a reduced MG torque demand was considered dur-
ing braking conditions. In such cases, the negative torque request is split on the two axles.
On the non-driven axle, the braking action is achieved only by the effect of mechanical
brakes, whereas it is given by the electric motor working as a generator (i.e., regenerative
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braking operating mode) on the driven axle. Therefore, the required motor torque can be
computed as:

Tm =

{
Tg f or Tg > 0
Tg·δ f or Tg < 0

(11)

where δ is the percentage of weight on the driving axle. Hence, the mechanical power and
the electric power can be evaluated as:

Pm, mech = Tm·ωm [W] (12)

Pm, el =

{
Pm,mech·ηm

Pm,mech
ηm

[W] (13)

in which ηm represents the motor efficiency, Pm,mech is the motor mechanical power and
Pm,el is the motor electric power. The latter was calculated by multiplying or dividing
the mechanical power by the motor efficiency according to braking or traction conditions,
respectively. The motor efficiency was calculated according to a downscaled version of the
efficiency map of a reference MG made for a passenger car application. The original map is
shown in Figure 3. The efficiency map allowed for evaluation of the losses at the motor
level to be considered based upon its torque Tm and rotational speed ωm. The efficiency
assumed positive values when in the range of −277 Nm and 370 Nm, whereas it was null
outside this interval. The rotational speed was limited to 15,000 rpm.
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The downscaling operation was performed according to a linear which started from
the definition of a scaling factor s f between the actual and the reference motors:

s f =
Pm,mech

P∗
m,mech

(14)
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in which Pm,mech and P∗
m,mech represent the mechanical peak power of the downsized and

the reference motors, respectively. Assuming the motor speed range to be constant, the
motor torque can be defined as:

Tm·ωm

T∗
m·ω∗

m
=

Tm

T∗
m

= s f (15)

Finally, the motor mass and its inertia were re-calculated following the same approach.
At the end of the downscaling procedure, the power and torque limit curves were obtained,
as shown in Figure 4. A distinction between peak and continuous MG outputs was involved
in the study to include the effects of the BTMS control on the battery. In fact, a possible
action of the BTMS is to reduce battery power after peak power/torque values have been
demanded for a given amount of time. Such a condition is typically involved in the control
of the BTMS for electrified vehicles to prevent overheating phenomena. To clarify, non-
complex strategies are typically involved for cooling the battery pack of very light vehicles
(e.g., L7). A common solution is to embed a passive air-cooling system. Nevertheless,
given the target of this research, the authors have chosen to avoid such an assumption and
include the possibility of the BTMS to cut the current and power of the electric sources.
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Assuming that the power demanded to the MG can be delivered (i.e., the operating
point falls within the working map), battery power can be computed by including the
losses at the AC/DC converter level. The latter has been simply modelled as an additional
efficiency to be multiplied or divided during braking or traction phases, respectively. The
formula is:

Pb =

{
Pm,el ·ηAC/DC

Pm,el
ηAC/DC

[W] (16)

in which, ηAC/DC represents the efficiency of the AC/DC converter. This value was
assumed constant despite the traction or braking phases.

Once the assessment of the power required by the battery was performed, the battery
SoC variation and residual driving range could be estimated.
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2.2. Battery Model and Estimation of the Battery State of Charge

In terms of the battery model, [24] stated that a low-throughput battery model can
represent the best trade-off between the accuracy of the model and the computational
effort required for the simulations. Given the aim of the present paper, consisting of the
assessment of the driving range of an L-7 BEV, such a low-throughput model was used in
the analyses.

In Figures 5 and 6, the curves of the open-circuit voltage (OCV) OCVcell and the
equivalent resistance Req,cell considered for the battery cells are presented, respectively. The
curves are considered as a function of the battery SoC.
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In particular, the OCV increased with the battery SoC, whereas the equivalent resis-
tance showed a significant drop for low SoC values and plateaued for SoC higher than
20–30%. The battery features are reported in Table 1 and refer to a valve-regulated lead-acid
(VRLA) battery. To clarify, a VRLA battery was considered in the study only because of
data availability. Nevertheless, the entire methodology would not be affected by a change
in the battery model (e.g., Li-Ion or others) and could easily be adapted.

Table 1. Characteristics of the considered battery pack.

Number of units in series 6
OCV 72 V

Resistance of a unit 27 mΩ
Capacity 140 Ah

Mass 168 kg

In terms of the battery pack architecture, a single module constituted by six parallel
units (nunit) was considered in the analyses. Each battery unit was assumed to be consti-
tuted by six cells in series. The battery current Ib can be assessed along with the information
of the electric power demand Pb:

Ib =
OCVb −

√
OCV2

b − 4·Req,b·Pb

2·Req,b
[A] (17)

in which OCVb and Req,b represent the OCV and internal resistance of the battery, respec-
tively, based on the battery architecture considered in the present study. The maximum
value of the battery current Ib,max was set to 200 A and included in the model. This value
was considered constant for any traction phase, while a saturation was analysed during
braking conditions. Since relevant power might flow into the system due to impressive
regenerative braking phases, the possibility of cutting the maximum current at the AC/DC
converter might be necessary to avoid harmful events in the battery. Accordingly, several
levels of the maximum recharging current (saturation current, Isat) were considered in
the following analyses and an assessment of the effects on the overall battery SoC trajec-
tory was carried out over experimental driving missions. To clarify, the efficiency of the
AC/DC converter ηAC/DC was considered as a constant value despite different values of
the saturation current.

