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Abstract— Transport electrification is increasingly seen as
a necessary action to curb climate change. Free floating car
sharing (FFCS) is a transport mode whose real benefits and
disadvantages are still largely discussed. Here we compare
possible FFCS which adopt either internal combustion engine
vehicles (ICEV) or electric vehicles (EV). We focus on three
main aspects: satisfied demand, emission, and system prof-
itability. We use a realistic simulator to thoroughly compare
the different dynamics of ICEV and EV based FFCS systems.
Our simulator models mobility demand, fleet status, refueling
operations, and estimates the satisfied demand, determines the
equivalent CO2 emission from the fuel production up to the
fuel consumption, and computes operational profit. As case
study we consider the city of Turin, where we compare 4 FFCS
systems based on a fleet of Fiat 500 with different engines, i.e.,
gasoline, diesel, LPG, and electric. We run simulations using
the demand as derived from trips recorded by the currently
operational FFCS, and using the fueling infrastructures today
present in the city. Results show that the EV FFCS system
can satisfy the same demand as the ICEV based solutions. As
expected, the EV fleet reduces emission. However, the current
higher cost of EVs makes the FFCS system less profitable than
ICEV solutions - questioning its adoption. Interestingly, cheap
low-power chargers result the best solution for the EV FFCS,
reducing also maintenance costs. We believe our approach and
our simulator, which we make available for the community, is
a first step to thoroughly compare the implications of different
engines in shared mobility.

I. INTRODUCTION

In the last decades, cities are facing severe challenges to
manage mobility, make it sustainable, and reduce air pollu-
tion [1]. Sharing mobility is seen as one of the transportation
paradigms that helps mitigating this problem. Focusing on
car sharing, the possibility to reuse the same vehicle by
multiple users improves sustainability by increasing park-
ing availability and by reducing pollutant emissions [2].
The Free Floating Car Sharing (FFCS) providers offer a
fleet of vehicles that customers rent and return using their
smartphones. Fleets can be based on internal combustion
engine vehicles (ICEV) or electric vehicles (EV). Given the
absence of local greenhouse emissions, the latter promise
to be a more sustainable solution [3]. However, EVs are
more expensive than ICEVs; they need proper charging
infrastructure specifically optimized for car sharing [4], [5],
and thus may result less profitable.

In this work, we present a thorough comparison of ICEV
and EV FFCS solutions. We compare four systems: the first
three adopt ICEVs using regular gasoline, diesel or Liquid

The research leading to these results is supported by the Smart-
Data@PoliTO center for Big Data technologies.

Petroleum Gas (LPG) engines; the fourth, instead, is based
on EVs. In our comparison, we consider three main research
questions: (i) Do the different fueling options impact the
ability to satisfy customers’ demand? (ii) Which are the
environmental benefits of using more eco-friendly fleets?
(iii) What are the economic impacts of such a shift?

As a case study, we focus on the city of Turin, for which
we collected hundreds of thousands of real trips from an
operational FFCS provider [6]. Leveraging these data, we
create a realistic mobility demand model that generalizes
the temporal and spatial characteristics of the observed
trips [7]. We then use this generalized demand model to run
accurate trace-driven simulations to thoroughly study how
the different fleet options impact performance, sustainability,
and costs. In detail, we compare the simulation of the same
traffic demand – changing the fleet vehicles and the refuelling
infrastructure. We assume that to refuel vehicles, the FFCS
provider relies on workers that access the actual fueling
infrastructures as currently present in Turin. For the EV
case, we further compare three charger technologies, namely
Level-2, Level-3 and supercharger solutions.

