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Summary

The Fly-By-Wire technology (FBW) is adopted as primary flight control actua-
tion system for both legacy aircraft and new-generation ones. In particular, several
studies have been conducted over the failure modes of these systems, that are con-
sidered both safety critical from a technical perspective and a profitable subject of
investigation for all the Maintenance Repair and Overhaul (MRO) companies in
aviation industry. The actual testing procedures are typically time-consuming and
they need to be upgraded in line with the new Industry 4.0 indications, such as
automation and data-collection.

In this framework, this thesis reports the results that have been obtained during
a three-years research project in collaboration with Lufthansa Technik, with the
final goal to automate and improve the diagnostic accuracy with innovative Machine
Learning techniques. The development of a new testing protocol has required the
collection of results from different research activities.

The first fundamental step has been the design and implementation of an au-
tonomous testing through a series of concatenated modular signals. These signals
include a set of predefined shapes that can be adapted per different types of tested
servo-commands, with the goal to collect a set of Health-Features (HF) per each
critical unit sub-component. Each signal shape has been designed in order to cover
most of the traditional prescribed tests in order to cut the testing time of more
than one third.

The collected signals are then automatically stored and analysed by an au-
tonomous feature-extraction algorithm based on signal processing techniques. This
software represents the testing protocol core, since it has been tuned in order to
extract all the possible information from the measurements that can be used to
track any anomalous behaviour of the unit sub-components. During the experi-
mental campaign in the LHT shops in Hamburg, several set of measurements have
been collected and analysed in order to refine and validate the HFs extraction tech-
niques from the signals. Furthermore, in order to improve the actual data collection
process, an automatic data-collection framework has been built to store correctly
all the measurement channels and test results from the experimental campaign.
In particular, the extracted HFs from the measured channels are systematically
collected in a unique final report that has the double goals of firstly informing the
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technician about the tested unit health status, and secondly building-up a database
of test reports.

All the information from these reports are in fact automatically collected in
a unique database which lay the foundation for both any statistical analysis and
the training and testing operation for the Diagnostic Module algorithm. This last
part of the testing protocol is based on a Supervised Machine Learning algorithm
which has to automatically recognize the health status of each unit part from the
collected HFs. Firstly, per three target components, a sub-set of optimal HFs
have been extracted according to their statistical relevance. Afterwards, these
subset of data have been used to tune the algorithms hyperparameter over a specific
training set. In this way, the algorithms have been trained to correctly associate
the assigned failure labels, and define multi-dimensional decision boundaries for any
further classification of new incoming data. The classification performance are then
compared by defining specific metrics that can be calculated according to wrongly
and correctly recognized classes.

In conclusion, the advanced diagnostic framework includes an autonomous and
adaptable testing procedure, an advanced signal postprocessing software for feature
extraction, a solid framework of data collection in terms of measurements and
reports and a classification algorithm for failure identification. These core blocks
definitely improve the quality of failure recognition for these component and at the
same time the productivity of the repairing workshop with innovative techniques.
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Chapter 1

Introduction

In recent decades, advanced health monitoring systems and condition-based
maintenance (CBM) have raised as disruptive technologies in aviation industry.
These techniques may influence all the product lifecycle phases of complex sys-
tems, from the design to service stages. The concept is to evolve the maintenance
protocol from passive to active, in order to predict in advance the right timing
to perform preventive maintenance actions. Furthermore, the possibility to detect
faults and degradations in early stages provide useful information to the concept
and design phases, helping to develop more durable and fault-tolerant components.
For this reason, advanced diagnostic methods are essential for complex and critical
systems, especially in the aviation industry where any failure inconvenience may
lead to delays, expensive on-ground operation or, in worst case scenario, safety
issues. For this reason, the principal goal is to improve reliability of maintenance
procedures and in the same time reducing cost with innovative autonomous tech-
niques. Due to the increasing level of the technologies involved in each aircraft
system, intelligent maintenance protocols have to take place instead of the old
ones, in order to ensure constant reliability and serviceability of these systems.
On this basis, advanced diagnostic techniques have to be designed in order to be
autonomous and data-centric: the importance of collecting high-quality data from
maintenance procedures enables further development in terms of failures prediction
and prognostic.

This chapter introduces the historical evolution of aircraft maintenance proce-
dures and the economic benefits in terms of advanced diagnostic. Afterwards, a
particular focus in the aviation industry is presented, and in particular the health
monitoring systems for safety critical components such as flight control systems.
In this framework, the HyDiag research project, in collaboration with Lufthansa
Technik AG, is presented. This thesis reports the results of four years long collabo-
ration between Politecnico di Torino and Lufthansa Technik AG, in the framework
of the HyDiag project on the development of innovative diagnostic procedures.

1



Introduction

1.1 Historical Background
In aircraft industry, maintenance procedures ensure high standards of safety,

operational reliability and passenger comfort. As reported in [1], the Air Transport
Association (ATA) gathers together several professionals from aeronautic industries
in order to create regulation for maintenance protocol in commercial aviation. In
particular, this set of regulations has evolved during the years following the con-
stant evolution of the aircraft components, and therefore their relative maintenance
procedures. For instance, the first maintenance research project was promoted by
United Airlines in 1965 in order to define common rules that could be applied for
systematic review of the aircraft design [2]. Afterwards, in 1968, the "Maintenance
Evaluation and Program Development" handbook was developed for the 747-100
and published by the ATA Maintenance Steering Group (MSG) , which gather to-
gether different stakeholders such as airframe manufacturers, airlines, suppliers and
the U.S. Federal Aviation Administration . This document, also known as MSG-1,
suggested to use decision logics to determine correct overhaul maintenance tasks,
taking into account one particular component in a system and analyzing the most
critical parts of this component. The possible maintenance actions were classified
as:

• Hard Time (HT) : based on life limits or maximum intervals of time until a
necessary maintenance task

• On Condition (OC) : the component can be subject to repetitive inspections
during its lifetime in order to determine its conditions, leaving it on board
until a failure occurs.

This set of regulations appeared for short time since already in the early 70’, it
was updated into the new "Airline/Manufacturer Maintenance Program Planning
Document" or MSG-2, applicable to a wider range of aircraft. In this new docu-
ment, a third possible action was introduced called Condition Monitored Mainte-
nance (CM) : the component is not checked until a failure occurs. This control
process could not be applied to all the aircraft components and in fact the safety
critical ones were excluded by this kind of action. For instance, the engines could be
On-Condition checked but not Condition Monitored while a single Pressurization
Air Conditioning (PAC) valve can be treated with Condition Monitoring actions
due to its less priority in terms of safety. The introduction of the CM action has
not to be intended due to the high number of components in each aircraft compo-
nent, and not all of them can be monitored with OC approach for both time and
economical issues. From these two first set of regulations, the introduction of OC
action guaranteed several advantages in terms of down-time reduction and mainte-
nance cost decrease. The last upgrade MSG-3 is an analytical method based on the
"Reliability-Centered Maintenance" (RCM) , published in the ’80 from two United
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Airlines executive engineers. During the years, this document has been revised and
updated (until the current ATA MSG-3, 2015), but it still represents the core part of
the actual maintenance rules. It proposed a task-oriented approach, that can iden-
tify the inherent reliability of the on-board systems and components, avoiding un-
useful or late maintenance tasks. This document proposes three possible methods:
preventive and predictive maintenance and components redisgn-by-failure. In par-
ticular, the RCM method is based on the Failure Mode & Effects Analysis (FMEA)
to identify failures and their relative roots. This method ranks the failures based
on severity criteria, and it is widely used in a series of scientific applications [3–5].
This kind of analysis gives a better understanding of the anomalies roots and there-
fore reduce maintenance costs, giving a deeper insight of each connection between
interconnected components in complex systems. In fact, especially in aeronautic
components, a single degradation can induce a failure in many other connected
systems and, if a systematic approach is not adopted, extracting each cause-effect
relationship can be very demanding. The ARINC 624 standard was developed in
the early ’90 as regulations for on-board maintenance systems, introducing directly
failure-sensitive on board system that enables to collect more information about
multiple systems to support further on-ground inspections. For this reason, several
studies have been conducted on both on-board Advanced Diagnostic and Prognos-
tic systems that can be adopted to evaluate the current health-status of monitored
systems and their predicted remaining useful-life.

1.1.1 Prognostic and Advanced Diagnostic in Aeronautic
Industry

In [2] Prognostic and Health Management (PHM) is defined as the engineering
discipline that is focused on autonomous degradation detection and prediction of
Remaining Useful Life (RUL) of the system under analysis. The RUL can be de-
fined as the amount of probable time for which the component can keep working
in its design condition before a detected degradation can evolve into failure. In
Fig. 1.1 it is schematically described the approach to evaluate the RUL due to
the evolution of a detected degradation into a failure. Firstly it is necessary, to
implement an estimation algorithm which is able to predict the evolution of the
fault dimension over time, and secondly it is necessary to set the operating limits
of the test component. A suitable candidate for prediction algorithm is the Particle
Filter, which has widely used also in the aerospace field [2, 6–9]. In the plot in Fig.
1.1, the initial point L0 is identified as the "Initialize long-term prediction" and it
used by the Particle filter algorithm to evaluate the mean value of the observed
degradation and its relative uncertainty boundaries, with a probabilistic approach.
The RUL is estimated as the time when the average predicted value encounters the
"Hazard zone" of the prescribed acceptable limits. Mathematically, it is expressed
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Figure 1.1: RUL prediction scheme [12]

by the median probability curve when "its average value is the most probable in-
stant of rupture" [2]. This parameter can be evaluated in terms of operating hours,
cycles or other time-metrics and it can be used to schedule the necessary mainte-
nance tasks to avoid a failure, influencing both logistic and overhaul operations. In
particular, the proposed method from the PHM experts can support the maintain-
ers to schedule their tasks, and the logistics managers to support them during the
warehouse management and spare parts supplies. As a consequence, these tasks
may positively influence the work of the process or fleet managers that needs to
plan the production schedules and mission requirements, but also it can give useful
information during the design phase of more fault-tolerant systems [10, 11]. This
kind of integrated approach has been proposed in [2] and described in the flowchart
of Fig. 1.3, where the FMECA firstly and, almost at the end-life of a product, the
PHM outputs constitute a useful source of information for further improvement of
the next-generation product. The PHM approach enables an accurate data collec-
tion of faulty condition directly integrated during the operating life of the analysed
component, keeping track of useful information that can complete the other set of
data coming from the maintenance on-ground operations.

The International Standard Organization (ISO) has defined the ISO 13374-1
standard processing model, which is referred as the typical framework for processing
data and provide basic PHM indications. Fig. 1.2 provides an overview of the
framework blocks.

Implementing a reliable PHM system requires however to face a series of highly
demanding technological challenges that are typically hard to solve:

• The fast analysis of different signal sources, coming from integrated sensors.
A fundamental phase for fault identification is in fact the extraction of specific
Health Features (HF) that can be used to identify the health status of the
analysed component. These features needs to be highly correlated with the
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Figure 1.2: ISO 13374-1 processing framework

degradation to observe and as less ans possible influenced by environmental
conditions [13].

• Once the degradation is identified with specific set of HFs or their combina-
tion, it is necessary to maximize the RUL prediction with well tuned algo-
rithms, such as the aforementioned Particle Filter.

For aeronautic components, these tasks needs to be implemented and integrated
in the on-board monitoring systems, especially the stages regarding data collection
from the signal and feature extraction. These processes would require dedicated
avionic components with relatively high-computing power, that therefore needs to
be certified and correctly installed in the aircraft avionic bay. In order to minimize
these challenges, a possible solution would be to allocate the RUL estimation task
on external on-ground facilities that are able to communicate in real-time with
the on-board systems. Some big players of the Aerospace industry have already
started this process: for instance, the Airbus Skywise platform is already able
to extract the data from new-generation aircraft (such as the A350), fuse them
with other important data from on-ground facility, and provide useful real-time
information about the health status of each on-board component. More details
about the economical benefits these solutions are bringing in the MRO market are
reported in paragraph 1.1.2.
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Figure 1.3: PHM technique for product development [2]

In this framework, data collection and manipulation and the definition of a reli-
able diagnostic algorithm for anomaly detection are two key-factors of any health-
monitoring system, and even more if based on PHM algorithms. In the recent years.
several research studies have been conducted over these two fundamental points.
Most of these studies are focused on the development of effective fault detection
on-board system, which are able to provide indications about the degradation en-
tity and the impact over other connected systems [14–16]. In this framework, both
model-based techniques, based on high-fidelity models [17, 18] or reduced-order
ones [19], and data-driven techniques, based on historical data as in [20] and [21],
have been widely tested to find the best methods to be developed in the on-board
systems. However, especially in these latter cases of data-driven approach, several
researches have highlighted the most challenging issue of collecting a reasonable
quantity of high-quality data from the on-board systems. Typically, these data are
difficult to extract from the on-board systems and furthermore they are charac-
terized by low-sampling features, therefore a considerable preprocessing is needed
for extracting valuable time-series measurements. A important source of data is
therefore represented by the great amount of results that can be extracted by the
on-ground tests [22, 23]. Thanks to the modern technologies of Industry 4.0, a dis-
ruptive improvement of standard maintenance protocol needs to be pursued adopt-
ing innovative techniques such as automatic testing, structured data collection and
pattern recognition techniques for anomaly identification through Machine Learn-
ing algorithms. All these topics constitutes the building blocks of the Advanced
diagnostic for Flight Control System framework in this thesis.

1.1.2 Economic forecast of MRO market
Over the last decades, advanced failure diagnosis has been a relevant topic

in several engineering fields. Research groups have focused their activities over
the the development of advanced and automatic technologies to detect failures or
anomalous behaviours and furthermore implement decision-making algorithms that
are able to react according to the failure potential impact over the system health
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status. As previously mentioned, the interest in improving both on-board failure
recognition algorithms and on-ground maintenance procedures have exponentially
increased, due to the predicted increase in size of both passenger and cargo fleet, as
in Fig. 1.4a. As reported in [24], the number of commercial aircraft will increase up
to more than 35000. This raise includes both more than 20000 new-generation air-
craft, that will induce the airlines companies and Maintenance Repair and Overhaul
industries to face new technological challenges. In Fig. 1.4b the expected spend
in terms of Compound Annual Growth Rate (CAGR) percentages are described
per each MRO market segments in the next years. In particular, the total MRO
spend will increase over the first five-year period of an equivalent 2.4% CAGR, and
then up to 5.2% in the second half of the observed decade. Considering the full
period, the global MRO market will grow 3.8% CAGR annually, hitting the max-
imum 109$ billion of investment. This forecast influence all the segments, where
the engines one represent the larger portion due to the new technological trends
regarding high-performance materials or hybrid propulsion systems. For instance,
the european Clean Sky project [25] targets to reduce up to 30% fuel consumption
by 2035 adopting new radical hybrid propulsion systems for short-medium range
aircraft. These kind of innovative technologies imply a necessary shift of method-
ologies and protocols at the base of maintenance procedures. Both OEM , MRO
industries and all the market stakeholders needs to prepare and be trained for new
technological challenges:

• The on-board failure detection systems will require more sophisticated hard-
ware and software capabilities to perform advanced health-monitoring proce-
dures, elaborating more inputs from several on-board sensors. For instance,
in the framework of developing fully-digital and connected aircraft, the ac-
tual A350 includes more than 50000 sensors that are able to collect 2.5 TB
of data per each day [26]. This huge amount of data needs to be processed
by several new-generation control computers, whose serviceability and safety-
critical have gained more importance.

• As consequence of the first point, the number of health-monitoring parameters
from this new available quantity of data will considerably rise, therefore the
MRO industries needs to define the methods to use them in the best way
possible.

• As far as the tech-level of the on-board system grow, equivalently the on-
ground testing infrastructures need to evolve in terms of equipments and
personnel training.

In the recent years, all the bigger market companies have introduced their health
monitoring platforms, based on the increasing quantity of collected data. As re-
ported in the ICF report in [27], in the last three years, several companies are
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(a) Global Aircraft Demand

(b) MRO market segment forecast

Figure 1.4: Economic Forecast of MRO market [24] (Analysis performed before the
COVID-19 pandemic)

already collecting the benefits of predictive maintenance approach: for instance,
Delta airlines has achieved a 98% reduction of maintenance-related cancellations
events, while easyJet has registered 31 correctly predicted failures events before
they occurred, through the Airbus digital platform Skywise [28]. The graph in Fig.
1.5 reports the importance of on-board collected data in both the health monitoring
and management phases. In particular, both Diagnostic and Prognostic disciplines
represent the key areas of study which determine the necessary maintenance action
while the aircraft is still operating or on-ground.

To sum up, effective health-monitoring and management systems can improve
the aircraft operational reliability, avoiding on-ground immobilization time or de-
lays, and they can drastically reduce the direct maintenance cost during on-ground
operations, which are typically affected by two factors:

• Due to safety standards to be respected, typically the No Fault Found rate
(NFF) is high especially for the component market segment. For instance,
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Figure 1.5: Aircraft Data Management Value Chain [27]

considering a couple of aileron units on a side of a wind, if during a flight an
anomaly is detected from this group of actuators, both of them are dismounted
and checked during normal on-ground maintenance operations. Even if this
procedure ensures an high-level of safety, it is very likely that one of the tested
units results fully serviceable, thus increasing the number of NFF units that
are actually tested even without any anomaly. This phenomena may lead to
high testing cost, especially for this kind of units with an overall NFF rate
above 25% [6].

• Each aircraft component is typically a complex assembly of parts whose work-
ing conditions are highly affected by all the others, therefore failure identi-
fication is typically a task that requires large efforts in terms of time and
man-power [29].

In this scenario, the research project presented in this thesis aims to develop
an innovative failure diagnostic framework for a specific class of aircraft compo-
nents, in order to improve on-ground maintenance operations in terms of time,
automation and reliability of anomaly detection. The target class of components
includes all the Fly-by-Wire (FBW) flight control systems. Looking at the bar-
chart in Fig. 1.4b, this class of component belongs to the "Component" segment:
even if the predicted portion of investment is considerably smaller than other (such
as the Engine sector), these units are still considered a key use-case in the MRO
market, since due to their high NFF rate they represent an area of improvement of
Maintenance procedures. Furthermore, the FBW hydraulic units will still be used
as reliable actuation technology in the next decade especially for narrow and wide
body aircraft.
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Figure 1.6: Heavy Maintenance procedures in LHT facility [30]

1.2 Project Motivation
AIn the aviation MRO market, Lufthansa Technik AG (LHT) is a key interna-

tional player with more than 20000 employees and providing maintenance services
for the whole Lufthansa Group and other 800 customers worldwide. Considering
the market shares in Fig. 1.4b, LHT facilities includes all the main segments. In
particular, considering the Component market share, one of the company core busi-
ness is the so called Total Material Operations: a complete tailored maintenance
service that ensures a comprehensive aircraft overhaul and spare parts pooling.
Due to the company in-house wide range of materials, LHT is able to guarantee
short turnaround time and high material availability. In the Component market,
these resources allows the company to guarantee overhaul services for more than
360000 Shop Load Events (SLE) each year. This considerable number of required
SLE from the customer has driven the LHT Innovation departments to investigate
and focus a lot of efforts over innovative maintenance procedures, which are able
to keep high reliability and in the same time reducing time and cost.

In this framework, the HyDiag Project aims to develop an innovative testing
protocol for FBW components, improving the standard test procedure in terms of
automation, data collection, and failure recognition. These goals imply an overall
update of the traditional standards in terms of testing capabilities. For instance,
concerning the upgrades in terms of automation and data collection, the HyDiag
Project needs to explore the possible improvements that needs to be fulfilled over
the adopted test-benches, in terms of equipped sensors, testing software and hard-
ware on-site data-collection capabilities. On the other side, the economical benefit
of these investments can be already tangible in short-mid term in terms of time
and man/hours reduction and overall component health-status evaluation, from
the extracted results by the data-driven failure recognition algorithm. As conse-
quence, an improved and faster failure detection can positively influence the overall
repairing-shop management, in terms of work-schedule and logistic.
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Figure 1.7: Normalized Elevator TSI distribution per SLE [31]

A detailed analysis of the project economical benefits have been in detail de-
scribed in [31] and [32]. In both the previous research works, it has been reported
an analysis based on the Time Since Installation (TSI) , defined as the time-rage
that occurs between two consecutive SLE. This metric is particularly significant
to evaluate the performance of the repairing tasks of failure identification during a
SLE: the smaller it is, more likely is the chance to have conducted a poor failure
recognition in the older SLE. For example, the plot in Fig. 1.7 reports the TSI
distribution function per each SLE of a critical component: the A320 Elevator.
Looking at these curves, it is possible to notice how the overall average TSI falls
soon after the first repairing event. This result highlights for instance the econom-
ical benefit an upgrade in terms of failure recognition would bring if the average
life of this use-case can be extended after the first SLE. Similar conclusion can be
extended also to the other project use cases. In particular, from a technical point of
view, the necessity of a more effective failure recognition is also justified by FBW
actuators structural complexity, which makes more difficult the identification of
one or more contemporary failure roots. Furthermore, from a technical point of
view, the FBW actuators can be considered a perfect match for developing a more-
automated testing procedure, since they can be electrically controlled. A detailed
description of their physical structures are reported in Chapter 2.

From an economic perspective, four main reasons are listed in [17] that explain
the motivations behind the choice of considering electro-hydraulic actuators as a
key element for cost saving in the Component market sector. Beyond the already
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Figure 1.8: SLE percentages for A320 actuators in LHT shops during 2019 [33]

mentioned complex structure that contributes to increase the overall failure-rate
of these components, it is important to mention that hydraulic systems are still
considered the most common and reliable actuation solution for both flight-controls
and landing gear systems, even in the next-generation and more-electric aircraft [6].

The first civil FBW aircraft was the Airbus A320, launched in 1988, and it still
represents on of the most reliable system and adopted by several airline companies
around the world. This aircraft has always been in the top-ranking positions in
the sector of medium-haul commercial aircraft, which is also the most profitable
segment today. Furthermore, in 2012 it has been renewed and upgraded in the today
A320neo version, which enables to reduce by 15% the fuel consumption and by 8%
the operational cost. These improvements have increased the demand by the airline
companies, ensuring the A320neo market share to remain stable in the next decades.
For these reasons, the A320 family FBW system have been identified as the perfect
match between technical and economical reasons and therefore pointed as HyDiag
project use-cases. More details about the A320 FBW architecture are provided in
2.2. The piechart in Fig. 1.8 shows number of SLE in the LHT shops during 2019
of A320 FBW units. From this plot, it is evident how the aforementioned Elevator
unit covers the biggest share of the whole registered repairing events, while still
considerable percentages regard the Aileron and Spoiler actuators. Improving the
maintenance procedures for these three particular units is of keen interest and in
fact most of the efforts of this research work have been dedicated for these units.

The boxplots in Fig. 1.9 instead complete the TSI distribution analysis in Fig.
1.7 per each type of FBW unit. In particular, it is possible to observe how these
distributions are particularly asymmetrical, with a median value (red lines) that
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Figure 1.9: A320 FBW units TSI distribution after the repairing events in the LHT
shops (from 2017 to 2020) [33]

tend to low TSI value. In particular, the median TSI value of the Elevator class
is significantly lower than the others, giving another insight about the margin of
improvemen of its testing procedure.
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Chapter 2

Flight Control Systems

As previously described in Chapter 1.2, the A320 PFCS family has been chosen
as reference group of units which deserve particular attention in terms of main-
tenance improvements. Their considerable number of repairing events is strictly
linked to the great success of these short-medium range twin-jet narrow-body air-
craft. Their extensive use in continental routes leads to a substantial number of
manoeuvrers, takeoffs and landing, compared to the long-range aircraft. The first
part of the chapter introduces in details the A320 Flight Control Systems archi-
tecture. After this overview, each unit structure is described in terms of hydraulic
scheme, focusing on the role of each main sub-component, and flight tasks.

2.1 General Overview
Considering the aircraft as a rigid body and locating an euclidean coordinate

system in its centre of mass, it is possible to distinguish three principal rotational
axes (Fig. 2.1) :

• Longitudinal: from tail to nose, and positive in the direction of the flight.
The rotation over this axis is called Roll;

• Vertical: starting from the centre of gravity, it is perpendicular to the wings
and oriented to the bottom part of the aircraft. Its relative rotation is named
Yaw;

• Lateral: it runs from the pilot’s left to right and parallel to the wings. The
last principal rotation along this axis is called Pitch.

The translations along these three axes are referred with the same names. The
pilot regulates the aircraft 6 degrees of freedom acting on the engines thrust and
controlling the PFCS:
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Figure 2.1: Aircraft Principal Axes

• Roll Control: the pilots command the deflection of both the Ailerons, at
the tip of each wing. They are deflected in opposite directions: the one
downwards increases the lift on the up-wing, while the one upward instead
decreases the lift on the down-wing. In addition, Spoilers can also be slightly
moved reducing Ailerons deflection, improving aircraft manoeuvrability;

• Yaw Control: rotations along the vertical axis are regulated by the Rudder
PFCS on the vertical stabilizer;

• Pitch Control: Trimmer Horizontal Stabilazer (THS) (for long term regula-
tion) and Elevators (for short term) on the horizontal tail are the PFCS used
to control the aircraft inclination along the pitch axes.

Together with the PFCS, Secondary Flight Control Systems (SFCS) improve air-
craft performances. Typically, they are intermittently used during the phases of
takeoff, approaching and landing. For example, commercial aircraft are equipped
with both Speedbrakes Spoilers, which deflect at full stroke while on ground during
landing, Slats on the leading edge and Flaps on the trailing one, to modify the
lift on each wing. Both PFCS and SFCS have evolved, starting from fully me-
chanical devices to fully digital FBW systems. The gradual introduction of FBW
components on commercial aircraft started in the 80’s, due the parallel evolution
of electronic controlling logics. In 1988, the Airbus - A320 was the first commercial
aircraft which adopted FBW technology for PFCS, combining the reliability of hy-
draulic actuators with electronic control logic directly linked to the Flight Control
Computers FCCs (Fig. 2.2).
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2.2 – A320 FBW Architectures

Figure 2.2: FBW Architecture

Figure 2.3: A320 Flight Control Systems [34]

The commands from the pilot cockpit are converted in electric signals and inter-
preted by the FCCs, where control-loop laws are implemented per each kind of
actuator. The critical role of FCC are correctly commanding the unit position,
monitoring its correct displacement and checking eventual failure of these unit.

Flight safety is guaranteed by the high level of redundancy of control, supply and
actuators architectures. The next paragraph describes in detail both the complete
redundant architectures of the A320 and highly-integrated structure of each use-
case servo-command, which has been studied during this research.

2.2 A320 FBW Architectures
In analogy with Fig. 2.1, Fig. 2.3 illustrates where the PFCS and SFCS are

located on the A320 body.
The first level of redundancy is guaranteed by the number and operating mode.

Each servo-commands group, with at least two actuators, is installed on each surface
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(Table 2.1). Specifically, two Ailerons are installed on each outboard portion of the
wings, two Elevators are mounted on each side of the horizontal stabilizer, while
three rudders actuators are positioned on the vertical tail. So, per each primary
surface, at least two servo-commands are present: typically one works in the so-
called Active Mode, while the other operates in Damping Mode, following the
surface movements under its aerodynamic load. In case of failure, FCCs are ready
to switch the working-mode of each couple of units and cut both the hydraulic and
electric supply to the anomalous unit. Spoilers surfaces are the only which include
only one servo-command: in fact, five Spoilers are mounted under each surface on
the upper part of the wing. In case of failure, both the faulty unit and its relative
on the opposite wing are hydraulically deactivated.

Table 2.1: A320 Servo-commands overview

Servo-command n. x surf. Command Actuation type
Elevator 2 Electric Hydraulic
Aileron 2 Electric Hydraulic
Rudder 3 Electro-Mechanic Hydraulic
Spoiler 1 Electric Hydraulic
THS 1 Electro-Mechanic Hydraulic

Due to its structural complexity, the entire A320 actuation system presents other
two levels of safety-redundancy in both FCCs and Hydraulic supply architectures.

FCS Command Architecture

The A320 is equipped with seven FCCs which command and monitor the PFCS
movements according to pilot’s inputs. As shown in Fig. 2.4, the side-sticks orders
are converted in electrical signals and directly sent to the relatives FCCs. At the
same time, rudder pedals and trim hand-wheel are still mechanically coupled to
both the rudder tail and horizontal stabilizer.

The aforementioned seven different kind of FCCs are:

• Two Elevator and Aileron Computers (ELACs), for monitoring active eleva-
tors and ailerons;

• Three Spoiler and Elevator Computers (SECs). They all achieve spoilers
control, while two of them monitor the standby elevator;

• Two Flight Augmentation Computers (FACs). They check the rudder unit
position and "characteristics speeds calculation for displays" [34].
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2.2 – A320 FBW Architectures

Figure 2.4: A320 Flight Control Computers Scheme [34]

Additionally, Slats and Flaps have two dedicated computers (SFCC). The data
from the ELACs and SECs are collected by the Flight Control Data Concentrators
(FCDC), and transmitted both to the Electronic Instrument System (EIS) and to
the Centralized Fault Display System (CFDS). All these computers are powered by
two separate supplies, each of them linked to an engine-driven generator. In case
of power loss, an emergency generator, driven by the Auxiliary Power Unit (APU),
ensures that all the FCCs can work safely. In this case, the Mechanical back-up of
rudder and stabilizer control allows a stable control of the plane.

Hydraulic Supply Architecture

Three independent hydraulic lines supply the flight control systems (Fig. 2.5)

• Green Line: pressurized and driven by the left engine;

• Yellow Line: pressurized and driven by the right engine;

• Blue Line: emergency circuit, driven by the Ram Air Turbine (RAT) pump.

In case of one engine failure, the related supply pump is disconnected and the
hydraulic line is then pressurized by the Power Transfer Unit (PTU). The Blue line
is pressurized by the RAT if both the engines are faulty. In normal conditions,
one ELAC monitors both Yellow and Green lines, while the second one is always
ready to activate the emergency Blue one. The reservoirs in Fig. 2.5 are filled
with Skydrol©type IV (or HyJet V), a specific phosphate-ester aeronautic fluid
([36], [37]). Using phosphate ester composites allows the supply lines to work in
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Figure 2.5: A320 Hydraulic Systems Layout [35]

Figure 2.6: A320 Hydraulic Supply to FCS [34]

high pressure conditions (higher than 5000 psi), keeping the fluid efficiently fire-
resistant, less effected by anti-erosion, antioxidants and rust-inhibitors additives.
The way these lines supply the servo-command is described in Fig. 2.6.

This scheme clearly shows the positions of multiple actuators on each surface,
and how each of them is supplied by a different hydraulic line. For both the Ailerons
and Elevators groups, the active unit is driven by Yellow or Green line, while the
one in damping mode receives the oil from the emergency Blue line. The THS
ball screw is driven by two hydraulic motors, connected to both Yellow and Green
lines. Since the Spoiler surfaces are actuated by a single servo-command, they are
all connected to separated lines: in case of hydraulic failure on one of these lines,

20



2.3 – A320 Elevator

the corresponding spoilers remain in fully retracted mode. The vertical stabilizer
contains both three hydro-mechanical rudder actuators, all of them supplied by a
different line, plus two additional Yaw Dampers actuators. These small units pre-
vents the "Dutch roll" effect: an induced and adverse yaw during a roll manoeuvrer.
They are also FBW units, positioned on the bottom part of the vertical tail. They
can be activated by the pilots and are automatically driven by the FACs, according
to the data coming from the ELACs.
Flight safety is guaranteed not only by the redundant architectures of both com-
mand and hydraulic lines, but also by the complex and integrated structure of each
servo-command.

2.3 A320 Elevator
Fig. 2.7 in detail represents the complete Pitch control system, including both

THS and Elevators. In particular, this scheme highlights the differences between
the THS mechanical command chain and the FBW Elevator one. The four Ele-
vator units on the horizontal stabilizer are electrically commanded by the ELACs
(or SECs in case of failure), while the THS is connected to the cockpit hand-wheel
through the mechanical trim linkage. As highly integrated component, the Eleva-
tor includes in its structure 15 main sub-components, including electro-hydraulic
valves, mechanical components and internal sensors. Table 2.2 collects all the main
fifteen sub-components. The first column indexes mark these components in both
Fig. 2.8 and 2.9.

This unit shares several components with the other servo-commands of the A320
family, but it is characterized by some peculiarities. The first characteristic compo-
nent is the RD: a mechanical system which connects the Main Ram with the EHSV
jet-deflector and the RVDT. It ensures that, in case of electrical failure, both the
EHSV spool and the Main Ram are recentered in their null position. Its structure
is explicitly described in paragraph 2.3. Another characteristics is the presence of

Figure 2.7: A320 Elevator Installation Scheme
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Table 2.2: A320 Elevator Components

N. Component Abbreviation
1 High Pressure Filter HP filter
2 HP-LP Poppets Valve assembly HP-LP Poppets
3 Electro-Valve n.1 EV1
4 Electro-Valve n.2 EV2
5 Electro-Hydraulic Servovalve EHSV
6 EHSV spool LVDT EHSV LVDT
7 Mode Switching Valve MSV
8 MSV sleeve LVDT MSV LVDT
9 By-pass orifice
10 Main Ram
11 Rotary Variable Differential Transformer RVDT
12 Accumulator Acc
13 LP Maintaining Valve
14 Feed Valve FV
15 Recentering Device RD

three integrated position sensors: a 6-wires RVDT for the Main Ram, which rep-
resents the feedback branch of the external position controller in the monitoring
FCC, and two 4-wires monitoring LVDT for the second-stage EHSV spool and the
MSV one. Three different integrated sensors facilitate failure identification during a
maintenance procedure, without installing extra bench sensors. Last but not least,
the elevator unit is the only A320 PFCS which can switch from Active to Damping
Mode activating at least one of the two EVs in series. The illustrations in Fig. 2.8a
and Fig. 2.8b indicates where the components in the previous list are positioned on
a real unit. In particular, the photographed component is lacking the Main Ram
movable eye-end, but it shows the integrated electrical sockets (with the red cap).
In particular, the socket n.16 includes all the supply and measuring connections
with the EHSV, while the n.17 is linked to the RVDT and n.18 with both EV1 and
EV2.

This particular units has two main operating modes. During its Maintenance
procedure, several tests have to be performed in order to check that each sub-
component works correctly in each of them:

• Active Mode (Fig. 2.9a): typical normal operating condition. The unit is
pressurized through the supply port A, while all the internal sensors (6, 8, 11)
are electrically supplied. The fluid (Skydrol©IV or similar) is filtered in the
HP Filter (1) and it pushes the HP-LP Poppets (2), connecting all the other
subcomponents in Fig. 2.9a with the supply and return line. Since EV1 (3)
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2.3 – A320 Elevator

(a) A320 Elevator Front (b) A320 Elevator Rear

Figure 2.8: A320 Elevator Main Subcomponents

and EV2 (4) are normally open (both their solenoids are de-energized), the
supply pressure pushes the MSV spool (7), compressing its spring and clearing
the passages between EHSV (5) and Main Ram (10). The correct MSV
position is detected by its LVDT (8). In this configuration, the movements of
the Main Ram (10) are directly controlled by the flow provided by the EHSV
(5), which receives as input the output command from the external Controller.
The AC signal from the RVDT (11) is converted by an external demodulator,
which estimates the movements of the actuator, closing the position-control
loop on the external Controller. The EHSV LVDT (6) is then just used for
monitoring purposes. On the return line, the Accumulator (12) keeps enough
pressure to open the LP maintaining valve (13) and let the outlet flow to be
discharged through the port B.