Hence, the maximum power that can be provided by the battery during traction
phases can be computed by identifying the minimum value between the two following
power contributions:

Pb,max,chem,tract = OCVb ∗ Ib,max − Req, b ∗ I2
b,max [W] (18)

Pb,max, el,tract =
OCV2

b
4 ∗ Req,b

[W] (19)

For details about the distinction between the battery power expressed through (16)
and (17), please refer to [24]. Alternatively, the maximum power admitted by the battery
during braking phases can be estimated as:

Pb,max,brak = −
(

OCVb·Ib,max + Req, b·I2
b,max

)
= −

(
OCVb·Isat + Req, b·I2

sat

)
[W] (20)

in which Ib,max is equal to Isat during braking events. Once the current requested by the
battery is estimated, the variation of the battery SoC can be calculated as:

SoC = SoC0 −
∫ Ib

Cb
dt [−] (21)
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in which SoC0 represents the SoC at the time instant of the calculation and Cb the battery capacity.
The definition of a more realistic approach that was used for the estimation of the

battery SoC variations, is reported in the following section.

2.3. Estimation of the Residual Driving Range for a Battery Electric Vehicle

Of all the different methods for the estimation of SoC [12], the ECC approach
was chosen.

In classic coulomb counting method (CC), battery capacity is considered as a constant
value, therefore the influence of any battery operating condition on its available capacity
is neglected [7]. Conversely, according to the ECC approach, multiple correction factors
must be included when estimating the real battery capacity, such as the temperature and
aging of the battery pack. The additional features we considered for the application of the
ECC were:

• A higher accuracy with respect to the reference approach [13];
• A low computational burden [25];
• The lack of parameters to be tuned [12].

Thereby, relying upon the ECC approach, a more precise estimation of the battery SoC
variation can be made according to the following equation:

SoC = SoC0 −
Q

λtot ∗ Cb
= SoC0 −

∫
Ibdt

λtbp ∗ λSoH ∗ Cb
[−] (22)

where Q =
∫

Ibdt represents the charge consumed, λtot is an overall correction factor
constituted by the product of a correction factor related to the battery pack temperature(

λtbp

)
, and a correction factor that considers the battery SoH (λSoH). Equation (22) shows

a different formulation with respect to (21), as a given set of additional parameters must be
estimated. To achieve this, the two correction factors were estimated based on the relative
variation of the available battery capacity with respect to the battery capacity nominal
value (100%). The data were processed according to the technical specifications of the L-7
BEV considered within the STEVE project [23], and two different LUTs were generated.

In terms of the correction factor for the battery pack temperature, the trend of the
battery capacity as a function of the battery pack temperature is reported in Figure 7. A
particular phenomenon was highlighted by temperatures over 25 ◦C as the battery capacity
tended to overcome the nominal value. Nevertheless, high battery pack temperatures
were typically responsible for producing faster aging and a drastic reduction in battery
performance. More precisely, a reduction in the battery internal resistance and a higher
frequency of over-discharging phenomena occurred, as shown in [26]. However, allowing
the battery to work at any temperature level did not represent a beneficial solution.

The fluctuations of battery capacity due to a variation of the battery pack temperature
was considered through the value λtbp in the range (0.64, 1.03).

With regard to the correction factor accounting for the reduction in battery capacity
due to its SoH, the trend shown in Figure 8 was considered for the analyses. To clarify, a
life-cycle was considered as a complete discharge until the DoD was reached, followed by
a complete recharge of the battery. It can be noted that a significant effect on the available
capacity was produced by a change in the DoD. In fact, increasing the DoD can lead to
an increase in the driving range of the vehicle but also to a reduction of the maximum
life-cycles admitted. Specifically for the data shown in Figure 8, a DoD equal to 80% could
allow the battery to improve the life cycles by 50%, increasing from 400 (with DoD equal to
100%) to 600 life-cycles. This value was selected on the assumption that it could represent
the best trade-off between battery usage (i.e., battery longevity) and electric range.
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Accordingly, two distinct scenarios were analysed in the present paper regarding
λSoH : within the first scenario, the maximum DoD admitted was set to 100%; in the
second scenario, the maximum DoD admitted was reduced to 80%. Within the two
different scenarios, the reduction in battery capacity over time differs, as shown in Figure 9.
According to the data extracted from [26,27], battery capacity showed a nearly flat trend in
the case of DoD80 (blue curve), whereas a steeper reduction was observed for DoD100 (red
curve), as the termination condition was found at 400 cycles. In the case of DoD100, a peak
occurred in the early stages of battery life, and was related to over-discharging phenomena
which were responsible for a very fast capacity fading (i.e., roughly −20% in 200 cycles).
To clarify, the termination of both curves was correlated to the number of cycles at which
20% of the battery capacity was depleted.

Using the same approach as for λtbp , the values of λSoH were considered in the
range (0.8, 1).