Our simulator measures the fraction of satisfied trips the
system could sustain – our main index to gauge the customer
service level. It also measures the distance and duration of
each trip, the number of refuelling operations and the time
workers spend on each. With this data, we compute the
greenhouse emission (GHG) according to the Well-to-Wheel
emission cycle [8], i.e., from the fuel production up to the
fuel consumption. At last, we project the profits of the FFCS
system, considering the costs of vehicles, fuel, and workers,
while revenues come from customers’ cost-per-minute fares.
Our results show that:

• Despite the more frequent and longer refuelling op-
erations, an EV fleet has very similar performance to
ICEV fleets in terms of ability to satisfy customer
demand. Faster electric chargers give minimal benefit
but increase sizeably the costs.

• The EV fleet has the smallest environmental impact due
to the absence of local emission, with gasoline cars
having 50% more emissions than EVs.

• Yet, from an economic point of view, EVs fleets are
the least profitable. This is mostly due to the costs of
the fleet, which, if not accurately sized, would quickly
erode revenues.

We believe the methodology we present is generic enough
to offer researchers and providers interesting insights. We



make the models and software available to perform further
analysis of what-if scenarios to compare FFCS system opti-
mization and design options.1

II. RELATED WORK

To the best of our knowledge, we are the first to use
realistic simulations to compare ICEV and EV FFCS along
with three main directions, namely customer service level,
GHG emissions, and overall system profitability. We use
actual demand, refuelling infrastructure, and vehicles char-
acteristics to obtain credible figures in the specific use case.
Rather than data-driven approaches, most previous works
compare ICEV and EV with analytical models. Authors
in [9] examined the life-cycle impacts on energy use (also
called life-cycle inventory) and GHG emissions as a result of
candidate travellers adopting car sharing in the US. Authors
in [10] examined the GHG emission impacts resulting from
shifts in transportation mode to car sharing. Using a mixed
and a binary logit model, consumer’s preferences and the
probability of choosing car sharing or forfeiting ownership
when using car sharing services were analyzed. Authors
in [11] presented an approach to assess various types of EVs
and ICEVs over several criteria from different sustainability
dimensions. Authors of [12] examined key areas of interest
such as EV and charging infrastructure deployment, owner-
ship cost, energy use, carbon emissions and battery material
demand. Authors of [13] investigated the impacts of an EV
sharing scheme in carbon emissions and EV adoption using a
system dynamics modelling approach. The results show that
with the right incentive policies, EV adoption can increase
up to 36% with a reduction of 29% of carbon emissions.
Instead, authors of [14] presented a long-term forecast of
the EV adoption in 26 countries predicting that 30% of the
passengers will use EVs in 2032. Authors of [15] proposed
a methodology to assess the impact of EVs in urban areas
showing that the travel time of L-category (small vehicles
with 3 or 4 wheels) EVs might be longer compared to cars.
Furthermore, by replacing car trips with L-category EVs,
carbon emissions could decrease more than 70% in a year.

III. METHODOLOGY

A. Simulator and parameters

Here we describe the principles and the assumptions of
the demand model and the simulator we design to compare
the performance of FFCS systems based on ICEVs or EVs.

Demand model

Given actual trips observed in a real system, we create
a demand model that generalizes them into the probability
distributions representing the demand dynamics in both time
and space. To this end, we use the methodology presented
in [7]. We create our demand model with data collected
from the car sharing operator car2go [6]. In a nutshell,
we collected a longitudinal trace describing all the trips
performed by users during 2017 in 23 cities.

1https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-
shared-e-mobility-in-urban-scenarios/

Given a trace in a city, we consider 48 independent one-
hour-long time slots, 24 for each weekly workday (Monday-
Friday), and 24 for the weekends (Saturday-Sunday). In each
time slot, we model the demand in time by using inhomo-
geneous Poisson processes [16]. In detail, we assume that
customers requests arrive as a Poisson process, with inter-
arrival time distributed as a negative exponential random
variable with mean that depends on the day and hour. We
fit the arrival rate to match the average intensity of bookings
occurring at the corresponding temporal slot in the trace.