• Damping Mode (Fig. 2.9b): this operating condition makes the unit work-
ing as a damper, and it can be activated by the board ELAC in case of failure
recognition. The Main Ram movements are inhibited by the MSV (8), which
remains closed due to the reacting force of its spring. In this case, one or
both the EVs solenoids (3)(4) are switched-on, preventing the pressurized oil
to flow in the supply chamber of the MSV. Cylinder chambers (10) are then
just connected through the By-pass orifice (9), while the EHSV ports are iso-
lated. Eventual movements of the piston (10) (due for example to an external
aerodynamic force) are guaranteed by the Accumulator (12), which provides
enough flow to the cylinder, through the Feed-Valve (14) and the restrictor
(9). Accumulator (12) also keeps a constant pressure on the return line, open-
ing the LP Maintaining Valve (13), allowing any kind of internal leakage flow
from the Main Ram and from the EHSV. In case of EVs electrical failure
(3)(4), the hydraulic supply is interrupted, and both the HP-LP Poppets (2)
and MSV switch their position, setting the unit in damping mode. The same
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happens in case of pressure loss on the hydraulic line.

In addition to these two main operative modes, the Elevator presents a third par-
ticular Recentering Mode. In case of electrical failure, before switching the unit
in Damping Mode, the Elevator needs to be recentered in its null position. In this
case, the electric supply to the EHSV first stage is cut-off and, but the EHSV spool
can be still recentered by its mechanical connection with the RD (15).

Elevator Recentering Device

The RD is a mechanical system which connects the servo-command piston, the
EHSV and its position sensor RVDT. An extensive description of this device has
been reported in [35], in particular its effect on the connected EHSV and its critical
issues during maintenance procedures.

The Mechanical Lever (9) transform the linear movement of the main piston in
a readable rotation by the RVDT sensor. This position transducer is connected,
through a torsional spring (T1), with the RD Control Shaft (8). This main shaft,
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Figure 2.9: A320 Elevator Working Modes
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2.3 – A320 Elevator

Figure 2.10: A320 RD Scheme [35]

visible in Fig. 2.8b, is actually connected to the Mechanical Lever as well through
a particular eccentric (6), and internally to a second eccentric cam named Bell
Crank (4). This component is directly linked to the Mechanical Input (3) of the
EHSV, which can move directly the jet-deflector between first and second stage of
the servo-valve. Bell crank rotation is limited by the Pin (2) and the Adjustable-
stop (1): their positions influence the load of their respective Springs with different
stiffness (K1>K2). In particular, according to the Control Shaft rotation, the Pin
(2) pushed by K1 can be in contact with the Hooks (5), or with the bottom part
of the Bell crank, or with both. In this third case, the whole system behaves as
a unique rigid body: a rotation of the Control shaft corresponds to a Bell crank
oscillation, affecting the EHSV jet deflector position. This effect increases with
Main Ram movements from its null position. When the Bell Crank reaches the
Adjustable Stop (1), the counter-reaction of K2 stops any further rotation: in this
condition, the control shaft can still coaxially rotate, but any input to the EHSV
jet deflector remains constant.
Nominally, the RD force on the jet-deflector can be described with the green line
in Fig. 2.11, depending of the Main ram position. The linear behaviour within the
values xmin and xmax, correspond to the opposing force that the RD applies on the
jet-deflector when the Main Ram starts moving away from its null position. When
one of these positions has been reached, the Bell Crank has also finished its rotation
on the RD pins (1) and (2). From these positions on, the RD effect is saturated
and remains constant until the main ram end-strokes. If the RD force is within the
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Figure 2.11: RD Force-Position characteristic curve

green limits band, it means that the mechanism is working properly.
During maintenance procedures, the RD force cannot be measured, but it is

possible to adjust the Adjustable Pin (1) position and equivalently measuring the
RD effect on the jet deflector, in terms of additional needed current by the EHSV
Torque Motor to compensate this load on the jet-deflector (Fig. 2.12) The com-
pensation current IRD in [mA] can be calculated as function of the main position
Pos in [mm] as the equation in 2.1. The value KRD represents the ideal stiffness of
the entire mechanism.

IRD =

⎧⎪⎪⎨⎪⎪⎩
Imin if Pos ≤ Posmin

KRD · Pos if Posmin < Pos < Posmax

Imax if Pos ≥ Posmax

(2.1)

Elevator EHSV Structure

In electro-hydraulic servo-systems EHSV represents the linking interface be-
tween control unit and hydraulic actuation system. It receives as input the electric
signal from the external control loop, and proportionally produces a differential flow
to the main cylinder chambers as output. All the A320 PFCS in this Chapter 2 are
equipped with a jet-deflector two-stages EHSV. Similarly to the flapper-nozzle and
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2.3 – A320 Elevator

Figure 2.12: RD Current-Position characteristic curve

jet-pipe kinds, these valves are equipped with a first electric stage and a second hy-
draulic one. The main peculiarity is the presence of a fluidic amplifier between the
two stages. Fig. 2.13 represents a simplified view of a typical jet-deflector EHSV.
The upper part represents the electric first stage, containing a symmetric Torque-
Motor TM . Two permanent magnets (1)(2) enclose an armature (3), where two
symmetric coils (4) are wounded. These coils receive the command current from
the controller and develop a torque on the armature between the magnets [38]. To
support and protect the first stage from fluid contamination, a flexure tube (5)
separates and support the armature of the TM. The core part is represented by
a small V-shaped fluidic amplifier (6) and its jet pan (7), which is connected to
both supply pressure P (9) and return R. This small disc position (6) influence the
fluid stream to the receivers (9). When magnetic force due to the coils current is
disproportioned in the TM magnets air gaps, the armature swings to one side and
moves the jet-deflector disc. This movement creates an imbalanced pressure dif-
ference between the spool chambers (10)(11). Under this pressure load, the spool
(12) is free to move in its sleeve, connecting the ports C1 and C2 with supply
and return pressure. The spool is directly linked, through a small ball-joint, to
the jet-deflector with a feedback-spring (13). This elastic device applies a reacting
force, proportional to the spool displacement, balancing the force applied by the
armature (3). As already mentioned in Paragraph 2.3, the RD adds another force
on the jet deflector, proportional to the piston position (Fig. 2.11). The mechanical
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Figure 2.13: Scheme of a jet-deflector EHSV [rabie2009fluid]

input in Fig. 2.10 acts like a second feedback spring on the armature-jet deflector
equilibrium.

2.4 A320 Aileron
On the tip of each wing, two Aileron PFCS are installed to control the roll

rotation. In analogy with Paragraph. 2.3, Fig. 2.14 shows how these units are
installed and supplied both hydraulically and electrically. In particular, both the
ELACs share information with the SECs when spoilers are used for load alleviation
issues during roll command.

Compared with the Elevator hydraulic scheme in Fig. 2.8, the Aileron structure
in Fig. 2.15 is less complex and includes 11 main components (Table 2.3).

Comparing the hydraulic schemes of elevator and aileron, it is possible to observe
how these units shares several components: both include a double-acting piston, a
jet-deflector EHSV, a damping circuit with a MSV, feed valve and by-pass orifice,
an Accumulator and a High-Low Pressure valves assy. By the way, they also differ
in some particular aspects:
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Figure 2.14: A320 Aileron Installation Scheme

Table 2.3: A320 Aileron Components

N. Component Abbreviation
1 High Pressure Filter HP filter
2 HP-LP Poppets Valve assembly HP-LP Poppets
3 Electro-Valve EV1
4 Electro-Hydraulic Servovalve EHSV
5 Mode Switching Valve MSV
6 MSV sleeve LVDT MSV Lvdt
7 By-pass orifice
8 Main Ram
9 Linear Variable Differential Transformer LVDT
10 Accumulator Acc
11 LP Maintaining Valve
12 Feed Valve FV

• The aileron include just one normally-opened EV. In contrast to the Elevator,
when the EV is energized, it allows the supply flow to the MSV, keeping the
unit in active mode;

• The main position sensor on the piston (8) is an internal 6 wires LVDT;

• This unit includes also a 4-wires LVDT (6) for checking the MSV position,
but its EHSV (4) is not equipped with position sensor;

• The aileron does not include any mechanical RD. This means that in case of
electrical supply failure, the Main ram is not mechanically recentered to its
null position.
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Figure 2.15: A320 Aileron Illustrated

The illustration in Fig. 2.15 points where all the visible components in the table
2.3 are located. In analogy with Fig. 2.8a and 2.8b, the socket 11 with yellow cap
includes all the supply and measuring electric pin for both EV and MSV Lvdt.

Two possible operating conditions of the aileron are:

• Active Mode Fig. 2.16a: as the elevator, the unit is normally supplied with
pressurized Skydrol©IV through port A. Both the EV (3) and the EHSV (4)
are electrically energized. Through the HP Filter (1), the flow pushes back
the HP-LP poppet (2) block, and it is free to continue to the supply ports of
the EHSV. Contemporary, since the solenoid of EV (3) is normally active, the
MSV spool (5) compresses its reacting spring, opening the passages to the
cylinder (8) ports. In this condition, the MSV Lvdt (6) detects that the valve
is opened. In this configuration, the main ram position is directly controlled
by the flows from the EHSV outlet ports. The position-loop is then externally
closed by its integrated LVDT (9). On the return line, the Accumulator (10)
keeps enough pressure to open the LP valve (11) and discard the flow through
B port.

• Damping Mode Fig. 2.16b: in the opposite way of the Elevator, the Aileron
is switched to damping mode when the EV is de-energized. In this way, the
supply pressure to the MSV is cut-off keeping it closed by its reacting spring.
The actuators chambers are now connected through the damping restricto
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Figure 2.16: A320 Aileron Working Modes

(7), and the EHSV is hydraulically isolated. To compensate any leakage, the
accumulator provides enough flow through the Feed valve (12).

An electrical failure in the supply line of the EHSV make the ELAC switching in
damping mode, deactivating the EV. In case of electrical failure on EV instead, the
unit can be set to damping mode hydraulically, shutting down its supply pressure.

2.5 A320 Spoiler
The upper surface of both the A320 wings includes five Spoiler actuators. They

are used both to increase the descent rate, to improve the roll control with the
ailerons and to increase drag force during landing manoeuvrer. The scheme in Fig.
2.17 shows how these actuators are hydraulically and electrically supplied by their
relative FCCs. In particular, since Spoilers are used for different purposes, they
need to be activated accordingly during flight. For instance, Fig. 2.6 indicates
how Spoilers n. 2, 3 and 4 may be used for both roll alleviation, speed-brakes and
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ground-spoiler, while the fifth does not work as speed-brake while the first is used
just during ground control manoeuvrers. For this last particular application, the
report [39] describes how the A320 adopts new SEC 120 standard to reduce the
occurrences of hard-landing.

Figure 2.17: A320 Spoiler Installation Scheme

Compared with both Elevator and Aileron, the structure is less heterogeneous,
but more hydraulically complex since its inner valves are highly integrated.

The list in Table 2.4 includes nine principal sub-components. The A320 Spoiler
does not contains some of the most important parts of both Elevator and Aileron,
such as an Accumulator on the return line, EVs for condition switching, a HP-LP
valve assy between the supply and return lines, a feed valve for flow regulation
during damping mode. The only included position sensor is the LVDT (9) on
the main ram, which closes the feedback control branch. The working modes are

Table 2.4: A320 Spoiler Components

N. Component Abbreviation
1 High Pressure Filter HP filter
2 Electro-Hydraulic Servovalve EHSV
3 Mode Switching Valve MSV
4 Inhibition Valve IV
5 Integrated Valve Assy
6 Main Ram
7 LP Valve Check with Bypass LPV
8 Maintenance Mode Lever
9 Linear Variable Differential Transformer LVDT

32



2.5 – A320 Spoiler

Figure 2.18: A320 Spoiler Illustrated

determined by the position of three main valves:

• MSV assy (3)-(7): compared to the Aileron and Elevator’s one, this valve
does not present any position sensor. By the way, it integrates the LP Valve
Check and Bypass line (7), when its position is hydraulically switched during
Maintenance and Locking mode.

• Inhibition Valve (4): it redirects the supply pressure to the MSV in Active
mode. It can be manually activated by the Maintenance Mode Lever (8)
during repairing tasks, short-cutting the high-pressure hydraulic circuit and
inhibiting the EHSV command;

• Integrated Valve (5): in case of pressure loss, or maintenance operation, this
complex set of valves isolates the cylinder chambers. In particular, its inner
Anular Valve is closed in case of pressure loss (Locked Mode), avoiding any
extension of the piston under aerodynamic load. In case of pressure spikes,
its Overpressure tappet regulates the flow to cylinder chambers.

Fig. 2.18 indicates the few elements which are externally visible for this unit.
The single effect piston (6) does not include a fixed-eye end to connect the unit
to the wing-frame: Spoilers are hinged internally to the wings through two lateral
attachments (in blue), which allow the unit structure to tilt while the piston is
extending. As for the other units, Spoiler can work in two different modes:

• Active Mode (Fig. 2.19a): the unit is supplied through the port A and
the return port B, since there is no accumulator. The Maintenance Lever
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Figure 2.19: A320 Aileron Working Modes

(8) is set to "O" (Operating). The supplied Skydrol©IV can flow through the
HP filter (1) in all the HP circuit ducts. Both the IV (4) and Overpressure
tappet - HP check in the (5) are supplied with high pressure flow, allowing
both the MSV (3) to switch in its active position, and pushing the springs of
the Anular valve in (5). This last valve opens the passage to the return line
B. In this configuration, the command flows from the EHSV (2) are free to
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move directly to the Main ram chambers (6). The position-loop of is then
externally closed by its inner LVDT (9).

• Locked - Maintenance Mode (Fig. 2.19b): this configuration is triggered
in case of pressure loss. In this working condition, the entire HP circuit is
bypassed: both the IV position (4) and Integrated valve (5) change. In partic-
ular, the IV does not supply enough pressure to the MSV (3) which switches
its position: the LP and bypass valve (7) connect directly the retraction cham-
ber of the Main Ram (6) to the return line. Contemporary, the Anular valve
springs in (5) close the way to the extension port of the cylinder. In this way,
the piston movement are damped under the effect of the only aerodinamic
forces on the surface and the unit cannot uncontrollably extend.

In case of electrical failure, the EHSV (2) is biased with enough current that
allows the unit to retract completely, while the electric supply to the servovalve
is disconnected. If the Maintenance Lever (8) is switched to "M" for overhaul
procedures, the unit get completely depressurized since both the IV (4) and (5)
are mechanically switched and the piston can be manually extended for inspection
purposes.

2.6 Position Transducers
All the previously described units have one or more integrated Linear Variable

Differential Transformers (LVDT) . These inductive position-to-electrical transduc-
ers return an output which is proportional to the position of its movable magnetic
core [40]. Their reliability, dimensions and precision make the LVDTs the perfect
candidates for several kind of applications, such as position monitoring of PFCS.
The typical electric scheme in Fig. 2.20 shows three main components of these
sensors. The magnetic core is free to linearly move within its cylindrical sleeve,
which includes a central primary coil and two side secondary ones. As a typi-
cal transformer, the primary winding is connected to an AC voltage source. This
principal coil induces an alternate voltage also on the secondary windings. The in-
duction between the coils depends on the core position. Typically this component
is threaded in order to connect it with the movable part whose position needs to be
measured. According to the linked spool movement, the mutual inductance with
one coil increases, while the opposite one decreases. This affects the difference of
voltage amplitude on the secondaries. According to the module of this difference,
the signal conditioning circuit (Demodulator) is able to extract both movement
magnitude and direction.

Fig. 2.21 illustrates the nominal zeroth-order behaviour of an LVDT: the output
voltage is linearly dependent to the input displacement. The secondary wirings are
connected in series but in phase-opposition, so with 180° of phase shift between the
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Figure 2.20: LVDT electric scheme [41]

secondary coils voltages. According to the core position, the Demodulator is able
to extract both the direction according to the phase shift, and magnitude from the
difference of amplitudes between the secondary voltages. When the core is its zero
position, the induced voltage from the primary coil is equal on both the secondaries.
This means that the LVDT output is zero, since the secondary coils compensate
each other. A displacement in any direction determines a strong induction towards
one of the two secondary windings, whose voltage amplitude increases accordingly,
and an output signal which is in-phase or counter-phase with the primary. This
coupling guarantees a linear behaviour and infinite resolution. However, when the
core travels near its end-strokes, "less magnetic flux is coupled to the core from the
primary" [42], reducing its linear behaviour.

As reported in [42], the main advantages of this transducer are its robustness,
due to the absence of wear due to the lack of contact between core and windings,
and its potential infinite resolution. In fact, even the smallest movement can be
detected by a suitable signal conditioning circuit, which translates the voltage signal
in position. Therefore, the LVDT resolution depends on the conditioner hardware
characteristics. However, the LVDT presents its disadvantages and possible failures
that need to be considered especially for diagnostic purposes, such as any biased-
position of the core, temperature effect and magnetic distorted effects (in particular
for Four-wires LVDT).
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Figure 2.21: LVDT linear characteristic

2.6.1 Demodulation Techniques
The main working principle of the Demodulator conditioning circuit is to com-

pare the phase and magnitude of the output LVDT signal with the voltage source
connected to the primary. Typically, the carrier AC source frequency is at least
10 times higher than the expected maximum frequency of the core. In case of the
PFCS, all the integrated LVDTs share the same primary voltage source at almost
2 KHz. The Demodulator configuration depends on the kind of connection used
for the installed LVDT (paragraph 2.6.1). Typically, according to the secondary
wirings connections, two possible configurations can be found (Fig. 2.22):

• Four-wires LVDT (Fig. 2.22a): the secondary coils are wired in order to
output their voltage difference Uab. On one hand, this configuration requires
a simple signal conditioning circuit. On the other, these LVDTs are more
affected by temperature and phase-lags between primary and secondaries.

• Six-wires LVDT (Fig. 2.22b): in this configuration, it is possible to read
separately Ua and Ub. In terms of both temperature and phase-lag effects,
this technique performs better if compared to the Four-wires one. However,
both cost and complexity of the appropriate signal conditioning circuit are
higher.
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Figure 2.22: LVDT configurations

Both the demodulation techniques are in details described in the next para-
graphs. The A320 PFCS are equipped with both Six-wires LVDT (or RVDT in
case of the Elevator) as position sensor for their main piston, and Four-wires for
the MSV (for both Aileorn and Elevator) and EHSV (just for the Elevator) spools.

Four-wires Demodulation

In order to extract both displacement and direction through a Four-wires LVDT,
the output signal Uab needs to be demodulated according to the primary excitation
source. Several techniques have been designed for this purpose in order to reduce
the aforementioned phase-lag and temperature effect ([43]-[44]). Some of these
solutions regards novel circuit layouts such as in [45] and [46], or digital solutions
in [47] or [48]. Two of the most popular techniques are:

• Synchronous Demodulation
Figure 2.23 illustrates the block diagram of a typical synchronous demodula-
tor. Both the secondary coils output Uab and primary voltage Up are inputs
of the signal conditioning circuit:

Up = Apsin(2πfct) (2.2)

Up = Assin(2πfct + ϕ) (2.3)
Two main steps characterize this technique: rectification and filtering. Firstly,
the output from the secondary coils is rectified according to the sign of the
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carrier signal sign(Up). In this way, the output signal Urect is positive when
two sinusoids are in phase, or negative if vice-versa. The rectified signal is
sent through a low-pass filter (LPF ), whose cut-off frequency needs to be
tuned according to the displacement which need to be measured and the
carrier frequency of the input signals. The LPF output represents the mean
rectified curve which however is not equivalent to DC voltage. It can be
easily demonstrated that the mean of the rectified signal is proportional to
the amplitude of the sinus wave with a factor of 2/π (appendix A.1). By
definition of rms value, if As is the amplitude of the secondary coil signal Uab:

Urms = As√
2

= π

2
√

2
Uavgcos(ϕ) (2.4)

where in 2.4 Aavg is the amplitude of the filtered curve and ϕ is the phase shift
between primary and secondary voltages. From the equivalent rms value, the
demodulation gain Kdem returns the displacement. Many applications adopt
this technique in both cases of analogue or digital demodulation for its simple
implementation. For instance, both the test-benches in chapter 3 are equipped
with analogue synchronous demodulation circuits for the Four-wires LVDTs.
However, this technique is particularly sensitive to any phase-shift between
primary and secondary coil, and any noise effect due to its odd-harmonics
(appendix A.1).

sign()

x LPF
π√

2 Kd

Up sign(Up)

Uab

Urect Uavg Urms P os

Figure 2.23: Synchronous Demodulator

• Lock-in Amplifier
As already reported in [43], a Lock-in Amplifier (LIA) is designed to extract
a signal, with a known carrier frequency, from a noisy signal. Compared to
the synchronous demodulator, on one hand it is more complex to implement
both digitally or as hardware device, on the other it is less effected by any
noise contribute while extracting amplitude and phase of the harmonic at the
specified carrier frequency. As highlighted in Fig. 2.24, the input signal Uab

(eq. 2.3) is multiplied by an in-phase and quadrature sinusoids at the carrier
frequency fc to extract.

Uabsin(2πfct) = 1
2As[cos(ϕ) − cos(4πfc + ϕ)] (2.5)
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Figure 2.24: Lock In Amplifier Demodulator

Uabcos(2πfct) = 1
2As[sin(ϕ) + sin(4πfc + ϕ)] (2.6)

Both the equations 2.5 and 2.6 includes two harmonics with twice the carrier
frequency of the input signal in eq. 2.3. Both of them are removed adopting
two LPF with order and cut-off frequency tuned according to the carrier
frequency to extract. For instance, as suggested in [43], two second order LPF
on both branches of Fig.2.24 would reduce the ripple to 1% when tuned to
limit the bandwith of the signal a decade below the reference carrier frequency.
Once the filtered signals have been extracted and multiplied per 2, the results
x1 = Ascos(ϕ) and x2 = Assin(ϕ) are read by the Phase-Amplitude Detector
module in order to evaluate:

⎧⎨⎩Ampl =
√︂

x2
1 + x2

2

ϕ = atan(x1
x2

)
(2.7)

Both Ampl and cos(ϕ) are then multiplied per 1√
2 to obtain the rms value,

as in eq. 2.4, and finally per the demodulation gain Kd to extract the final
position. In [49] both the described techniques have been compared in case
of nominal and noisy input signal Uab, determining how the LIA technique is
strongly less affected by noise level. However, due to the coherence with the
hardware equipment of the testing consoles, the synchronous demodulation
has been chosen to extract the signals from the Four-wires LVDT installed
on the tested units. Furthermore, an anomalous level of noise may be used
as health indicator for both these transducers and the connected spool.

Six-wires Demodulation

As previously anticipated in 2.6.1, the positions of all the main rod of the tested
PFCS are measured by a Six-wires transducer. A particular mention is deserved
by the Elevator, which is equipped with a Rotary Variable Differential Transformer
(RVDT) (Fig. 2.25). Its working principle is analogous to a LVDT, with the only
difference that the magnetic core rotates along the input shaft axis instead of move
linearly.
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Ua

Ub

Uprim

Figure 2.25: 6- wires RVDT electric scheme

The block diagram in Fig. 2.26 shows the steps which of a ratiometric demodu-
lator. Both the secondary voltages Ua and Ub are firstly rectified, according to their
own sign, then their rms values are extracted in the same way of the synchronous
demodulator in Fig. 2.23. Both the values Uarms and Ubrms have been calculated,
the ratio R in eq. 2.8 is extracted:

R = Uarms − Ubrms

Uarms + Ubrms

(2.8)

In order to extract the correct position Pos[mm], this value need to be multi-
plied per a fixed gain Kd. This value is reported in the sensor-spreadsheet and it is
tuned according to the sensor nominal working condition. Through experimental
results it is possible to check if this nominal value is still valid within a certain
range: a percentage shift of Kd, evaluated in certain reference positions, can be a
sign of a failure in the sensor.

Rectifier

Rectifier

Uarms−Ubrms
Uarms+Ubrms

Kd

LPF
π√

2

LPF
π√

2

Ua

Ub

Uarms

Ubrms

P os[mm]

Figure 2.26: Ratiometric Demodulator
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Chapter 3

Experimental Setup

The new maintenance protocol for the units in Chapter 2 has been firstly proto-
typed in hydraulic laboratory of the Innovation Components department (H-Lab),
and already tested and validated in the test-consoles of the production Test-Field.
These two different configurations present important differences both in their hy-
draulic schemes and testing consoles. However, the modular nature of the designed
procedure makes it adaptable to different testing configurations. This chapter de-
scribes the main differences and common points of both the used test-consoles.

3.1 Prototyping Laboratory Test bench
The first prototyping and testing phase of the entire Hydiag Maintenance proto-

col has been performed in the hydraulic laboratory (H-Lab) of the Innovation Com-
ponents department of the Lufthansa Technik facility in Hamburg. A schematic
layout of the laboratory is presented in Fig. 3.1.
Periodically, the Units Under Test (UUT) are delivered to the H-Lab from the
Test-Field for research purposes or further investigation in case of hardly damaged
units. Here the servocontrol is installed on a mechanical-fixture and connected
both hydraulically to the Test Bench and electrically to the main Measurement
System. This last component manages all the possible input to the UUT and col-
lects the measured channels from the internal unit sensors. Since all the suitable
control-laws are digitally implemented within the Measurement System, it is pos-
sible to command the UUT both in closed or opened loop, and eventually in active
or damping mode giving the correct voltage to its electrovalves. Furthermore, a
CAN bus module enables to command or collect measurements directly from the
Test-Bench, such as supply oil pressure, return flow or temperature. All the in-
put and output channels recorded by the Measurement Systems are available on
the desk Workstation, where the user is able to manage the possible test through a
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Figure 3.1: H-Lab configuration

dedicated GUI. Last but not least, the prototyping phase include also possible auto-
matic adjustment performed by a Collaborative Robot. All the CoBot movements
are implemented within its unit control but they can be coordinated by the user
through the Measurement System with TCP/IP communication protocol. This last
development aims to increase the safety level of testing procedure, since the robot
may perform adjustment on the UUT during the testing phase itself, in a risky
environment with high pressurized components.

3.1.1 Hydraulic Test Bench
The hydraulic scheme of the H-Lab Test-Bench is shown in Fig. 3.2. The oil

tank on the bottom is filled with Skydrol HyJet IV at atmospheric atmosphere.
It represents the only reservoir which both supplies the synthetic oil through the
High-pressure circuit and collects the outlet flow from the return lines. The HP
circuit starts with a fist Low Pressure pump (LP pump), with a maximum flow up
to 140 l/min. When the test-bench is activated, the LP pump is directed through
the main heat-exchanger, where it is cooled down by a counter-direction water flow.
In order to prevent any thermal stress, an outlet thermometer is used to control
that the cooled flow temperature is kept below 45°C. Afterwards, two High Pressure
pumps (HP pump 1 and 2) are responsible to supply one of the two available supply
ports (HP1 or HP2) with required pressure and flow rate to the connected UUT.
Both the pumps are axial and pressure controlled up to 350 bar, while HP pump
1 can deliver flow rates up to 80 l/min, double the maximum achievable rate from
HP pump 2. Furthermore, a small tank on HP pump 1 line is able to alleviate any
flow oscillation. In case of A320 PFCS, both the ports HP1 and HP2 can be used.
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Figure 3.2: H-Lab Test Bench Hydraulic Scheme [32]

Both the high pressure lines can be activated or deactivated by two-way solenoid
valves (V1 and V2).
On the reutrn line, only one of the ports (CR) is pressurized up to 10 bar, while
two Free Return ports (FR1 and FR2) may directly discharge the flow in the oil
tank. If it is necessary to measure the supply or return flows, then the appropriate
UUT hydraulic port need to be connected firstly to the flow-meter inlet hose (FIN
1 or 2) and then to its outlet port (FOUT 1 or 2).
All the test-bench working condition can be monitored from the Work Station, since
both temperature, supply and return pressures and flows can be transferred through
CAN bus communication to the Measurement system. This is an important feature
in terms of test automation, since this makes the test-bench parameters controllable.
For instance, it has been estimated that controlling the supply pressure via designed
signal would shorten the Hydiag procedure of more than half. An higher level of
automation means also increasing and improving the testing safety level. The
testing chamber is fully closed by blast-proof glass doors, and the user controls all
the testing variables not only from the desk workstation, but also from a touchscreen
panel directly connected to the bench. Furthermore, using a CoBot for automatic
adjustments during test prevents any human interaction with the UUT in highly
pressurized environment.
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Figure 3.3: H-Lab Measurement System [32]

3.1.2 Measurement System
The H-Lab Measurement System in Fig. 3.3 provides all the necessary inputs

to the UUT, acquires all the signals from both the Test Bench and the internal
UUT sensors, and transmits them to the user Workstation in real-time.

The rack in composed by five principal components:

• Safety circuit and Thermostat (1): on the top of the rack, they protect the
other connected units from eventual overheat and current spikes, through
calibrated safety relais;

• Two Data Acquisition and Control (DAC) devices (2): they represent the
core part of the real-time measurement system. They are responsible for the
data-stream in all the analogic and digital channels which can be controlled
during a test. Furthermore, the control loop logic to command the UUT are
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digitally implemented within the Online Famos code, which is read in real
time by the DAC that calculates and provides the correct electric command
signal.

• U/I converter (3): this components converts the voltage signal from the DAC
in direct command to the EHSV of the tested unit, in a settable range of ±10
[mA], ±50 [mA] or ±80 [mA].

• Two additional Power Supplies (4): they are dedicated to the voltages of the
present UUT electrovalves, in order to switch the unit in active or damping
mode (used only in case of Elevator or Aileron servocontrol)

• ;ain electrical supply (5): power provider to all the components of the rack
with available voltage ranges of 0/+12 [VDC], ±15 [VDC] and ±24 [VDC].

As highlighted in Fig. 3.1 all the devices of the H-Lab are plugged to the
Measurement system. The UUT integrated electrical plugs are connected via the
same Skydrol resistant aeronautic cable which is used to connect onboard the servo-
actuators with the dedicated FCC. As referred in section 3.1.1, a CAN bus commu-
nication is used between test-bench and measurement. A LAN connection allows
the Measurement System to control the sequence of movements of the collaborative
robot during an automatic adjustment, and to report the acquired data to the user
Workstation. Here, the online code in Online Famos testing language is the core
software part which establish the steps of the complete Hydiag procedure.

3.1.3 Testing Software
The testing software provided by IMC Studio can be divided in two main parts:

1. GUI for channels setting and user-defined panel design;

2. Real time code in Online Famos language for channels acquisition.

The first part requires to set up all the channels, which can be classified in the
following groups:

• Analog inputs: they include all the channels from the integrated UUT sensors,
such as primary and secondary voltages from the LVDT or RVDT position
sensors, the output command current from the U/I converter and activation
EV voltages. These channels can be sampled up to maximum 50 kHz.

• CAN bus analog inputs: this class includes all the signals from the hydraulic
bench described in paragraph 3.1.1;
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Figure 3.4: Workstation GUI panel

• Digital inputs: these channels may include eventual position sensors installed
on the test-bench (such as external INC sensor) and the joints positions of
the collaborative robots during the adjustment;

• Analog outputs: this group includes all the command signals which have to
be provided to the UUT, such as command position and EVs voltages.

• Digital outputs: typically these channels are used to remotely control the
Test bench parameters or manually command the unit if the Hydiag test is
not running.

All these channels are managed by the real-time software in Online Famos. The
DAC in Fig. 3.3 is able to elaborate all the information through the channels
and assign them to a physical voltage output. The real-time code instead is able
to assign values at a sample-rate of 100kHz to the defined channels using three
different kind of variables:

• Process Variables PV : once a channel is defined, a PV is associated to the
channel and it can be exported as collected measurement. If the variable is
user-defined but not associated with any channel, then Online Famos code
can elaborate its value but it cannot store and export.

• Display Variables DV : these user-defined quantities can be both set in the
real-time code or through the panel GUI. Their scalar values can be exported
or used to switch between different cases in the real-time code.
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• Virtual Channels VC : these additional channels are created exploiting the
acquisition characteristic of a specific physical one, and they are useful in case
of visualization in the user GUI and they can be exported as the PV.

Fig. 3.4 presents a schematic view of the GUI interface in IMC Studio. The
main panel presents four main sections:

• Unit information: it contains three main type-in boxes in which the UUT
information can be reported and exported as DVs;

• Test Bench remote control: this section contains all the buttons to enable the
remote control of the test bench and manually setting the nominal supply
pressures on HP port 1 or 2.

• Test setting: these panels includes all the buttons which can be used to start
a manual test (choosing the kind of input signal in active or open loop), or
the complete HyDiag test. Before clicking the Start button, it is necessary to
load the proper HyDiag signals.

• Time series plotting: this section includes all the possible plots from analogue
or virtual channels that can be exported at when the test is over.

3.1.4 Collaborative Robot
In Fig. 3.1 the complete configuration of the H-Lab includes a Collaborative

Robot (CoBot) to perform automatic adjustment during the Hydiag test. Due to
its limited speed, payload, forces and joints torque, a UR10 from Universal Robot
has been chosen to share the workspace with technician during the automatic test
procedure. The aforementioned advantages are not the only ones [50]:

• Friendly programming user-interface for movement commands through a ded-
icated teach-panel;

• Installation flexibility over different surfaces;

• Compatibility with external Measurement System due to its TCP/IP or Mod-
bus communication protocol;

• Good repeatability error of ±0.1 mm. This value ensures enough precision
during the adjustment.

• Due to its interactive nature, it is possible to set forces, torques and speed
limits and modify them during each test;

• Protective stop trigger in case of collision;
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Figure 3.5: UR10 Robotic Arm for the 31075 Elevator adjustment. Courtesy of
Lufthansa Technick: https://www.lufthansa-technik.com/press-releases/
-/asset_publisher/Xix57wMv0mow/content/press-release-hydiag

• Possibility to install different devices on the hand-effector.

Fig. 3.5 shows a close-up picture of the last wrist of the UR10 during and
adjustment on an Elevator servosystem. As it is possible to observe in the figure,
the actual configuration of the UR10 is equipped with several three main devices:

• Camera adaptor: the robot is able to evaluate its trajectory waypoints through
an industrial camera;

• Force and torque sensor: this device ensures to control the torquing force
during the adjustment;

• Tool holder and Tool: both in 3D printed, the robot is able to select the
necessary tool to perform the adjustment, magnetically coupling its fixed
Tool holder with the adequate Tool.

The software which regulates the robotic arm movements is split in two main
parts. The functions which define each joint movement (in terms of position and
speed) are stored in its dedicated Control Unit, external to the Measurement Sys-
tem. The complete sequence of movements to perform is managed by the Mea-
surement System via TCP/IP protocol. This ensures also to define collect some
important measurements from the robot itself, such as the angular position and
torque time-series during the automatic adjustment. This feature allows not only
to automate the entire process, but also to analyse data which were not available
otherwise and possibly detect new health-indexes of the UUT.
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3.2 Test Field Test bench
As referred in section 3.1, the first prototyping of the new Hydiag protocol has

been developed in the H-Lab facility. During this phase, the complete schedule of
operations to be performed on the UUT has been designed: from the automatic
testing to the final robotic adjustments. In particular, the first automatic test-
ing step has been deployed also in the production-site, in order to validate and
adapt the prototyped signal on the Test Field benches. The technical differences
between these testing-frameworks have lead to a consistent adaptation of the pro-
totyped signal in order to be supported by both the Test-Field hydraulic bench and
measurement system:

• Compared to H-Lab test bench, the Test-Field one does not allow to regulate
remotely supply and return pressure. In addition, it does not digitally record
both the inlet and outlet flows. These technical limitations have stretched
the signal in time, since the technician has to manually regulate the supply
pressure and report the flow values when required.

• The NED Test-Field measurement system has an integrated working station
and a different test-software compared to the H-Lab one. The LabView in-
terface of the NED needs different specification to run the complete Hydiag
Sequence. These requirements are in detail explained in paragraph 4.4.

Beside the hardware and software differences, both the measurements systems
adopt digital control loops which can be selected according to the UUT. This feature
allows the user to select between closed and open loop configuration, and easily tune
the controller parameters in case of any specification from the OEM. The following
paragraph reports the proportional scheme for both A320 Elevator, Aileron and
Spoiler.