Once the available capacity of the battery was determined, a correct evaluation of
the battery SoC was performed by producing a good estimation of the current flowing
into the battery (see Equation (20)). To achieve this, the power required by the road
(i.e., the traction/braking power) must be coupled with any further power demand. For
a BEV, auxiliary loads assume a relevant role and therefore their inclusion in the model
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is needed [12]. Specifically, the larger amount of auxiliary power can be referred to cabin
heating and cooling operations (i.e., HVAC). Within the present model, a reversible vapor
compressor–heat pump (VC–HP) layout was considered as the vehicle’s HVAC system.
This choice was made due to the higher reliability shown by the VC–HP relative to other
systems (e.g., evaporative cooling integrated thermal management) [28], which has increas-
ingly spread throughout the automotive market [29]. According to the R32 coolant [29]
and based upon the model suggested in [30], the curve shown in Figure 10 was built
considering HVAC power consumption PHVAC as a function of the ambient temperature,
assuming the optimal cabin temperature is 24 ◦C (Tcabin). The model equations are:

PHVAC =


0 turned off

Pheat(Tcabin − Tair) [W] heating mode
Pcool(Tair − Tcabin) cooling mode

(23)
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As highlighted in Figure 10, power consumption has always been considered as a
positive value. A baseline of 50 W was used to account for the fans’ load. Moreover,
human metabolic heat was taken into account, given the relatively small volume of an L-7
quadricycle cabin. The formulation of the metabolic power is:

Qmet =
.

met ∗ BSA =

{
147 [W] driver
95 [W] passenger

(24)

in which Qmet is the metabolic power,
.

met is the metabolic rate and BSA is the body
surface area. To clarify, a fixed BSA based on the European average value (1.73 m2) [31]
was considered whereas two different metabolic rates accounted for the driver and the
passenger (85 W/m2 for the driver and 55 W/m2 for each passenger) [32]. The heat
produced by human bodies was added when the system was under cooling conditions,
whereas it was subtracted under heating mode. No other thermal loads were considered
in the study (e.g., sun irradiation) since they represent a minor impact on overall HVAC
consumption [30]. As a final contribution, the sum of the loads coming from any other
vehicle auxiliary (e.g., headlights, electric wipers, electric power window, etc.) was fixed at
200 W.

Once
∫

Ibatt dt had been calculated, the Equivalent Battery Voltage (EBV) [25] can be
defined according to the following equation:

EBV(t) =

∫ t∗
t0

v(t)i(t)dt∫ t∗
t0

i(t)dt
[V] (25)

where v(t) = OCVbatt, i(t) = Ib while t0 and t∗ are the initial and final time steps of the
driving mission, respectively. According to (25), the EBV refers to the entire driving mission.
The energy consumption of the vehicle EC over the mission can be calculated as follows:

EC =
EBV ∗

∫
Ib dt

1000
[kWh] (26)

According to [25], the electric vehicle energy index is computed as:

ei =
d

EC

[
km

kWh

]
(27)

in which d represents the number of kilometers that could be travelled by the vehicle with
an energy consumption of 1 kWh. Finally, the BEV residual range can be estimated as:

rr =
(

Cdisp − EC
)
∗ ei [km] (28)

in which Cdisp is the battery available capacity estimated through:

Cdisp = SoCi ∗ λtbp ∗ λSoH ∗ Cb [kWh] (29)

where SoCi is the initial value of the battery SoC for a given driving mission. According
to this procedure, a more precise evaluation of both Ib (including the power demanded
by the auxiliaries) and Cdisp (considering thermal conditions and battery ageing) can be
performed and, hence, a more reliable estimation of the real residual driving range can
be obtained.

3. Results

In this section, the results of the analyses are presented according to the set of simula-
tions carried out for the L7e vehicle considered in the STEVE project [23] and based on a
dataset made of thirty driving missions recorded during an experimental testing campaign
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held in Turin (IT). For simplicity, only a sub-set of four different velocity profiles were
employed for assessing the performance of the vehicle model. The real driving missions
are reported in Figure 11 while their relative battery SoC trajectories are shown in Figure 12.
An acronym “DMXX” will be used for identifying the driving missions, with “XX” standing
for the acquisition number of the driving mission during the testing campaign. As can
be seen in Figure 11, different distances were covered during the experimental driving
tests, and a maximum velocity was achieved at roughly 50 km/h. The shape of the velocity
trajectory differed from one test to the other as the road, traffic and driver behaviour could
change. In terms of battery SoC trajectories, multiple SoC starting points were included in
the study. The validation of the model presented in Section 2.2 has been performed based
on the experimental battery SoC profiles and employing the vehicle velocity trajectories
as inputs of the backward-facing approach. Such an operation was the achievement of
a fundamental milestone, before stepping into the application of the model presented in
Section 2.3.
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To give a more comprehensive view of the whole experimental dataset, some of the
main characteristics of each acquired driving mission were statistically processed and are
reported through the charts of Figure 13, where the histograms show the distribution of
travelled distance, mean velocity, maximum acceleration and maximum SoC variation
achieved throughout the driving missions.
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Figure 13. Distribution of the travelled distance, mean velocity, maximum acceleration and battery
state of charge variations for any driving mission in the entire experimental dataset.

The vehicle specifications and model parameters considered in the analyses are re-
ported in Tables 2 and 3, respectively. With regard to the model parameters, a small sub-set
of data (Table 3, highlighted rows) had to be assumed from the literature because of an
uncertainty in the original data.

Table 2. Vehicle technical specifications.

General Specifications

Vehicle homologation class L7
Kerb weight [kg] 650

Vehicle front/rear weight distribution [%] 54/46

Vehicle dimensions

Wheelbase [mm] 1815
Width [mm] 1500
Height [mm] 1565

Minimum ground clearance [mm] 165

Motor-generator

Peak power [kW] 12
Rated power [kW] 6.3

Battery

Battery voltage [V] 72
Battery capacity [Ah] 140
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Table 3. Model parameters.