To model the spatial demand, we rely on a Kernel Density
Estimation (KDE) methodology [17]. The KDE estimates
the probability distributions of a request to be originated in
a zone and destined in another zone. We divide the city
into a grid composed of squares having 500 m sides. We
map the origin and the destination (OD) of each trip with
the correspondingly 4-dimensional coordinates. We then fit
the 4-dimensional KDE for each time slot according to the
requests observed in the collected data. We use a Gaussian
kernel [18] and set the bandwidth matrix of KDE to the 2 x 2
identity matrix. This gives us 48 probability matrices that we
use to generate the OD of each request randomly.

Simulator

Armed with the generalized demand model, we employ
our event-driven simulator to study the dynamics of different
FFCS systems. The simulator models a homogeneous fleet
of F vehicles composed of ICEVs or EVs. Cars move in
the city areas over a grid of squared zones Z of 500 m
side. All cars have a fuel capacity B - which depends on
the model.2 Customers look for a nearby car in an origin
zone, and if it exists, drive it to the destination zone. The
simulator tracks each car location, status (i.e., available,
rented, under charge) and updates its State of Fuel (SoF)
accordingly. To simulate different charging infrastructures,
we consider fueling stations replicating the infrastructure
currently present in Turin as described by OpenStreetMap
for gasoline, LPG and diesel stations. 3 We consider the
bluetorino and Enel X charging stations for the EV case.4

We have 712 gasoline and diesel stations, 16 LPG stations,
and 535 EV chargers. Notice that LPG stations are present
only in the periphery.

At simulation startup, cars are randomly placed among
zones, with initial SoF uniformly distributed in [0.5B,B]. All
vehicles are marked as available. The simulation starts, with
the first car request event at ti = 0, associated to a desired
origin Oi and destination Di zone. Since topically users are
willing to walk up to 500 meters [19], the simulator seeks
an available car in Oi or any 1-hop neighboring zones. If
available, the simulator computes the time ttrip to reach Di,
and schedules a car release at a time ti + ttrip in Oi. If no
car is available, it marks the request as unsatisfied.

2Here, we use the term capacity and the term State of Fuel (SoF) to refer
to the energy/fuel level regardless of the type of engine.

3https://wiki.openstreetmap.org/wiki/Tag:amenity%3Dfuel
4https://www.bluetorino.eu/la-mappa-delle-stazioni

https://www.enelx.com/it/en/electric-mobility/
charging-stations-map

https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-shared-e-mobility-in-urban-scenarios/
https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-shared-e-mobility-in-urban-scenarios/
https://wiki.openstreetmap.org/wiki/Tag:amenity%3Dfuel
https://www.bluetorino.eu/la-mappa-delle-stazioni
https://www.enelx.com/it/en/electric-mobility/charging-stations-map
https://www.enelx.com/it/en/electric-mobility/charging-stations-map
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Fig. 1: Well-to-Wheel cycle

When a car release at time t j is triggered, the simulator
computes the consumed amount of fuel to update the SoF,
marking the car back as available. If the SoF is below a
threshold α , the simulator marks the cars as refuelling. It
handles the refuelling event by moving the car to the nearest-
free station and schedules a refuel complete event, which
accounts for both the time trelo to reach the station and to
bring the car back to the original zone, and the time t f uel
to bring the SoF back to 100%B.5 We compute the t f uel
assuming that the station delivers the fuel following a linear
fueling time. When a refuel complete event fires, at time
t j +(trelo + t f uel), the car is marked again as available, and
customers can rent it again. The pump/charger is freed as
well.

Based on the described simulation, we compute the fol-
lowing system performance metrics:

Unsatisfied demand: it is the fraction of requests that
are not satisfied because there is no car in the origin. It
indicates the quality of the service in terms of car availability
for customers, and it shall be minimized.

Total refuelling handling time: it measures the monthly
time spent by the system to bring cars to the pump/charger.
It is the sum of the driving time spent by workers to drive
the cars to the nearest free pump/charger, refuel it, and bring
it back to the original destination. It indicates the goodness
of the charging infrastructure. Being it a cost, it shall be
minimized.