3.2.1 Digital control loops
The block diagram of the Elevator control loop is reported in Fig.3.6a. The

upper dashed area includes all the main logic blocks which are implemented within
the digital proportional controller. In closed loop configuration, the input position
command Cmd in millimetre is compared with the feedback Fb signal coming from
the lower closing branch. Both the signals are compared in order to evaluate the
position error signal Err which is then amplified according to the proportional
gain KP . The value of this gain is directly specified by the OEM and it is the
same used by the FCC on board. The peculiarity of the Elevator proportional
control loop is the presence of a Compensator, due to the RD action on the EHSV
of the unit. As already anticipated in 2.3), the RD effect on the first-stage jet-
deflector is linear close to the zero, while it saturates after a certain reference
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(b) A320 aileron and spoiler control loop

position, as in Fig.2.12. According to the piston position, the equivalent RD current
need to be compensated by the Compensator. The equivalent current value is
firstly converted in voltage and then the signal transformed in analogue, in order
to be read by the external U/I converter. This block is tuned in order to counter-
convert the voltage from the Digital I/U. The equivalent command signal I in
milli-Ampere represents the input to the UUT servo-valve. According to the input
signal, the EHSV regulates the flows in the UUT cylinder chambers, determining
the piston position. The output signal Pos from the integrated RVDT needs to be
interpreted and digitally converted by the feedback Demodulator. This component
is not integrated in within the units, but it is analogically tuned in order to perform
the ratiometric demodulation (as in 2.6.1), and digitally convert the signal in order
to close the loop. It is interesting to notice that the nominal value of Kd needs to be
compared with the actual one that can be calculated by the RVDT demodulation.
This can be considered as an important health index to diagnose any failure in the
piston position sensor.
For what concerns both the Aileron and Spoiler, they requires a simple proportional
control loop that can be represented with the scheme in Fig. 3.6b. Beside the
absence of the RD compensator, and different piston position sensors, all the other
blocks of the digital control loop work in the same way of the Elevator one. This
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remarks the advantage of adopting a digital control loop. Once the UUT is installed
on the test-bench, the measurement software uploads the corresponding controller
settings according to the unit PN. Each setting includes both the gain values and
specific blocks to be activated, such as the Compensator in Fig. 3.6a.
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Chapter 4

Automatic Entry Test

The first step of an Advanced Diagnostic procedure for all the PFCS in Chap-
ter 2 consists in designing a testing procedure which is automatized, modular and
scalable for all the units. In order to fulfil these requirements, new testing signals
have been designed for all the Hydiag Project use-cases, which represent the first
important stage of the Automatic Entry Test protocol. The first and second para-
graphs of this chapter highlight the differences between the traditional maintenance
procedure, proposed by the OEM, and the automatic one by the Hydiag Project.
After this comparison, the structure of each signal will be presented, highlighting
the designing concept.

4.1 Traditional OEM Maintenance Protocol
Maintenance procedures of PFCS are Reactive, based on the paradigm "repair

on duty". In fact, if the real-time monitoring FCC detects an anomaly, it deactivates
both the electric and hydraulic supply to the failed unit, which is disembarked when
the aircraft is on ground for overhaul. This lead to high cost in terms of aircraft
time-on-ground and maintenance procedures for MRO companies. The diagram
in Fig. 4.1 explains the standard repairing process for testing and re-certifying a
faulty PFCS in the LHT workshops.

When the aircraft is on the ground, line maintenance personnel performs a rou-
tine ground-checks: the Initiated Built-In Test (IBIT) . Typically, during these
checks, the movements of each surface are checked by the monitoring part of each
dedicated FCC, which checks both hydraulic and electrical nominal parameters.
If all the IBIT tests are successful, the unit is still serviceable and remains on
board. While on board, the real-time monitoring FCCs, which continually checks
if the recorded feedback signals from each unit are still within the nominal working
ranges. In case of anomaly, the faulty unit is immediately switched in damping
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LINE MAINTENANCE FLIGHT OPERATIONS
Servocontrol on board

Ground checks:IBIT

IBIT passed?

Removal of Servocontrol 

N

CMM EntryTest: N tests LHT WORKSHOP

ServocontrolIn damping mode 

Range check?

Real-time monitoring

Y

N

Y

Test i-th Test passed?
Troubleshooting and Repair N

Y
i :=i+1i<N ?

N

CMM CertificationTest: N tests 

Serviceable Certificate 

Figure 4.1: Standard Maintenance Protocol [32]

or locked mode, while the redundant hydraulic and electric architectures (Chap-
ter 2) guarantee to safely proceed until the component get disembarked. Once
in the LHT test-field, the faulty unit can be tested according to the Component
Maintenance Manual (CMM) procedure, in order to identify the root of failure .
This official document is released by the OEM and it contains a detailed descrip-
tion of each sub-component, its specifications and specific repairing instructions.
Once installed on a certified test-rig, the standard CMM test is carried out by a
specialized technician. Each CMM instruction targets a specific set of failure for
each subcomponent and it needs to be manually performed. The operator supplies
the Unit Under Test (UUT) with defined closed-loop position or open-loop current
commands, and manual adjustment are in the meantime performed if needed. The
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results from each measurement, the Health Features (HFs) , are then compared
with the CMM limits: all the HFs out of these ranges can point to the failed UUT
sub-component. Per each of these anomalous HFs, the CMM provides specific trou-
bleshooting instructions which describe the sub-components parts to be repaired
or replaced. Once all the supposedly faulty piece-parts have been exchanged, the
repaired UUT needs to be re-tested, until all the HFs results within their ranges
and no additional repairing is necessary. At this point, the unit can be labelled as
Recertified, and it can be installed back on the aircraft.
Even if this entire process in Fig 4.1 is strongly reliable, especially in terms of unit
recertification, it can be improved in some aspects:

• The complete procedure is resource and time expensive. Considering both
the testing and repairing phases, a complete test-repair cycle can last more
than two hours. Furthermore, the complete CMM testing phase needs to be
repeated two or more times according to the failure isolation effectiveness
during the initial Entry Test.

• Since measurements and adjustments are performed manually, the human
factor has a high impact during the HFs extraction from each test. This can
influence further comparison or analysis of similar test results.

• Each extracted HF is “isolated” from the others. This procedure does not
allow the technician to detect correlations between the tests. Additionally,
an accurate signal processing of the measurements can increase the number
of condition indicators.

• The CMM test outputs are binary: a test can be Failed or Passed according
to comparison of the extracted HF with its acceptable ranges. This can lead
to a punctual description of the UUT health status, but usually does not
guarantee the component’s enduring operative life. A unit may be sent back
to the shop after few flight hours, since a previous unscreened degradation
has not been detected. It would be more effective to identify an optimal range
of HFs limits which can ensure a certain operative life to the repaired unit.

4.2 Automatic Procedure
In order to solve the standard procedure limitations in Paragraph 4.1, it is

necessary to automate and scale the testing procedure for all the families of A320
PFCS. As already depicted in Paragraph 1.2, the first important block defined by
the Hydiag Project is the implementation of an Automatic Entry Test for fast and
reliable failure identification (Fig. 4.2). During this test, the UUT is stimulated
by a structured and defined excitation signal, composed of different consecutive
Sequences. Each of these signal portions includes all the necessary set of command
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Figure 4.2: HyDiag Testing Protocol

to both the UUT - such as main ram position or EV voltages - and to the Test-rig
- for example, fixing supply and return pressures. Each Sequence is characterized
by a proper shape and it is fully parametrized according to the type of UUT.
This property simplifies the comparison of different units responses from the same
actuator category to the same signal.

All the collected measurements from each Sequence are post-processed in order
to extract its distinguishing HFs. The complete set of HFs is composed of both
traditional CMM results and additional parameters which improve eventual incipi-
ent degradations. The Diagnostic Module goal in Fig. 4.2 is to determine whether
the UUT presents failures or incipient faults and in which sub-components present
degradations. For all the traditional CMM HFs, each failure is diagnosed comparing
the extracted results with their corresponding acceptable ranges. The Diagnostic
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Module integrates this standard procedure with an innovative Failure Classifier,
based on Machine Learning techniques, which exploit the complete set of CMM
and additional HFs improving the failure detection accuracy. This method main
advantage is to consider the HFs set as a global set of data, including correlations
between the extracted parameters. In Fig. 4.2 the first two steps need to be re-
peated in loop until all the complete test is passed and all the degraded components
have been repaired. To conclude, the automatic procedure improvements are:

• Time and resource savings: compared to standard CMM procedure, the first
automatic testing drastically reduces the average measurement time of more
than half, covering most of the critical results of the standard CMM proce-
dure.

• Standardization: a fully scalable test and post-processing method improves
reliability and repeatability of HFs extraction, simplifying further comparison
between similar tested units.

• Reliable data-collection: the HyDiag protocol allows a complete collection and
structured storing of both Diagnostic reports and time-series measurements
from all the channels.

• Additional HFs: the automatic test provides a comprehensive overview of the
UUT health status, combining both traditional with innovative HFs. Correla-
tions between extracted results constitute a key-point for an improved failure
and faults identification.

4.3 Modular Signal Generation
As already mentioned in Paragraph 4.2, the Sequences have the goal to extract

in a unique and automated way the most critical HFs, according to the CMM of
the relative unit, plus some additional Extra-CMM HFs for improved health check-
up of the UUT. Since the servoactuators presented in Chapter 2 share several
subcomponents, the Sequences shapes have to similar across the units. In this way,
the same parametrized signal can be used to detect the same kind of failure for
different types of PFCS. The strategy to build a modular Automatic Test for all
the units can be summarized in the following points:

1. Analysis of the EHSA structure: identify the main sub-components which are
shared among different actuators. For instance, since all the units can work
in both Active and Damping mode, the MSV, EHSV and the Main Ram are
three key components in the unit structures.

2. Identify the most critical CMM test. All the collected testing reports from
the standard procedure in Fig. 4.1 are a precious source of information. In
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fact, once structured in a unique database, they can be used to identify the
most recurrent failed CMM tests for each type of unit. These tests need
to be included in the Automatic procedure in order to keep high-reliability
standards. A first estimator of test criticality is the ratio in Eq. 4.1:

wi = 100 ∗ Failedi

Toti

(4.1)

with i = 1, ..., NtestCMM
. The weight parameter wi represents the percent-

age ration between number of recorded failed tests over the total number of
records per each CMM test.

3. Check if the CMM tests are characterized by a proper signal. In order to
keep the test automatic, it is necessary to take as reference the suggested
signals from the manual. If the signal specifications are not complete, then
a new reliable shape has to be defined which allows to achieve the same HF
extraction as the standard one.

4. Try to integrate similar tests in one Sequence. Since the Automatic procedure
needs to be reliable but also time-saving, if two or more tests are characterized
by the same signal-shape, they can be collected in one Sequence. In this way,
more than one HFs can be extracted from the same measurement.

5. Add specific Sequence according to the tested PFCS structure. During the
procedure design process, it is important to identify the common parts of
different PFCS, but also respect each structural peculiarity. For instance, the
Elevator is characterized by its RD and it integrates more position sensors
than the others, while the Spoiler is almost fully hydraulically controlled and
its only integrated sensor is the main ram LVDT. Each of these characteris-
tics can be a specific failure root that needs to be diagnosed with a tailored
Sequence

6. Concatenate the Sequences with similar aspects: in particular, the complete
excitation signal can be divided in four main sections. According to the
test-rig characteristics these groups may need a manual regulation by the
technician. As it will be in detail described in Chapter 4, the workshops test-
benches differ from the prototyping H-Labor one. These differences influence
the duration of each Sequences group but not their signal shapes.

(a) Preliminary;
(b) Pressure Adjustment: this section includes all the Sequences where sup-

ply and return pressures of the test-rig need to be regulated;
(c) Leakages Sequences: during these tests the return line flow needs to be

recorded;
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Figure 4.3: Signal generation code

(d) Fully automated Sequences

The complete excitation signal for each kind of UUT, Matlab script implement-
ing the algorithm in Fig. 4.3.

Initially, the user needs to specify the target test-rig: Test Field or H-Lab one.
Due to their constructive differences, they need slightly different formats of input
signal files to run the complete Automatic Test. After choosing the characteris-
tic PN for the kind of unit, the proper set of parameters needs is loaded. These
parameters-set contains both physical specifications of the unit, such as maximum
stroke or nominal EHSV operative current, and also signal descriptive constraints
such as time-ranges and amplitudes. Fundamental is the definition of the variable
seq_vec which define the Sequences order: each of them is identified with a num-
ber related to the chronological order of creation. Following the order defined by
seq_vec, the code recalls each Sequence script and build up a specific command
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matrix which contains all the signal information to be read by the test-rig measure-
ment software. This modular structure of signal generation allows to easily adapt,
create or change the order of different Sequences. Per each kind of command, a
specific colour has been selected:

• Blue: main-ram position command in closed loop;

• Green: servovalve current command in open loop;

• Black: supply pressure command;

• Magenta: EV1 supply voltage command;

• Cyan-dashed: EV2 supply voltage command;

All the plots in have been normalized according to each measurement channel
reference value and their shapes are reported per each kind of unit, highlighting
how each Sequences is parametrized and scalable. All the signals created by the
code in Fig. 4.3 are saved as matrix and exported in .csv format. Each column
represents one of the command channel which are listed before. These output files
represents the raw input for the testing-software of both the test-benches in Chapter
3: imc-Studio of the H-Lab and LabView in the Test-Field console computer. In
this way, it is possible to keep the modularity and coherence between the testing
procedures.

4.3.1 A320 Elevator signal
The complete excitation signal of the Elevator is composed by twenty-six Se-

quences. The set of position, current, supply pressure or EVs voltages commands
are plotted from Fig. 4.4. Compared to the other units, Elevator presents the
longest signal (maximum 34 minutes in total), due to its structural complexity. As
reported in Paragraph 4.3, each signal has been designed including the most critical
CMM tests and it needs to evaluate the health status of each unit sub-component
in both the working modes. The barplot in Fig. 4.5 displays the weights (Eq.
4.1) per each CMM test included in the Hydiag procedure, imposing a minimum
threshold of weight > 1%.

In the first subplot of Fig. 4.4, both closed and opened loop commands alter-
nates in order to extract traditional and additional HFs. In particular, this signal
presents four completely extra-cmm Sequences, two of them with both the kinds of
HFs, while all the others follow the CMM specifications. In total the set of collected
HFs is composed by 44 traditional and 30 new-defined health indicators.
Most of the Sequences are in active mode, where both the EVs are not supplied
with voltage command. When the unit must be switched in damping mode, at least
on of them is energized. At the beginning of the test, during the Preliminary and
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Figure 4.4: Elevator complete excitation signal

Pressure Adjustment Sequences, the supply pressure needs to be regulated while,
from Seq.8 till the last one, this pressure remains constant to its nominal value. In
the next paragraph, Sequence structures are presented, grouping them according
to Paragraph 4.3.

Preliminary Sequences

The first part includes two Sequences with two required preliminary checks from
the maintenance manual:

• Sequence n.1

– Time: 62 seconds;
– Entirely in Active mode;
– Supply pressure constant (48.5% of the nominal value);
– The main ram is moved to its middle position, then it starts sinusoidally

moving at 0.1 Hz in order to complete 10 strokes, with an oscillation
amplitude of 80% of the nominal stroke.

• Sequence n.2
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Figure 4.5: Elevator weight evaluation

– Time: 20 seconds;
– Entirely in Damping Mode: both EVs are energized with nominal volt-

age;
– Supply pressure null;
– Position command in Closed Loop at 0 mm. During this testing time,

the technician needs to check the Accumulator status before completing
the testing.

Table 4.1: Elevator preliminary sequences info

Seq. Name Included Tests HFs
1 Test n.2: Air Purging leakage

2 Preliminary Check accu_drain

Pressure Adjustment Sequences

From the third until the seventh Sequence, all the tests which require a supply
pressure adjustment have been grouped. In particular, Sequences n.3 have been
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Figure 4.6: Elevator Preliminary Sequences

designed to check the correct working condition of the supply and return hydraulic
lines. The length of these tests depend on the needed time by the technician to
regulate the supply line from the analogue manifold. The measurements conducted
in the H-Lab, described in Chapter 4, demonstrates that a digital control pressure
channel through CAN-bus communication can shorten these Sequences of more
than half.
The consecutive n.4 and 5 aim to check the opening and closing hydraulic con-
ditions of the MSV, slowly increasing and decreasing the pressure on the supply
line. Sequence n.6 is specific for the Elevator, since its goal is to check the unit
performance in recentering mode, checking its speed to reach the null position in
case of electrical failure (represented with 0 mA in open loop). This particular sig-
nal can be used to extract several features about the health status of the Elevator
Recentering Device. As reported in Table 4.2, twelve HFs can be extracted from
this Sequence: the first two are the traditional CMM recentering speed HFs, while
the other ten are extracted from the EHSV Lvdt recentering spool stroke, when
the current commands are null. More details about these health-index are reported
in Chapter 5.5.2. The last Sequence n.7 checks also the UUT maximum speeds
during its complete strokes, commanding the unit in open loop from minimum to
maximum position and vice-versa. All the consecutive Sequences keep the supply
line pressure to the nominal value.
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Figure 4.7: Elevator Pressure Adjustment Sequences

• Sequence n.3

– Time: maximum 62 seconds;
– Entirely in Damping mode: both EVs are energized with nominal volt-

age;
– Slowly increase the supply line pressure;
– Opened Loop current command to 0 mA

• Sequence n.4 and 5

– Time: maximum 56 seconds;
– Entirely Active Mode;
– Two ramps of pressure: firstly decreasing and then an increasing one

between two reference values;
– Position command in Closed Loop: the unit moves to its middle position,

then it starts to move sinusoidally at 0.1 Hz

• Sequence n.6

– Time: 15 seconds;
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– Entirely Active Mode;
– Set the pressure at around 78% of the nominal value;
– Current command in Opened Loop at 0 mm. Two steps in Open Loop

from imax to 0 mA and then from imin to 0 mA, to simulate an electric
failure.

• Sequence n.7

– Time: 10 seconds;
– Entirely Active Mode;
– Set the pressure at around 78% of the nominal value;
– Current command in Opened Loop at 0 mm. Two steps in Open Loop

from imin to imax and back to imin. The signal finishes at 0 mA.

Table 4.2: Elevator pressure adjustments sequences info

Seq. Name Included Tests HFs
3 High pressure valve test P2 [bar]

Low pressure valve test ∆P3 [bar]
4 MSV Closing Pressure ∆P5 [bar]

MSV Lvdt in damping mode U4 [Vrms]
5 MSV Opening Pressure ∆P4 [bar]
6 Recentering speed from retracted stop SR [mm/s]

Recentering speed from extended stop SR′ [mm/s]
EHSV Lvdt rising-time during main ram recentering stroke from extended stop rtEN [s]
EHSV Lvdt step overshoot during main ram recentering stroke from extended stop ovshtEN [%]
EHSV Lvdt falling-time during spool recentering stroke ftEN [s]
EHSV Lvdt step downshoot during spool recentering stroke dwnshtEN [%]
EHSV Lvdt elbow time interval during spool recentering stroke dt_elbowEN [s]
EHSV Lvdt falling-time during main ram recentering stroke from retracted stop ftRN [s]
EHSV Lvdt step downshoot during main ram recentering stroke from retracted stop dwnshtRN [%]
EHSV Lvdt rising-time during spool recentering stroke rtRN [s]
EHSV Lvdt step overshoot during spool recentering stroke ovshtRN [%]
EHSV Lvdt elbow time interval during spool recentering stroke dt_elbowRN [s]

7 Maximum speed with no load Sm [mm/s]
Maximum speed with no load Sm’ [mm/s]

Leakages Sequences

Sequences from n.8 to n.12 aim to check the eventual inner leakages in the
UUT, measuring the return line flow. Due to some test-bench limitations, these
Sequences may last maximum three minutes, since the technician need to report
the value from the return line analogue flow-meter. By the way, according to
experimental campaign in the H-Lab (Chapter 4), these Sequences can be shorten
up to 30 seconds with an accurate digital flow-meter.
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The goal of the first two Sequences n.8 and n.9 is to detect an excessive return flow
when the main-ram is in totally extended and retracted position. They need to be
performed in Open Loop and Active mode. The consecutives n.10 and n.11 instead
need to check the presence of inner leakages in the damping hydraulic circuit line,
considering the MSV in its closed position. In contrast to the previous ones, these
signals are still in Opened loop but in Damping Mode, alternatively energizing both
the EVs. The last leakage Sequence is the only one in Closed Loop, at its goal is
to detect an excessive leakage in UUT null position.

Figure 4.8: Elevator Leakages Sequences

• Sequence n.8 and n.9

– Time: maximum 180 seconds each;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Open Loop current command firstly from 0 to imax (Seq. n.8), and then

from 0 mA to its opposite imin.

• Sequence n.10 and 11

– Time: maximum 180 seconds each;
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– Both in Damping Mode. In particular, firstly EV1 and then EV2 are
activated with Vnom voltage;

– Constant supply pressure to its nominal value;
– Open Loop current command from 0 to imax

• Sequence n.12

– Time: maximum 180 seconds each;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Initial small step in Closed Loop to and then recentering the unit at 0

mm.

Table 4.3: Elevator leakages sequences info

Seq. Name Included Tests HFs
8 Leakages in extended position Q3 [cm3/min]

Total extended stroke S1′ [mm]
9 Total retracted stroke S1” [mm]

Recentering null position S2′ [mm]
Limit cycle from extended position 2δC ′ [mm]
Leakages in retracted position Q3′ [cm3/min]

10 Recentering null position S2 [mm]
Limit cycle from retracted position 2δC [mm]
Leakages in damping mode (EV1) Q2 [cm3/min]

11 Leakages in damping mode (EV2) Q2′ [cm3/min]
12 Leakages slaving mode Q1 [cm3/min]

MSV Lvdt in active mode U3 [Vrms]

Automatic Sequences

From Sequence n.13 to 26, there is no need of interaction with the technician
and measurements can run fully automatic for more than 10 minutes. In this larger
group, Sequences can be classified according to their main target sub-components.
Their disposition and duration have been optimized in order to stimulate a singular
or a group of sub-components that usually affect each other. These sections can be
gathered as:

• EHSV/RD/RVDT: Sequences n.13, 14, 15, 16, 24, 26;
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• MSV/EVs: Sequences n.17, 18, 19, 20, 21, 22;

• RVDT/Main Ram: Sequences n.23, 25.

This classification leads to a better identification of each Sequence, although
these categories boundaries are "blurred" due to the structure itself of the signal.
The collected measurements from each Sequences contain all the possible informa-
tion of its target sub-component, but it also includes other pattern that may be
due to another related one, which need to be carefully extracted. For instance,
Sequence n.23 has been designed to extract the correct demodulated ratio of the
RVDT sensor, but it is also used to extract an additional extra-HF rx, which rep-
resent the resolution command. This feature contributes to identify possible defect
in the EHSV and in the main-ram sealings.
Similarly to the n.23, other Sequences are developed in order to extract from the
same signal both traditional and extra-CMM HFs (f.e Seq. n.15), while some sec-
tions are entirely dedicated to extract additional HFs, like Sequences n.13, 16 and
26. All the traditional and extra-CMM HFs collected in each Sequence are reported
in Table 4.4.
The HFs extraction methods per each Sequence are in detail described in Chapter
4.

Figure 4.9: Elevator Automatic Sequences
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• Sequence n.13

– Time: 180 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Slow ramp in Closed Loop around the RD nominal range of action, in

order to extract its characteristic curve (Fig. 2.11).

• Sequence n.14

– Time: 12 seconds;
– After few seconds, the Unit switches in Damping mode. Both the EVs

are energized;
– Constant supply pressure to its nominal value;
– Two steps in Open Loop to 80% of both ∗imax and ∗imin.

• Sequence n.15

– Time: 15 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Two steps in Closed Loop interspersed with a command in null position.

• Sequence n.16

– Time: 17 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Fast ramp command around its null position.

• Sequence n.17 and 18

– Time: 34.5 seconds each;
– Switching from Active to Damping mode. Rising and descending ramps

voltage command to firstly EV1 and then to EV2 in their working ranges.
– Constant supply pressure to its nominal value;
– Command in Closed Loop: small step to mid position and then sinus

wave at 0.1 Hz

• Sequence n.19 and 20

– Time: 10 seconds each;
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– Switching from Damping to Active mode. The EVs relay are switched off
after few seconds the unit has been already commanded to its extended
stop, simulating an electric failure on the EVs solenoids.

– Constant supply pressure to its nominal value;
– Closed Loop command with step to its extended position. At the end,

the unit is slaved again to its null position.

• Sequence n.21 and 22

– Time: 9 seconds each;
– Switching from Active to Damping mode. EVs are switched ON at 1/3

of the commanded stroke of the unit.
– Constant supply pressure to its nominal value;
– Closed Loop command with step from retracted to extended stop. At

the end, the unit is slaved again to its null position.

• Sequence n.23

– Time: 55 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Closed Loop command. This signal can be divided in two parts:

1. First step close to its target position of xgoal, stopping the unit 2
mm before. Then, a slow ramp drives to unit 2 mm above xgoalext,
but keeping the unit at xgoalext for few seconds;

2. Second step close to its target position of xgoalret mm, stopping the
unit at 2 mm before. Then, a slow ramp drives to unit 2 mm above
xgoalret.

• Sequence n.24

– Time: 34 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Closed Loop command with 1 Hz sinus wave, with increasing amplitude.

The maximum commanded position needs to be close to 0.

• Sequence n.25

– Time: 52 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
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– Random position steps in Closed Loop.

• Sequence n.26

– Time: 200 seconds;
– Entirely Damping Mode: both the EVs are energized;
– Constant supply pressure to its nominal value;
– Slow ramp in Open Loop around the nominal range of action of EHSV.
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Table 4.4: Elevator automatic sequences info

Seq. Name Included Tests HFs
13 RD deadband amplitude dbrec [mm]

RD current mean deadband Idbrec [mA]
RD position mean deadband xdbrec [mm]
RD stiffness krec [mA/mm]
RD current bias I0rec [mA]
RD position bias x0rec [mA]

14 EHSV Lvdt in extended spool position U9 [mVDC]
EHSV Lvdt in retracted spool position U10 [mVDC]

15 EHSV Lvdt in null spool position U0 [mVDC]
EHSV nominal current in extended position IE [mA]
EHSV nominal current in retracted position IR [mA]

IE + IR [mA]
Signal to Noise Ratio of EHSV LVDT secondary coil (extended posizion) SNR(Usek)ext [dB]
Signal to Noise Ratio of EHSV LVDT secondary coil (retracted posizion) SNR(Usek)ret [dB]
Current noise amplitude in extended position fUsek,ext [Hz]
Current noise peak frequency in retracted position fUsek,ret [Hz]

16 Maximum position bias xb [mm]
Hysteresis amplitude hx [mm]

17 EV 1 Maximum Non-Function Voltage U5 [VDC]
EV 1 Minimum Operating Voltage U6 [VDC]

18 EV 2 Maximum Non-Function Voltage U7 [VDC]
EV 2 Minimum Operating Voltage U8 [VDC]

19 EV 1 Breakdown Voltage UC1 [VDC]
EV 1 Pressurization time T1 [ms]

20 EV 2 Breakdown Voltage UC2 [VDC]
EV 2 Pressurization time T2 [ms]

21 EV 1 Depressurization Time T3 [ms]
22 EV 2 Depressurization Time T4 [ms]
23 RVDT ratio in extracted position R1 [-]

RVDT ratio in retracted position R2 [-]
Resolution test rx [mm]
RVDT gain in extension Kext [mm/(Vrms/Vrms)]
RVDT gain in retraction Kret [mm/(Vrms/Vrms)]

24 Threshold Test U11 [mm]
25 Piston position sensor wiring ϕUA [°]

ϕUB [°]
Position offset in extended position ϵext [mm]
Position offset in retracted position ϵret [mm]

26 EHSV deadband dbehsv [mV]
EHSV deadband mean current Idbehsv [mA]
EHSV deadband mean spool position xdbehsv [mV]
EHSV sfittness Kehsv [mV/mA]
EHSV bias current Ibias [mA]
EHSV spool hysteresis hystI [mA]
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4.3.2 A320 Aileron signal

Figure 4.10: Aileron complete excitation signal

The full Aileron excitation signal contains seventeen Sequences, which are all in
common with the Elevator one. Each signal shape has been re-adapted according
to the Aileron nominal structural parameters. The major differences between the
signal in Fig. 4.4 and 4.10 are:

• The RD and EHSV Lvdt absences in Aileron structure entail a shorter sig-
nal, since the previous two most extended Sequences n.13 and n.26 are now
omitted. The total duration is around 20 minutes for this unit.

• The Aileron presents only one EV (Chapter 2.4) which switches the unit
from Active to Damping mode when denergized. For this reason, the Aileron
includes only the characterizing Sequences for one EV, and their signals are
the complete opposite of the Elevator ones.

Despite these structural differences, the modular structure of the signal allows
to create two similar testing procedure for these two different units. Similarly to
the Elevator, barplot in Fig. 4.11 displays the weights (Eq. 4.1) per each CMM
test in the Hydiag procedure.

On one hand, the simpler Aileron structure means a faster testing procedure,
but on the other hand the lack of some key integrated sensors such as the EHSV
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Figure 4.11: Aileron weight evaluation

Lvdt reduces the number of additional HFs. In this case, the set of collected results
includes 30 traditional CMM and 12 new-defined health indicators.
The next paragraphs four different Sequence groups are presented according to
Paragraph 4.3.

• Preliminary Sequences: the first two preliminary Sequences presents the
same shape as the Elevator ones. Even in this case, during these sections the
technician need to check the presence of leakage and the status of the drained
accumulator.

• Pressure Adjustment and Leakages Sequences: compared to the Ele-
vator ones, two main differences can be pointed. The first one regards the
opposite shape of the EV signal, since the Aileron switches in Damping Mode
when the EV solenoid is switched off. The second main difference is the lack
of the sixth and eleventh Sequence, due to the RD and EV2 absence. Anyway,
each Sequence goal does not change. As for the Elevator, the third section
aims to check the correct working of the high and low pressure valves on the
supply and return lines, the fourth and fifth target the MSV hydraulic open-
ing and closing conditions, while the seventh is built to extract the maximum
UUT speeds in Open loop. The leakages checks can be regularly performed
both in active and damping mode.
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• Automatic Sequences: the last seven Sequences can be performed auto-
matically without any interaction with the technician. As for the Elevator,
it is possible to group these tests according to their target sub-components.
For example, the Sequences n.17, 19 and 21 have been designed to diagnose
an eventual failure in the EV or MSV. All the others instead aim to check
the behaviour and interaction between EHSV, LVDT and Main Ram.

4.3.3 A320 Spoiler signal

Figure 4.12: Spoiler complete excitation signal

Comparing the Spoiler structure in Paragraph 2.5 with Elevator and Aileron
ones in Paragraph 2.4 and 2.5, several differences can be found even in the typical
main sub-components:

• The single-effect main-ram with its minimum retracting stroke to zero. The
connection between actuator and wing-frame is guaranteed by the blue link-
ages in Fig. 2.18.

• Two similarities with the Aileron structure is the presence of a jet-deflector
EHSV without any spool sensor and a LVDT on the main ram. This last one
is the only integrated sensor in the unit.
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Table 4.5: Aileron automatic sequences info

Seq. Name Included Tests HFs
1 Air Purging test Leakage
2 Preliminary Check Accumulator retraction
3 High pressure valve test P2 [bar]

Low pressure valve test P3 [bar]
4 MSV Closing Pressure P5 [bar]

MSV Lvdt in damping mode U4 [Vrms]
5 MSV Opening Pressure P4 [bar]
7 Maximum speed with no load Sm [mm/s]

Maximum speed with no load Sm’ [mm/s]
8 Leakages in extended position Q3 [cm3/min]

Total extended stroke F1’ [mm]
9 Total retracted stroke F1" [mm]

Leakages in retracted position Q3’ [cm3/min]
10 Leakages in damping mode Q2 [cm3/min]
12 Leakages slaving mode Q1 [cm3/min]

MSV Lvdt in active mode U3 [Vrms]
16 Maximum distance to limits dcr [mm]

Maximum position bias xb [mm]
Hysteresis amplitude hx [mm]

17 EV 1 Maximum Non-Function Voltage U5 [VDC]
EV 1 Minimum Operating Voltage U6 [VDC]

19 EV Pressurization time T1 [ms]
21 EV Depressurization Time T2 [ms]

EV Breakdown Voltage UC [VDC]
23 LVDT ratio in extracted position r2 [-]

LVDT ratio in retracted position r3 [-]
LVDT 0 setting dD [mm]
EHSV null bias Ion [mA]
Resolution test rx [mm]
RVDT gain in extension Kext [mm/(Vrms/Vrms)]
RVDT gain in retraction Kret [mm/(Vrms/Vrms)]

24 Threshold Test U7 [mm]
25 Piston position sensor wiring ϕUA [°]

ϕUB [°]
Position offset in extended position ϵext [mm]
Position offset in retracted position ϵret [mm]
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• As the elevator EHSV, the nominal measured current at commanded position
is not null, but the controller provides an additional offset inom. This con-
tribute does not compensate the presence of any RD, but a designed tilted
position of the first stage TM. Like the Elevator, an electrical failure, which
corresponds to null input current, makes the unit move to its null position
which corresponds to its complete retraction.

• The spoiler MSV structure differs from the aileron and elevator ones due to
the presence of an integrated by-pass orifice. Furthermore, as in Fig. 2.19a,
its working condition is hydraulically regulated by Inhibition and LP Valve
Check, instead of the aileron and elevator EVs. For this reason Fig. 4.12 does
not present the third subplot of the solenoids command.

Furthermore, the presence of Inhibiting, LP Valve Check and Maintenance lock
device requires the definition of new proper pressure-adjustment Sequences. For
this reason, Fig. 4.12 presents only seven over twelve sections in common with the
others. From the complete signal of about 16 minutes, 20 traditional CMM tests
and 9 new-defined HFs are automatically extracted, drastically reducing testing
time and reporting a more complete picture of the UUT health status.

Preliminary and Pressure Adjustment Sequences

Due to the absence of an Accumulator, the Preliminary group just include the
first Sequence (red-dashed line in Fig. 4.13). By the way, within the Pressure-
adjustment class, it is possible to label as "preliminary" sections Sequences n.36
and 28, since they need to be located before the n.27 and n.28 due to some nec-
essary mechanical checks by the technician. In particular, Sequence n.36 signal
needs to be repeated two times. The first time, the technician need to set the
unit in Maintenance Mode and check that it does not move when supplied with
nominal pressure and with maximum open loop current; vice-versa the second time
it needs to run to its extended position when the maintenance devices is switched
to Operating mode. This is first needed preliminary check of the Inhibiting Valve.
Regarding the Sequence n.28, in operating mode, the technician need to check that
the unit extends correctly when commanded with imax current. This represents a
preliminary check of the correct MSV switching position.

• Sequence n.1

– Time: 62 seconds;
– Entirely in Active mode;
– Supply pressure constant (48.5% of the nominal value);
– The main ram is moved to its middle position, then it starts sinusoidally

moving at 0.1 Hz in order to complete 10 strokes, with an oscillation
amplitude of 80% of the nominal stroke.
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Figure 4.13: Spoiler Pressure Adjustment Sequences

• Sequence n.36

– Time: 11 seconds;
– Switch to Maintenance and to Operating Modes;
– Constant supply pressure to its nominal value;
– Opened Loop steps from imin to imax and back.

• Sequence n.27

– Time: 75 seconds;
– Entirely Active Mode;
– Slowly increase the pressure from 0 bar until the unit starts moving,

than back to 0 bar;
– Opened Loop steps from imin to imax.

• Sequence n.28

– Time: 5 seconds;
– Entirely Active Mode;
– Set the pressure to its nominal value;
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– Step in Open Loop from 0 to imax.