Vehicle mass [kg] 898
Coefficient of rolling resistance 0.006

Wheels rolling radius [m] 0.257
Vehicle frontal area [m2] 2.14

Drag coefficient 0.65
Final drive speed ratio 3.6
Final drive efficiency 0.97

Gearbox transmission ratio [2–4.5]
Gearbox efficiency [0.97–0.98]

Auxiliary power request [W] 200
AC/DC converter efficiency 0.95

Saturation current [A] 50

A preliminary validation of the model was performed by comparing the experimental
and estimated battery discharges along the different driving missions. To this end, the
evaluation of the residual driving range has not been included in this first analysis. The
results obtained by the application of the model on the experimental missions DM09,
DM15, DM20 and DM25 are reported in Table 4 considering the model parameters of
Table 3. In the table, for each DM the experimental (SoCexp

T ) and estimated (SoCsim
T ) battery

SoC final values are reported in the second and third columns, respectively, together with
their relative difference in percentage (last column). The BEV model showed a promising
accuracy in terms of battery SoC estimation and a good adaptability when tested under
very different driving conditions. In fact, the maximum relative difference peaked at 1.1%
for DM09, whereas smaller values were obtained for the other experimental missions.
Nevertheless, an additional validation of the model was conducted in order to thoroughly
assess for any possible leak in the non-experimental model parameters of Table 3. A
tuning operation of these parameters was performed through several sensitivity analyses,
which involved the vehicle mass, the saturation current at the AC/DC converter level
and the drag coefficient. Finally, the implementation of the model for the estimation of
the BEV residual driving range was performed taking into account battery aging, HVAC
consumptions and BTMS power demands (i.e., battery preheating).

Table 4. Results of the model validation on DM09, DM15, DM20 and DM25 based on the final values
of the battery state of charge.

Driving Mission SoCexp
T SoCsim

T Relative Difference

DM09 0.910 0.899 1.10%
DM15 0.850 0.847 0.23%
DM20 0.920 0.921 −0.14%
DM25 0.700 0.703 −0.30%

3.1. Model Validation

In this section, the results of the tuning operation over the vehicle mass, the saturation
current at the AC/DC converter level and the drag coefficient are presented. Specifically,
the effects of the mono-dimensional variation of each model parameter on the battery SoC
trajectory estimated by the model are reported.

3.1.1. Vehicle Mass

The vehicle mass is considered as the sum of four different factors:

mveh = mbody + mdriver + mpass + mpayload (30)

where mbody is the kerb mass, mdriver is the weight of the driver, mpass is the weight of the
passenger and mpayload is the mass of an additional mass in the vehicle. Five different
scenarios were assumed for the analysis as reported in Table 5. In the second and third



Appl. Sci. 2021, 11, 9316 17 of 34

columns, the details of the scenario and the relative considered vehicle mass have been
reported, respectively.

Table 5. Vehicle masses considered in the tuning operation.

Scenario Vehicle Mass

1 Driver only 720 kg
2 Driver w/light payload (30 kg) 750 kg
3 Driver and Passenger 790 kg
4 Driver, Passenger w/light payload 820 kg
5 Gross vehicle mass 898 kg

The battery SoC trajectories resulting from the application of the BEV model on DM15
are charted in Figure 14 and compared with the experimental trajectories. To clarify, the
decreasing step trend of the battery SoC curve (green) was due to the precision of the
sensors mounted on the vehicle during the experimental testing campaign. Specifically
for DM15, the change in vehicle mass was responsible for a variation of the final battery
SoC value between 0.928 and 0.920. The maximum relative difference between the final
SoC values was therefore about 1%. The same analysis was performed on each driving
mission sourced from the STEVE project testing campaign. For simplicity, the charts are
not reported since the same trend was highlighted in the entire dataset and the variation of
the final battery SoC value was in the range (0.3, 1)%. According to this result, the mass
variation given by scenarios in Table 5 has not been considered as a highly influencing
factor of the charge consumed and hence the battery SoC evolution through time. However,
the gross vehicle mass was assumed for all following analyses since it better fitted the
different driving missions considered in the study (see Figure 14).
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3.1.2. Saturation Current

A second analysis was performed regarding the maximum current admitted during
regenerative braking conditions (i.e., saturation current) at the AC/DC converter level.
Recalling Section 2.2, a fixed AC/DC converter efficiency was assumed, whereas four
different values of the saturation current Isat admitted in the system were considered. The
details of the tested scenarios are reported in Table 6. In the first three scenarios, typical
saturation current values were imposed on the BEV model despite the driving mission
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profile. In the fourth (Table 6, last row), the value of Isat was set to the indirectly estimated
value using the experimental battery SoC trajectories of the different driving missions. As
an example, the actual values of the recharging current obtained throughout DM25 are
reported in Figure 15.

Table 6. Saturation currents considered in the tuning operation.

Scenario Saturation Current

1 25 A
2 50 A
3 75 A
4 experimental
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Figure 15. Recharging current during DM25.