B. Emissions and energy model

While both ICEVs and EVs may offer good system
performance metrics, they may have different environmental
impacts. To evaluate the environmental impact of the dif-
ferent FFCS system implementations, we rely on the Well-
to-Wheel approach [8] depicted in Figure 1. With this, we
compute the greenhouse gases emissions, in terms of Carbon
dioxide equivalent CO2e, considering two main components:
the Well-to-Tank, and the Tank-to-Wheels emission.

Well-to-Tank: It considers the amount of greenhouse emis-
sions from the production of the raw material up to the
moment the fuel/energy is delivered to the vehicle. Thus,
it accounts for the processes required to extract, produce,
transport, and deliver it.

For ICEVs, it is complicated to find accurate Well-to-
Tank data as this is very sensitive and may drastically
change based on different factors, e.g., the presence of oil
pipelines. A reliable source for data for the European context
is provided by [20], with additional details for each process
of the Well-to-Tank component. In detail, we rely on the

5For simplicity, we assume there is always an available worker to handle
the fueling event so that a car gets serviced immediately. If all stations are
busy, the car gets queued to the closest station and gets serviced when a
pump/charger is freed.

Well-to-Tank (WT T ) GHG emission data reported in the
Oil and Gas section. This data reports, for each fuel f ,
the WT TMJ( f ) as the grams of CO2e emitted to produce a
total energy of 1MJ of finished fuel, i.e., the energy that
it can produce when burned, based on its lower heating
value (LHV )6. By knowing the WT TMJ( f ) of the fuel, the
respective LHV , and the fuel density ρ , we compute the
WT T ( f ) per unit of fuel, i.e., l, as follows:

WT T ( f ) =WT TMJ( f ) ·LHV ( f ) ·ρ( f ) (1)

For electric cars, we compare the energy mix used to
produce electricity in Europe as presented by authors in [21]
and in Italy [22]. The energy mix is the overall contribution
of the sources used to produce electricity. Starting from
this data, we compute the average emission to produce the
electricity GHGavg, i.e., the primary fuel, as follows:

GHGavg = ∑
c∈C

GHG(c) ·w(c) (2)

where c is one of the components of the country energy
mix C, GHG is the greenhouse emission emitted to produce
1kWh of electricity, and w represents the share of the
components. However, to properly consider Well-to-Tank im-
pacts, we take into account other aspects. Thus, we consider
the electricity losses for transmission and distribution with
an average efficiency ηtransport , and the charging efficiency
ηcharging as suggested in [23]. As such, we compute the Well-
to-Tank (WT T ) greenhouse emission, per electricity unit, i.e.,
kWh, as follows:

WT T ( f ) = GHGavg/(ηtransport ·ηcharging) (3)

Armed with the Well-to-Tank emissions per unit of each
fuel/energy f , by knowing the car consumption based on the
fuel CC( f ), we compute the Well-to-Tank emission per km
as follows:

WT Tkm( f ) =WT T ( f ) ·CC( f ) (4)

Finally, by knowing the fuel/energy f used during simu-
lation, and the total traveled distance by the cars (Totkm), we
compute the total Well-to-Tank emissions as follows:

WT Ttot =WT Tkm( f ) ·Totkm (5)

Tank-to-Wheels: The Tank-to-Wheel refers to the amount
of tailpipe GHG emissions emitted by the vehicle during its
operation.

For ICEVs, we build our model upon the data published
in [24]. The report analyzes the greenhouse gas emission
considering the CO2, the Methane (CH4), and the Nitrogen
Oxide (N2O) exhaust emissions. We consider the CO2e
from the three gases, and we compute the Tank-to-Wheel
emissions as follows:

T TWtot = GHG( f ) ·CC( f ) ·Totkm (6)

6The Lower Heating Value reports the amount of heat released by
combusting a specified quantity of fuel.