• Sequence n.29

– Time: 75 seconds;
– Entirely Active Mode;
– Slowly increase the pressure from 0 bar until the unit starts moving,

than back to 0 bar;
– Step in Open Loop from imax to null and then to imin .

• Sequence n.7

– Time: 10 seconds;
– Entirely Active Mode;
– Set the pressure at around 78% of the nominal value;
– Current command in Opened Loop at 0 mm. Two steps in Open Loop

from imin to imax and back to imin. The signal finishes at 0 mA.

Table 4.6: Spoiler pressure adjustments sequences info

Seq. Name Included Tests HFs
1 Air Purging leakage

36 Inhibiting valve check in M mode IV 1
Inhibiting valve check in O mode IV 2

27 Shut off valve closing pressure PS1 [bar]
28 Preliminary MSV check –
29 MSV opening pressure PS2 [bar]

MSV closing pressure PS3 [bar]
7 Maximum speed with no load Sm [mm/s]

Maximum speed with no load Sm′ [mm/s]

Leakages Sequences

Since the unit does not include any EV, this group of signals contains only
the leakages tests in active mode of Sequences n.8, 9 and 12. Each signal shape
has been readapted according to the unit structural parameters. For instance,
leakages in slaving mode in Sequence n.12 need to be checked at the main ram
middle-stroke, since the null position coincides with its retracted stop. Another
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signal distinguishing feature is the intermediate step from imax to null current in
the second Sequence n.8. This step allows the extraction of the retraction speed in
case of electrical failure.

Figure 4.14: Spoiler Leakages Sequences

Table 4.7: Spoiler leakages sequences info

Seq. Name Included Tests HFs
8 Leakages in extended position Q3 [cm3/min]

Total extended stroke D1′ [mm]
9 Leakages in retracted position Q2 [cm3/min]

Total retracted stroke D1” [mm]
Electrical failure V 4 [mm/s]

12 Leakages slaving mode Q1 [cm3/min]

Automatic Sequences

This group includes only three sequences that can be performed without any
adjustment from the technician. Sequence n.35 in Fig. 4.15 is the only peculiar
signal for this kind of unit. It is dedicated to the extraction of two important
EHSV HFs: null bias and threshold currents. It consist of a series of open loop
ramp signals which aim to obtain the minimum necessary current to make the unit
moving and first stabilized current signal when the unit has reached a goal position.

• Sequence n.35

– Time: about 22 seconds;
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Figure 4.15: Spoiler Automatic Sequences

– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Pyramidal periodic signal with increasing peak of current.

• Sequence n.23

– Time: 55 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Closed Loop command. e to its target position of xgoal, stopping the

unit 2 mm before. Then, a slow ramp drives to unit 2 mm above xgoalext,
but keeping the unit at xgoalext for few seconds;

• Sequence n.25

– Time: 52 seconds;
– Entirely Active Mode;
– Constant supply pressure to its nominal value;
– Random position steps in Closed Loop.

4.4 Testing Framework
As already anticipated in Chapter 3, the automatic procedure has been tested

firstly in the H-Lab prototyping bench and then translated according to the Test
Field benches requirements. Figure 4.16 illustrates the flow of information from
test-bench and measurement console during the Hydiag testing procedure. Firstly
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Table 4.8: Spoiler automatic sequences info

Seq. Name Included Tests HFs
35 Servovalve null bias In [mA]

Servovalve threshold It [mA]
23 LVDT ratio in extracted position V r [-]

Resolution test rx [mm]
LVDT gain in extension Kext [mm/(Vrms/Vrms)]

25 Piston position sensor wiring ϕUA [°]
ϕUB [°]

Position offset in extended position ϵext [mm]
Position offset in retracted position ϵret [mm]
Current noise amplitude in extended position αext [mA]
Current noise peak frequency in extended position fext [Hz]
Current noise amplitude in retracted position αret [mA]
Current noise peak frequency in retracted position fret [Hz]

Figure 4.16: Hydiag Test Framework (LHTSmart Factory)

the UUT is installed on the Test Bench, where it is hydraulically and electrically
connected (blue line). According to the kind of unit, the technician is able to select
the proper settings for the automatic Hydiag procedure (dashed-blue line). Even
though the structure of automatic test is equal for both the test-rigs, due to the
structural differences of the testing infrastructures, it has been necessary to de-
velop a proper framework for both the test-consoles in order to perform correctly
the automatic procedure. As already reported in paragraph 4.3, all the Sequences
time-series are exported in dedicated .csv files which represent the starting point
of the automatic test procedure. Figure 4.17 reports how the outputs of the Signal
Generation code can be used for both the testing configurations (red line in Fig.
4.16).
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TEST FIELDH- LAB

HYDIAG PROCEDURE

Signal Generation Code

Concatenate all signals

Convert the Complete signal in .dat

Seq_1.csv... Seq_N.csv

TESTING (imc Studio)

CHN_1.mat... CHN_N.mat

Load config_file.txt 

Load i-th Seq 

TESTING (LabView)

i<N ?

Seq_i.cdf
Y

N

Figure 4.17: H-Lab vs Test Field Procedure

The H-Lab configuration requires firstly to concatenate all the output from
the Signal Generation code and to convert them in proper .dat format. In this
way, from the GUI interface in imc Studio, it is possible to control all the test-
bench settings (such as supply pressure), and read the real-time evolution of the
measurement channels. All the active channels have been previously set during
the development of the GUI itself. From this side, the testing software allows the
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user to customize each analogue or virtual channel configuration, such as applying
a filter on a specific one or imposing different sample-rate to reduce the weight of
the output measurements files. Once the entire test is over, the user is able to save
the data in a proper folder both in .dat and .mat format, which can be directly
processed by the Health-Features extracting code in Chapter 5. It is important to
notice that, since the input loaded signal is obtained concatenating all the time-
series Sequences from the .csv file, the H-Lab test outputs includes the complete
time-series of all the active measurement channels. These files are represented in
Fig. 4.17 as CH_N.mat which close the loop in Fig. 4.16 (green line).
The Test-Field configuration differs from the H-Lab one in different aspects. While
in the prototyping phase the signals need to be concatenated, the LabView testing
software loads sequentially the different .csv files according to a prior configuration
file named conf_PN.txt. This document differs according to the UUT PN and the
is selected directly by the technician trough an appropriate GUI. It contains all the
information about the channels to be activated during each Sequence, their sampling
rate and the working mode to set on the UUT (active or damping whether closed
or open loop command). According to an internal sequencer, the LabView code
loads the i-th stimulus-file in .csv format and performs the test accordingly. While
testing, the technician is able to check the running time of the executed Sequence
and eventually stop it in case of any anomaly. At the end of each i-th step, the
LabView exports the complete time-series of the active channels in a unique file in
.cdf format. This particular extension (Common Data File) allows both to store
large vectors in relatively small memory space and also some important meta-data,
such as test date and hour, sampling rate and name of the technician. These
files are locally stored in a dedicated hard-disk and named according a particular
format: PN_SN_SAP number_Sequence_i_YYYYMMDD_hhmmss_testtype.cdf. This
loop is repeated until all the N Sequences have been correctly performed and saved
accordingly.
Storing the measurement files in separated folders and according to this format
has improved a lot the traceability of each test. Significant is the last field of the
format name testtype. It can assume two different string values: E if the Hydiag
Procedure has been performed as Entry ("Eingang") Test or A if it is referred to an
Exit ("Ausgang") Test after repairing the units. In fact, the actual deploying phase
on the TF test benches expects to compare the effectiveness of HyDiag with the
Standard Procedure according to the agenda in Fig. 4.18.

The collected data during this experimental campaign are referred to two dif-
ferent steps in the testing-scheduling of each UUT. This intermediate step before
the complete implementation on the TF consoles has been necessary for several
reasons. Firstly it has helped collecting feedbacks from the users to fix every signal
of the Automatic procedure, until their final shapes in the previous paragraphs.
Secondly, it was necessary to collect as much data as possible to develop, debug
and test all the HFs algorithms of the Hydiag software in Chapter 5. Since both

86



4.4 – Testing Framework

HYDIAG 
ENTRY TEST

(E)
STD 

ENTRY TEST
(E)

ALL TEST 
PASSED?

STD 
INTERMEDIATE 

TEST
(I)

REPAIRING
HYDIAG 

EXIT TEST
(A)

STD 
EXIT TEST

(A)

EINGANG 
TEST FILES 
(cdf format)

AUSGANG 
TEST FILES 
(cdf format)

HYDIAG 
ENTRY TEST

(E)
STD 

ENTRY TEST
(E)

ALL TEST 
PASSED?

STD 
INTERMEDIATE 

TEST
(I)

REPAIRING
HYDIAG 

EXIT TEST
(A)

STD 
EXIT TEST

(A)

EINGANG 
TEST FILES 
(cdf format)

AUSGANG 
TEST FILES 
(cdf format)

HYDIAG 
ENTRY TEST

(E)
STD 

ENTRY TEST
(E)

ALL TEST 
PASSED?

STD 
INTERMEDIATE 

TEST
(I)

REPAIRING
HYDIAG 

EXIT TEST
(A)

STD 
EXIT TEST

(A)

EINGANG 
TEST FILES 
(cdf format)

AUSGANG 
TEST FILES 
(cdf format)

Figure 4.18: Hydiag Testing Scheme

unserviceable and repaired units were needed for diagnostic purposes, it has been
necessary to collect both data from a prior Hydiag "Eingang" Test (E), to be per-
formed as soon as an unserviceable unit is shipped to the shop, and the results
after all the necessary repairs, testing and re-certifying the unit as serviceable in
an "Ausgang" test. It is important to notice from Fig. 4.18 that currently the
final Hydiag "Ausgang" test is used just for data-collection purposes while the final
certification of a serviceable unit needs to be still performed via standard CMM
procedure.
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Chapter 5

Health Features Extraction and
Collection

As already reported in [51]: "Data are rarely useful or usable in their raw form".
This simple sentence summarizes one of the most important challenges for health-
management researchers: how to extract significant information about the health
status of the tested component from the collected measurements? How can the
symptoms of a failure be clearly quantified by a unique and well-defined Feature?
These questions are two cardinal points that need to be solved before building any
prognostic and diagnostic module. However, both of them can be answered just
through a deep knowledge of the system under testing. For this reason, it would be
useless to use the raw data as complex structure of input to be used for a diagnostic
module. Even if this kind of classifier would recognize any anomalous behaviour
through different patterns, these might not have any physical meaning since the
adopted machine-learning algorithm is not aware of the system complexity. The
correct strategy to follow is based on the assumption that the researcher analysing
the results knows where to find the information of a possible anomaly, and this
can be numerically quantified by a defined parameter called Health Feature. The
more complex the system is, the tougher the challenge results. Once collected all
the measurements, before starting to identify any possible health indicator, it is
important to know (and possibly register) the following points:

• Testing conditions such as time and location. These may influence both the
system but also the test-bench working conditions;

• How the UUT has been stimulated in terms of test-signals and external factors
(such as source of load or disturbance);

• The characteristics of the collected channels. For example, it is important
to know if a channel is an input or an output coming from any integrated
or external sensor of the UUT. Since most likely all the channels have been
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sampled and digitalized, the parameters of the A/D converter need to be
taken into account for any kind of signal manipulation.

Once all these initial points are solved, knowing how the system subcomponents
works and how they are connected, it is important to define where to find the infor-
mation. It can be a time or frequency domain indicator or a shape-characterizing
parameter of the registered response: the important is to recognize which informa-
tion are the most valuable according to the kind of recorded signal and component
to analyse.
The following paragraphs described in details all the techniques that have been used
to extract the features reported in Chapter 4, and how these are characterizing per
each subcomponent of the described PFCS. The final goal of this delicate process
is to extract and collect the most valuable information which are used to picture
the health status of the tested component. As already anticipated in Chapter 4,
the Health-Features group include both traditional ones from the CMM testing in-
structions and additional ones which have been designed to improve and complete
the health check-up of the tested unit.

5.1 HyDiag software structures
In order to have a complete and structured HFs extraction process, a dedicated

Hydiag Software has been developed to analyse the output of the adopted testing-
console. As already anticipated in 4.4, depending on the testing equipment, the
structure of the outputs can be different if they are collected from the H-Lab test-
rig or the Test Field one. In the first case, at the end of each measurement,
the testing-software in imc Studio exports the complete time-series of the active
measurement channels in .mat format. These results have been widely used during
the first prototyping phase to fix the Sequences shapes, refine the signal-processing
techniques for features extraction and set all the requirement for the following
production phase in the Test Field. The version in the following paragraphs is
referred to this latter for production application, which is able to process directly the
.cdf files from the NED console. Both the versions for H-Lab and Test Field results
shares the same core-functions of HFs extraction and file exploring, while they differ
regarding the pre-processing of the collected time-series. Since in the H-Lab the
exported channels are differently sampled, they need to be up or down sampled
accordingly in order to have a common unique length. This is a fundamental step
that alleviate the tasks of the health-features extraction codes, as it is described in
the next paragraphs.
The software has been developed entirely in Matlab and it is present in two different
versions: a Product Version (PV) and a Debug (DBG) one. The main differences
between these two versions are illustrated in Fig. 5.1. The first one in the light-
green square is installed directly in an external computer (NUC), mounted in the
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Figure 5.1: Hydiag SW versions flowchart

NED testing rack. Its working mode is coordinated by the LabView PC (LV PC)
which runs the testing-software and is responsible for collecting the measurement
channels. Through a specific hand-shake protocol between these two computers,
once a Sequence has been performed according to the flow-chart in Fig. 4.17 the
corresponding Seq_i.cdf file is exported in a local HDD.

The software versions in Fig. 5.1 share the core-functions of processing HFs
extraction methods and reporting. However, they present significant differences in
terms of locating the measurements files in the local NED HDD. These differences
are graphically represented in the image with two different colours of the arrows
connecting the PV and DBG versions with the data source, and they are mainly due
to the way they actually work with these data. On the one hand, the PV version
has been developed in order to communicate with the NED PC and elaborates the
signal while the test is running. On the other hand, the DBG version has been
designed to work "off-line" and to process the data when all the necessary datas
have been already collected. More details about how the measurement datas are
treated by both the versions are explained in the next paragraph.

5.2 Measurements data management
Fig. 5.2 shows how the PV version of the HyDiag software automatically man-

ages the flow of measurement data which from the local NED HDD to the relative
backup drives.
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Figure 5.2: HyDiag software PV version data management flowchart
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The flowchart in the plot is actually a simpler version of the "hand-shake pro-
tocol" which regulates the communication between LV PC in the test-console and
the NUC where the Matlab HFs extraction software is installed. In particular, the
PV software version periodically checks whether a new file has been added on the
target folder of the Local HDD: if a new file is present, it processes the corre-
sponding channels according to its proper HFs extraction script. The number of
files exported by the LV PC and processed by the NUC depends on the PN of the
tested unit, since each PN is characterized by its signal shape. Each processed file
is firstly zipped and then transferred in a dedicated Backup HDD, catalogued in
folders named according to the following label:

NED_n_PN_SN_YYYYMMDD_hhmmss_testtype

where:

• n: number of the Test-Field used for the test;

• PN : unit part-number, which identifies the kind of tested flight-control unit;

• SN : unit serial-number that is proper of the tested actuator;

• YYYYMMDD_hhmmss: test date and hour;

• testtype: differentiates the "Eingang" entry test (E) from the "Ausgang" (A)
one, as reported in paragraph 4.4.

Once an automatic Hydiag Test is completed and all the HFs have been ex-
tracted, the software generates a complete report in .pdf for the technicians with
all the extracted indicators, functional plots and troubleshooting instructions. This
report and its equivalent form in .csv format are also stored in a dedicated folder
which is named using the same label of the relative measurement files folder. More
details about the complete structure of these reports are reported in paragraph 5.6.
To sum up, the PV version in Fig. 5.1 has been designed in order to execute dif-
ferent tasks while the test is running on the measurement systems, such as not
only extracting the HFs from each signal, but also managing the flow of data in
input (the .cdf files) and in output (the printed reports). The DBG version shares
with the PV one all the core-functions of preprocessing, health-features extraction
methods and reporting. However, since it can be used "off-line" without any in-
teraction with the LV Pc, the wrapper code does not need to manage the folder
organization of the stored measurement files. At most, the DBG version has been
designed in order to recognize the tests which have been previously analyzed from
the new one, comparing the contents of both reference data and reports folders.
The red-dashed line in Fig. 5.1 represents that the DBG software version need the
data to be already collected in the specific folders, with the appropriate label as
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name. This task is performed from an additional script, called data_transfer,
which is dedicated to read the files in the NED local HDD, create the appropriate
subfolders, compress and transfer the files appropriately and collect the test meta-
data in a dedicate INDEX.txt file.

5.3 HyDiag software structure
The DBG version of the software has been designed to work on a single worksta-

tion after the testing phase has been completed. This facilitates a further analysis
of the collected data or it can be used as benchmark to deploy new HFs extraction
or fix bugs for the PV version. For this reason, it needs to be customizable and
user-friendly. For example, it presents a dedicated GUI in Fig. 5.3 where it is
possible:

• Select if the input files are from H-Lab or the Test Field. As already men-
tioned, the output files from these testing settings differ for both extension
and structure. In case the option "Laboratory" in the drop-down menu is
chosen, it is possible to check or not the presence of any Leakage during the
test through the dedicated check-box (normally deactivated).

• Plot the raw time-series collected in the .cdf files. This option can be ac-
tivated via the corresponding check-box and it has been particularly useful
during the first debug phase of the code.

• Select the "Debug Mode" to print out dedicated plot per each HFs extraction
method. All the plots in the following sections are obtained through this
mode.

• Insert the Operator Name for reporting

The flowchart in Fig. 5.4 describes the scheme adopted to implement the DBG
version of the HyDiag software. After pressing start from the GUI, the user need to
select the folder containing the raw measurement files. In the actual configuration,
this folder contains as many sub-folders as the tested units for all the PN. Besides
the raw data from LabView in .cdf format, each dedicated sub-folder contains a
specific log file in .txt format with all the information regarding the N measure-
ment files in .cdf format. In particular, this file includes all the eventual typed-in
inputs from the technician during the testing procedure. In fact, due to the techni-
cal limitation of the Test Field bench, some HFs have to be manually reported by
the operator since it is not currently possible to digitally control or measure chan-
nels such as supply pressure (manually regulated) and return flow, while both of
them are can be collected from the H-Lab prototyping bench. Due to these issues,
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Figure 5.3: Hydiag SW GUI

during the transition phase between prototyping and production phase, it has been
necessary to adapt the Pressure Adjustment and Leakages Sequences in Chapter
4.3 in order to allow the operator to manually set pressure values and eventually
report any hydraulic HFs from the bench via dedicated "dialogue windows" in Lab-
View.
Once the correct folder has been selected, the user need to choose the unit PN in
order to load three sets of parameters files, represented by the light red blocks in
Fig. 5.4. In order to make these files also usable for further Data-Analysis purposes,
they are stored in tabular .csv files:

1. Design unit parameters such as nominal total stroke or demodulation gains
for integrated position sensors.

2. Measurement settings from the dedicated conf_file.txt. As reported in
paragraph 4.4, this file includes all the testing requirements, such as sample-
rate or active channels during the Sequence execution.

3. All the HFs variable-names, unity of measure, upper or lower limits to be
checked and eventually different reporting-names are stored in a dedicated
files per each PN. If a new HF is defined in a specific Sequence, this file need
to be modified accordingly or otherwise the report would not contains its
information.

After all the parameters and settings have been defined, the user need to select the
complete set of tests to be processed through a dedicated window, which reports
the list of unique "ident" of the performed and collected tests. These ident-codes
are built starting from the naming structure of the measurement files already men-
tioned in paragraph 4.4.
Once the user as selected M different unit tests from the GUI, their relative
paths are saved and, starting from the first one, the code is can read each of
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Figure 5.4: High-level DBG software flowchart
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the N measurement files in each folder. Each i-th Sequence file needs to be
opened in order to extract both its meta-data and the time-series vectors saved
in a unique matrix, whose columns contains the measurement from each active
channel. Since the conf_file.txt has been previously saved, a dedicated func-
tion (extraction_channel.m) assign to each column of the measurement matrix a
proper name and store this results in the structure Seq. This variable is fundamen-
tal since it is used in every HFs extraction code. According to the measurement
settings in the configuration file, the function builds the demodulated channels of
the integrated LVDTs from their raw-channels. More details about this function are
reported in the next paragraph. In this preliminary phase, from the initial Sequence
it is possible to detect any anomaly in the testing procedure due for example to
wrong cable connection or setting of any external sensor. For example, if the test-
bench incremental sensor for main ram position has been wrongly set or wrongly
connected, the Hydiag software reports this error both on the final report and it
tries to correct any setting offset of the following Sequences which could affect the
position measurement of the unit.
Once the channels time-series have been correctly read and pre-processed, the code
proceed to extract from each of N Sequence the corresponding HFs and to check
their prescribed CMM ranges for the traditional ones. Each HF with its limit and
eventual test result (PASSED or FAILED) are saved in a dedicated Matlab table
which is directly printed not only in the pdf report version for the technicians, but
also exported as csv file. Both the reports are stored in dedicated folder which are
named as the source data directory. In case of any error during the HFs extraction
phase, an error-handling function would report the affected HF as "Not Extracted"
in the pdf version and as NaN in the csv one.
Once the software has printed the reports for all the M selected tests, it can be
stopped.
The flowchart in Fig. 5.4 represents the main steps for the correct working condition
of the developed Hydiag software. The next paragraph reports some of the most
important developed functions for both preprocessing the measurement channels
and HFs extraction.

5.4 Sequences Loading and Pre-processing
This section explains in details how the time-series vectors from the measure-

ment channels are loaded and preprocessed, as previously described in the first
orange blocks in the flowchart in Fig. 5.4. These two important tasks are imple-
mented within two dedicated scripts which are shared by both the DBG and PV
software versions. As already anticipated in the previous paragraph, the first main
output is the structure Seq which contains all the measurement channels from the
opened .cdf data. The main developed function to create the variable Seq is named
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extraction_channel.m, whose structure is presented in paragraph 5.4.1. As re-
ported in the flowchart in Fig. 5.5, it recalls other important functions for LVDT
channels demodulation and eventual noise filtering of secondary voltage. More de-
tails about these functions are reported in paragraphs 5.4.2, 5.4.3 and 5.4.4.
After the key variable Seq is complete, as reported in the subprocess blocks in
Fig. 5.4, the Preprocessing loop requires an additional step: applying the function
findchangeslope. This function has been built in order to identify any significant
"change point" in the acquired signal. As already mentioned in [32], these points
are statistically detected in correspondence of an abrupt variation of signal slope.
The methods adopted by this function are described in paragraph 5.4.5. Typically
not all the channels stored in Seq need to be analysed by findchangeslope, since
some reference time-series can be taken into account to extract these particular
points which delimit specific signal portions. For example, the Command channel,
wheatear it is a position or current command (in closed or open loop respectively),
is one of the channel which is always processed by findchangeslope since it does
not depend by the unit response. The list of channels which need to be processed
by this function are stored in the same configuration file which reports the names
of the collected channels.

5.4.1 extraction_channel.m function
As reported in Listing 5.1, this function receives as input:

• n_dwn: downsampling factor;

• fs: sampling rate in Hz of the measured channels. This parameter is reported
in measurement setting conf_file.txt and it is set to 100 kHz;

• folder: path of the measurement file;

• chnls: list of useful channels which need to be loaded and pre-processed per
each Sequence. This list is included in an external configuration file of the
selected PN;

• meas_combo: this particular parameter is reported in the conf_file.txt.
Due to the setting of the NED test-console, it is possible to collect the channels
from one additional LVDT, except the main-ram position one. For example,
as reported in chapter 2, the Elevator unit includes two four-wires LVDT
sensors for the EHSV and MSV spool.

Listing 5.1: Extraction channel function inputs

function Seq = extraction_channel(n_dwn,fs,folder,chnls,meas_combo)
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The flowchart in Fig. 5.5 shows all the steps implemented within this function.
Firstly, the code opens and read the measurement cdf following the path in folder.
In order to open this file, the built-in Matlab function cdfread has been used. As
reported in the official NASA website [52], this kind of file has been developed in
order to store scalar and multidimensional large arrays (more than 2 GB), with
their relative metadata for additional information storage. Both the measurement
arrays and the metadata are saved in two dedicated structures:

1. data: cell array with N columns. Each column contains one measurement
channel. This variable is converted in an equivalent matrix and then down-
sampled according to the input factor n_dwn.

2. var: from the cdf metadata, the N measurement channels names are ex-
tracted and stored in this variable.

Once the measurement arrays have been loaded, the fundamental vector Time
need to built knowing both the number of rows of the downsampled matrix data
and the nominal sample-rate fs fs. This vector represent the first channel to be
assigned at the output structur Seq.

Depending on the HFs to be extracted from these signals, not all of the columns
stored in data need to be assigned in the output variable Seq. In fact, the input
chnls contains the necessary channels names to be exported and pre-processed.
This selection improves the code performances in terms of execution time, since
some of the collected channels are loaded in memory. However, the channels names
order in the input chnls may not coincide with the order in the extracted vari-
able var. For this reason, each i − th channel name in var is compared with the
content of the input chnls. When the match between channel and input variable
names is found, the corresponding field is created in Seq. This loop allows the user
to write down in any order the names of the desired channels in the external file
where chnls is stored. Within this loop, an error handling function checks if the
i − th column of the variable data is not empty or meaningful (f.e: made only by
zeros), characteristic which denotes a correct measurement setting. An error would
be printed in case of anomalous vector shape, which returns an empty field of the
variable Seq and stops the code.
After defining all Seq, few more vectors needs to be added to this output variable:
the demodulated signals from the integrated LVDT sensors of the unit. If the cor-
responding channels to primary and secondary voltages of these sensors are not
empty, the main function recalls the appropriate demodulation Matlab scripts. As
reported in the chapter 2.6, all the described PN includes a six-wires LVDT (or
RVDT for the Elevator) for position monitoring of the main ram, which require a
proper Ratiometric Demodulator to extract the demodulated signal from the raw
primary and secondary coils voltage signals. A digital twin of this circuit has been
implemented in the function ratio_demod_6wires.m. Its structure is presented in
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Figure 5.5: extraction_channel function flowchart
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paragraph 5.4.2.
Except the Spoiler PFCS, both the Aileron and Elevator present at least one other
four-wires LVDT: in the Aileron, it monitors the MSV spool position; while the El-
evator is equipped with two of these sensors for both EHSV and MSV spool. In this
case, the input variable meas_combo identifies if the collected channel secondary-
wire measurement represents the position of one spool or the other. Therefore, its
value depends on the Sequence goal, since this may be dedicated for detecting the
health status of the EHSV or alternatively the MSV, and this can be easily deducted
by the HFs list in the tables reported in chapter 2 per each PN signal. In both cases,
the demodulation is obtained via the developed function syncro_demod_4wires.m;
however, if meas_combo is referred to the EHSV LVDT, the secondary coil noise
level needs to be filtered through an appropriate denoising.m function. The way
the aforementioned scripts work are showed in the paragraph 5.4.3 and 5.4.4.
Once the sensors raw measurements have been demodulated, the output variable
Seq is exported directly in the workspace and ready to be used by the corresponding
HFs extraction script.

5.4.2 Ratiometric Demodulator function

Listing 5.2: Ratiometric Demodulator Function

function [U1_rms, U2_rms, U_demod] = ratio_demod(U_1, U_2, Kd)

This function follows the same steps of the block diagram in Fig. 2.25. It receives
as input the raw secondary coils channels (U_1 and U_2) and the demodulator factor
Kd. The function gives as outputs both the rms time-series of the secondary coils,
which have been obtained after rectifying and filtering the signals. A Low-pass
second order Butterworth zero-phase leg Filter has been implemented within this
function using the built-in Matlab functions designfilt and filtfilt. The final
position in millimetre is represented by the output U_demod, multiplying the ratio
R per the demodulator parameter Kd.

5.4.3 Signal Denoising function

Listing 5.3: Denoising Function

function chan_denoised = denoising(trgt, noise, fs, F_NOM, TRSHLD)

The main goal of this function is to eliminate any noise contribute of the chan-
nel target according to noise content of a reference one, represented by the input
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noise. In this case, as already anticipated in paragraph 5.4, the channel to be
cleaned is the EHSV LVDT secondary coil, while the reference noisy signal is the
command current Icmd (Fig. 3.6a).
This channel represents the link between control loop and EHSV first-stage. Any
kind of external disturbance due to the testing condition may leave a trace on the
spectral profile of this channel. For example, if the NED console is close to any
source of external high frequency electro-magnetic noise (such as other consoles or
particular devices), the traces of this interference may be visible in the main out-
put of the test console, so the current command. In the same way, if during a test
the NED console is too close to the hydraulic bench, any source of low frequency
vibration from this latter component can affect the entire current command mea-
surement. Furthermore, within the connection cable between measurement system
and unit, the input current command and the output LVDT voltage are measured
from different pins of the same integrated electrical socket, which increase the pos-
sibility of any interference between these two channels.
The only way to detect if any noise contribute of Icmd affects the measurement
of the LVDT secondary voltage Usek is to compare their frequency spectrum, and
identify any similarity between them around frequency ranges which are significant
for the channels itself. This frequency spectrum comparison is the core concept of
the function denoising. The four inputs in the Listing 5.3 are:

• trgt: target channels to be denoised, so the channel Seq.U_sek;

• noise: source of possible noise contributes, so the channel Seq.I_EHSV;

• fs: sample rate frequency of the input channels;

• F_NOM: significant frequency of the target channel.

• TRSHLD: minimum threshold which identifies any similarity in the channels
frequency spectrum.

This latter input is significant if the target signal presents any fundamental
harmonic which need to be taken into account and avoided to be filtered out. In
this case, the LVDT secondary voltage, even if noisy, is surely characterized by a
principal harmonic which has the same supply frequency of the primary wiring.
For this reason, the function avoid to cancel this fundamental contribute. In this
case, the function has been developed in a way to clean the signal from higher
frequencies than F_NOM, and keep the others below this level which can also be a
sign of anomalous spool oscillation or electrical LVDT fault.
The flowchart in Fig. 5.6 shows the function steps and the principle Matlab built
in functions which are recalled, in particular mscohere, findpeaks and bandstop
filter, which are all included in the Signal Processing Toolbox.
The plots in Fig. 5.7 shows the normalized Icmd and Usek channels and their relative
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Figure 5.6: denoising function flowchart
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Power Spectral Density (PSD) plots of the 15-th Sequence of a particular tested
Elevator unit. In this case the denoising function has been effective, since both
the channels have shown similarities in their PSD spectrum. Both the time-series
have been Z-score normalized, centering and scaling the vectors in order to have
null mean and unitary standard deviation:

Inorm = Icmd − mean(Icmd)
SI

(5.1)

Unorm = Usek − mean(Usek)
SU

(5.2)

where SI and SU are the respective standard deviation of the noisy sampled
vectors. This normalization retains the shape properties of the original signals.
Even after normalization, due to the noisy and time-varying nature of the input
signals in Fig. 5.7, a PSD analysis for both the inputs allows a better comparison of
the noise content of both the signals. Figures 5.7b and 5.7d show the Power Spec-
tra of the corresponding channels, evaluated using the Welch method. Both the
plots have been zoomed around 10 kHz and it is already possible to observe similar
shapes in the power spectra around the nominal supply frequency F_NOM = 1953Hz
and its even harmonics. These similarities are detected using the built-in function
mscohere.

This goal of this function is to evaluate the magnitude-squared coherence of the
PSD estimation of the input channels, according to the Eq. 5.3:

CIU(f) = |PIU(f)|2

PII(f)PUU(f) (5.3)

where the subscripts I and U are referred to the target channel Usek and the
noisy reference one Icmd. The ratio in Eq.5.3 represents the how correlated the
cross Welch PSD of both the channels is with the single Welch PSD estimation of
the input channels.
The Welch PSD estimator [53] is an approach for spectral density estimation, which
is particularly effective since it starts from the same Periodogram evaluation as [54],
but evaluated and averaged splitting the time-series vector in adjacent and usually
overlapping segments. These portions of signals are multiplied by a window function
which need to be accurately chosen. Fig 5.8 reports different kind of windows
functions which are typically used in Welch method.
For example, the plots in Fig. 5.7b and 5.7d have been obtained splitting the
time-series vectors on the left side with five Blackman windows with a 50% of
overlapping between adjacent segments. Due to this 50% overlap, the tapered
values at the beginning and end of the window in one segment are half-length
window far from the adjacent segment limits. In this way, the loss of information
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Figure 5.7: Time series inputs channels normalization and PSD analysis

due to the segmentation is avoided by the shape and overlap setting. As reported
in [55] and [56], the Blackman presents different advantages, compared to other
similar ones such as the Hamming and Hanning. Fig. 5.8 shows the shapes of five
typical window function, imposing a number of points N = 1024. Compared to
the Hamming and Hanning, the trade-off between main lobe width and side lobe
attenuation makes the Blackman one a good choice for tapering discontinuities due
to the segmentation.

The same kind of window has been used in the function mscohere, with N =
1024 (as in Fig. 5.8) and 50% of overlap, in order to calculate the PSD terms of Eq.
5.3. The plot in Fig. 5.9 shows the function results and the frequency ranges where
the coherence coefficient CIU overcome the accepted threshold TRHSLD, represented
by the red-dashed horizontal line.

The black-vertical dashed line shows the reference frequency F_NOM position in
the range of available frequencies for this analysis. It is important to notice that the
maximum analysed frequency by this function is half of the effective sample-rate
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Figure 5.9: Magnitude Squared Coherence Coefficient

fs input, which is 50 kHz due to the previous downsampling in the first step of
extraction_channel function. The plot confirms the previous deduction obtained
by looking the Welch PSD plots in Fig. 5.7b and 5.7d: both the channels present a
similar contribute of noise close to the nominal frequency (black-dashed line) and
in the range of its even harmonics between 4 and 10 kHz.
Due to the different nature of the input channels, the presence of similar noisy
harmonics indicates that the Icmd channel from the NED console affects the read
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Figure 5.10: Magnitude Squared Coherence Peaks

channel Usek from the internal LVDT sensor. The peaks above the red-dashed line
need to be correctly identify and filtered in order to clean the trgt input.

The built-in function findpeaks has been tuned in order to extract the afore-
mentioned peaks above the set threshold. As shown in Fig. 5.10, the function
is able to find the peaks magnitude, its frequency coordinate, its prominence and
width. These two latter features are particularly important to identify the range of
frequencies that need to be filtered out by the trgt signal. The peak prominence
measures how much the selected peak stands compared to the other close peaks,
according to its height and location. In Fig. 5.10 each selected peak prominence is
marked with a continuous vertical line. According to this value, the width of each
peak is evaluated at half of each prominence. The findpeaks function outputs
the width array as real number: once the position of each peak and its width are
known, the extreme values [fpk −width/2; fpk +width/2] identify the range of opti-
mal frequencies which need to be filtered out by the stopband filter. These ranges
are locally stored in an appropriate cell-array variable stopband.
As reported in the flowchart in Fig. 5.6, if there is not any peak which overcome
the set threshold value, there is technically no need to filter the target Usek chan-
nel, since it is not affected by the noise of the reference Icmd channel. Therefore,
the stopband variable would be empty and the denoising function outputs the
original input channel.

Like in Fig. 5.10, both the peaks amplitude, coordinates and width are locally
stored and the function continues to process the trgt input according to the loop
in Fig. 5.6. Firstly, as already mentioned before, the peaks which are lower than
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Figure 5.11: Filtered signal with denoising function

the input F_NOM are excluded from the filtering process, since they can be symp-
toms of mechanical or electric fault of the EHSV itself that need to be detected.
Filtering out high-frequency noise contributes instead would allow a more precise
demodulation of the LVDT channel, and therefore an accurate estimation of sec-
ond stage spool position. For this reason, within the stopband variable, only the
ranges which do not contain the reference frequency F_NOM constitutes the input of
stopband filter, defined through the built-in function bandstop.
The filtering results are illustrated in Fig. 5.11. The first subplot reports a zoom
which highlights the difference between the original noisy Usek (in blue) and the
final denoising output, after it has been filtered with consecutive stopband filters.
The second subplot instead shows the difference between the original PSD spec-
trum and the final filtered one, highlighting how the ranges of frequency in Fig.
5.10 have been correctly identify and filtered by consecutive filtering process.