The blue curve is representative of the actual values of the current flowing into the
battery during any regenerative braking event, whereas the dashed red curve is representa-
tive of the vehicle velocity profile. The recharging current assumed a positive value only in
a sub-set of the entire driving mission time steps, since it was activated only when braking
scenarios occurred. Specifically for DM25, the maximum recharging current seen by the
system was roughly 120 A. Recalling the saturation currents considered in Table 6, the
experimental saturation current for DM25 in the last scenario (#4) was set to 120 A.

The comparison between the experimental battery SoC profile and those produced
by the model when applied to DM25 in case of the four different recharging currents is
reported in Figure 16.

Of note, the difference between the battery SoC curves throughout the mission is quite
negligible. Two reasons may account for this result: first, the share of breaking events
(and their related time) with respect to the entire driving duration is relatively small (~8%);
second, the variation of the charge consumed calculated by the integral of (22) according
to the ECC method is mostly mitigated and its effects are reduced. In the case of DM25,
the final battery SoC value fluctuated in the range (0.705, 0.695) (~1% of maximum relative
variation). Since the final battery SoC variation can be considered as irrelevant and that
the same results occur for the entire dataset, the experimental Isat values have hence been
considered for any further analysis.
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different saturation currents with respect to the experimental battery state of charge of DM25.

3.1.3. Drag Coefficient

Among the vehicles classified as L-7, very different shapes can be seen on the global
market, which are characterised by distinct drag coefficients. Since L-7 vehicles are typi-
cally adopted under urban driving conditions, moderate velocities and accelerations are
exploited. Therefore, the aerodynamics shared due to the chassis geometry might produce
a minor contribution to the variation of the battery SoC trajectory.

Nevertheless, very different scenarios have been selected to assess for the real effects
of the drag coefficient on the real driving missions considered in this study. In fact, the
drag coefficient changed, starting from a very low value of 0.35 to an extremely high 0.80,
with a step of 0.05. The results produced by the model when applied to DM25 are reported
in Figure 17.
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It is noted that the shapes of the battery SoC and their relative final values are very dis-
tinct. In fact, the estimated trajectories start diverging after 500 s with a maximum variation
of the final value fluctuating roughly between 0.665 and 0.60 (i.e., 6.5%). The latter is larger
than the one occurring when the vehicle mass and saturation current are changed. As a
result, it is important to consider that a very large range of variation of the drag coefficient
was considered in the present analysis. In fact, drag coefficients down to 0.35/0.4 are typi-
cally related to sport cars [33] whereas values higher than 0.7 are typically representative of
lorries or American automobiles designed between the 1920s and 1930s [34]. Repeating the
tuning operation on the entire set of driving missions, the maximum variations of the final
battery SoC fluctuation were calculated between 0.5% and 6.5%, with a higher influence
noticed in the driving missions featured by higher velocities. Finally, since the majority of
experimental battery SoC trajectories were validated by applying a drag coefficient equal
to 0.65 (see Figure 17), the latter has been set for all further analysis.

3.2. Combined Effect of Battery Aging and Battery Pack Temperature Variation on the Residual
Driving Range of a BEV

An investigation about the realistic performance of the BEV considered in the study
was performed by introducing the correction factors of (22) in the calculation of the available
battery capacity.

As a first step, a failure of BTMS was assumed in order to analyse the possible impact
of the battery pack temperature on battery capacity fading, and the combined effect with
different battery ageing levels was analyzed. Concerning λSoH , two different conditions
were considered as the DoD was set at 100% and at 80% (see Section 2.3). On the other
hand, three different scenarios were studied for the battery pack temperature (hence λtbp )
as reported in Table 7. Each scenario included a reference temperature and a +/−2.5 ◦C
variation range. The temperature evolution throughout the driving mission was estimated
by means of a piecewise cubic Hermite interpolating polynomial [35] method. According
to the latter, the shape of battery pack temperature varied around the central reference
value and within the imposed variation range.

Table 7. Temperatures of the battery pack.

Scenario Reference Temperature Temperature Range

1 0 ◦C (−2.5, 2.5) ◦C
2 15 ◦C (12.5, 17.5) ◦C
3 22.5 ◦C (20, 25) ◦C

The results were divided in the two following sections based on the DoD assumed
during the analyses, specifically a complete discharge with DoD100 and a partial discharge
with DoD80.

3.2.1. Complete Discharge (DoD100)

In this section, the results obtained by considering a variation of the battery pack
temperature in the range (−2.5, 2.5) ◦C are reported for DM25. To this end, four different
battery ageing levels were assumed: 0, 200, 300, 400 life-cycles completed. The combined
effects of the variation of the battery pack temperature with the four different battery ageing
levels are reported in Figures 18–21. The red curve represents the variation of the battery
pack temperature, the blue curve represents λtot, the green curve represents λtbp and the
black line represents λSoH in the case of DoD100 (λSoHDoD100). The latter is a line (and not
a curve) since it assumed a constant value over the mission for a given battery ageing
level, whereas it can be reduced when the number of life-cycles completed by the battery is
increased. In Figure 18, the battery is considered as new (0 life-cycles completed) and hence
λSoHDoD100 = 1; in Figure 19, the battery completed 200 life-cycles (i.e., λSoHDoD100 = 0.985);
in Figure 20, the battery completed 300 life-cycles (i.e., λSoHDoD100 = 0.88) while in Figure 21
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the battery reached 400 life-cycles (i.e., λSoHDoD100 = 0.8), which represents the battery EoL
(see Figure 9).
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Figure 18. Combined effect of the battery pack temperature and the battery ageing level on λtot for
DM25 in the case of a new battery and DoD100.
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Figure 19. Combined effect of the battery pack temperature and the battery ageing level on λtot for
DM25 in the case of a battery with 200 life-cycles completed and DoD100.