TABLE I: Summary of fuel characteristics.

Fuel WTT LHV ρ
ηTrans ηCharg Emission
−port −ing WTT GHG

g/MJ MJ/kg g/l g/l g/l
g/kWh − − g/kWh g/kWh

Gasoline 17.0 42.3 745.8 - - 536.3 2314.8
Diesel 18.9 42.7 836.1 - - 674.7 2616.5
LPG 7.8 46.0 550.0 - - 197.3 1660.7
EV-EU 424.9a - - 0.92 0.80 577.3 0
EV-IT 269.0a - - 0.92 0.80 365.5 0

aThe WTT reports the GHGavg based on the European or country energy mix.

where f represents the vehicle fuel, GHG represents green-
house emitted per liter l of fuel, CC is the car energy
consumption, and Totkm reports the total traveled distance
in the simulation. In the case of EVs, no direct local CO2e
emission is present. Thus, we assume T TWtot = 0.

Table I reports the values used for the fuel variables and
the resulting emissions. For electric vehicles, we report in the
WT T column the GHGavg in Europe and Italy, respectively.
Notice that the Well-to-Wheel cycle does cover the entire
Life Cycle of the vehicle since it does not consider energy
and emissions involved in building facilities, manufacturing
the vehicles, or end of life.

C. Cost model

While performance and emission indexes help exploring
design options identifying the best one for the customer
and the environmental point of view, the FFCS operator is
ultimately interested in economic sustainability. For this, we
derive a cost model based on vehicle costs, refuelling costs,
operating costs, and revenues with a yearly projection.

Vehicles costs: We suppose that the operator leases the
cars with a three-year-long contract. We assume that the
contract includes all the costs for registration, tax, insurance,
ordinary and extraordinary maintenance, and roadside assis-
tance. Since precise information about Clease is not available,
we set a baseline price for the gasoline version of the Fiat
500. Then, we scale-up the price for the other vehicles
according to the ratio between the MSRP price of the vehicle
and the MSRP price of the gasoline version. Notice that
given the lack of precise information, we do not consider any
discount nor subsidies that may impact the vehicles’ final
price, especially while buying low emission ones. Finally,
by knowing Clease and the number of vehicles, we derive the
total yearly fleet cost.

Refueling cost: For the refuelling cost, we consider that
the car sharing operator relies on the public city infras-
tructure. Thus the operator has no infrastructure cost. Since
workers bring to refuel the cars, we consider a Cworker hourly
labour cost. For the fuel price, we consider a C f uel cost
depending on the fuel. For electric vehicles, we consider
three scenarios based on the charger type, i.e., Level-2,
Level-3, Supercharger.

Emission costs. For the emission, we consider that the
car sharing provider pays a cemission fee for each metric
ton (1000 kg) of CO2e emitted by its customers and for the
required refuelling operations. We assumed a value in line
with the current level of carbon pricing [25].

TABLE II: Summary of cost and revenue parameters.

Param Description Range

Clease

Yearly lease for gasoline ICEV 4000e/yr/vehicle
Yearly lease for diesel ICEV 4670e/yr/vehicle
Yearly lease for LPG ICEV 4610e/yr/vehicle
Yearly lease for EV 7140e/yr/vehicle
Gasoline cost for l 1.58e/la
LPG cost for l 0.65e/la