5.4.4 Synchronous Demodulator function

Listing 5.4: Synchronous Demodulator Function

function U_demod = syncro_demod(U_prim, U_Sek, K_d)
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This function is used to extract the position measured by the four-wires LVDT
which are present in both Elevator and Aileron units. This function reproduces the
steps of a synchronous demodulator as in Fig. 2.23. As already reported in the
chapter 2.6, these position sensors are more affected by external noises if compared
with the six-wires ones. In Appendix A.1 it is demonstrated how the synchronous
demodulator circuit is particularly affected by the odd-order harmonics effect of
the carriage frequency, both in terms of amplitude and phase. Other demodula-
tion techniques have been studied in order to reduce this effect, such as Lock-in
Amplifier method [43] or DSP-Based approach [45]. However, for sake of coherence
with the analogue circuits adopted in the test-consoles, the classic synchronous de-
modulation technique has been adopted. As already anticipated in the previous
paragraph, in the particular case of the Elevator EHSV LVDT, this function is
always preceded by the denoising in order to filter high-frequency noise.
The functions receives as inputs the primary U_prim and secondary wirings volt-
ages U_sek. As in the aforementioned flowchart, this latter time-series is rectified
according to the sign of the reference primary voltage, filtered using a Butterworth
low-pass filter and multiplied per π

2
√

2 to obtain the final rms value. The final gain
K_d translates the voltage channel into the final position. For example, in case of
the Elevator, this function can be used for both EHSV and MSV spool. The value
of K_d = 1 in case of MSV LVDT channel, since the final value has to be in Volt,
while for the EHSV spool the value depends on an additional CMM constant and
need to be multiplied per 1000 to obtain the result in mV: K_d = 1000 ∗ KCMM

5.4.5 findchangeslope function

Listing 5.5: Findchangeslope Function

function [ipt, downsamp_chnl] = findchangeslope(channel,time,n,C)

The function presented in the listing 5.5 is characterized by the following inputs:

• channel: raw channel to be analysed;

• time: reference Seq.Time vector;

• n: optional downsampling factor to accelerate the function. Its default value
is n = 1, which means that the signal is not additionally downsampled;

• C: optional threshold constant, with default value C = 2. Reducing this value
increases the function detection sensibility.
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The function returns as output the change-points indexes in the variable ipt
and the eventual donwsampled matrix downsamp_chnl, which includes as first col-
umn the downsampled time and as second column the corresponding channels. As
reported in [32], [18] and [57] , the function goal is to find the minimum number of
point which determines local ranges where the signal shape can be linearly approx-
imated with the minimum error.
For sake of clarity, it is better to explain the algorithm starting from supposing
that it has identified N final change-points. This means that the input channel
can be linearly approximated by N + 1 segments xi:

xi = αj i̇ + βj + ϵi (5.4)

In Eq. 5.4, αj and βj are the linear regression coefficients in the interval between
two consecutive change points [iptj, iptj+1] and ϵi is the approximation error i-th
segment. This latter value is used to define the cost function to minimize in order
to find the optimal number of points iptj with j = 1...N in which each segment fit
the original signal:

Jopt =
N∑︂

j=0
ϵj

2 + C · σx
2 · N (5.5)

In Eq. 5.5, the first term represents the squared error sum, while the second
term is defined in order to avoid overfitting. Considering just the first sum, the
optimal solution would be that every segments between two consecutive sampled
points can be considered an optimal solution, therefore every point is included in
the output ipt. The second term increases proportionally with the number N and
with the squared variance σx

2, so it depends on the statistical distribution of the
sampled point around its linear approximation xi. The coefficient C is the thresh-
old constant which increases the cost of any additional change point, so it reduces
the number of final change points. This value is set by default C = 2, but it can
be set as input of the function in listing 5.5.
Fig. 5.12 illustrates how fidnchangeslope identifies the change points of two mea-
sured channels. The function has been applied both to the command signal and
main ram displacement measured by the position sensor (Fig. 5.12b): each time
instant corresponding to the change points is highlighted with vertical green lines.
As expected in the first subplot in Fig. 5.12a, the Command is mathematically
defined by the signal shape, so its change points are the ones at each step which are
defined for the Sequence shape itself. This observation can be extended to all the
Command signals both in open and closed loop. The second subplot in Fig. 5.12b
instead shows how the function correctly identifies any significant change of slope in
the measured position signal. For example, in this case, the tested unit is respond-
ing coherently to the command. However, it presents unexpected overshoots both
during rising and falling steps which are correctly detected by the findchangeslope
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Figure 5.12: Change point detection (example with Sequence n.15)

function, which identifies additional change points in correspondence of each over-
shoot peak. These informations may be used to extract important HFs which can
help to detect anomalous behaviour.
This latter example shows how it is possible to extract two kind of signal features
form the results of findchangeslope: those related to a sudden change and those
calculated while the signal is stable on a certain level. These observations can be ex-
tended to all the collected channels. For this reason, two additional functions have
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Figure 5.13: stab_finder example of Sequence n.15 Current signal (zoom)

been written for these purposes: move_finder and stab_finder. These functions
are often used in each HFs Sequence extraction script in order to isolate specific
portion of signals and extract the corresponding signal feature.

stab_finder function

Listing 5.6: Stable signal finder Function

function [t_stab_in,t_stab_end] = stab_finder(channel, ipt, dt, T_in,
T_end, tol_slope, option)

The code presented in the listing 5.6 presents the complete set of inputs which
can be specified for the function, including the optional ones:

• channel: channel to be analysed;

• ipt: vector of change points indexes, output of findchangeslope function;

• dt: minimum range of time where the signal needs to be stable;

• T_in and T_end: optional parameters which can be used to specify manually
a time window. By default, these two values are the initial and final element
of the time vector;
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• tol_slope: optional input, which can be used to specify a maximum slope
tollerance in absolute value;

• option: optional string input. If ’first’ is selected as an option, the first
stabilized time interval is selected, while if ’stable’, it just pick last stabilized
time longer that dt.

Fig. 5.13 shows how the function works, taking in account the EHSV command
current in the same Sequence of the plots in Fig. 5.12. In this example, it has
been considered a time window defined by the first two change points in Fig. 5.12a,
considering just the first rising and falling positive position steps. These two in-
stants are easy to extract as first two elements of the vector iptcmd, obtained from
applying findchangeslope to the closed loop command channel. They have been
highlighted with red dashed lines in Fig. 5.13 and they represents the optional
inputs T_in and T_end of stab_finder.
Within this time window, the function identifies six time intervals which are iden-
tified in the plot with numbers from 1 to 6. All these portions of signals need to be
scanned in order to identify those which last more than the input dt. If tol_slope
is set as input, it represents an additional requirement in terms of minimum ac-
ceptable slope. The function checks which of the identified intervals respects the
criteria of minimum length and eventual acceptable slope. In this case, the interval
n. 6 is selected (continuous red line in Fig. 5.13). In this particular case, the
average value of the interval n. 6 identified by stab_finder represents the biased
nominal current in extended position IE, a fundamental HF which is used to iden-
tify any anomaly in the Elevator Recentering Device. The same analysis can be
executed considering the time window defined by the last two elements of input
iptcmd: in this case, the function stab_finder would isolate the current portion for
the extraction of IR in retracted position.

move_finder function

Listing 5.7: Signal Variation Function

function [t_move_in,t_move_end,slope_move] = move_finder(channel,
ipt, T_in, min_slope)

The function in the listing 5.7 is characterized by the following inputs:

• channel: channel to be analysed;

• ipt: vector of change points indexes, output of findchangeslope function;

• T_in: starting time;
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• min_slope: minimum slope required in the time interval;

The function returns as output the corresponding initial and final instants
of the time (t_move_in, t_move_end) selected window of time with a measured
slope_move.
The plots in Fig. 5.14 represents the open loop command (Fig. 5.14a) and the
corresponding main ram position (Fig. 5.14b) of Sequence n.7, which is used for
all the PFCS. This signals results particularly useful for explaining how the func-
tion movefinder works to extract two important HFs: the maximum speed during
complete open loop rising and falling command steps.

As usual, the green vertical lines represents the change points identified by
findchangeslope. In the zoom window in Fig. 5.15, the extraction of the max-
imum speed in extension step depends on the move_finder setting. In this case,
the red-dashed line represent the input T_in which can be easily extracted as the
second iptcmd index in Fig. 5.14a. This value actually excludes from the analysis
the intervals 1 and 2 in Fig. 5.15, so the sections 3, 4 and 5 are consecutively
analysed. For these three remaining signal portions, the function checks which one
is characterized by a slope higher than the input parameter min_slope. In this
case, this value is easy to tune the minimum allowed speed is known as design
parameter of the PFCS. The function is able to extract the red line in section 3,
and it outputs both the initial and final instants, their corresponding indexes. In
this range, move_finder linearly interpolate the respective portion of signal: the
resulting linear slope is exported as output signal_slope.

5.5 Sequences Signals HFs Extraction
In Chapter 4 it has been show how each PFCS Automatic Procedure is charac-

terized by a well mathematical concatenation of signals called Sequences. Each of
these sections has been designed in order to extract automatically a set of peculiar
HFs which are significant to detect the UUT health status. Within the software
structure, each Sequence presents its dedicated HFs extraction script which is re-
called by the main (flowchart in Fig. 5.4). Due to the modular nature of the signal
generation code, several Sequences are in common between Elevator, Aileron and
Spoiler: this means that most of the HFs extraction codes can be used for all the
PFCS with minor adjustments if needed. This improves both the complete code
structure and readability.
Following the same line of Chapter 4, the HFs extraction codes would be divided
in four main groups: Preliminary, Pressure Adjustment, Leakage and Automatic
Sequences. It is also important to remember that the codes in the next paragraphs
are shared by both DBG and PV HyDiag Software versions in Fig. 5.1, so they are
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Figure 5.14: Change point detection (example with Sequence n.7)

referred the Test Field measurements. As already mentioned, due to some techni-
cal limitation of the Test Field benches, it is not possible to extract in a complete
automatic way all the HFs from the collected signals. This means that several
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Figure 5.15: move_finder example of Sequence n.7 Position signal (zoom)

HFs, such as pressure or flow values, have to be manually reported by the operator
through an appropriate testing GUI in LabView. These values are saved at the
end of the testing session in a proper INDEX.txt file which is stored within the
respective measurement data in the local backup HDD (Fig. 5.1). However, it is
worthy to mention that this solution is just a temporary one in order to implement
this innovative automatic procedure on systems which have been predominantly
manual. For example, in the H-Lab test bench it is possible to run each PFCS Hy-
Diag procedure in full automatic mode, since it is possible to remotely command
the bench and all the measurement channels are digitalized.
The plots in the following sections have been properly normalized using the follow-
ing criteria:

• The position command and measurement channels (from both external INC
sensor and Main ram Sensor) have been scaled using as reference the nominal
unit middle stroke mid_stroke[mm];

• The current open loop command and measurement channel have been nor-
malized using the reference maximum current Imax[mA];

• The supply pressure channel represents the manual command from the op-
erator. In particular, it changes during the Pressure Adjustment Sequences
(as reported in Chapter 4). The plots shows its normalized behaviour to the
maximum supply pressure Pmax[bar];
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• The Electrovalve command channels of both Aileron and Elevator have been
normalized according to their maximum supplied voltage Vmax[V ];

• The MSV LVDT demodulated channel of both Aileron and Elevator repre-
sents the MSV spool position during the transition from active to damping
phase and viceversa. Its time-series have been reported scaling the plots
according to the nominal maximum position in Volts MSV LV DTmax[V ];

• The Elevator unit includes an additional position sensor for the EHSV second
stage spool: also its position channel has been scaled using the maximum
available position EHSV LV DTmax[mV ].

In addition, per each Sequence a recap table is reported which summarize the
extracted HFs, the possible failure linked to each anomalous value and if they can
be extracted per each tested PFCS. As already anticipated, both traditional and
additional HFs have been designed in order to help the failure detection in a partic-
ular component of the UUT. In order to quantify how critical this anomaly can be,
the extracted HFs values need to be compared with some reference ranges. Regard-
ing the traditional CMM HFs, these limits are directly reported in this manual and
they need to be respected in order certify a unit. The limits of these ranges will be
reported as HFmin and HFmax per each of them. However, in Chapter 6 a further
investigation about these limits is presented which identify risk areas within the
suggested ranges. About the additional HFs, properly designed to improve the di-
agnose, these limits have been experimentally defined taking as reference a sample
of recertified units, which have been completely repaired and ready to be installed
on the aircraft.

5.5.1 Preliminary Sequences
The Preliminary Sequences signals descriptions are reported in Chapter 4. Both

Elevator, Aileron and Spoiler include in this group the Sequences n.1 as reported
in paragraphs 4.3.1 and 4.3.3. Apart from this difference, Sequence n.1 has been
designed for all the PFCS to execute two important preliminary test:

1. The first one is a CMM HFs which need to be collected: the presence of any
external Leakage while cycling the unit with sinusoidal command at a specific
frequency. This is one of the HF the technician need to report manually during
the when the unit has cycled for 10 complete strokes. Its value is reported in
the aforementioned INDEX.txt file as boolean value: True if any leakage has
occurred, or False if viceversa. The presence of any external leakage is a sign
of worn out sealing, depending on where the leakage has been detected. The
graphs in Fig. 5.16, 5.17 and 5.18 report the collected command in the first
subplot, and the corresponding main ram position measured by the external
INC sensor and the internal Position sensor in the second subplot.
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Figure 5.16: Elevator Sequence 1

2. A second important check regards the correct configuration of the external
INC sensor for main ram position check, as reported in the flowchart of Fig.
5.4.

This latter check on the INC sensor setting consist in two main steps. Firstly,
it is necessary to check if the technician has correctly connected the INC sensor
to the measurement system. For example, in case of wrong cable connection, this
channel would report by default a time-series with null values. The code needs
to check if the INC sensor measurement vector is correctly following the shape of
Sequence n.1, otherwise this channel would be substitute in the further sequence by
the Position sensor demodulated channel. In this way, it would always be possible
to extract the HFs regarding to unit position, even though the main ram sensor
could not be reliable since it can be affected by a failure as well. For this reason,
the HyDiag software would anyway execute the complete analysis of the signals
but it would print an appropriate error message in the final report to alert the
technician to repeat the measurement with the correct INC sensor to obtain more
reliable results.

After checking the coherence between position and command, the script checks
if the INC sensor initial offset has been correctly set within a tolerance of ∆incmax =
0.01mm. This threshold has been calibrated according to the minimum tolerance
regarding the CMM HFs. This check is necessary since the operator has to correctly
align the INC zero at the correct main ram null position before starting any test. If
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Figure 5.17: Aileron Sequence n.1
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Figure 5.18: Spoiler Sequence n.1
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Figure 5.19: INC sensor fixing

this procedure has not been correctly executed before starting, the postprocessing
Sequence n.1 code is able to correct this offset, knowing the nominal zero position
of the unit.

For example, Fig. 5.19 shows how the code fixes the small offset (around 0.03
mm) between the original signal (green line) and reference 0 position, shifting the
time-series as the blue line. This latter channel becomes then the reference in order
to evaluate the main ram position sensor offset, as shown in the second subplot of
Fig. 5.16. The other two plots in Fig. 5.17 and 5.18 illustrate the same collected
measurement for Sequence n.1 for both Aileron and Spoiler.
Within this Preliminary group, the Elevator and Aileron include also the Sequence
n.2 which aims to check if the accumulator is empty, component which is not
installed on the Spoiler. If the accumulator does not completely discharge during
this test, the collected HF would be accudrain = False, which can be sign of a
problem within the accumulator piston or on the component draining port. This
latter unit presents in this preliminary group the tailored Sequence n. 36, which
aims to manually check if the Inhibiting Valve switch works properly. For both these
sequence, the extracted HFs have to be manually reported by the operator through
a designed dialogue-window in LabView where the appropriate HF checkbox is
reported. The corresponding values are reported in the aforementioned INDEX.txt
file as boolean values: True if manual test has been successful, or False if viceversa.
In case of False result, it means the operator was not able to manually switch
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correctly to Maintenance "M" mode, so there can be a mechanical problem of the
switch itself or a clogging of the inhibiting valve. In Table 5.1 it is possible to
read a recap of the Preliminary Sequences per each PFCS, the extracted HFs with
relative check to perform and eventual troubleshooting extraction in case of anomaly
according to the result of Check column.

Table 5.1: Preliminary Sequences HFs Recap table

Seq HFs Check Troubleshoot E A S
1 leakage leakage = True External sealing

degradation
∆inc ∆inc ≥ ∆incmax Incorrect setting of

the INC sensor
2 accu_drain accu_drain =

False
Problem in accumula-
tor or in draining port

36 IV 1 IV 1 = False Mechanical check of
manual switch in "M"
mode or clogging of
the inhibiting valve

IV 2 IV 2 = False

5.5.2 Pressure Adjustment Sequences
This paragraphs describes the adopted methods for HFs extraction of Pressure

Adjustment Sequences reported in Chapter 4. These sections are all characterized
by a regulation of supply or return pressure. From each Sequence set of signals,
several HFs can be extracted by each of them that are not strictly pressure values,
but influenced by the UUT supply and return conditions.
Table 5.2 summarizes the Sequences which are included in this group. As it is
possible to observe first three are in common between Elevator and Aileron units,
due to their similar structure. The sixth Sequence has been tailored to identify
any anomaly in the Elevator Recentering Device component. The Sequence n.7 is
instead adaptable for all project uses-cases since its main goal is to determine the
main piston maximum speeds during two complete strokes of the unit. The last
two (Sequences n.27 and n.29) are instead characterizing for the Spoiler unit, and
they both are preceded by two appropriate adjustments, which have to be manu-
ally executed by the technician to switch the working mode from Maintenance to
Operating Mode and back to Active (Paragraph 4.3.3). Similarly to Table 5.1, both
the Checks to be performed and relative Troubleshooting indications are reported.
The next subsections shows in detail how each of the listed HFs has been extracted.
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Table 5.2: Pressure Sequences HFs Recap table

Seq HFs Check Troubleshoot E A S

3
P2 P2 < P2min Check the HP valve

spring
P2 > P2max Check the HP valve

spring or Filter
Clogged

P3 ∆P3 < ∆P3min Check the LP valve
spring

∆P3 > ∆P3max Check the LP valve
spring or Filter
Clogged

4
P5 ∆P5 < ∆P5min Check MSV spring∆P5 > ∆P5max

U4 U4 < U4min Check MSV LVDT
U4 > U4max

5 P4 ∆P4 < ∆P4min Check MSV spring∆P4 > ∆P4max

6

SR and SR′ SR < SRmin or
SR′ < SR′

min

Adjust the RD me-
chanical input or re-
duced speed due to
EHSV flow or piston
sealing jammed

SR > SRmax or
SR′ > SR′

max

Excessive EHSV flow

rtEN rtEN < rtENref
Check the RD bell
crank and control
shaft connection

ovshtEN ovshtEN >
ovshtENref

Check the RD springs
or EHSV flow

ftEN ftEN > ftENref
Check the RD bell
crank and EHSV me-
chanical input connec-
tion

dwnshtEN dwnshtEN >
dwnshtENref

Possible fault in
EHSV feedback
spring

dt_elbowEN dt_elbowEN > 0 Free-play between bell
crank and EHSV me-
chanical input
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ftRN ftRN < ftRNref
Check the RD bell
crank and control
shaft connection

dwnshtRN dwnshtRN >
dwnshtRNref

Check the RD springs
or EHSV flow

rtRN rtRN > rtRNref
Check the RD bell
crank and EHSV me-
chanical input connec-
tion

ovshtRN ovshtRN >
ovshtRNref

Possible fault in
EHSV feedback
spring

dt_elbowRN dt_elbowRN > 0 Free-play between bell
crank and EHSV me-
chanical input

7 Sm and Sm′ Sm < Smmin or
Sm′ < Sm′

min

Check the EHSV flow
and Filter if clogged

Sm > Smmin or
Sm′ > Sm′

min

Check the EHSV flow

27 PS1 PS1 < PS1min Check MSV sleeve and
spring

29 PS2 PS2 < PS2min Check MSV sleeve and
spring

Sequence n.3

The plots in Fig. 5.22 show two examples of the collected channels of Sequence
n.3 for both Elevator and Aileron. Both the units are equipped with an Accumulator
on the return line and two check valves on both supply and return lines, called
High Pressure and Low Pressure Valves, as shown in the hydraulic schemes of
paragraphs 2.3 and 2.4. This Sequence has been designed in order to extract both
the minimum opening pressures of both these valves: P2 and P3. In order to
extract both the HFs in a unique Sequence, the unit need to be set in Damping
mode and a specific Supply pressure command needs to be apply. In the TF
configuration, this command is manually regulated by the technician according to
the specification which are reported on an appropriate Dialogue window. These
instructions basically follow the designed command it is possible to observe in Fig.
4.7. The green line in the upper subplots of Fig. 5.20 and 5.21 illustrates the
manual pressure adjustment and the values of P2 and P3 which have been noted
by the technician in the appropriate dialogue window.

In fact, these two values need to be manually reported by the technician while
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Figure 5.20: Elevator Sequence n.3
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Figure 5.21: Aileron Sequence n.3

Figure 5.22: Sequences n.3 for both Elevator and Aileron
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regulating the pressure:

• P2 needs to be reported when the accumulator starts to be filled. During
the previous preliminary Sequence n.2, the unit is forced in its null position
and the supply pressure is set to zero, in order to drain completely the accu-
mulator through the appropriate draining port. Once it is completely empty,
the technician needs to check what is the minimum supply pressure that is
necessary to open the High Pressure Valve allowing the flow to fill start filling
the hydraulic circuit until the accumulator. At the minimum pressure P2,
the flow is able to react the contrasting accumulator piston force, filling its
compartment. If this feature does not respect the check in Table 5.2, it can
be a sign of a possible failure in the HP valve, which does not allow the flow
to enter the unit with the correct pressure, or in the draining circuit itself.

• P3 is instead the minimum pressure which is necessary to open the Low
Pressure Valve on the return line, and it needs to be measured when the
test-bench flow meter start to register a certain flow on this line. At current
state, the flow-meter channel cannot be digitally collected so even this index
need to manually reported, after reading the value on this analog sensor. In
Table 5.2 it is reported to check if the difference ∆P3 = P3 − P2 respects
the limits ranges: if its value is too low, it can be caused by the LP valve seat
or spring; otherwise if too high it can be due to a overpressurization of the
hydraulic circuit due to filter clogging or worn out LP sealings.

Even if these values are not fully automatic extracted, the code is able to plot
both the HFs values on the supply line time-series, as in the first subplots in Fig.
5.22. The other two lower graphs shows instead how the Damping mode is set in
the opposite way in these two units: the Elevator requires both the electro-valves
to be energized, while the Aileron needs its electro-valve to be switched off.

Sequence n.4 and 5

These signals have been designed to extract three traditional HFs of the MSV
of both Elevator and Aileron. Figures 5.25 and 5.28 shows the equivalence of the
Sequences signals for both Elevator and Aileron. In both the cases, for both the
units, the actuator is commanded in closed loop with an initial step to its middle
position, then it is commanded to move sinusoidally with and amplitude of 80% its
full stroke. The main difference between these two Sequences is the supply pressure
command. In Sequence n.4 in Fig. 5.23 and 5.26, the supply pressure is manually
reduced following the same procedure of Sequence n.3: the operator reads a series
instructions over an dedicated dialogue window, trying to reproduce the decreasing
ramp signal. In Sequence n.5 the pressure command is instead a symmetric rising
ramp.
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Figure 5.23: Elevator Sequence n.4
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Figure 5.24: Elevator Sequence n.5

Figure 5.25: Elevator Sequences n.4 and 5
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Figure 5.26: Aileron Sequence n.4
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Figure 5.27: Aileron Sequence n.5

Figure 5.28: Aileron Sequences n.4 and 5
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During Sequence n.4, the slowly decrease of pressure makes the MSV switch its
position, closing any link between supply and return line with the main piston
chamber and setting the entire system in damping mode. This critical value of P5
represents the minimum pressure value needed to counteract the MSV spring force.
Therefore, when the unit supply pressure reaches the P5 value, the main ram stops
follow the sinusoidal command, stabilizing its position. The first moment when
the position signal is stable can be easily identify using stab_finder function, and
it can be used to both identify the P5 value in the pressure time-series and the
consequently the region of MSV LVDT signal where to evaluate U4. This value
represents in fact the reference position in Damping mode the MSV spool can reach.
The exact opposite situation is instead described by the plots in Fig. 5.24 and 5.27
where the value P4 can be easily identify using the function move_finder.
The CMM suggest to report the differences ∆P5 = P5 − P2 and ∆P4 = P4 − P2
as failure indicators. Any out-of-limit HFs can be correlated to failure of the MSV
spring or an excessive friction between MSV spool and sleeve due to any debris.
The same kind of failures can be also adducted in case of U4 outside the indicated
limits, with the addition of a possible electrical failure of the MSV LVDT itself.

Sequence n.6

This Sequence has been designed in order to some of the most characterizing
HFs of the Elevator Recentering Device (RD), setting a constant supply pressure.
As shown in the first subplot of Fig. 5.29, the unit is commanded in open-loop
with in two steps. The first one from 0 mA to its maximum current Imax and
back to its null position in order to fully extend main ram and slave it back in
its recentered position. The second one is symmetric to the previous one, totally
retracting the unit with its minimum current Imin command. These steps back
to null current command intend to test an electric failure with a sudden lack of
power supply. The normalized command channel is coloured in black, while the
vertical green line represents the iptcmd change points selected by the function
findchangeslope. These indexes represents the starting point to evaluate the
recentering strokes, shown in the second subplot of the measured positions from
both the external INC sensor and the integrated main ram RVDT. The function
move_finder takes as input the second and fourth iptcmd as starting points, and it
is able to extract the slopes of the red and yellow areas. These two linear slopes
represents the recentering speed HFs SR and SR′ which are listed in the CMM.
The signal sections identified by move_finder have been highlighted in the second
subplot in Fig. 5.29 with dashed vertical black lines. If these two indexes does
not fall within the suggested ranges, the manual reports a list of possible failure
which can both point to an anomaly in the RD or in the EHSV. For example, on
one hand, an higher speed than the suggested upper limit (SRmax and SR′

max) can
be a symptom of an excessive flow from the EHSV. On the other hand, a lower
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Figure 5.29: Elevator Sequence n.6

recentering speed than the lower limit (SRmin and SR′
min) can be both due to

a flow problem in the EHSV, which can present an excessive leakage, but also a
wrong regulation or a defective component of the RD mechanical chain. This latter
possibility create an ambiguity of failure detection, since it points out two possible
roots (EHSV and RD) but also does not really distinguish if the RD need to be
simply regulated or some of its parts need to be replaced. Distinguishing between a
simple regulation or a component replacement deeply affects the maintenance cost,
and it is an issue that need to be clarified.

In the light of this, new additional HFs have been defined, investigating the
behaviour of the EHSV LVDT. This channel (third subplot in Fig. 5.29) illustrates
the position of EHSV second stage spool, and it has been extracted using the
function syncro_demod in paragraph 5.4.4. From this plot it is possible to observe
how the EHSV spool moves coherently with the command and the RD action in
case of instantaneous step back to null current. For example, the first rising step
to Imax causes a complete rotation of the EHSV first stage torque-motor which
immediately unbalances the command flows over the second stage spool. Moved by
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a considerable difference of pressure, the EHSV spool moves almost instantaneously
to one of its end stroke, with negative sign in Fig. 5.29. When the command signal
is set back to 0 mA in open loop, the main ram does not stuck in its maximum
extracted stroke but it starts moving back to its null position thanks to the RD.
The absence of current in the torque motor unbalances the force equilibrium over
the jet deflector, which is now just affected by the RD action through the EHSV
mechanical input. This force moves rapidly the spool in the opposite direction,
overcoming its null position according to the force the RD is able to apply, according
to its characteristic force curve in Fig. 2.11. This step has been highlighted in the
first blue squared area in the third subplot in Fig. 5.29. This position allows
the flow to move in the cylinder chambers and its piston is able to retract at the
extracted SR speed. When the piston reaches the linear area in Fig. 2.11, the RD
tends to reach its stable configuration, pushing the spool to its null position and
closing any flow connection with the cylinder chambers. This action is highlighted
in the second blue rectangle in Fig. 5.29, and it is particularly useful to detect
any RD failure. The same considerations are of course true also during the second
step part of the command signal, in the symmetric stroke from retracted stop to
zero position. The four blue areas in Fig. 5.29 isolate four EHSV spool steps: the
Rising step during the recentering piston stroke from Extended to Null position
(EN) (in blue) and its consecutive Falling one (in yellow); and symmetrically the
Falling step during the recentering piston stroke from Retracted to Null (RN) (in
violet) and its consecutive Rising small step (in green). Per each of these feature,
the following HFs have been defined:

• rtEN [s] and ovshtEN [%]: Rising Time of the first aforementioned piston
stroke from Extended to Null, and its overshoot;

• ftEN [s] and dwnshtEN [%]: Falling Time of the second recentering step and
its relative downshoot;

• dt_elbowEN [s]: short time lapse of possible stable position of EHSV spool
during its recentering stroke. This HF is a very promising one since the
presence of a small "elbow" during the recentering spool stroke may identify
an excessive free-play between Bell Crank and EHSV Mechanical Input, due
to a worn out of the Bell Crank contact face;

• ftRN [s] and dwnshtRN [%]: Falling Time of the piston stroke from Retracted
to Null, and its downshoot;

• rtRN [s] and ovshtRN [%]: Rising Time of the last recentering step and its
relative overshoot;

• dt_elbowRN [s]: equivalent to dt_elbowEN but for the last step.
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Figure 5.30: Step State Level Analysis

The analysis of the aforementioned four steps has been conducted using the
statistical State-Level approach. As reported in [33], this method is based over a
statistical analysis over the points distribution in the signal. It starts determining
the maximum and minimum amplitudes of the signal in order to define a range,
where to set a certain number of bins (100 by default) each with a defined width that
depends on the range amplitude. Once the bins have been defined, the algorithm
counts how many signal points can be assigned to each bin. Typically, in a step
signal, two bins are filled with the more points than all the others, and these are the
ones related to the higher and lower levels. In Fig. 5.30, the lower level contains
almost 25000 points in the bin of the lower limit (around -1), while the highest one
includes almost the same number of points but at the upper level (around 0.2). All
the others bins are neglected during the State Levels evaluation.

Once the State Levels have been identified, it is possible to extract the charac-
teristic of each step response. The plots in Fig. 5.31 illustrates the main features of
each of the highlighted EHSV LVDT steps in Fig. 5.29, using the built-in Matlab
functions risetime, falltime and overshoot. For example, from the rising steps
in Fig. 5.31a and 5.31d it is possible to extract the two characterizing rise-time
rtEN and rtRN , taking as reference the cross from the 10% to 90% of the State
Levels, highlighted by a green and red cross in the plots. The same also happens
for the falling steps in Fig. 5.31b and 5.31c for the evaluation of ftEN and ftRN .

In addition, each State Levels is surrounded by specific boundaries, with a
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Figure 5.31: EHSV Steps Analysis

predefined tolerance of α = 2%:⎧⎨⎩Slow = Sn − α(∆S)
Sup = Sn + α(∆S)

(5.6)

where Sn can be both the upper or lower State Level and ∆S is their difference.
These boundaries are significant in order to determine any positive or negative
overshoot of the step response. The built in Matlab function overshoot takes as
input the identified State Levels and evaluates the maximum deviation from the
reference State Level according to the following:⎧⎨⎩ovsht[%] = 100(O−S2)

∆S

dwnsht[%] = 100(O−S1)
∆S

(5.7)

where S2 is the maximum while S1 the minimum State Level and O is the
identified peak point. Using this definition, the HFs ovshtEN , dwnshtEN and sym-
metrically downshtRN and ovshtRN have been extracted.
The last two HFs to describe in Sequence n.6 section in 5.2 regards two particular
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Figure 5.32: EHSV LVDT Elbow Detection

time-ranges which can be extracted during the recentering strokes in Fig. 5.31b and
5.31d. The extraction of these two values has been performed building a tailored
function called elbow_detection. An example of how this script works is shown
in Fig. 5.32 where the extraction of dt_elbowEN is performed.

As reported in this figure, the function recalls move_finder in order to extract
the blue slope of the step. This slope presents the final part of the recentering
process where the RD Bell Crank pushes the EHSV spool to its null position through
its connection with the Mechanical Input. Any anomalous change of slope in this
section is very likely to be caused by a worn contact surface between Bell Crank and
Mechanical Input. In order to precisely detect any elbow in the nominal descending
(or ascending for dt_elbowRN) stroke, the function elbow_detection evaluate the
speed curve within the isolated portion of signal, using the command diff. Due
to the nature of the signal, the general behaviour of this curve should be known:
in case of falling step (like the one in the example plots), its sign should be always
negative; while it need to be positive in case of rising step. However, an eventual
elbow in this curve should determine a sudden change of the expected sign, as
reported in the lateral subplots in Fig. 5.32. In this case, using the findpeaks
function in the speed curve, it is possible to extract any peak in this curve and if
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its sign is coherent with the expected one. If the local peak sign has an opposite sign
respects to all the other points, the function detects it and it is able to identify its
width. This peak width is taken as reference to extract the appropriate dt_elbow
HF. Observing the two subplots on the right of Fig. 5.32, the peak width limits
are reported in the original signal time-series with two dashed-black lines. If the
function findpeaks does not identify any anomalous coutersign peak, the function
reports as output a default null value.
This method is used also to extract the same kind of HF also from the MSV LVDT
channel during the transition from Active to Damping mode for the Elevator (or
viceversa for the Aileron).

Sequence n.7

This Sequence has been designed for all the PFCS in order to extract the maxi-
mum piston speed from totally retracted stop to extracted Sm, and viceversa Sm′.
As reported in the CMM, these HFs need to be extracted with a supply pressure
that is less than 80% of the nominal one. The plots in Fig. 5.33 illustrates how
these HFs are identified for the Elevator PFCS. In particular, the second subplot
shows the main ram response to the upper open loop command. It is important
to notice how the main ram returns to its null position during the last step com-
mand from Imin to zero, due to RD effect. This behaviour is typical of the Elevator
PFCS: both the Aileron and Spoiler remains in their fully extracted position since
the open-loop command does not consider any feedback in position and they do
not include any mechanical RD system.
In the upper subplot, the green vertical lines represents the change points identified
during the initial preprocessing phase by findchangeslope. Similarly to Sequence
n.6, these points are uniquely identified since the signal shape is a priori defined and
they can be used as reference points to extract the highlighted red and yellow slops
using move_finder. Low values of Sm or Sm′ may be caused by a defective EHSV,
which can present external leakages, or by worn piston sealings or clogged filter. On
the other hand, an excessive speed can be due to a high EHSV flow gain. Among
these troubleshooting instructions, the most significant are the EHSV related ones,
since its repairing cost or replacement are way higher than any of the other afore-
mentioned components. Typically, any piston sealings failure may be difficult to
detect since these parts are by default replaced when the unit is dismounted. The
same happens for any Filter clogging issue, since it is a typical routine procedure
to clean this component if a unit needs to be repaired.