As far as the number of life-cycles was increased (i.e., the value of λSoHDoD100 was
reduced), the curve of λtot was relevantly downshifted (average values from ~0.85 with
new battery pack down to ~0.68 with an old battery). On the other hand, considering a
quasi-random variation of the battery pack temperature within a 5% variation range did
not introduce a significant effect on the global correction factor.
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3.2.2. Partial Discharge (DoD80)

The combined effect of the variation of the battery pack temperature and the bat-
tery ageing level is presented in this section for DM 25 in the case of DoD80. Recalling
Figure 9, four different values of the life-cycles completed by the battery were considered,
specifically 0, 200, 400 and 600 (EoL). The charts from Figures 22–25 report the results
obtained for 0 (i.e., λSoHDoD80 = 1), 200 (i.e., λSoHDoD80 = 0.985), 400 (i.e., λSoHDoD80 = 0.94)
and 600 life-cycles (i.e., λSoHDoD80 = 0.8), respectively.
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The general trend shown by the results of Section 3.2.1 recurred in the case of a partial
discharge with DoD80. In fact, the average value of λtot started decreasing at around 1/3
of the battery EoL (~0.85) and kept decreasing until the EoL was achieved (~0.67). Once
again, the influence of the variation of λtbp did not show relevant effects on the global
correction factor.

The battery SoH had much greater impact than a relatively contained variation of
the battery pack temperature on λtot and hence on the available battery capacity, in both
DoD100 and DoD80 scenarios. This result could also be expected in the cases of Scenarios 2
and 3 of Table 7, because the average value of λtbp would be higher with respect to Scenario
1 since the battery pack temperature would be closer to the optimal operating temperature.
Therefore, Scenario 1 can be considered as the most demanding from a battery temperature
perspective, and hence, no results related to Scenario 2 and 3 are reported for conciseness.
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As a final step, the effects of the decay of λtot were further investigated by analysing
the evolution of the battery SoC and the residual driving range estimated along the driving
missions. These results are reported in the next section.

3.2.3. Residual Range

Since the correction factor λtot plays a crucial role in the definition of the battery
available capacity and hence on the variation law of the battery SoC during a driving
mission, the reduction in λtot, evaluated with different battery pack temperature and
ageing levels, was used to estimate the variation of the residual range of the BEV exploited
in this paper.

In Figures 26 and 27, the curves of battery SoC and residual driving range are
charted, respectively, accounting for the four different battery ageing levels considered in
Section 3.2.1 (DoD100). As far as the battery EoL was achieved (purple curve), the tendency
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of the battery SoC evolution grew progressively resulting in lower final battery SoC values.
Consistently, an important reduction in the BEV residual driving range occurred with
a relevant loss of both the first (from ~60 km down to ~46 km) and last residual range
estimations (from ~48 km down to ~37 km) made at the beginning and at the end of the
driving mission, respectively.
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The same analysis was conducted for DoD100. The effect of the decay of λtot on
battery SoC and residual driving range are reported in Figures 28 and 29, respectively. In
this case, a smaller variation of both battery SoC and BEV residual driving range occurred
until 2/3 of the entire life-span of the battery (400 life-cycles). Conversely, once the battery
EoL was reached, the loss in the residual range became much more relevant.
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In conclusion, despite the absolute number of kilometers that could be driven permit-
ting a complete discharge of the battery, the DoD80 appears to be a more efficient condition
for battery operation since it allows for mitigation of the negative effects related to the
reduction in the correction factor of the battery available capacity.

3.3. Effect of HVAC Power Demand on the Residual Range of a BEV

The influence of HVAC power demands over the battery SoC evolution and the
residual driving range estimated throughout the driving mission were studied and the
results are reported here. Both conditions of heating and cooling the vehicle cabin were
simulated considering ambient temperatures (outside the vehicle) equal to 0 ◦C (winter
scenario) and 35 ◦C (summer scenario), respectively. The HVAC system was assumed to
be switched on only 60 s after the beginning of the drive and the relative power demand
was calculated according to (23) and Figure 10. A comparison of battery SoC and residual
range variation along DM20 with and without HVAC consumption for the winter scenario
are reported in Figures 30 and 31, respectively. The evolution of the battery SoC charted
in Figure 30 highlights two different trends, with final SoC values differing by about 4%.
Consistently, the trajectories of the residual driving range estimated throughout DM20
followed very different traces. Specifically, the curve of the residual driving range estimated
when the HVAC was activated (Figure 31, blue curve) shows a relevant decrease after 60 s,
which is the time instant at which the HVAC was assumed to be turned on. At this stage,
the power consumption demanded for the air conditioning was instantly added to the
battery, and hence a drastic fall occurred to the curve. From that time instant onwards, the
estimated residual driving range stabilised to a similar decreasing shape of the HVAC-off
curve and led to a final variation of −31% (−35 km).