C f uel Diesel cost for l 1.44,e/la

Level-2 charger, Energy cost for kWh 0.40e/kWhb

DC charger, Energy cost for kWh 0.50e/kWhb

Cworker Hourly labour cost to bring the cars to refuel 23e/hc

Cdisin f Disinfection and interior cleaning cost 5e/20 rentals
Cwash Cost to wash the car 8e/100 rentals
Cemission Cost for 1 ton of CO2e 50e/t CO2e [25]
Rrental Average revenue per rental minute 0.26e/mind

a
https://www.mylpg.eu/stations/italy/prices/

b
https://www.vaielettrico.it/nuove-tariffe-enel-x-per-la-ricarica-dal-1-giugno/

c
https://www.infodata.ilsole24ore.com/2019/08/19/39139

d
https://www.share-now.com/it/en/pricing/

Management costs. We also consider other management
costs required to run a car sharing service. For instance, we
consider the cost Cdisin f to clean and disinfect the car any
time the worker brings it to refuel. Furthermore, we assume
exterior car washing every 100 rentals, each costing Cwash.

Rental Revenue We consider an average cost-per-minute
Rrental based on current Share Now fares. This consideration
allows us to transform the total rental time into the total rev-
enues. Table II summarizes the cost and revenues parameters,
with their chosen values for this work.

IV. RESULTS

As a case study, we focus on the city of Turin. The city
is characterized by a fleet size |F | of 400 vehicles. Despite
being non-stationary, especially during periods like August
and Christmas holidays, the service usage follows an hourly
and weekly pattern, with more rentals during the commuting
hours and in general in the weekdays [26]. Considering the
characteristics of the trips, the average distance is less than
4 km with an average duration of 21 minutes. The longest
observed trip is about 20 km (to reach the airport).

We consider 4 different fleets composed of homogeneous
cars powered either by gasoline, diesel, liquefied petroleum
gas (LPG), or electricity for our simulations. Table III
summarizes the characteristics of each vehicle type. For each
fleet type, we set α as the minimum fuel/energy required to
perform the longest trip in Turin. For EVs, we investigate
whether the charge speed impacts the satisfied trips due to
the fleet reduction induced by the long charging operations.
To this end, we consider slow Level-2 AC chargers at 3.7kW ,
11kW , and fast Level-3 DC chargers at 50.4kW . We consider
the impact of the fleet size as the main parameter that the
provider can choose to reduce the cost. To this end, we vary

TABLE III: Summary of vehicles and fuel characteristics.

Model
Fuel Capacity CC Range αtype
[-] [l,kWh] [per km] [km] [-]

Fiat 500 1.2 Gasoline 35 0.058 600 4.5%
Fiat 500 1.3 Diesel 35 0.042 827 3.3%
Fiat 500 1.2 LPG 30 0.071 425 6.4%
Fiat 500-e EV 37 0.188 196 13.9%

https://www.mylpg.eu/stations/italy/prices/
https://www.vaielettrico.it/nuove-tariffe-enel-x-per-la-ricarica-dal-1-giugno/
https://www.infodata.ilsole24ore.com/2019/08/19/39139
https://www.share-now.com/it/en/pricing/
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Fig. 2: Unsatisfied demand
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Fig. 3: Monthly charging handling time
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(a) Well to Tank (WTT)
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(b) Tank to Wheels (TTW)
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Fig. 4: Monthly emission for the customers’ mobility and the charging operations

the fleet size from |F | = 0, up to |F | = 400, corresponding
to the currently available fleet.

Firstly, we focus on the impact of the fleet size on the
unsatisfied demand reported in Figure 2. All fuels/chargers
show similar performance. For EV fleets, a faster charger
gives only a minimal contribution, with an increase of 2.5%
on the satisfied demand when 100 vehicles are employed.
With more than 200 cars, all the curves overlap and decrease
at very small rate, suggesting that the current fleet, composed
of 400 vehicles, might be slightly oversized regarding this
metric.

Next, in Figure 3 we study the impact of the fleet size
on the charging handling time. Here we report the total time
to handle the charging operations in 1 month. Consider the
region |F | ≥ 200. The diesel and the gasoline fleets show the
lowest charging handling time due to their long range and
the charging infrastructure ubiquity. Interestingly, despite the
shortest range, the EV fleet asks only twice as much time as
the gasoline fleet to handle the refuelling events. Considering
LPG, the time required to handle the refuel events is much
higher due to limited infrastructure, which is usually far from
the city centre. As such, the workers have to drive for longer
distances to refuel the vehicle and bring it back. In both
the unsatisfied demand and the charging handling time the
charger technology does not impact the performance. Hence,
from now on we consider only the 400V 16A AC charger.