134



5.5 – Sequences Signals HFs Extraction

0 2 4 6 8 10 12
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

Figure 5.33: Elevator Sequence n.7

5.5.3 Leakages Sequences
In this section, the HFs methods for the Leakage Sequences group are described.

As already reported in Chapter 4, these signals have been defined in order to per-
form the suggested CMM leakages tests, which are typically longer than the others.
In fact, even in the HyDiag procedure, these Sequences are characterized by a max-
imum length of 3 minutes, covering most of the total duration of the Automatic
Test. These longer testing times are due to the fact that the Test Field hydraulic
benches are equipped with analogue flow-meters which do not allow to digitally
collect neither the supply or return flow measurement channels. As consequence,
the collected measurement files do not contain any information about the regulated
flow. In order to overcome this problem, the leakages HFs are manually reported
by the technician, using some specific LabView dialogue windows, as soon as the
measured flow by the flowmeter stabilizes. Typically, this procedure may require
couple of minutes according also to the installed UUT. For this reason, a maximum
testing time of 3 minutes is set per each of these Sequences, even if the operator
is able to stop the testing signal as soon as the registered flow value looks stable,
reducing considerably the testing time. To conclude, the length of these signal
strongly depend on the testing condition, and in particular on the used test bench.
For example, during the prototyping phase in the H-Lab, these Sequences length
is reduced to less than 1 minute, since the H-Lab test-bench is equipped with more
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performing digital flow-meters. This sensors upgrade affects of course also the leak-
age HFs extraction, which can be performed in a fully automatic way.
As for the Pressure Adjustment Sequences, table 5.3 summarizes all the HFs that
are extracted by the Sequences in this group. From this table, it is possible to
observe how the first two Sequences n.8 and 9 are designed for all the PFCS while
the last three are tailored for both the Elevator and Aileron, due to their switch to
Damping mode through Electro-valves.

Table 5.3: Leakages Sequences HFs Recap table

Seq HFs Check Troubleshoot E A S

8 Q3 Q3 > Q3max Check the EHSV flow
and that the unit does
not present an exter-
nal leakage

Posmax

9

Q3′ Q3′ > Q3′
max Check the EHSV flow

and that the unit does
not present an exter-
nal leakage

Posmin
Posmax − Posmin <
S1min

Check the outer piston
sealings

Posmax − Posmin >
S1max

S2′ S2′ < S2′
min Check the RD Bell

Crank and Control
Shaft input, and its
connection to the
EHSV

S2′ > S2′
max

2δC ′

V 4 V 4 < V 4min Check the EHSV flow
V 4 > V 4max

10

Q2 Q2 > Q2max Check the EHSV flow
and EV1 sealings

S2 S2 < S2min Check the RD Bell
Crank and Control
Shaft input, and its
connection to the
EHSV

S2 > S2max

2δC ′′ max(2δC) > 2δCmax Replace the EHSV
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11 Q2′ Q2′ > Q2′
max Check the EHSV flow

and EV1 sealings

12

Q1 Q1 > Q1max Check the EHSV flow

U3 U3 < U3min Check the MSV
spring, the presence
of any debris and the
LVDT wirings

U3 > U3max Check the MSV
LVDT wirings

ϕmsv
ϕmsv < ϕmin Check the MSV

LVDT wirings
ϕmsv > ϕmax

Sequence n.8

As reported in the previous paragraph, this Sequence has been designed in order
to extract the stalled leakage HF Q3 in extended position. For this purpose, the
unit is commanded in open-loop with a unique step from 0 to Imax in order to slave
the piston position at its end stroke, setting the maximum supply pressure Pmax.
This setting would not change for all the consecutive Sequences. The plots in Fig.
5.34 report two typical measurements for this Sequence. It is worthy to notice how
in this example the Sequence has been stopped after 1 minute. This means that the
technician at the test-bench has decided to stop the measurement since the return
line flow-meter was reporting a stable and unique value, which is exactly Q3. This
parameter is manually reported by the operator and collected in the measurement
INDEX.txt file. This particular HF is characterized by a maximum limit Q3max:
if the extracted value is higher than this latter reference one, it can be a sign of
an excessive EHSV flow gain due to an inner anomaly or any external or internal
undetected leakage.
This Sequence has been also used to extract part of an important HF, which is
the maximum unit stroke S1 = Posmax − Posmin that need to be extracted per
all the PFCS. Due to the shape of the designed signal, the maximum position
Posmax can be easily extracted as the mean value of the maximum stable position,
identified by move_finder. This signal portion is highlighted in yellow in the
second subplot of Fig. 5.34. It is important to notice the offset between the INC
position sensor channel and the Demodulated channel from the inner sensor. Since
any uncorrect INC sensor setting is fixed during the preprocessing of the Sequence,
this measurement has been chosen as reference one to extract Posmax. The excessive
offset between the yellow and red lines may be an indicator of a biased RVDT or
LVDT sensor on the main ram.
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Figure 5.34: Sequences n.8 for all PFCS

Sequence n.9

Table 5.3 reports the HFs that can be extracted per each PFCS from this
Sequence. All the units share the extraction of both Q3′ and Posmin for the final
evaluation of the total stroke S1. These two indexes have been extracted using
the same approach of previous Sequence n.8. Following this list, the next two con-
secutive HFs S2 and 2δC ′ are characteristic for the Elevator PFCS. The adopted
methods to extract them are illustrated in Fig. 5.35.

The first subplot shows the black open-loop command line, while the second
illustrates the measured position channels. Using the same approach of Sequence
n.8, the yellow portion of the INC sensor channel indicates the minimum effective
end-stop Posmin. This parameter can be easily extracted as the mean value of the
highlighted signal, identified with stab_finder. In this case, the function needs as
input T_in the step time of command from null to Imin. Viceversa, if this instant
of time is set as T_end, the function stab_finder would isolate a second section
which has been coloured in black in the second subplot. This portion of signal is
used to evaluate the Elevator recentering position from extended stroke S2′. As it
is possible to observe from the plot, the main ram is still stacked in its extended
position at the end of the previous Sequence n.8. For this reason, the initial 10
seconds of command at 0 mA drives the unit back to its null position, pushed by
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Figure 5.35: Elevator Sequence n.9

the mechanical RD. As reported in the CMM, this HF need to be within a spe-
cific range defined by S2′

min and S2′
max, measured taking as reference the totally

extracted end-stroke. If this HF is outside the limits, it can be a clear sign of a
defective RD which can be manually adjusted or it need a further investigation
and be replaced. As already anticipated in paragraph 5.5.2, a failure in the RD
can be misclassified if also the EHSV present an anomalous behaviour. For this
reason, this Sequence has been used to extract another important HF for a correct
diagnosis of the EHSV: the peak-to-peak recentering oscillation 2δC.
As reported in the CMM, this index needs to be extracted during the recentering
stroke of the unit with the nominal supply pressure Pmax. Both these conditions
are respected in Sequence n.9, an in fact the same time range for the extraction of
S2′ can be used to evaluate 2δC ′ during the recentering movement from extended
to null position. As illustrated in Fig. 5.35, this oscillation is extracted from the
highlighted red portion of signal from the RVDT demodulated position channel.
This channel has been preferred to the INC sensor one because of its better reso-
lution and since the peak-to-peak extraction do not take into account any position
offset. The second subplot in Fig. 5.35 reports also a dedicated zoom where the
oscillating behaviour of the unit is clearly shown.
The oscillation peak-to-peak amplitude is evaluated performing a local Frequency
Spectrum analysis through Fourier Transform on the isolated area. The plot in
Fig. 5.36 shows the single-sided amplitude spectrum, cutting the frequency range
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Figure 5.36: Sequences n.9 Oscillation Frequency Spectrum

at maximum 20 Hz. This values has been set considering the dynamic response of
the Elevator, which nominally presents an attenuation of -3 dB at 5 Hz, consider-
ing the main ram piston position. In this example, the most significant harmonic
presents a characterizing frequency of about 1.2 Hz and a normalized peak ampli-
tude which represents half of the needed peak-to-peak 2δC ′.

Excluding the extraction of 2δC ′ and S2′, the same methods for the definition
of both Q3′ and Posmin are used also for both the Aileron and Spoiler PFCS.
For this latter one, this Sequence can be used to extract the retracting speed V 4.
The EHSV of this particular unit need a specific threshold of current Itrshld to
fully extend the unit main ram. Below this threshold, the actuator does not move
from its fully retracted position, which also coincide with its null one. In case of
electrical failure, if the EHSV supply current is set to zero, the Spoiler is in its
totally retracted position due to the structural EHSV current bias of Itrshld. The
HF V 4 represents the nominal retraction speed in case of electrical failure. Fig.
5.37 illustrates the extraction process of this HF. Using move_finder, it is possible
to isolate the red area indiscriminately from the INC sensor or main ram LVDT
demodulated channel, and extract its linear slope which represents V 4.

Sequence n.10 and n.11

Sequence n.10 has been designed with the main purpose to extract the leakage
HFs Q2 in damping mode for both Elevator and Aileron. The plots in Fig. 5.38
reports and an example of this Sequence applied on the Elevator PFCS. The first
subplot represents as usual the designed command, which present an open-loop
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Figure 5.37: Spoiler Sequences n.9

step to Imax at soon after 10 seconds. This instant of time is in fact the activation
moment of the first Electrovalve, which is switched on with a step to Vmax. In this
way, from this moment until the end of the test, the technician can manually report
the stabilized return flow Q2 in damping mode. This same procedure is adopted
to extract the same HF from the Aileron, with the only difference regarding the
Electrovalve command which needs to be switched off with a specular signal from
Vmax to null voltage.
About the Elevator PFCS, this Sequence is also used similarly to the previous one
to extract both S2 ad 2δC peak-to-peak amplitude during the recentering stroke
from totally retracted position to null. Comparing the measured position in Fig.
5.35 with the one in Fig. 5.38, the two main analogies regards both the extraction
of S2 from the measured position by the INC sensor, and the evaluation of the
oscillation 2δC from the RVDT demodulated channel. In particular, in order to
respect the CMM requirements, both the highlighted sections in black and red have
been extracted using move_finder specificing as time range the entire initial part
part of the signal when the unit is still in Active mode, before its switch in damping
at around 10 s.
Once both the peak-to-peak oscillation have been extracted in Sequence n.9 and
10, the HyDiag SW checks if the maximum HF between these two values is below
an accepted threshold 2δCmax. This limit value is reported in the CMM and it
depends also on the unit Flight Hour. Any out of range value would be a symptom
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Figure 5.38: Elevator Sequences n.10

of a defective EHSV, which is not able to provide a regular flow to the piston
chambers due to an oscillating second-stage spool.

The Sequence position and Electorvalve command shapes are also used in the
consecutive Sequence n.11. The main goal of this test is to extract the equivalent
leakage HF Q2′ obtained when the units is commanded in damping mode only
activating the second Electrovalve, using the same command step from 0 to Vmax.

Sequence n.12

Both the Elevator and Aileron PFCS share Sequence n.12 in order to extract
the leakage HF Q1 and the maximum MSV LVDT spool position U3 and eventual
phase shift between primary and secondary wirings ϕmsv. The plots in Fig. 5.39
report the closed-loop command, which slaves the unit in its null position after
a rapid and small movement at around 25% of the reference stroke. After this
small step, the operator can manually read the stable value of the return flow Q1
when the unit is recentered to zero. During this test, the supply pressure is always
constant and set to Pmax and the unit is in active mode. In this condition, the MSV
spool is fully opened and its LVDT register the reference maximum value U3.

The yellow section in the third subplot defines the area identified by stab_finder
and then averaged in order to extract a unique value of U3. An out of range HF
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Figure 5.39: Elevator Sequences n.12

would be a good insight of a defective MSV spring, presence of debris in the compo-
nent sleeve or even a defective LVDT sensor. In order to check this sensor integrity,
an additional check about possible phase shift ϕmsv between primary and secondary
wirings is performed.

The results of this analysis are reported in Fig. 5.40. The first subplot shows a
particular zoom where both the sinusoidal primary and secondary waves are visible.
Both of them are supplied at the same reference frequency of 1953 Hz and the
secondary coil is considerably less noisy if compared with the EHSV Lvdt one. For
this reason, it is not preprocessed with the denoising function in paragraph 5.4.3
and it present a clear Frequency Spectrum as the one in the second subplot. As
reported in this plot, both the fourier harmonics decomposition show as expected
a unique harmonic at the nominal frequency. The distance between the two dots
★and ∗ represents the phase shift ϕmsv in degree between primary and secondary
coils.

5.5.4 Automatic Sequences
The Seqeuences grouped in this paragraph constitutes the full automatic part

of the HyDiag testing procedure. During these tests, the operator needs to set a
constant supply pressure of Pmax and wait the complete test to be finished with-
out any further interaction. As already mentioned in 4.3.1, the Sequences order
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Figure 5.40: Elevator Sequences n.12 MSV spectrum analysis

and duration have been designed in order to stimulate a singular or a group of
sub-components that affects each other. For example, from Sequence n.17 to 22
all the possible tests over Electrovalves and MSV have been grouped for both Ele-
vator and Aileron. Table 5.4 reports all the extracted HFs and the corresponding
troubleshooting instructions.

Table 5.4: Fully Automatic Sequences HFs Recap table

Seq HFs Check Troubleshoot E A S

13

dbrec dbrec > dbrecmax Adjust the RD and
check its clearances

Idbrec Idbrec > Idbrecmax

xdbrec xdbrec > xdbrecmax

krec
krec > krecmax Check the EHSV flow
krec < krecmax Check the RD springs

stiffness
I0rec I0rec > I0recmax Possible high EHSV

offset current
x0rec x0rec > x0recmax
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14
U9 U9 < U9min Check the correct

movement of EHSV
spool in its sleeve

U9 > U9max

U10 U10 < U10min Check the correct
movement of EHSV
spool in its sleeve

U10 > U10max

15

U0 U0 < U0min Check the EHSV me-
chanical input

U0 > U0max

IE
IE < IEmin Fix the RD position

and check its Bell
Crank

IE > IEmax

IR
IR < IRmin Fix the RD position

and check its Bell
Crank

IR > IRmax

SNR(Usek)ext SNR(Usek)ext < 0 High vibration level of
EHSV spool

SNR(Usek)ret SNR(Usek)ret < 0
fUsek,ext fUsek,ext < fsupply Check the EHSV first

stage
fUsek,ret fUsek,ret < fsupply

16 xb xb > xbmax Check the RD bell
crank setting

hx hx > hxmax

17
U5 U5 < U5min Replace the Elec-

trovalve 1
U5 > U5max

U6 U6 < U6min Replace the Elec-
trovalve 1

U6 > U6max

18
U7 U7 < U7min Replace the Elec-

trovalve 2
U7 > U7max

U8 U8 < U8min Replace the Elec-
trovalve 2

U8 > U8max
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19 UC1 UC1 < UC1min Replace the Elec-
trovalve 1

UC1 > UC1max

T1 T1 < T1max Check the Damping
Circuit lines (from
Electrovalve 1 to
MSV). In addition
check the EHSV
flow and the piston
dynamic sealings.

20 UC2 UC2 < UC2min Replace the Elec-
trovalve 2

UC2 > UC2max

T2 T2 < T2max Check the Damping
Circuit lines (from
Electrovalve 2 to
MSV). In addition
check the EHSV
flow and the piston
dynamic sealings.

21 UC
UC < UCmin Replace the Elec-

trovalve
UC > UCmax

T3 T3 > T3max Check the Damping
Circuit lines (from
Electrovalve 1 to
MSV)

22 T4 T4 > T4max Check the Damping
Circuit lines (from
Electrovalve 2 to
MSV)

23

R1 R1 < R1min Check that the unit
has reached the goal
position, otherwise
check the RVDT 0
setting

R1 > R1max
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R2 R2 R2 < R2min Check that the unit
has reached the goal
position, otherwise
check the RVDT 0
setting

R2 > R2max

rx rx > rxmax Check the EHSV flow
and the piston dy-
namic sealings

∆Urms ∆Urms > ∆Urmsmax Check the main ram
LVD setting

dD dD > dDmax Replace the ESHV
Ion Ion > Ionmax Replace the ESHV

24 U11 U11 > U11max Replace the ESHV

25

ϕUA
ϕUA < ϕUAmin

Check the main ram
sensor (LVDT or
RVDT) wirings

ϕUA > ϕUAmax

ϕUB
ϕUB < ϕUBmin

Check the main ram
sensor (LVDT or
RVDT) wirings

ϕUB > ϕUBmax

ϵext ϵext > ϵextmax Check the Dynamic
Sealings

ϵret ϵret > ϵretmax

26

dbsv dbsv > dbsvmax Excessive hysteresis in
the EHSV first stage

Idbsv Idbsv > Idbsvmax

xdbsv xdbsv > xdbsvmax

ksv
ksv > ksvmax Check the feddback

spring stiffness
ksv < ksvmax

Ibias Ibias > Ibiasmax Excessive EHSV null
bias

hystI hystI > hystImax Excessive torque mo-
tor magnetic hystere-
sis

35
In

In < Inmin Replace the EHSV
In > Inmax

It
It < Itmin Replace the EHSV
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Figure 5.41: Elevator Sequences n.13 command

It > Itmax

Sequence n.13

Sequence n.13 has the main gaol to extract the Elevator RD characteristic
curve in steady state condition, plotting the input current as function of main ram
position. Due to the RD action over the EHSV spool, the ideal way to perform
this test would be by slowly commanding the unit in open loop within the nominal
RD range of action, and measuring the corresponding main ram position. However,
this kind of test would not be effective in case of degraded RD: a current command
above the actual RD saturation, would move indefinitely in open loop the main ram,
which would continue until its end-stop and excluding any steady state analysis.
In order to overcome this problem, the Sequence has been designed in closed loop,
with a slow triangular ramp signal with a slope of 0.1 [mm/s], spanning the position
range 2 [mm] above and below the nominal position RD ranges.

The plots in Fig. 5.41 illustrates both the closed loop command, the relative
main ram position and EHSV current from the control loop circuit. In particular,
the first subplot shows the complete command in blue and the extracted part in
black which need to be taken in account for the RD characteristic extraction. From
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Figure 5.42: Elevator Sequences n.13 RD characteristic

the complete signal, the initial and final steps to its reference null position need
to be excluded in order to consider just the slow ramp signal in both ascending
and descending sections. The RD characteristic curve can be plotted us the red
part in the second subplot as function of the filtered current in the third plot. The
obtained results in shown in Fig. 5.42 with blue line and it represents the flipped
curve in Fig. 2.12

This curve represents the starting point for the HFs extraction of this Sequence.
Looking at this graph, it is possible to notice an hysteresis due to the different posi-
tions the main ram reaches during the rising and falling ramps. From the obtained
curve, the mean slope can be calculated interpolating, for each unique ram position,
the mean current between the asceding and falling curve portions. The obtained
results are plotted with red dashed line. From this line, findchangeslope identifies
any significant change point, which are marked with green horizontal lines. For each
interval between two consecutive change points, the code linearly interpolates the
portion of mean curve in order to extract each local slope. Averaging these mean
values, the code evaluates the global RD stiffness krec, which need to be compared
with the nominal KRD in eq. 2.1. Furthermore, the first and last interval between
change points defines the saturation limits of the characteristic curve.

Fig. 5.43 shows the extraction of the first two HFs: the RD bias position x0 and
bias current I0. These indexes are extracted taking as reference the mean curve
distances from the origin coordinates. Since this test is performed in active mode,
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Figure 5.43: Elevator Sequences n.13 RD characteristic: x0 and I0 evaluation

these values are actually influenced also by the eventual EHSV null bias current.
In particular, this latter parameter can be considered as an additional HF to be
extracted when the unit is in damping mode, and considering just the command
and measured EHSV spool position as in Sequence n.26.
Another important HF to be extracted from the red dashed mean curve is a possible
deadband area, defined as a region where the mean curve presents a sudden change
of slope due to a significant ram position variation caused by a small current change
[32]. This deadband area can be detected by checking which change points interval
is characterized by a mean curve with slope that differs more than ±30% of the
nominal KRD. From this evaluation, the first and last saturation intervals are
excluded.

Fig. 5.44 shows the results of this analysis. The black dashed lines mark
the curve saturation limits, while the yellow dashed ones identifies the deadband
coordinates xdbrec and Idbrec. A more detailed view about these HFs is shown in
Fig. 5.45. The vertical green line represents the deadband amplitude dbrec, which
exceeds the threshold of ± 30% of the nominal stiffness KRD. In order to exactly
extract this amplitude, the linear mean curve sections of the previous change points
intervals are prolonged in order to intersect the vertical line Idbrec. The presence of
a deadband area can be a good sign of an excessive clearance in the RD assembly.
For example, a backlash between Control Shaft and Bell Crank may affect the
final main ram position due to a specific current command. The case of Fig. 5.45
shows how the position suddenly changes even if the measured command current
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Figure 5.44: Elevator Sequences n.13 RD characteristic: deadband idenfitication
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Figure 5.45: Elevator Sequences n.13 RD characteristic: deadband idenfitication
(zoom)

remains constant in this interval, which is sign of a missing Bell Crank rotation,
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with corresponding lack of Mechanical input movement. Due to the Bell Crank
backlash, the RD action on the EHSV spool is ineffective, in fact the control loop
does not change its compensating output. Once this installation free-play between
Control Shaft and Bell Crank is recovered, the RD is able to act correctly again over
the EHSV spool and the control loop needs to rapidly change its output command
current to minimize the error between command and expected lower position.

Sequence n.14

Sequence n.14 has been designed in order to extract two important Elevator
EHSV HFs: the minimum U9 and maximum U10 EHSV spool end-strokes. These
values needs to be reported in [mVrms] and they are extracted from the demod-
ulated EHSV LVDT channel. In order to isolate the EHSV behaviour, the unit
is set in damping mode activating both the electrovalves and it is commanded in
open loop with two fast current steps to Imax and Imin. The first subplot in Fig.
5.46 illustrates this command in black line, and the main ram response in damping
mode is highlighted by the second subplot where basically the piston is slaved in its
null position. The third graphs shows instead the signal portions that are isolated
using stab_finder in order to evaluate U9 and U10. These HFs are calculated
as the mean values of the violet and yellow portions in the third subplot. Out of
ranges values of these HFs can be a significant sign of an anomalous movement of
the EHSV spool in its sleeve due for example to an incorrect command flow, an
excessive rigid feedback spring or presence of debris in the EHSV second stage.

Sequence n.15

Sequence n.15 includes six crucial tests about the health status of both EHSV
and RD. As reported in Fig. 5.47, the Sequence is in active mode, and the unit is
slaved with two position steps firstly in extracted and then in retracted positions.
The steps ensures that the RD apply a constant load over the EHSV jet-deflector,
reaching its saturation.

During these steps in closed loop, the unit reaches the goal positions and the
EHSV spool in its null position U0. This HF is evaluated as the mean value of the
averages signals extracted by the EHSV LVDT, and highlighted in blue in the third
subplot of Fig. 5.47. An out of range value of U0 may be caused by two possible
irregularities:

1. Incorrect calibration of the RD. If the characteristic force curve in Fig. 2.11
is positively or negatively biased, its saturation limits may be shifted and
therefore an excessive or low load is applied over the EHSV jet-deflector when
the unit is slaved in any position outside the linear range.

2. Uncorrect movement of the second-stage spool in its sleeve. This possible
failure may be due to debris or a wearing of the EHSV feedback spring.
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Figure 5.46: Elevator Sequences n.14

Both the listed failures highlights how this HFs is not able to determines uniquely
whether there is a failure in the EHSV or the unit just need a recalibration of the
RD. For this reason, four other HFs have been extracted from this Sequence to
help separating these effects, as reported in Table 5.4

IE and IR extraction

Focusing on the RD, IE and IR represent the nominal currents in extracted and
retracted stop the EHSV need to counteract the RD action. These two values are
evaluated as the mean value of the current signal isolated by stab_finder during
the position steps. These areas are highlighted in green and yellow in the second
subplot of Fig. 5.47. These two features are significant to evaluate the RD health
status, which can includes damaged components or it may just need an external
adjustment. In particular, the CMM indicates as troubleshooting for these HFs to
recalibrate turning the eccentric screw in Fig. 5.48, which is directly connected to
the bell-crank eccentric part. Turning the eccentric (1), it is possible to regulate
the springs pre-load, therefore tuning the maximum forces the RD can apply on the
EHSV jet deflector. Looking at the plot in Fig. 2.11 in chapter 2, this regulation
process fixes the saturation limits the nominal linear RD force characteristic curve.
The only way to estimate these loads is to extract the values of IE and IR, which
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represent the current the EHSV needs to counteract the RD action. If these two
HFs are out of range, it is very likely that the RD needs to be recalibrated but does
not include any damaged component. It is important to notice that the RD is the
only Elevator part which may need a recalibration to work properly, without any
parts exchange. Correctly identifying if the RD is damaged or needs to be adjusted
is a good improvement in the diagnostic procedure in terms of components cost
and repairing time. Several previous works have investigated how to automate the
adjustment process [50], to evaluate if the RD is adjustable or not [35] and how it
is possible to extract additional HFs while adjusting the RD with a collaborative
robot [49].

SNR(Usek) and fUsek extraction

In order to check the EHSV spool health status, two additional HFs have been
defined from the secondary coil LVDT signal analysis. As already reported in
Chapter 2.6.1, the Elevator EHSV is equipped with a four-wires LVDT which is
more affected by noise if compared with the six-wires configuration. The Appendix
A.1 illustrates different demodulation techniques for this kind of sensor, and how
a noisy secondary signal influences the final demodulated one, according to the
adopted technique to process it. The HyDiag SW determines the EHSV spool
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Figure 5.47: Elevator Sequences n.15
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Figure 5.48: Elevator RD eccentric adjustment

position using a digital synchronous demodulator, which reproduces the behavior
of the physical one of the measurement system. This technique is however noise-
sensitive, and it particular it is possible to demonstrate that the demodulated
value is influenced by all the odd-order harmonics of the fundamental one. As
reported in Appendix A.1.3, these harmonics influences the final value both with
their amplitudes and phases. The principal harmonic of the EHSV secondary coil
signal coincides with the fsupply, which is nominally 1953 Hz and fixed per all
the integrated sensors of the unit. In order to compare the noise level with the
principal harmonic, the Signal-to-Noise ratio SNR(Usek) has been evaluated from
the spectral analysis of the secondary coil. By definition, the SNR coefficient is
defined as the ratio between power of a signal over its background noise:

SNRdB = 10log10(
Psignal

Pnoise

) (5.8)

where P is the average power of both the fundamental signal, and its back-
ground noise. For the EHSV LVDT, the signal power has been estimated using the
Welch method ([53]) already mentioned in 5.4.3. For this application, four Ham-
ming windows have been chosen to evaluate the average power of the signal until
maximum a limit frequency of 2 ∗ fsupply. According to the definition in eq. 5.8,
the higher this value is the smallest is the noise effect. A negative value of SNR in
dB can occur in case the Pnoise > Psignal: in case of the EHSV LVDT secondary
wiring, it can be symptom of anomalous but significant harmonics at higher or
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Figure 5.49: Elevator Sequences n.15: SNR and fpeak extraction from PSD analysis

lower frequencies than the reference fsupply. For example, if the signal power spec-
trum presents unexpected peaks at higher frequencies than the reference one, it
can be a symptom of electrical failure of the LVDT channel. It is important to
remember that any possible external interference during the measurement is elimi-
nated through the denoising function during preprocessing. If the power spectrum
shows any anomalous low-frequency peak, it can be a symptom of an unexpected
spool oscillation, due to a mechanical or hydraulic instability. For this reason, to-
gether with the SNR(Usek) ratio, the fUsek peak oscillation is extracted from the
power spectrum analysis of the secondary coil. The plots in Fig. 5.49 illustrates the
results of this analysis over the portions of raw secondary coil signal in the same
time-interval of evaluation of U0.

In both these plots, it is possible to observe how the code can easily extract the
fundamental harmonic (in blue) from the remaining part of the signal, simplifying
the SNR evaluation. The final HF to report is an average value of both the SNR
ratios evaluated while the unit is in extended (first subplot) and retracted positions
(second subplot). The same is valid also for the relative fpeak.
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Sequence n.16

Sequence n.16 has been designed in order to evaluate a fast hysteresis around the
null position. Using the same approach of Sequence n.13, the code needs firstly to
extract the useful portion of both command and position signals, which correspond
to the ramps in Fig. 5.50. Once these sections have been extracted, the code
extracts and plot the position hysteresis around the null position, as in Fig. 5.51.
From this curve, it is possible to extract both the maximum hysteresis hx and the
maximum distance from null command and reached position xb.

Sequence n.17 and 18

Sequence n.17 has been designed in order to extract two traditional HFs of the
first EV of both Elevator and Aileron: U5 and U6. Comparing the plots in Fig.
5.52 and 5.53, it is possible to notice how the command shape is the same for both
the units, while the EV voltage signal looks mirrored. This is due to the opposite
ways of switching from active to damping mode for these units. For both the cases,
U5 represents the necessary command the EV needs to switch the unit from active
to damping mode. The switch between these two working modes is evident from
the first subplot of both the figures: in fact, the unit stops following the sinus wave
command as soon as it reaches a specific value which is exactly U5. The opposite
considerations are true for U6, which is the command the EV needs to start the
switch back to active mode. The extraction of these values has been eased by the
function stab_finder, which directly extract the instants of time when the unit is
slaved in damping mode (highlighted with black dashed lines).
Sequences n.18 has the same shape of its previous, but its just dedicated to the Ele-
vator unit, in order to perform the same test on the EV2 and extract the equivalent
U7 and U8 HFs.

Sequence n.19 and 20

Sequences n.19 and n.20 have been shaped in order to retrieve important in-
formation about the switching conditions from damping to active modes for both
Elevator and Aileron. It is important to notice that, similarly to the previous
Sequences n.17 and n.18, the latter 20th is characteristic only for the Elevator,
since it needs to evaluate the same behaviour of Sequence n.19 but for the second
EV. For this reason, the plots in Fig. 5.55 and Fig. 5.57 are identical, except for
the second subplot command for the EVs. However, it is clear from all the plots in
this section how both the position and voltage EV command have been modularly
built in order to extract the same HFs, beyond the type of tested unit.
Focusing on Sequence n.19, the plots in Fig. 5.55 and 5.56 describe the methods
used to extract the switching response time T1 for both Elevator and Aileron. T1
has been defined as the time interval the main ram takes to start moving, when the
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Figure 5.50: Elevator Sequence n.16

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Max hysteresis h_x
Position bias x_b

Figure 5.51: Elevator Sequence n.16 Hysteresis Plot

unit switches from damping to active mode. For both Elevator and Aileron, after
two seconds, the unit is set to damping mode switching on or off the EV1 respec-
tively for the Elevator and Aileron. The switch is clearly evident in the second and
third subplots of both the Figures: as soon as the EV1 is triggered, the MSV spool

158



5.5 – Sequences Signals HFs Extraction

steeply moves to its totally closed position, shutting down any connection between
the main ram chambers and the EHSV.

For both the units, after the 5th second, the EV is triggered again in order to set
the unit back in active mode. In particular, this switch in Fig. 5.55 appears a little
bit later (at around the 6th second). This delay is actually related to the possibility
to extract the breakdown voltage V EV 1, which represents the minimum signal peak
due to an instantaneous discharge of the EV solenoid. The same strategy has been
used in Sequence n.20 for the evaluation of V EV 2 of the second electrovalve. The
time range T1 is evaluated from the EV switch command until the first measured
main ram movement, which determines the switch effectiveness. This latter value
can be easily extracted using the function move_finder over the main ram position
signal (in the first subplot). In all the plots, a small zoomed window is dedicated
to the extraction of T1 (or T2 for the Sequence n.20).
In analogy with Fig. 5.32, the same analysis over the MSV LVDT step signal can
be conducted in order to find any anomalous "elbow" during the spool stroke. As
shown in Fig. 5.58, the function elbow_detection is able to detect any slight
change of slope in the signal step, which can be a symptom of an incorrect spool
movement.
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Figure 5.52: Elevator Sequence n.17
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Figure 5.53: Aileron Sequence n.17
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Figure 5.54: Elevator Sequence n.18
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Sequence n.21 and 22

Sequences n.21 and n.22 are shaped with the goal to simulate an abrupt switch
from active to damping mode while the main ram moves. Analogously to the
previous couple of Sequences, the 21th has been used for both Elevator and Aileron,
while the 22th can be applied only over the Elevator since it replicates the previous
Sequence behaviour with the other EV2.

The first plot in Fig. 5.59 shows how the unit is commanded after 3 seconds in
a step from retracted to extended position. In order to simulate a sudden switch
to damping mode while the main ram is still moving, the EV1 is activated at one
third of the main ram stroke, determining the MSV spool movement which return
in its closed position. This step response is analysed in order to extract the falling
time T3 (and T4 for Sequence n.20). The dedicated window in the third subplot
shows the instants which are used to evaluate this time range, highlighted with
blue and black lines. The red one indicates the moment when the EV is switched
on: the distance between red and dashed lines in the window represents the time
needed by the oil to flow from the EV to the MSV command chamber.
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Figure 5.55: Elevator Sequence n.19
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Figure 5.56: Aileron Sequence n.19
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Figure 5.57: Elevator Sequence n.20

Sequence n.23

The main goal of Sequence n.23 is to extract the HFs of the main ram position
sensor. It is important to remember that the Elevator differentiates from the other162
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two use-cases since it is equipped with an RVDT, while both Aileron and Spoiler
include a linear LVDT. All these sensors are configured according to the six-wires
scheme (see 2.6.1), so it is possible to extract both the rms voltages from the
secondary coils U1rms and U2rms. From these signals, it is possible to evaluate the
ratio R in eq. 2.8 in order to check if the position sensor is correctly set. The
CMM indicates to slave the main ram in defined retracted and extracted positions
(respectively retgoal and extgoal) and to evaluate if the ratio R is included in an
acceptable range. The way this test is implemented within the Hydiag procedure
is described in Fig. 5.61, 5.62 and 5.63.

Observing these plots, it is possible to notice how the signals of both Elevator
and Aileron are equivalent, firstly commanding the unit to extended position and
then in retraction. The Spoiler signal in Fig. 5.63 presents just extended portion,
since the null position correspond to totally retraction. Anyway, in all these plots,
the first subplot shows the position command and relative measurements from both
the external incremental sensor and the demodulated demodulated signal from the
position sensor. The second subplot illustrates the U1rms and U2rms signals which
are extracted from the raw sinusoidal signals of the secondary coils with the function
ratio_demod (5.2). The command signal has been designed in order to make the
unit slowly moving within a range of ±2 mm around the goal position. In this way,
the ratio R1 in extension and R2 in retraction, according to Eq. 2.8, extracting
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Figure 5.58: MSV LVDT Elbow Detection
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Figure 5.59: Elevator Sequence n.21
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Figure 5.60: Elevator Sequence n.22

the mean values of U1rms and U2rms in these position ranges.
Before evaluating R1 in extension and R2 in retraction, the code checks if the
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Figure 5.61: Elevator Sequence n.23

unit has reached the effective goal position from the incremental sensor signal,
which is considered as reference since the Sequence goal is to evaluate any fault
in the integrated position sensor. In case the main ram has not reached the goal
position, the code prints out an warning message and it linearly extrapolates R1 or
R2 according to the collected measures. In case of the Elevator unit, an anomalous
value of one of these features may be fixed simply adjusting the RVDT zero-setting,
since this position sensor is also mechanically connected to the RD which may need
a consequent adjustment. For both Aileron and Spoiler, the only solution would
be to dismount the main ram LVDT and check the ferromagnetic core position and
wirings connections. This Sequence is also designed to extract the EHSV resolution
rx for all the tested units. Looking carefully the position command signal in all the
plots, it is possible that the rising linear command within the acceptable position
range presents a short steady part, which has been positioned around the nominal
goal position. As reported in [32], this signal portion has been designed in order to
extract the delay between command and main ram position response. Fig. 5.64 is
obtained by plotting the measured channel from the incremental sensor against the
position command, during the movement around the extended goal position. The
steady part of this curve represents exactly the command variation the main ram
needs to change its position. This HF can be easily extracted using stab_finder
and it represents the resolution rx. Too high values of this HFs can be due to
an incorrect movement of the EHSV spool or a high degradation of the main ram
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Figure 5.62: Aileron Sequence n.23
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Figure 5.63: Spoiler Sequence n.23
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dynamic sealings.