The same analysis was conducted considering the summer scenario with an ambient
temperature of 35 ◦C and the results for DM20 are reported in Figures 32 and 33. Once
again, the influence of the cabin conditioning system assumed a relevant role both on the
battery SoC discharge and the residual driving range, which were reduced by 7% and 46%
(−51 km) with respect to the HVAC-off condition, respectively.
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Considering the entire dataset under HVAC-on condition, the final values of the
battery SoC reduced in the range (4, 12)% for heating mode and (3, 15)% for cooling
mode, whereas the average decrease in residual driving range stayed between (28, 57)%
for heating mode and from (25, 63)% for cooling mode. The HVAC consumption for
cabin conditioning can hence be considered as a major impact for BEV real-world driving
missions in both cases of hot and cold ambient temperatures.

3.4. Effect of Battery Pre-Heating on the Residual Driving Range of a BEV

Since the battery pack temperature directly influences the available battery capacity
through the correction factor λtbp , a typical thermal management is performed by the
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BTMS to control the temperature fluctuations over time, bounding them within proper
temperature limits. Therefore, the influence of the additional power consumption required
by the BTMS over the residual driving range of a BEV was assessed and the results of
the analysis are reported in this section. In terms of the BTMS consumption, the effective
power demand depends upon the type of thermal management performed.
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In the present paper, self-heating and air-cooling thermal managements were consid-
ered for the modeled L-7 BEV in the case of cold and hot battery conditions, respectively.
Basically, self-heating the battery translated into an additional consumption of an amount
of battery energy to heat the battery up to a certain range. On the other hand, placing the
battery pack in a location with a large air flux permitted its passive cooling. To this end, [36]
demonstrated that an active cooling approach would not lead to relevant improvements
with respect to passive cooling for small vehicle applications. Therefore, considering an
optimal battery pack temperature in the range of 15 and 30 ◦C, thermal management was
modelled considering a self-heating approach which aimed at pushing the temperature
into the optimal range, and a passive cooling approach which neglects the temperature
to exceed the upper threshold by cutting the MG power output. To clarify, the optimal
range of battery temperature was selected according to VRLA batteries, for which high
temperatures could result in battery dry out [37] and an optimal operating temperature
was identified at 20 ◦C. The heating specific energy consumption related to self-heating
was calculated based on the temperature difference between the actual battery pack tem-
perature and 20 ◦C by means of a linear characteristic which starts in the origin and reaches
8.5 Wh/kg at temperature differences of 30 ◦C [38]. The effect of the BTMS consumption
on the battery SoC and residual driving range evolution throughout DM09 was assessed
by considering a pre-heating action on the vehicle. The latter consisted of self-heating
the battery while the vehicle was in a stationary location (stopped) and the system was
turned on. Due to the pre-heating action, the driver could enter the vehicle and start
driving with the battery ready to operate in the optimal temperature region. Even though
battery pre-heating added a power consumption to the system in the early stages of a
driving mission, beneficial effects on λtbp could be realized with respect to non-thermal
management conditions as the optimal temperature range was achieved.

In Figures 34 and 35, the estimated residual driving range curves are charted considering
an initial battery pack temperature of 0 ◦C and −10 ◦C, respectively. The BTMS-off case (red
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curve) considers a λtbp range of variation between (0.745, 0.766) and (0.849, 0.867) for an initial
battery temperature of 0 ◦C, and −10 ◦C, respectively. It is noted that the initial estimation
of the residual driving range appeared to be worse for the BTMS-on condition (blue curve)
compared to the BTMS-off condition. This is due to the initial estimation of the battery capacity
loss which is directly linked to the amount of energy that has to be devoted to heat the battery
temperature up to the optimal operating temperature. Specifically, for an initial temperature
of 0 ◦C, the gap of temperature was 23 ◦C whereas an increase of 33 ◦C was needed for an
initial temperature of −10 ◦C. The time step at which the vehicle velocity profiles assumed
the first positive value differed for the BTSM-on and BTMS-off conditions since BTMS-on
assumes the vehicle remains in the same location (e.g., parking lot) while heating up the
battery. Once the battery heating up process has completed, the vehicle was assumed to run
the same driving mission and hence a shift ahead of the blue curves with respect to the red
curves appears in the charts. The main result highlighted by Figures 34 and 35 is that, due
to the increase in the value of λtbp in terms of battery pre-heating, and considering a fixed
value of λSoH (i.e., fixed amount of life-cycles completed by the battery), the available capacity
grows through time allowing for higher residual driving ranges. To clarify, the value of λtbp

could be increased to (0.95, 1) for pre-heating mode due to BTMS thermal management. A
non-utilisation of the thermal management therefore led to a considerable loss of BEV electric
range when the vehicle was turned on in a very cold driving environment. Moreover, the
higher the difference between the initial operating temperature of the battery and its optimal
operating temperature, the greater the amelioration that can be applied to the system through
a proper exploitation of the BTMS control. Indeed, such an effect could naturally be mitigated
only when warmer ambient temperatures are encountered, as a lower difference between the
operating battery temperature and its optimal operating temperature would be experienced
(i.e., λtbp tends to 1).