Considering the environmental impact, Figure 4 reports
the monthly CO2e the emission for the customers’ mobility
and the charging operations. Focus on the WTT first. The EV
fleets show the highest CO2e emission. With the European
energy mix, it is almost up to 4-times than than gasoline
or diesel fleets (2 times for the Italian energy mix). The
LPG shows the lowest emission driven by the lowest WT T
in Table I. Next, we consider TTW emission. Gasoline and
diesel show different trends, with gasoline having the highest
emission while diesel and LPG the lowest ones. The EV fleet,
by definition, shows no emission. Finally, we consider the
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Fig. 5: Monthly estimated profit
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Fig. 6: Monthly breakdown of the costs when |F |= 200

global WTW emission. Given the higher contribution of the
TTW emission, gasoline results in the highest emission level,
with 50% more emission than EV charged with the European
Energy mix. Finally, notice how, Diesel show similar WTW
emission to LPG. This result is due to the better engine
efficiency and autonomy, which counterbalance by the higher
WTT emissions.

Finally, we project the results into costs and revenues
to gauge the economic implications of the design choices.
Figure 5 reports the estimated profit per month. We estimate
the profit by computing the total revenues and subtracting
the costs considered in Table II. For the emission cost of
EV, we consider the EV-EU emission. We use this analysis
to identify the impact of the different design choices rather
than give precise cost-revenue information. When |F |< 350
vehicles, all fleets show a positive profit, while for bigger
fleets, the EVs start having a loss due to the high leasing



cost. Despite the high unsatisfied demand, i.e., more than
21%, the maximum profit is achieved using around 100 and
130 vehicles for EV and ICEV fleets, respectively. This result
is driven by the highest leasing costs of EVs which do not
increase the revenues. To investigate the differences in profit,
in Figure 6 we break down the costs that the car sharing
provider could face every month. We consider a fleet of
200 vehicles for this analysis as it guarantees almost an
iso-satisfied demand (±1%). The leasing cost dominates,
especially in the EV fleets. Given the iso-satisfied demand,
also the operating cost is almost the same for all the fleets.
Instead, the energy cost shows the highest variability, with
the gasoline and the electric fleets showing the highest cost.
The cost for the workers to handle the charging operations
is limited in all fleets except for the LPG due to the limited
existing infrastructure. Interestingly, if the operator pays a
carbon fee for their WTW emission, this cost has a marginal
impact and almost equal for all the fleets. Overall, ICEV
fleets keep having lower costs.

V. CONCLUSION AND FUTURE WORK

This paper presented a comparative analysis among differ-
ent free floating car sharing fleets based on ICEVs or EVs.
Our results show how EVs have similar system performance
to ICEVs with almost equal satisfied demand when the
same fleet size is used. Faster chargers give only a limited
benefit; thus, a slower and cheaper charger can be employed.
Moreover, the EV infrastructure’s ubiquity helps in reducing
the time to relocate the cars to a charger. The EV fleets have
the smallest environmental impact WTW, with a reduction
of more than 50% with respect to a gasoline-based fleet. The
absence of local emissions drives the benefit of the electric
fleet. From an economic point of view, EV FFCS currently
results in the least profitable system, being also at a loss due
to the high costs of the vehicles.

We are planning on widening our analysis by considering
the fleets’ entire life cycle for the emissions assessment,
comparing the emission with full hybrids vehicles, and
optimizing the charging infrastructure location. Furthermore,
while considering the emission, we plan to extend our
analysis to consider pollutants that may impact the quality
of life in the city.
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