Sequence n.24

This Sequence has been integrated in the HyDiag testing procedure for Elevator
and Aileron, with the goal to perform oscillation threshold test, prescribed in their
respective maintenance manual. The standard procedure proposes to perform this
test using a series of sinusoidal position command signals, with increasing amplitude
and constant frequency. The HyDiag procedure proposes to shorten this method
with a unique amplitude-swiping sinus wave, as reported in the first subplot in Fig.
5.65. These plots illustrate the Elevator behaviour, but the same considerations
apply also for the Aileron.

The goal of this signal is to extract, in less than 35 seconds, the minimum
required command 2δc to measure a reference peak-to-peak oscillation 2∆C. This
parameter is reported in the unit CMM and depends on the unit flight-hours. The
2δc HF is particularly significant to evaluate any EHSV degradation. The HF
extraction code firstly filters the command input signal from any electrical noise
with a simple second-order butterworth filter (fcut = 25Hz). The second step is
to correct any offset of the reference INC sensor, and then extract the sinus waves
peaks of both command and position signals using the built-in Matlab function
findpeaks. The extraction of 2δc is guaranteed by a while loop which stops when
the requirements 2δc ≤ 2∆C is fulfilled. The third subplot in Fig. 5.65 shows
exactly when the code stops its iterations in order to find the dedicated HF. It
is important to notice actually how the command signal has been overestimated
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Figure 5.64: Elevator Sequence n.23 resolution plot
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in order to consider even the possibility to have a totally defective EHSV. In the
extreme case the command is not sufficient to extract 2δc, the code prints out and
error message to the user and in the final report which states the highly degraded
EHSV health status.

Sequence n.25

Sequence n.25 has been designed for all the project use-cases, and it is based
on a series of random position steps within the minimum retracted and maximum
extended positions. In order to unify the testing conditions, these position steps
have been actually defined during the signal design and fixed as command pa-
rameters. From the main response channels, it is possible to extract the average
extended ϵext and retracted ϵret offsets. The HF extraction code is in fact able to
distinguish between rising and falling steps, according to the sign of the recognized
slopes (highlighted with vertical dashed-black lines). An excessive values of these
HFs can be due to an inefficient EHSV or more likely to degraded dynamic sealings
on the main ram.

This Sequence has been particularly useful during the prototyping phase, since
it has been used to extract particular dynamic features to design a base-line physical
digital twin of the tested unit. As reported in [18] and [17], this model has been
used to test how the extracted HFs by the HyDiag protocol, when combined and
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Figure 5.65: Elevator Sequence n.24
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Figure 5.66: Elevator Sequence n.25

divided per target components, can be used to detect a degradation of a specific
part of the tested unit.

Sequence n.26

Comparing Fig. 5.41 and 5.67, it is possible to notice some similarities regarding
the command signal in the first subplot. The strategy used to design both the
Sequence is indeed the same: apply a slow ramp signal (of about 3 minutes) in order
to analyse the steady-state behaviour of the target unit and extract its characteristic
curve. The main difference between the testing condition regard the unit working
mode: while in Sequence 13 the unit is in active mode and receives a slow position
ramp command, in the 26th on both the EV are turned off, setting the unit in
damping mode. The first subplot in Fig. 5.67 shows the input current command to
the Elevator EHSV: since the unit is set in damping mode, the open-loop command
is intended to move the EHSV spool in order to extract its position. Plotting
together the highlighted portion of command and the relative EHSV spool position,
it is possible to extract the EHSV characteristic curve in damping mode. It is
important to notice how the current command variates from Imin to Imax in order
to cover the entire EHSV spool positions range.

The EHSV characteristic curve is exposed in Fig. 5.68. Using the same approach
of Fig. 5.42, the red-dashed curve represents the mean slope, calculated as series
of mean value between each unique ascending and descending spool position. The
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Figure 5.67: Elevator Sequences n.26 command

horizontal green lines are evaluated using the findchangeslope function.
Using the same approach for the evaluation of krec in Sequence n.13, the global

EHSV stiffness ksv is extracted averaging the mean-curve values in each portion
defined by two consecutive green lines. As the RD characteristic curve, also from
the EHSV one is possible extract any deadband area and its amplitude dbsv and
consequently its mean coordinates xdbsv and Idbsv. All these HFs are shown in Fig.
5.69. As reported in [32], an excessive deadband can be caused by an excessive
backlash between spool and EHSV feedback spring. This anomaly can be detected
in this Sequence due to the signal shape and to the damping mode condition,
which exclude any dynamic influence of the RD. However, it has been observed
how a defective RD which needs a recalibration may influence the presence of an
EHSV deadband, due to its connection with the EHSV jet-deflector: the RD initial
setting influence also the null position of the EHSV jet-deflector through the EHSV
mechanical input. Other two HFS which can be extracted by the EHSV curve are
the null bias current Ibias, as the distance the axes origin and the current the spool
needs to reach its null position, and the curve hysteresis value hystI .
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Figure 5.68: Elevator Sequences n.26 EHSV characteristic
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Figure 5.69: Elevator Sequences n.26 EHSV HFS evaluation
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5.6 Hydiag Report
As already anticipated in the previous paragraphs, the final output of the Hy-

Diag HFs extraction software is a comprehensive report which collects all the in-
formation extracted by the collected signals. The flowchart in Fig. 5.70 reports
the steps the script postpro_report_main follows in order to print the extracted
HFs in both the reports formats: .csv for further data-collection, and .pdf for the
technician. As already mentioned in Fig. 5.1, both the software versions store both
the measurements data and reports in back-up local drive. Fig. 5.71 shows how
both the measurement and reports folders are named according to the label already
anticipated in paragraph 5.2

Each subfolder contains the main outputs of the HyDiag HFs extraction soft-
ware: the .pdf report, the relative .csv formats reports and eventual plots from
the analysed Sequences (f.e: Hysteresis plots of both Sequences n.13 and n.26).
Before building both the kinds of reports, the software creates the appropriate re-
port folder according to the aforementioned ident-code. After this preliminary step,
the code postpro_report_main principal tasks are to collect all the extracted HFs
in two main structures:

• feat_struct: this variable includes all the traditional CMM HFs stored the
previously populated structure test_result. At the end of each Sequence
processing code, the extracted CMM HFs are collected in test_result, where
also the relative CMM test limits are stored. Once this variable has been
completely filled, the postpro_report_main code reads its values, stores the
HFs according to the test number and, according to the HFs limits, stores the
relative troubleshooting instructions if the HFs value is outside the prescribed
limits. All these information are stored within the feat_struct variable.

• feat_struct_notCMM: all the additional HFs which are not reported in the
CMM are collected in this variable, using the same approach of the previ-
ous one. In this case, both the limits check and the relative troubleshooting
instructions are currently omitted. These additional information will be di-
rectly integrated in the HyDiag report when the Diagnostic Module will be
ready to give additional instructions according to the health-status of each
unit component. Currently, the Diagnostic Module is still in a prototyping
phase, but its promising results are in details described in Chapter 6.

These variables constitutes the core of both the kind of reports. Firstly, the
script concatenates feat_struct with feat_struct_notCMM and converts the final
structure in a unique table with the format in Table 5.5:

This table is directly printed in .csv file and stored in the proper folder.
In order to build the .pdf version, the Report Generator Matlab toolbox has been
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START

Collect the CMM HFs in structure 
test_result and build the second structure feat_struct with relative CMM troubleshooting instructions per each HF

Collect the additional HFs 
feat_struct_notCMM using the appropriate function  feat_notcmm_build

Append the results of both the sturctures and build the csv report using the scriptpostpro_report_txt

Hydiag Metadata Report in .csv and Hydiag HFs Report in .csv in appropriate folder

Build the .pdf report

Initial Table with metadata

Convert the CMM feat_struct in table and write it using Matlab 
mlreportgen package

Buid the troublshooting table according to the failed Test reported in feat_struct. The order depends on the weights of each CMM HFs

Build a table per each Extra CMM group of HFs and attach eventual plot

Copy the .pdf report in the appropriate result folder with the other .csv reports and plots images in .svg format

END

N
N+1
N+2
N+3

P2min ≤ P2 ≤ P2max [bar]  
ΔPmin ≤ P3-P2 ≤ ΔPmax [bar]  
ΔPmin ≤ P4-P2 ≤ ΔPmax [bar]  

...
FAIL

N+2 P3-P2 Instrucion n.1
Instrucion n.2

...

Figure 5.70: HyDiag Report generation flowchart

used. The graphic side of this report has been appropriately designed in order to
meet the technician requirements, who can use it to read the collected test results
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HyDiag Data HyDiag Reports

...

PN_SN_YYYYMMDD_hhmmss_testtype_INDEX.txt

PN_SN_SAP number_Sequence_i_YYYYMMDD_hhmmss_testtype.gz

PN_SN_SAP number_Sequence_i_YYYYMMDD_hhmmss_testtype.gz

PN_SN_SAP number_Sequence_i_YYYYMMDD_hhmmss_testtype.gz

...

Backup HDD

NED_n_PN_SN_YYMMDD_hhmmss_testtype NED_n_PN_SN_YYMMDD_hhmmss_testtype

...
NED_n_PN_SN_YYMMDD_hhmmss_testtype NED_n_PN_SN_YYMMDD_hhmmss_testtype

Hydiag_report.pdf

Hfs_report.txt and Meas_info.txt

Plots in .svg format

Figure 5.71: Folder organization for both data and reports

and eventual troubleshooting instructions. As reported in Fig. 5.70, the complete
file is built following consequent steps:

• Step 1: build and print two tables with all the unit and test information, such
as date and operator name;

• Step 2: convert and print the information in the feat_struct variable for all
the CMM HFs. In this case, the last column is filled with PASS string if the
HFs is within the prescribed limits, or with FAILED if vice versa;

• Step 3: All the troubleshooting instructions of the FAILED tests are collected
and reported in a separated table. The order of these lines actually follows
the HFs weights evaluation already mentioned in Chapter 4. Once all the
failed tests have been identified, they are sorted according to their weight in
descending order.

• Step 4: The Extra-CMM HFs are reported in separates tables, typically fol-
lowed by the relative explanatory plot.

In conclusion, this .pdf report represents a comprehensive document which give
to the final user a complete overview of the performed tests during the HyDiag

test_numb hf_name hf_value test_result

Table 5.5: HyDiag Report structure in .csv format
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procedure. It is important to assert that this final product of the HyDiag soft-
ware has been already designed to include the results coming from Data-Analytic
studies and the Diagnostic Module Classifier. For example, Appendix B reports an
interesting study, based on the analysis of the standard reports collection (referred
as Historical Database), which has identified some sweet-spots of fixing within the
suggested CMM limits. This analysis can already improve the simple binary dis-
tinction between PASS and FAILED tests, including a "grey-zone" where the CMM
test is technically passed but not in an optimal range. This result based on "histor-
ical" data may contribute to improve the global results, together with the output
from the HFs Classifier in the Diagnostic Module. About this latter topic, the fi-
nal goal is to integrate the information of the CMM Troubleshooting section with
the results coming from the Diagnostic Module Classifier. The idea is to create
an Advanced Troubleshooting which merges the traditional repairing indications of
each single test, with the classification results from the Diagnostic Module which
considers the combination of more HFs. This improvement would transform the
normal test-by-test repairing indications in a global indication of components to
exchange or to repair, considering how the HFs can be interdependently connected.
The final report would therefore represents the connection between HyDiag HFs
software and Diagnostic Module, which can then interacts in a unique framework.
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Chapter 6

Data Collection and Diagnostic
Module

The flowchart in Fig. 4.2 shows the designed protocol during the HyDiag project
to obtain an automatic and intelligent diagnostic process for PFCS. The Automatic
Test Procedure has been described in its phases in both Chapter 4, regarding in
its testing signals, and in Chapter 5, where the collected measurement channels
analysis and HFs extraction methods have been described. In the paragraph 5.6,
methods and functions to build the HyDiag Report at the end of the HFs extraction
process have been described. It has also been mentioned how this report has been
designed to include also information coming from the Diagnostic Module. The
goal of this last block is to enrich the set of information in the test-report with
indications about the health status of each sub-component. These evidences have
to be extracted from information regarding both the Standard procedure, so called
A-Priori Knowledge (as in Appendix B), and the HyDiag Testing procedure itself.
Fig. 6.1 illustrates the way the A-Priori Knowledge results and HFs Classifier need
to confluence in a third Reasoner, which needs to collect all the data and output
the correct information in the HyDiag Report.

This chapter will in particular focus over the Classifier that is responsible to
detect the health status of each sub-component from the extracted HyDiag HFs.
This module core part includes a pattern recognition algorithm, based on a Super-
vised Machine Learning (SML) . This class of algorithms needs to be trained with a
suitable dataset where both features and target labels have to be reported [58]. The
first paragraph 6.1 describes the methods used to gather the HyDiag reports results
in a unique Diagnostic Database, exploiting robust techniques of data-mining and
collection. The second 6.2 paragraph describes the components failures and how
they have been assigned per each tested unit. These labels are essential for training
and validating the SML candidates. In paragraph 6.3 feature-selection methods are
described for performance improvement of the tested SML algorithms. This step is
particularly important to identify the HFs that are more representative and useful
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Figure 6.1: Diagnostic Module Parts

for a correct supervised failure identification. The last two paragraphs 6.4 and 6.5
are focused on the SML candidate algorithms: the first one describes each consid-
ered algorithm, while the last one shows a classification comparison between these
algorithms.

6.1 HyDiag Reports Database Building
The Classifier module in Fig. 6.1 is responsible to extract a complete overview

of the health status of each unit sub-component, elaborating as input the HFs ex-
tracted during the HyDiag testing procedure. Its core is based on SML algorithm
that needs to be trained in order to assign the correct health-status label over the
tested component. The most characterizing feature of such algorithm is indeed
the necessity to be trained over a significant set of input data, where both data
and labels needs to be well-structured and correctly preprocessed. Therefore, the
HyDiag reports results need to be collected and structured in a unique a stan-
dardized way. Several studies have highlighted the importance of data-collection,
typically considered as a challenging bottleneck, especially if regarding historical
and wrongly-collected data [59–62]. For this reason, a solid data collection frame-
work has been built in Python with the main target to build a unique HyDiag
Database. All the scripts and functions for this purpose are included in a unique
folder db_building and they exploit many functions of the Pandas library to out-
put a complete Dataframe which collects both information from the HFs reports
and from the SLE exchanged components sheets. Fig. 6.2 graphically explains the
developed process to build the final HyDiag Database.

The Python script db_build_hydiag_reports.py has been written in order
to explore the results in the HyDiag Report folder (Fig. 5.71) and collect all the
information in the .csv format files. The final result is the Reports Dataframe,
exported in a local folder in .csv format as well. This final table includes basically
all the metadata about tested units (e.g: PN, SN, FH, test date and hour) and,
most importantly, the same columns of Table 5.5 from the HFs reports. This source
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Figure 6.2: HyDiag Reports building process

of information constitutes the first half of the final HyDiag Database.
The second data source is represented by the SLE Dataframe, which collects

all the information from the SLE repair reports of the tested units. These latter
reports are completed once the units have been re-certified after a complete repair.
In fact, the SLE reports includes all PN of the exchanged parts of the anomalous
components and, additionally, some comments from the technicians about the ob-
served problems during the repairing tasks. The biggest difficulty while reading
these reports is to associate a specific component PN to the exchanged or repaired
part. For example, each sealing is labelled with a specific PN and typically a spe-
cific kind of sealing can be used in different parts of the PFCS. For example, the
Elevator PFC is composed by over 600 parts labelled with different PNs but, as re-
ported in 2.3, twelve main functional sub-components can be identified. The scirpt
db_buil_sle_sbss_merge.py aims to assign per each component PN in the SLE
Repair reports the correct sub-component. In this way, it is possible to retrieve
information about the exchanged or repaired parts in the tested component. In
order to fulfil this task, the script needs to load another fundamental file which
is the Component PNs list. This file has been compiled manually starting from
the technical exploded-view drawings of each PFCS and assigning per each compo-
nent the correct sub-component where it belongs. However, only the constituting
parts of each sub-component have been considered: for instance, only the sleeve
and spring PNs have been assigned to the MSV sub-component, while the relative
sealings have been assigned to a another group of components named "Mechanical
spare parts". This group includes all the components that have been considered
not necessary for the Advanced Diagnostic purposes, such as small sealings, plates,
rosettes and screws. The EHSV represents a particular case in this classification
since it is considered as a Linear Replaceable Unit (LRU): if a failure occurs, it
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PN SN DATE HOUR EHSV RD MSV ROD ACCUMULATOR …

ELVTR XXX 01/01/20 15:00:00 1 0 1 0 0

ELVTR XXX 01/01/20 15:00:00 1 0 0 1 0

ELVTR XXX 01/01/20 15:00:00 0 0 0 1 0

ELVTR XXX 01/01/20 15:00:00 0 1 0 0 1

… … …

Figure 6.3: SLE Dataframe in pivot form

is directly exchanged with a new one without any further repairing or piece-parts
replacement.

Once both the Reports and SLE Dataframes have been exported in .csv format,
they need to be merged to obtain the final HyDiag Database. This process is
developed in the db_buil_rep_clst.py script, exploiting the function merge of the
Pandas Python Package. Due to the different structure of these two dataframes,
the SLE one is converted as a pivot table grouping the table rows according test
information, such as PN, SN, date and hour of the tested units. The pivot-table
shape is illustrated in the scheme of Table 6.3:

The components columns are filled with 1 or 0 according to the exchanged piece-
parts for the reference component. For instance, if the MSV reacting spring has
been replaced and its PN is reported in the SLE report, the corresponding MSV
column value is 1. In this way, according to the values of these cells, it is possible
to evaluate all the main sub-component that have been fixed or replaced before re-
certifying the unit. In order to keep also the information about the single exchanged
parts, the corresponding portion of SLE Dataframe per each unit is extracted and
exported in .csv format in the corresponding report folder. This task is performed
running the script db_build_sle_export.py in the db_building root folder.

Fig. 6.4a and 6.4b illustrates the distribution of the collected results in the Hy-
Diag Database both in terms of test-type and date. Observing the plots, 165 Hy-
Diag tests have been collected for both Entry (E) and Exit (A) tests from September
2019 to April 2020. Around 64% of the overall collected results regards the Elevator
PFCS, which is technically the most complex unit in terms of installed components.
The discrepancy between E and A tests can be explained considering all the units
which have been tested during the deployment phase of the HyDiag procedure in
the LHT shops. More than 50% of the overall Elevator tests have been collected
during the month of February.

Due to the higher number of results and its structural complexity, the Elevator
PFCS has been chosen as reference unit to tune the Classifier algorithm. For this
reason, its portion of HyDiag Dataframe has been extracted with proper informa-
tion about the extracted HFs and exchanged components.
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Aileron Elevator Spoiler

(a) Collected results grouped per test-type

(b) Collected results grouped per date

Figure 6.4: HyDiag Database analysis

6.2 Failure labels assignment
The previous paragraph has described the methods to collect and organize in

a unique standard all the results from the HyDiag testing procedure, in terms of
extracted HFs per each unit component. As previously reported, the built HyDiag
Database has been used as benchmark to test different supervised machine-learning
algorithms in order to build the Classifier part within the complete Diagnostic
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Module. This class of algorithm is designed to extract patterns and similarities in
a given dataset, which includes both characterizing features and proper labels [13,
58, 63, 64].

In this thesis, a data-driven approach has been adopted to tune and test all
the candidates algorithms for the Classifier module. This kind of approach dif-
fers from the model-based one since it is founded over test-bench measurements
obtained during an experimental campaign. Both pros and cons of such approach
have to be considered. On the one hand, the data-driven approach ensures a direct
link with the tested systems, while the model-based one requires a long phase of
models development, tuning and validation. On the other hand, the data-driven
approach requires a considerable amount of data which is usually difficult to col-
lect due to many experimental factors while, in the model-based approach, the
simulations can potentially ensures any quantity of necessary data. Furthermore,
especially for diagnostic purposes, the model-based approach is typically used since
it is possible in the simulation environment to inject any failure with the desired
level of degradation, especially if the model is a physical high-fidelity one [17, 18].
For a data-driven approach it would be necessary to collect these experimental re-
sults per each possible failure within the tested units. Looking at the structural
complexity of the target Elevator unit, this task would require a long-lasting exper-
imental campaign and a detailed reporting of the observed failures. The graphs in
Fig. 6.4a and 6.4b illustrate how the experimental campaign in the LHT shops has
not ensured the forecasted amount of data, due to the abrupt stop after February
2020. However, the collected measurements have been valued through a detailed
failure-detection campaign over three fundamental units components: the EHSV
and its connected RD and the MSV. For instance, for both RD and MSV it has
been possible to completely dismount each component to check the health status
of each piece-parts. Thanks to the support of the LHT workshop technicians, it
has been possible to experimentally connect any anomalous pattern of the collected
experimental results with an observed component mechanical degradation. An ex-
tensive description of the classified failures through the extracted HFs is described
in the following paragraphs per each component.

6.2.1 Servovalve Failures
As extensively described in Chapter 2.3, the EHSV represents the interface

component between control and actuation parts of the PFCS. Its complex structure
and crucial function makes this component particularly interesting in Diagnostic
field. Several publications in literature reports intensive studies over possible root
of failures using a model-based approach [65–70]. Also within the HyDiag Project,
an extensive research has been conducted over the effectiveness of the extracted
HFs from the HyDiag testing protocol, exploiting a developed high-fidelity model
of the Elevator PFCS. The structure and validation of this model are both reported
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Figure 6.5: EHSV structure

in [17] and [18]. Both these works are focused on the failure identification of the
EHSV, injecting different levels of degradations within this component: in [17] a
preliminary binary classification analysis of the EHSV health status is reported,
while in [18] a more complex feature analysis per class of detected failure have been
conducted over simulation campaign.
The results in this latter work have laid the foundation for the correct failure
labelling of the EHSV component from real experimental data. However, it has not
been possible to correctly verify if the simulated outcomes or failure hypothesis,
since it has not been possible to disassemble the EHSV and check the health status
of each sub-component. Therefore, according to the standard procedure, the EHSV
failure classification can be considered as binary (Serviceable vs Unserviceable),
without a deeper analysis of the inner status of each sub-component shown in 6.5.

However, through the collected HFs in the HyDiag Reports, three recurrent
anomalous behaviours have been observed that can point one of the two highlighted
parts (red circles) in Fig. 6.5 as failure root:

1. Failure 1: the raw signal from the EHSV LVDT presents high level of noise
compared with the nominal carrier frequency fsupply. As previously antici-
pated, this anomalous behaviour can be detected from the spectral density
analysis of the raw channel Usek in Sequence n.15 (Fig. 5.49). It has been ex-
perimentally observed from the collected results that typically the noise peaks
are located at frequencies higher than the nominal one, leading a possible elec-
trical insulation failure of the LVDT itself, or in its connection. However, it
cannot be excluded to find anomalous noise peaks at on the left side of the
typical PSD plot in Fig. 5.49, which would be a symptom of "low-frequency"
spool oscillation. At current status, such anomaly has not been measured in
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the data sample.

2. Failure 2: the second recurrent anomalous behaviour has been detected
comparing the Sequence n.26 Hysteresis plot (Fig. 5.68). In particular, it
has been observed that, comparing the base-line plots of re-certified units with
first time tested ones, some of them where affected by a significant decrease
of gain Ksv, measured as average slope of the current-spool position curve.
This trend testifies a progressive insensitivity of the EHSV to supply current
variation. This anomalous behaviour can be due to a stiff jet deflector which
does not move freely as it should, due to an strong constant action of the
RD or an unbalanced position of the deflector plate itself. Unfortunately, as
previously mentioned, it has not been possible to dismount the EHSV stages
to check the effectiveness of these hypothesis. Therefore, in the current work,
this failure would be labelled but it may need an additional experimental
verification.

3. Failure 3: the EHSV response to a current step-command presents and
anomalous overshoot. During the HyDiag Test, several steps in open or closed
loop are used to extract the dynamic response of the unit. In particular, in
Sequence n.6 it is possible to extract both the EHSV LVDT position dur-
ing the recentering strokes from totally extracted and retracted positions.
These open loop signals are particularly important to extract information
of both EHSV and RD health status. Regarding the first component, an
under-damped EHSV spool position overshoot may be a symptom of exces-
sive stiffness of the EHSV feedback spring or a progressive wearing of the
contact surface between spool and spring.

6.2.2 Recentering-Device Failures
An extensive analysis of the RD health status has been reported in [49], where

two recurrent degradations have been observed:

1. Failure 1: wearing in the contact surface between RD Bell-Crank and EHSV
mechanical input. In normal operating conditions, a small free-play between
these two contact surfaces needs to be guaranteed in order to allow the Bell-
Crank to apply the correct load to recenter the EHSV jet-deflector position.
However, a large degradation can bring a sensible reduction of this nominal
load. In [49], a high-fidelity model of the RD is presented and a dedicated
analysis about load reduction at increasing free-play is reported. Fig. 6.6
shows a schematic CAD drawings of the degraded contact surface and two
pictures from exchanged components.

2. Failure 2: wearing in the contact surface of the main-body actuator housing
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and the RD drive-shaft. This latter component rotation is mechanically con-
nected with the main ram position (through the external leverage, visible in
Fig. 2.8). This rotation is not supported by any bearing, therefore it causes a
gradual degradation of the relative housing hole where it needs to be located.
An excessive degradation may generate a misallignement of the drive-shaft
influencing the complete RD behaviour. In the first figure in Fig. 6.7, the
typical degraded area is highlighted in yellow, photographed in the other two
figures.

3. Failure 3: the RD is not properly connected to the EHSV, therefore it does
not recenter the main-rod in case of null supply current. This problem may
be due to a loss of contact between two components of the RD mechanical
chain. In this case, the RD needs to be completely disassembled in all its
parts and properly re-connected to the EHSV mechanical inputs.

Figure 6.6: RD Bell-Crank degraded surface [49]

Figure 6.7: RD Control Shaft degraded surface [49]

These recurrent failures have been catalogued observing the wearing status of
substituted components, coming directly from the LHT repairing shops. Beside
these two recurrent failure, it is important to remember that the RD is the only
Elevator component that can be adjusted and recalibrated during the test proce-
dure. Nowadays, this procedure is manually performed by the LHT technicians.
As previously described in Chapter 3, the HyDiag protocol purposes an innovative
adjustment procedure with collaborative robots. More details about this topic are
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reported in [35, 49, 50]. This particular characteristic make the RD failure classifi-
cation more difficult than other components since it is necessary to discern between
degraded RD, affected by the listed wearing conditions, and RD which simply need
a recalibration. The chosen criteria to distinguish these cases and correct failure
label assignment are reported in 6.2.4.

6.2.3 Mode Switching Valve Failures
A comprehensive study about the MSV health status has been described in [33].

Compared to the RD mechanical linkage, the MSV presents a simpler structure as
shown in the left figure in Fig. 6.8. Two possible recurrent failures have been
observed:

1. Failure 1: MSV spring degradation, which can lead to out-of-limit end stroke
positions or slower dynamic response during the switching from active to
damping mode (and vice-versa).

2. Failure 2: corroded damping-circuit, due to an excessive wear of MSV spool
(for instance in the right photo in Fig. 6.8) or from the upper-stream damping
circuit.

Figure 6.8: RD Bell-Crank degraded surface [33]

6.2.4 Failure Labels assignment criteria through HFs
The described failures in paragraphs 6.2.1, 6.2.2 and 6.2.3 need to be cor-

rectly assigned to the observed measurements in the HyDiag Database. This task
represents one of the essential blocks of the workflow implemented in the ded-
icated Python script adv_diagnose_classification. This code represents the
current development status of the Classifier module in Fig. 6.1, starting from
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START

Select unit PN and 
target component

Load HyDiag Database and
extract the PN row

Build pivot Table with the 
HFs as columns 

Load the component HFs list 
from appropriate .csv file

Component HFs

Store in a different dataframe 
the results from units that have 
passed all the tests: Baseline DF

Assign failure labels with 
dedicated function

END

Figure 6.9: Failure labels assignment flowchart

the Database preprocessing to the tuning of four ML candidates. In this para-
graph, the data processing and failure assignment criteria through the correspond-
ing HFs are described. The flowchart in Fig. 6.9 explains the steps implemented in
adv_diagnose_classification for automatic failure labels:

It is important to notice that the flowchart steps have been designed with the
idea to extend this procedure per all the project use-cases and their specific sub-
components, as soon as a considerable amount of units are tested with the HyDiag
procedure. In order to keep the code scalable and re-usable for the other project
use-cases, the first flowchart step allows the user to choose the unit PN and target
component. For instance, as already mentioned, the analysis is focused on the Ele-
vator results and in particular on three main sub-components, which are considered
as sensitive root of failure: EHSV, RD and MSV.

Once unit and target component have been chosen, the HyDiag Database is
loaded and filtered according to the unit PN. Afterwards, its shape needs to be
changed according to Fig. 6.10. According to the chosen PN, the unit table rows
are extracted and a new table is built, setting the collected HFs as columns. Each
row index is defined creating a unique ident-code from the test information related

187



Data Collection and Diagnostic Module

PN SN DATE HOUR … TESTTYPE HF UDM VALUE …

ELVTR XXX 01/01/20 15:00:00 E Sm mm/s x

ELVTR XXX 01/01/20 15:00:00 E Sm’ mm/s y

ELVTR XXX 01/01/20 15:00:00 E Delta C Mm z

ELVTR XXX 01/01/20 15:00:00 E Q1 l/min k

… … …

ALRN ….

PN_SN_DATE_HOUR_TESTTYPE HF1 HF2 HF3 HF4 … Target

ELVTR_XXX_DDMMYY_hhmmss_E x1 y1 z1 k1 … Failure Label 1

ELVTR_XXX_DDMMYY_hhmmss_A x2 y2 z2 k2 … Failure Label 2

ELVTR_AAA_DDMMYY_hhmmss_E x3 y3 z3 k3 … Failure Label 1

ELVTR_AAA_DDMMYY_hhmmss_A x4 y4 z4 K4 … Failure Label 3

…

PN

HyDiag Database

HFs Pivot Table

Figure 6.10: HyDiag Database reshape

columns of the HyDiag Database. In this way, the final df_hfs dataframe contains
as much lines as the number of tests with the HyDiag procedure. It is important
to notice that both Entry "E" and Exit "A" tests are taken into account, therefore
it the final pivot table would include the results from the consecutive tests before
and after repairing tasks in the maintenance-shops (as reported in Fig. 4.18). In
this way, it is possible to collect results from both un-serviceable and recertified
units that are essential to identify the nominal baseline behaviour. In fact, the
re-certified units should have passed all the standard tests and therefore can be
used to identify the nominal HFs patterns that facilitate any failure identification.
In the df_hfs rows related to re-certified units are stored in a separate dataframe
and they are afterwards used to identify acceptable ranges for the additional HFs
extracted from the HyDiag Sequence. For instance, Sequence n.13 has been created
ad-hoc in order to extract the linear nominal RD behaviour. All the HFs that can
be extracted from this signal are not reported in any maintenance manual, but they
have been properly designed in this HyDiag Sequence. Therefore there is not any
indication about "acceptable" ranges, unless these limits can be extracted by the
experimental results, exploring the data distribution of these HFs in the recertified-
units dataframe. In the flowchart in Fig. 6.9, the red arrow shows how the fourth
step output is then useful to assign the failure-labels in the last one.

Once the complete pivot table has been defined and the re-certified units iden-
tified, the last step consists in the correct failure label assignment. This specific
task has been implemented in the dedicated class_definition function. This
particular script assigns the relative failure hypothesis to the proper pivot-table
row, creating an additional target column for the chosen component. For instance,
the corresponding EHSV Failures in 6.2.1 are labelled according to Table 6.1:
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Table 6.1: EHSV Failures Labels

Class Failure Label
Baseline Serviceable EHSV EHSV OK
Failure 1 EHSV LVDT too noisy EHSV LVDT NOISY
Failure 2 EHSV insensitivity to supply current EHSV GAIN TOO LOW
Failure 3 EHSV excessive step-overshoot EHSV TOO STIFF

Beside these three observed Failures, for a correct classification, it is necessary
to add specific criteria for serviceable units identification. This task needs to be
executed for all the investigated components, in order to tune a Classifier which is
able to distinguish failure classes from nominal serviceable behaviour.

The function class_definition contains all the metrics to compare the EHSV
HFs with the relative baseline values and assign automatically the correct failure-
label in the target column in the HFs pivot table. Compared to the traditional
troubleshooting instructions, which determines whether a component needs to be
replaced or not, this automatic failure-labels assignment provides the following
benefits:

1. Within the class_definition function, both traditional and ad-hoc HFs are
contemporary considered in order to assign the correct label. During the tra-
ditional test procedure, each HF is characterized by its own troubleshooting
instruction without considering any correlation with other extracted results.
An improvement the class_definition function provides is the possibility
to translate with logical conditions the failure hypothesis for the relative com-
ponent, considering more HFs contemporary. The extra-CMM HFs bring a
substantial help in the label assignment process, since they have been de-
signed specifically for the target component. For instance, the example code
below shows how two traditional HFs (U9 and U10) and two extra-CMM ones
(snr_usek and f_peak_usek_null) are contemporary taken into account to
assign the proper failure label (EHSV LVDT NOISY).

Listing 6.1: EHSV LVDT NOISY label assignment
df.loc[((abs(df[’U9’]) < U_min) | (abs(df[’U9’]) > U_max)) &

((abs(df[’U10’]) < U_min) | (abs(df[’U10’]) > U_max)) &
(abs(df[’db_sv’]) <= db_sv_max) &
(
((df[’snr_usek’] <= snr_usek_min) &
(df[’f_peak_usek_null’] > f_peak_ref)) |

(df[’snr_usek’] > snr_usek_max)
), comp] = ’EHSV LVDT NOISY’
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These criteria have been defined per each failure hypothesis of each target
component, and they represents the computational translation of the ob-
served anomalous behaviour in paragraphs 6.2.1, 6.2.2 and 6.2.3, through the
extracted HFs.

2. Observing the example code above, it can be noticed that both traditional and
extra-CMM HFs are compared with reference values. Similarly to the stan-
dard protocol, it is necessary to define acceptable ranges that allows to discern
between healthy and faulty behaviour. Considering the traditional HFs, such
as U9 and U10 in the example (see Fig. 5.46 for more details about these
HFs), these reference values might be both the traditional CMM limits but it
is also possible to include the "sweet-spots" ranges identified from the Histor-
ical Database. More details about this analysis are reported in Appendix B.
A different approach needs to be taken for the extra-CMM HFs. In the above
example, the reference values for snr_usek and f_peak_usek_null are eval-
uated from the relative HFs distribution from the recertified units. Taking as
reference these units, a baseline behaviour can be extracted especially from
the units which are labelled as serviceable. This link is represented in the
flowchart in Fig. 6.9 by the red arrow.

3. The assignment criteria may always be easily update per each target compo-
nent. The numbers of failure labels that have been coded in class_definition
strictly depends on the number of "observations" in the current set of data.
Due to the relatively low number of collected measurements, it has been pos-
sible to observe the anomalous behaviours described in paragraphs 6.2.1, 6.2.2
and 6.2.3. However, increasing the number of collected data, it would be pos-
sible to define new failure-labels and code them with conditional statements
as before. Furthermore, an higher number of serviceable units improves also
the HFs limits definition.

Tables 6.2 and 6.3 reports the equivalent failure-labels assigned in case of RD
or MSV as target component. As mentioned in 6.2.2, the RD is the only Elevator
component that can be recalibrated during the test procedure. Therefore, the units
with RD to be adjusted have not been considered in the following failure-labels
assignment, since they cannot be considered as units with a degraded RD.