Thanks to this set of analyses, the positive influence of pre-heating the battery pack
when the vehicle is parked in a cold environment has been demonstrated.
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4. Discussion

In the present study, a model for a realistic estimation of the residual driving range of
a BEV has been developed including the effects of battery pack temperature and battery
ageing level, HVAC consumption and battery pre-heating. Accordingly, an L-7 BEV has
been modelled through a backward-facing approach and validated by means of real-world
data acquired during the STEVE project [23]. Since the experimental driving missions
included real driving data, this meant that driver behaviour, road and traffic conditions
could also be exploited in the analyses. Therefore, the results presented in this paper can
be considered as representative of the combined effect of the above-mentioned factors on
the real driving range of a BEV and follow-up research based on [12]. An ECC method
was chosen to perform the estimation of the battery SoC to be used for calculating the
vehicle residual driving range. In this paper, differently from Zhao et al. [39], the validation
of the experimental battery SoC profiles related to real-world driving missions allowed
for optimizing the usage of the ECC method, since real information about the initial
battery SoC could be exploited, and no approximations were required to be introduced in
the analyses.

Once the validation of the BEV model on several experimental driving missions
had been completed, the first set of analyses was aimed at assessing the battery ageing
influence on the real residual driving range of the vehicle. To this end, two distinct DoD
levels (80% and 100%) were considered. For each, four battery ageing levels (i.e., number of
life-cycles completed) were evaluated and their influence on the battery available capacity
was assessed. From a practical perspective, a variation of the correction factor λSoH was
made. Furthermore, the presence of a BTMS failure was assumed to include a variation
of the second correction factor λtbp in the analysis. This condition was exploited to define
the relative importance of each sub-correction factor on the global correction factor λtot.
First, the predominance of the battery ageing level correction factor on the global correction
factor (with respect to the battery pack temperature) was proved. Then, reducing the
DoD from DoD100 to DoD80 demonstrated that a higher battery life-span and smaller
variations of the battery available capacity could be achieved before achieving the battery
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EoL. In fact, roughly two thirds of the entire life-span of a battery could be operated with a
negligible loss of the battery available capacity, in the case of DoD80, whereas only one
third could be operated in the same condition when DoD100 was considered. It is worth
highlighting that range anxiety and safety buffer are directly linked to trip mileage [40],
therefore, experiencing a fast decay of the battery performance (i.e., available capacity)
might lead to a deterrent effect for new BEV drivers. Of note, the selection of a higher DoD
(e.g., DoD100) would lead to temporarily larger driving ranges which would be lost in the
long term.

Another important analysis focused on the effect of HVAC consumption on the
entire system, both for heating and cooling the vehicle cabin (i.e., cold and hot ambient
temperatures). HVAC consumption was modelled assuming an optimal cabin temperature
of 24 ◦C, and that the HVAC power demand would increase when the cabin temperature
moved below or above the optimal temperature. Additional auxiliary power was included
in the study, but HVAC was assumed to claim the main auxiliary power demand, according
to [22]. As expected for a BEV, the battery SoC evolution and the residual driving range
estimations proved to be largely affected when the HVAC system was turned on. A relevant
loss was observed both for the battery SoC value and the residual driving range at the end
of the driving missions. For this reason, an immediate solution could be to not activate the
air conditioning system [41] when driving in urban environments and/or for short trips;
on the other hand, BEV performance losses must be accepted for cold and hot ambient
temperatures due to the activation of the entire HVAC system.

Finally, an assessment of the effects produced by pre-heating the battery before driving
the vehicle was carried out when considering the vehicle parked in a cold environment
(i.e., 0 ◦C and −10 ◦C). The results emphasised that battery pack pre-heating can be an
interesting solution to ensure good vehicle performances (i.e., reducing the decay of battery
available capacity) even in very cold driving scenarios, while increasing the residual driving
range. Considering the role of BTMS on the residual range is therefore to be considered as
a crucial aspect in the reduction of driver range anxiety.

5. Conclusions

In the present paper, the results produced by a model for the estimation of the residual
driving range of a L-7 BEV were reported. Several factors were included in the analyses,
such as battery ageing, battery pack temperature, HVAC consumption and pre-heating
through BTMS-related thermal management, to provide the reader with a comprehensive
view of a larger set of parameters to be included when a realistic definition of the driving
range of BEV is achieved. The data used for testing the model for the estimation of the
residual driving range were extracted from an experimental campaign held within the
H2020 STEVE project.

First, the L-7 BEV backward-facing kinematic model was developed and validated
on the experimental data. Then, the combined effect of battery ageing and battery pack
temperature was assessed assuming a BTMS failure and four different amounts of battery
ageing levels. The results proved the predominance of the ageing level on the overall
performance of the battery and the convenience of shrinking the depth of discharge band
in order to contain the loss of battery available capacity over time. After that, the effect of
the HVAC power demand for heating and cooling the vehicle cabin on the BEV residual
driving range was evaluated for winter and summer conditions, respectively. The results
proved that an extended usage of the cabin conditioning system could be relevantly
disadvantageous, even for a small BEV, regarding the reduction in vehicle performance.
Finally, the convenience of pre-heating the battery through proper thermal management
of the BTMS was assessed assuming the vehicle to be initially parked at 0◦ and −10 ◦C.
Thanks to this analysis, the possibility of containing the reduction in the residual driving
range by means of a pre-heating approach has been demonstrated. Furthermore, the
amelioration given by employing the BTMS thermal management has been proved as
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much more efficient when the difference between the environment temperature and the
optimal battery operating temperature increases.

Our next research will focus on the development and validation of a battery ageing
prediction model to replace the look-up table approach. In addition, an analysis of the
benefits brought by a proper control policy of the HVAC on the performance of a BEV will
be carried out. Finally, a smart thermal management policy of the BTMS will be studied to
optimize the battery heating and cooling processes for different driving conditions.
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