The pie plots in Fig. 6.11a, 6.11b and 6.11c show the population percentages of
each class per target component. These charts highlights how actually, considering
the failure labels as mutually exclusive classes, the classification algorithms would
deal with an unbalanced problem. This observation needs to be taken into account
especially when these algorithms needs to be tuned and compared according to their
performance metrics, which are usually highly affected by the number of points per
each class. More details about these analysis are reported in paragraph 6.5.2.

190



6.2 – Failure labels assignment

EHSV LVDT NOISY

14.3%

EHSV GAIN TOO LOW

14.3%

EHSV OK

35.7%

EHSV TOO STIFF

35.7%

Classes percentage for component target: ehsv

(a)

RD OK

14.3%

WEAR OF RD CONTROL SHAFT

31.7%

WEAR OF RD BELL CRANK

41.3%
RD DEFECTIVE

12.7%

Classes percentage for component target: rd

(b)

MSV OK

33.0%

MSV SPRING TO BE CHECKED

47.6%

DAMPING CIRCUIT FAILURE

19.4%

Classes percentage for component target: msv

(c)

Figure 6.11: Target Component Classes populations
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Table 6.2: RD Failures Labels

Class Failure Label
Baseline Serviceable RD RD OK
Failure 1 Bell Crank surface wearing WEAR OF RD BELL CRANK
Failure 2 Control shaft surface wearing WEAR OF RD CONTROL SHAFT
Failure 3 Disconnected RD RD DEFECTIVE

Table 6.3: MSV Failures Labels

Class Failure Label
Baseline Serviceable MSV MSV OK
Failure 1 MSV Spring to be checked MSV TO BE CHECKED
Failure 2 Problem in the up-stream circuit DAMPING CIRCUIT FAILURE

6.3 Features Selection
As previously mentioned in Chapters 4 and 5, the Sequences have been designed

in order to test all the unit components that are possible source of failures. Per each
of them, both traditional and additional ad-hoc HFs have been defined and needs
to be isolated from the whole HFs basket. However, some of them can be used to
identify failures of more than one component and therefore need to be considered
accordingly.

The pivot table columns in Fig. 6.10 includes all the defined HFs that can be
used for failure identification of the target component. This dataset represents the
starting point for both failure-labels assignment and evaluating the ML classifier
performance for failure identification. However, it is possible that some of the
considered HFs are more representative for classification tasks than others. In
Data-Science application, dimensionality reduction is a key technique that can give
several benefits for Classification purposes. As reported in [71], feature selection
techniques facilitate data visualization and understanding, but also avoid the "curse
of dimensionality" problem [72–74]. There are typically three families of feature-
selection techniques [75]:

1. Filter Methods: they adopt variable ranking techniques for proper selection.
These methods do not depend from the used Machine-Learning algorithm, but
they apply statistical evaluations over the feature relevance to discern between
different classes. From the computational point of view, these methods are
fast and less prone to classification over-fitting.

2. Wrapper Methods: in these techniques the feature selection is based on a
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(a) Filter Methods (b) Wrapper Methods
(c) Embedded Methods

Figure 6.12: Feature Selection Methods [79]

specific classification algorithm that needs to be fit on the dataset. The strat-
egy is to use a subset of variables that optimize the classification performance.
These methods can be divided in two families:

• Sequential Selectors: these algorithms add or remove features (forward or
backward selection) from the complete set of variables, until the classifier
performance is maximized with the minimum subset of optimal features.

• Heuristical Selectors: techniques like Genetic Algorithms create variables
subsets "by searching around in a search-space or by generating solutions
to the optimization problem" [75].

3. Embedded Methods: in this case, the feature selection is directly imple-
mented in the classifier training process. These techniques take into account
the interaction between feature selection and classifier (like the wrapper ones)
using regularization strategies, which make these algorithms less prone to
overfitting. In particular, for linear classifier, the three main types of regu-
larization are LASSO (L1 regression), RIDGE (L2 regression) and ELASTIC
NETS [76–78]

Choosing the correct feature selection algorithm is an important step that needs
to be taken evaluating all the pro and cons of each method-family and more specifi-
cally each algorithm in the chosen group of methods. Table 6.4 reports the strengths
and weaknesses of each group, as reported in [80].

In addition to the pros and cons listed in Table 6.4, the choice of feature-selection
algorithm should depend on the quality of available data and the selected classifier
to be tested. Currently, the core SML algorithm for the Classifier module has not
been chosen yet: in fact, in paragraph 6.4 four possible candidates are presented
and compared. Therefore, a Filter Method has been preferred to both Wrapper
and Embedded techniques. In this way, it is possible to have a first insight about
the collected HFs and how these can statistically influence the assigned failure-
label. The statistical metric to be used for filter-based selection needs to be chosen
according to the kind of output the SML has to distinguish. The failure-labels
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Table 6.4: Feature Selection Methods Comparison

Class Methods Pro Cons
Filter
Methods

F-Score, Chi square,
Mutual Info

These methods are typ-
ically simple and low
cost. Particularly suit-
able for first investiga-
tion and if the classifier
has not been chosen yet.

Typically based on
assumptions about the
probability distribution
of each feature, which
are not always verified.

Wrapper
Methods

Forward and Back-
ward Selection

These methods are tai-
lored on a specific clas-
sifier and they maximize
the ML algorithm perfor-
mance.

Usually they are time-
consuming and not par-
ticularly suitable in case
the classifier need to be
modified.

Embedded
Methods

L1 or L2 regulariza-
tion

These techniques avoid
overfitting by adding a
penalty to the objective
function per each addi-
tional feature.

The regulator choice
depends on the kind of
classifier (linear or not).
Furthermore, since the
penalties modify the
classifier optimization
function, they need to
be added during the
implementation.

reported in Tables 6.1, 6.2 and 6.3 are categorical variables, due to the limited and
fixed number of possible values. Following the guidelines in [81], considering the
numerical HFs inputs and categorical labels output, the ANOVA F-value metric can
help in the selection of the best subset of optimal HFs. As reported in [82], ANOVA
(Analysis of Variance) can be used to evaluate how good the features are for class
separability. It is a collection of statistical models and their associated procedures
used to analyse the difference among group means. The ANOVA method compares
the null hypothesis H0 of "no difference among the classes means" [83] against the
opposite one H1 where at least one class mean differs.

H0 : µclass1 = µclass2 = ... = µclassM (6.1)
To verify one of these two hypothesis, it is necessary to establish a statistic

metrics which allows to compare "the class-to-class variance over the within-class
variance" [84]. This metric corresponds to the F-ratio. For feature selection, the
F-ratio (or Fisher Discriminant Ratio) needs to determine the subset of optimal fea-
tures that on the one hand maximize the distances between data points in different
classes and, on the other, minimize the distance between the same class points [85].

Fig. 6.13 shows an example to define the Fisher Discriminant Ratio for a binary
classification. The red and blue classes are plotted according to two reference
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features on the horizontal and vertical axes. From the distribution plots, it can
be assert that feature over the horizontal dimension is a better separator than the
vertical one, since the classes distributions do not overlap. Mathematically, this
observation is translated considering that:

• The distance between the mean values over for the horizontal feature is bigger
than the vertical one;

• The variance of each single class over the horizontal feature is lower than the
vertical one.

In order to calculate the F-score per each j-th feature and evaluate the best
subset of indicators, it is necessary to evaluate:

• µj
k and σj

k: respectively the mean and standard-deviation of the k-th class of
the j-th feature;

• µj and σj: mean and standard-deviation of the whole j-th feature, considering
all the available data points.

Considering M possible classes, each of them having nk number of points, the
j-th feature F-score xj is calculated as:

F (xj) =
∑︁M

k=1 nk(µj
k − µj)2

(σj)2 (6.2)

where (σj)2 = ∑︁M
k=1 nk(σj

k)2. Significant values of the F-ratio indicates that, for
the given feature xj, the class means are heterogeneous, therefore it is statistically
relevant since it excludes the null hypothesis H0 in Eq. 6.1 and validates the oppo-
site H1 one. Establishing a reference value of F-score depends on both the number
of classes and samples. In particular, if the null hypothesis H0 of the ANOVA
method is fulfilled, then the F-ratio should follows an F-distribution. In this case
of study, the number of samples and classes are fixed, therefore each feature can
be labelled with its own F-ratio. However, increasing the number of measurements
and the classes (which means the possible failure-labels), the F-ratio would nec-
essary change: the distribution of all the possible features F-ratio depending on
number of classes and points follows the so called Fisher-Snedecor distribution (or
F-distribution). In particular, the Fisher-Snedecor distribution describes the how
F-score depends on the degree-of-freedom of the numerator between-class variance
dfb and on the same denominator within-class variance degree-of-freedom dfw, as
shown in Fig. 6.14. Since it is assumed the validity of H0, it is possible to check the
F-ratio position in the traced F-distribution to evaluate its probability p − value:
in this way, it is possible to evaluate how probable the F (xj) per each feature under
the assumption of null hypothesis. If this probability is low enough, according to

195



Data Collection and Diagnostic Module

Figure 6.13: Fisher Linear Discriminant for class separation

a certain threshold, it means that the F (xj) is strong enough to discard the null
hypothesis H0 and validate the opposite one H1, therefore being statistically rele-
vant. In this work, each feature ratio F (xj) would be significant if the p − value
associated with it is less than 5%.

To sum up, the ANOVA F-score method is used as filter-feature selection
method, ranking each collected HFs in the df_hfs according to associated proba-
bility per each ratio F (xj) to confute the null hypothesis H0 of equal mean between
the classes. In this work, the classes are defined through the failure-labels that can
be assigned per each target component, and each HF column of the pivot table rep-
resents a peculiar feature to be tested with the ANOVA method. This algorithm
results particularly robust even if the hypothesis of normally distributed data is
not fulfilled [86], and this can be considered an advantage for experimental appli-
cations. Howeveìr, this filter method considers each feature without taking into
account any correlation between them: as univariate method, it is possible to pick
a subset of optimal features with some redundant one. Therefore, the complete
process for feature selection can be divided in three steps:

1. Eliminate redundant features that are linearly dependent;

2. Normalize the HFs columns in the df_hfs table;
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Figure 6.14: F-Distributions shapes depending on its degrees of freedom

3. Execute ANOVA F-score for HFs selection

The Multicollinearity is a common issue to be solved in case of multi-dimensional
dataset, where two or more variables are highly correlated [87–89]. Having cou-
ples or groups of linear dependent features may create misleading results from the
trained classifier, especially in case of linear-based algorithm. Multicollinearity ex-
ists if couples of variables are highly correlated, but even between one feature and
a linear combinations of others. In general, it is possible to assert that correla-
tion is a particular case of multicollinearity, but the vice-versa is not always true.
However, for a preliminary data exploration, it has been checked the linear correla-
tion between couples of HFs per each target component. This evaluation has been
conducted calculating the Pearson ratio per each single HF against all the others:

ρ = cov(xixj)
σxi

σxj

(6.3)

where the numerator includes the covariance cov(xixj) between two generic
features xi and xj, and the denominator is the product of their standard deviations
σxi

and σxj
. This coefficient is widely used to evaluate the linear dependency

between samples, normalizing the covariance value in order to have −1 < ρ < 1.
The closest this values it to 1, the more the features have a full positive correlation
and, vice-versa, the features are negatively correlated in ρ is close to −1.

The plots in Fig. 6.15a, 6.15b and 6.15c shows the correlation Heatmap of the
characterizing HFs per each target component. The HFs have been reported on
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both vertical and horizontal dimensions and coloured according the colour-scale on
the right side of each diagram. Each square in the resulting diagonal matrix is
coloured from blue to red according to the value of ρ: the blue squared identify the
negatively correlated HFs, while the red ones are the positive correlated ones. The
idea is to consider all the couples of HFs that presents a Pearson score higher than
the threshold |ρref | = 0.9: per each of these couples, one HFs is arbitrary excluded
in order to exclude the multicollinearity between dependant features. For instance,
considering the RD Correlation Heatmap in Fig. 6.15b, it is possible to observe a
strong correlation between the recentering positions S2 and S2′. In fact, it has been
observed from the experimental data how these features are always contemporary
within or outside the acceptable boundaries. Therefore, considering this HFs couple
does not provide any additional information than taking into account just one of
them. For this reason, one of them can be arbitrary excluded from before applying
any feature-selection method for optimal HFs subset isolation.

Once the highly-correlated features have been excluded, it is necessary to scale
the remaining HFs in order to make them comparable. The HFs columns in the
df_hfs table are characterized by different unit of measure, according to the signal
from which they are extracted. Therefore, feature scaling is an essential step to
make the HFs readable from any feature-selection and further classification algo-
rithm. Three main scaling methods are reported in literature [90]:

1. Min-Max Normalization: the scaling references are the minimum and maxi-
mum column values, as reported in Eq. 6.4:

HFnorm = HF − min(HF )
max(HF ) − min(HF ) (6.4)

2. Mean Normalization: compared to Eq. 6.4, the numerator reference value is
the mean one:

HFnorm = HF − HF

max(HF ) − min(HF ) (6.5)

3. Z-Score Normalization: this method allows to scale all the HFs in order to
have zero-mean and unit variance. In this case, the reference scaling values
are the distribution mean and variance:

HFnorm = HF − HF

σHF

(6.6)

Each column of the df_hfs table has been scaled using the Z-score Normaliza-
tion, using the StandardScaler function of the Scikit-Learn python package. As
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Figure 6.15: HFS Correlation Heatmap

reported in [91], this module a "wide range of state-of-art machine learning algo-
rithms for medium-scale supervised and unsupervised problems". Due to its ease
of use, large documentation and applications, it has been adopted in this work as
the main source of functions and algorithms to solve data-exploration issues and
compare different possible classifiers.

Once all the not-redundant remaining HFs have been normalized, the ANOVA
F-score method for feature selection is launched to evaluate the most promising
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HFs for the assigned classes, defined by the target component failure labels. As
previously reported, the ratio in Eq. 6.2 needs to be evaluated per each HF and
evaluate the corresponding p − value of the relative F-distribution, which depends
on the number of classes and data-points. These tasks are a implemented in the
SelectKBest(f_classif) function of the scikit-learn python package. The code
in Listing 6.2 is extracted from the main adv_diagnose_classification, and it
shows the steps that are used to extract the best_hfs set of feature that present a
p − value lower than 5%.

Listing 6.2: ANOVA F-score feature selection
# Define ANOVA F-score feature-selection method and fit it over

complete normalized dataset and target failure-lables column
selector = SelectKBest(f_classif)
selector.fit(df_hfs_std[hfs_columns], labels_col)

# Extract p-value associated to each F-ratio and collect them in a
dataframe

scores = selector.pvalues_
hfs_score = pd.DataFrame(list(zip(list_hfs_uncorr, scores.tolist())),

columns=[’HFs’, ’Score’])
hfs_score = hfs_score.sort_values(by=[’Score’], ascending=False)

# Select features according to a set p-value treshold
THRSLD = 0.05
best_hfs = hfs_score[hfs_score[’Score’] <= THRSLD]

The column labels_col collects all the failure-labels in Tables 6.1, 6.2 and 6.3
for the selected target component. Fig. 6.16a, 6.16b and 6.16c illustrates the most
promising subset of HFs per each component classification, according to the ranked
logarithmic p−values extracted from the ANOVA F-score selector. These HFs have
been summarized in Table 6.5. Looking at these plots and to the summary table, it
is possible to notice how, per each target component, the most promising features
identified by ANOVA F-score method are actually a mix between both traditional
and extra-CMM HFs. This first observation suggests that, in order to have a better
failure-class separation, it is important to consider more features contemporary and
how the extra-CMM ones are significant. Furthermore, some of them are useful in
more than one classification problem. For instance, the RD characteristic deadband
amplitude db_rec can be exploited for both failure classification of EHSV and RD,
highlighting the strict dependency between these two components.

Once the most promising HFs have been extracted, the respective columns of
the normalized HFs dataframe needs to be extracted, according to the target com-
ponent. At this point, this set of necessary HFs and correct failure labels represents
the input required by all the SML candidate algorithms to be tested.
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Figure 6.16: Target component HFS ranked according to −log10(p)
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Table 6.5: Selected HFs from ANOVA F-score per each component classification

Component Selected HFs
EHSV f_peak_usek_null, U0, rmse_error_dem, db_rec,

K_sv, ov_down_cl, U11, ov_down_rn, rt_rise_en,
ov_rise_rn, U9

RD ov_rise_rn, ov_down_en, db_rec, rt_rise_rn,
dt_elbow, k_rec, U11, rt_down_en

MSV T2, P5 − P2, T1, U4, U3, rt_down_msv_ev2,
rt_down_msv_ev1, Q2, Q2′

6.4 Classification Algorithms
Supervised Machine Learning (SML) algorithms have been widely used in sev-

eral engineering fields, with both data-driven and model-based approaches for di-
agnostic and prognosis purposes. For instance, in [92] four supervised learning
techniques have been analysed over the same problem in order to give insights
over the algorithm choice. In the mechanical world, these techniques have been
widely exploited to identify failures or predict the remaining useful life of critical
devices, such as bearings [93–96], electric motors [97–100] and electro-hydraulic
servo-actuators. In particular, for this latter system, several studies have been
conducted to implement effective failure identification algorithm, based both on
model-based techniques [8, 9, 67] and data-driven approach based on experimental
data [29, 101, 102]. Within the HyDiag project framework, a preliminary com-
parison of possible classification algorithm has been conducted in [32], based on
simulated results via a High-Fidelity model. Four of the algorithms in [32] have
been tested also using the experimental results in the HyDiag Database, in order
to establish the accuracy of each algorithm according to the assigned failure-labels.
Mathematically, the following notation can be used to define a SML algorithm for
classification.

Considering a dataset with m samples {x(i), t(i)}i=1,..,m where:

• x(i) = (x(i)
1 , x

(i)
2 , ..., x(i)

m ) is the vector of the corresponding n features that are
collected per each x(i) sample;

• t(i) = (t(i)
1 , t

(i)
2 , ..., t

(i)
K ) is the vector containing the possible K classes to define

In this work, the vector x(i) contains the extracted HFs and t(i) includes all
the assigned failure labels per each target component. In case the t

(i)
l classes are

mutually exclusive, the classification task is a multi-class problem. A SML algo-
rithm is built in order to output a prediction y(i) of each sample is order to reach
the closest optimal solution y(i) ≈ t(i), through a proper function h(x(i)). Each of
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Figure 6.17: Sigmoid Function

the described algorithm in paragraphs 6.4.1, 6.4.2, 6.4.3 and 6.4.4 describes more
in detail the adopted function per each candidate Classifier.

6.4.1 Logistic Regression for Classification
As reported in [91] documentation, the Logistic Regression algorithm is part of

the linear model for classification, where the linear function h(x(i)) can be written
as in Eq. 6.7:

y(i) = h(x(i)) = θ0 +
n∑︂

j=1
θjx

(i)
j = θT x(i) (6.7)

where θ = (θ0, θ1, ..., θn) represents the vector of linear coefficients. These pa-
rameters are obtained minimizing the cost function, defined as the sum of squared
errors between the actual target t(i) and the predicted y(i), as reported in Eq. 6.8:

J(θ) =
m∑︂
i

(t(i) − y(i))2 =
m∑︂
i

(t(i) − θT x(i))2 (6.8)

In this view, the Logistic Regression algorithm belongs to the class of Gener-
alized Linear Model, since it calculates the probability of y(i) to be assigned to a
specific class, through an activation sigmoid function, that is by definition the logit
inverse function:

p(y(i)) = logit−1(θT x(i)) = 1
1 − e(θT x(i)) (6.9)

The function in Eq. 6.9 can be written in terms of probability of correct classi-
fication p and its opposite value q(y(i)) = 1 − p(y(i)). This ratio basically explains
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Figure 6.18: Logistic Regression probability contours [103]

the odds of a certain feature combination results to be assigned correctly or not.
Mathematically:

θT x(i) = log

(︄
p(y(i))
q(y(i))

)︄
(6.10)

Typically, the ratio p/q is known as Odds ratio: the Eq. 6.10 shows clearly how
in the Logisitic regression the features combination is linear to the logarithm of the
output variable odd ratio. Accordingly to the Eq. 6.10, the cost function in Eq.
6.11 can be written as:

Jce(θ) =
m∑︂
i

(︄
t(i) − log

(︄
p(y(i))
q(y(i))

)︄)︄2

(6.11)

The equation 6.11 is typically referred as cross-entropy function, and it will be
particularly important for tuning of MLP classifier in paragraph 6.4.4. Minimizing
the cost function, it is possible to obtain the most likely values of parameters θ,
given the assigned a-priori labels {t(i)}i=1,...,m.

The plot in Fig. 6.18 shows how the Logisti Regression plots the classification
decision boundaries, with the assigned probability of assignment at two different
classes. The central division white area is calculated by the p(y(i)) = 0.5, therefore
solving the equation θT x(i) = 0.

The package Scikit-Learn includes the function LogisticRegression that, for
a multi-class problem, it used by default the One-vs-the-Rest (OvR), fitting the
each class probability versus the others, with optional LASSO (l1) or RIDGE (l2)
regularization to improve numerical stability. These methods aim to reduce the
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algorithm complexity to obtain a better performance, by adding a penalization
term to the cost-function for the evaluation of the θ coefficients. The RIDGE
regulator (l2) in Eq. 6.12 introduces a penalty coefficient that is proportional to
the sum of the square values of the evaluated θj coefficients, while the LASSO (l1)
in Eq. 6.13 evaluates the absolute ones.

Jref (θ) = J(θ) + C
n∑︂

j=1
θ2

j (6.12)

Jref (θ) = J(θ) + C
n∑︂

j=1
|θj| (6.13)

This function includes also different solvers to minimize the aforementioned
defined cost functions. In this work, the two tested ones are:

• liblinear: it uses a coordinate descent algorithm. In this case, the optimiza-
tion problem is split with the OvR approach, in order to set binary classifiers
per each assigned class.

• saga: it uses a Stochastic Average Gradient descent algorithm [104] with
additional optimization with LASSO regulator.

According to the solver, the regulators l1 or l2 can be either set in the function,
by setting an appropriate penalty coefficient C to avoid overfitting. Furthermore,
this function allows to chose a weighted classification, according to the number of
samples per each class, in order to reduce the chances of misclassification for low
populated classes. The Eq. 6.14 shows how the weight is calculated, according to
the m number of samples, K classes and nclass datapoint per each class:

wclass = m

K ∗ nclass

(6.14)

6.4.2 K-Nearest Neighbour for Classification
The Logistic Regressor in paragraph 6.4.1 can be defined as a parametric al-

gorithm, since it evaluates from statistical inference the relations between features
and target label. The K-Nearest Neighbors (KNN) instead does not present any
parameter that needs to be statistically inferred by data distribution, but it is built
by the so called Hyper-Parameters that needs to be learned from the dataset itself.
Due to its simplicity, this algorithm is often considered for classification issues. For
instance, in [105] it has been tested for failure recognition for aeronautical com-
ponents. Considering a new data-point x(o), defined by the same n features, the
KNN is designed in order to assign the most probable class y(o) according to the
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Figure 6.19: KNN Classification examples depending on K

closest k-datapoints of the complete data-set x(i). Considering the closer points to
the new one x(o) as Nk(x(o)), the classification problem can be written as in Eq.
6.15:

y(o) = 1
k

m∑︂
x(i)∈Nk(x(o))

w(doi)t(i) (6.15)

where doi = ||xo − xi|| is the euclidean distance that needs to be evaluated
between the new point and the others in the dataset. As reported in [91], the
classification is determined from "a simple majority vote of the nearest neighbours
of each point", based on the weighted distance function. The w(doi) represents the
weight function: in this way, the nearer neighbors contribute more to determine
the datapoint class. The function KNeighborsClassifier includes two possible
options: the uniform one assigns a constant weight to each neighbor, while the
distance option weights them proportionally to the inverse of their distances. In
this latter case, the closer points have a greater influence then the further ones.

The example in Fig. 6.19 from the Scikit-Learn package documentation shows
how this algorithm is influenced by the right choice of its hyper-parameter K. This
number represents the number of K closest points to be included in Nk(x(o)) for class
evaluation. In particular, the first Fig. 6.19a shows a typical overfitting problem
where each in the testing dataset has been assigned to the class of the closest one
from the training dataset. In the second plot in Fig. 6.19b is obtained imposing
k = 15, making the classifier more robust also in terms of decision boundaries
delimitations. Due to its impact, this value is typically chosen for tuning the
classifier itself based on the input dataset.
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Figure 6.20: Support Vector Machine Classifier [106]

6.4.3 Support Vector Machine for Classification
Support Vector Machines (SVM) have been widely used for a large series of

classification problems, such as facial recognition and text categorization [106]. As
reported in [58], the distinguishing feature of such algorithms regards the hyper-
parameters tuning, which can be considered as a convex optimization problem. In
Fig. 6.20 the key strategy of SVM is shown for a binary classification problem: the
identification of an optimal hyper-plane that separates the classes and minimizes
the classification error.

In order to trace this optimal hyperplane, a SVM algorithm evaluates the mar-
gins: the smallest distance between decision boundaries and any class sample. In
Fig. 6.20 they are represented with as the dashed lines that delimit the decision
boundaries area. The location of these margins is determined by a subset of data
points, called support vectors, that lay on these borders (the highlighted blue dots
and red squares). Considering the linear function f(x) in Eq. 6.16:

f(x) = β0 +
n∑︂

j=1
βjxj (6.16)

the hyperplane is defined by f(x) = 0. The linear coefficients {βj}j=0,1,...n

defines the normal vector of the hyperplane β = (β1, β2, ..., βn)T , that can be used
to evaluate the distance between each sample point x(i) in the training set as:

di = f(x(i))
||β||

(6.17)

The margins definition can be completed assuming that the training data set is
linearly separable in the feature space. Due to this assumption, there is at least on
choice of parameters β that, considering the classes y = 1 and y = −1 in Fig. 6.20,
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Figure 6.21: SVM Classification examples depending on C

satisfy the sign condition f(x) > 0 for the first mentioned class, and vice versa
f(x) < 0 for the second. In general, per all the n data points, it is important to
find the solutions that correctly classify them, therefore that respects the general
condition: yif(x(i)) > 0. In [58] the SVM maximum margin solution problem is
reported as:

argmax
β,β0

{︂ 1
||β||

min
i

(β0 + βT x(i))
}︂

(6.18)

In order to simplify the solution of the problem in Eq. 6.18, it is necessary to
rescale the linear coefficients βj, according to the margin M to be maximized, in
order to set the limit condition ||β|| = 1/M . The maximization M problem can be
therefore reformulated as:

argmax
β,β0

M ⇒ argmin
β,β0

1
2 ||β||2 (6.19)

considering the following distance constraint:

|di| = yi
β0 + βT x(i)

||β||
≥ M ⇒ yi(β0 + βT x(i)) ≥ 1 (6.20)

The expression in Eq. 6.20 is usually referred as the hyperplane canonical
representation. The data points that respects the equality condition in Eq. 6.20
are the active support vectors of the hyperplane. The main typical challenge of
this classifier is that typically the classes points are not perfectly separable by the
hyperplane, therefore it is often necessary to temper the constraint in Eq. 6.20 by
defining a degree of misclassification ξi ≥ 0 so that:

yi(β0 + βT x(i)) ≥ 1 − ξi (6.21)
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If 0 < ξi ≤ 1, then the point x(i) falls within the green margin areas in Fig.
6.20 while, if ξi > 1, then the point is misclassified. In order to avoid both these
inconveniences, the optimization problem in Eq. 6.18 can be reformulated as:

argmin
β,β0

(︂1
2 ||β||2 + C

m∑︂
i=1

ξi

)︂
(6.22)

The hyper parameter C is a penalty term that acts like the inverse of regulariza-
tion parameter. As reported in [58], C regulates a trade-off between minimizing
the training errors and setting model complexity. As previously reported, any mis-
classified point is characterized by ξi > 1, therefore the sum ∑︁m

i=1 ξi set the upper
bound on the number of allowed misclassified points: increasing C, the term ∑︁m

i=1 ξi

weight in Eq. 6.22 results higher therefore the SVM would minimize the margins
from the first term in Eq. 6.22. An example of the influence of C in determining
the classification margins is showed in Fig. 6.21: in these plots it is possible to
observe how a larger value of C makes the classifier to consider the points close to
the separation line as support vectors.

The concept of hyperplane in Eq. 6.16 can be generalized in a hyper-surface
equation f(x) = 0 by the introduction of a Kernel function K(x, x(i)):

f(x) = α0 +
m∑︂

i=1
αiK(x, x(i)) (6.23)

In case of linear SVM, the Eq. 6.23 can be traced back to Eq. 6.16 by simply
considering the Kernel function as the scalar product K(x, x(i)) = ⟨x, x(i)⟩. The
Scikit-learn function sklearn.svm.SV C allows the user to set possible four different
possible Kernal functions:

1. Linear Kernel: K(x, x(i)) = ⟨x, x(i)⟩;

2. Polynomial Kernel: K(x, x(i)) = (γ⟨x, x(i)⟩ + r)d

3. Radial Basis Function (RBF) Kernel: K(x, x(i)) = exp(γ||x − x(i)||2)

4. Sigmoid Kernel: K(x, x(i)) = tanh(γ⟨x, x(i)⟩ + r)

From the Kernel functions equations, a new hyper-parameter γ is defined and
needs to be tuned: it defines the influence that each training data point has in the
classification. It is defined in [91] as "the inverse of the radius of influence of samples
selected by the model as support vectors". A large series of examples are reported
in the Scikit-Learn user guide that are useful to understand both the differences of
each Kernel function, and the importance of correctly tuning the hyper-parameters
C and γ.

In Fig. 6.22 three different Kernel functions are compared and it is possible
to observe the extreme differences in the decision boundaries. In particular, the
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Figure 6.22: SVM Classification with different Kernels [91]
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Figure 6.23: SVM with RBF Kernel: C and γ influence [91]
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polynomial and RBF functions are particularly useful when the data are not linearly
separable. In Fig. 6.23 the SVM algorithm has been fixed with RBF kernel function,
and the influence of C and γ are analysed. If γ is too large, the tracked RBF area
includes only the support vectors and the influence of C does not avoid overfitting.
On the contrary, if γ is too small, the SVM does not fully extract the complexity
of the data: the influence region of each support vector would include the complete
training set. In this matrix of plot, the models with small γ and max(C) = 1 show
a better classification: the complexity of these smooth models with low values of γ
can be improved by increasing the C values from C = [0.01, 1]

6.4.4 Multi-Layer Perceptron for Classification
The Multilayer Perceptron (MLP) is type of feedforward Artificial Neural Net-

work (ANN) . As reported in [107], this term refers to a layered structure of multiple
perceptrons. The great advantage of these perceptrons is the possibility to employ
arbitrary functions, while the state-of-the-art "percpetron" definition infers artifi-
cial neurons with threshold activation function. This kind of algorithm can be used
to correctly perform both classification and regression tasks. For instance, these
algorithms have been widely used for diagnostic purposes for engineering applica-
tions. In [101], [108] and [109] supervised MLP have been tuned to detect failures
in hydraulic actuator circuit. Fig.6.24 shows the typical representation of a MLP
classifier, with n inputs in the first layer and m possible outputs in the last classi-
fication layer. Between these two layers, an intermediate Hidden one is positioned
and it contains specific neurons that linearly combine the previous input features
x = {xj}j=1,...,n and are activated by specific non-linear functions. Mathematically,
the input features from the initial layer are combined with a set of weights wkj and
bias wk0 parameters and then elaborated with a proper activation function h(x)
that computes a new set of features {Hq}q=1,...,L in the L nodes of the hidden layer:

Hq = h(wk0 +
n∑︂

j=1
wkjxj) (6.24)

Typical activation functions for h(x) are the logistic one in Eq. 6.18 or the
hyperbolic tangent tanh in Eq. 6.25:

tanh = ez − e−z

ez + e−z
(6.25)

The hidden layer new features Hq are then the inputs for the final output layer.
Following the same approach in Eq. 6.24, the final y = {yl}l=1,...,m can be calculated
by setting appropriate combination weights and a dedicated activation function
f(y):
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Figure 6.24: MLP structure

yl = f(βl0 +
L∑︂

q=1
βlqHq) (6.26)

For binary classification purposes, logistic function is typically used to activate
the last output layer since a simple probability threshold of 0.5 would assign a
specific data-point, described by the feature vector x, to a class whether than
the other. In case of multi-class classification problem, a recommended choice for
output activation function is the softmax one in Eq. 6.27:

f(sl) = exp(sl)∑︁K
kk=1 exp(skk)

(6.27)

where sl is the l-th input to the softmax function, which corresponds to the kk-
th class over a total K number of classes. The softmax function outputs a vector
where each element corresponds to the probability of the input vector to belong at
each kk class: the highest probability class becomes the assigned one.

In analogy with the Logistic Regressor in 6.4.1, the MLP algorithm can be
classified as a parametric classifier, due to the statistical link that collect the input
features x with the most promising assigned class in terms of probability. In fact, it
has been previously mentioned in 6.4.1 how the cross-entropy cost function in Eq.
6.11 would have been used to increase the MLP performance. Since the hidden-
layer a typical activation h(x) is the logistic function, the cost function in Eq. 6.11
can be written as follow:
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Jce(t, y) = −
m∑︂

i=1

K∑︂
l=1

[t(i)
l log(y(i)

l ) + (1 − t
(i)
l )log(1 − y

(i)
l )] (6.28)

In analogy with Logistic Regressor, the loss function equation 6.28 can be correct
with a regularization term as follow:

Jce(t, y, W2) = Jce(t, y) + α||W2||2 (6.29)
where ||W2||2 is the square module of the output weights layer W2. The second

term is equivalent to the RIDGE regularization term in Eq. 6.12 where the α param-
eter regulates the penalty magnitude. The Scikit-Learn function MLPClassifier
allows the user to chose three different possible algorithms to updates the MLP
parameters through the optimization of the cost function in Eq. 6.28. Starting
with random values of W2, the MLP minimizes the cost-function by updating the
weights in an iterative way. After evaluating the loss, the backward step propagates
the value of Jce from the output layer to the previous ones: each weight is updated
by progressively reducing the loss. For instance, the standard Stochastic Gradient
Descent ∇Jce of the loss function is evaluated at each iterative step as in Eq. 6.30:

W i+1 = W i − ϵ∇J (i)
ce (6.30)

where ϵ is an additional learning rate to set. The algorithm reaches the optimal
solution when the improvement in the loss function is lower than a certain value, or
after a maximum number of iterations. Other possible optimization algorithms in
the MLPClassifier are ADAMS [110] and L-BFGS [111]. The plots in Fig. 6.25 are
obtained from an example reported in the user guide of the MLPClassifier func-
tion. These plots are obtained with a double hidden-layers MLP and the L-BFGS
solver, and they show how different values of α yield different decision boundaries.
High values of the penalty term can solve problems of high variance, reducing
the layers weights, creating more straight decision boundaries. On the contrary,
lower values of α may fix high bias in classification, determining more complicated
boundaries.

6.5 Classifiers Comparison and Results
The four presented algorithms (from 6.4.1 to 6.4.4) have been chosen as possible

candidates of the core failure classification in the Advanced Diagnostic module.
The potentials of these candidates have been already explored in previous related
works, such as [32] and [18]. In these two latest publications, the capabilities
of each algorithm have been tested over a dataset of simulated data, obtained
from an extensive simulation campaign with a developed High Fidelity Model. In
particular, in [32] both the possibilities of single and multiple failures classifications
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Figure 6.25: MLP Classifier tuning α

have been explored, injecting in the Elevator EHSV component parametric failures
in both first and second stage of this particular valve. However, as reported in
paragraph 6.2, the experimental campaign in the LHT test-benches have yield to
a series of recurrent anomalous behaviours over three main unit components: the
aforementioned EHSV, the mechanical RD and the MSV.

The flowchart in Fig. 6.26 includes the previously reported one in Fig. 6.9.
Initially, the adv_diagnose_classification script gives the possibility to select
the target components, extract its characterizing HFs, store them in appropriate
pivot datafames df_hfs and then the dedicated function class_definition assign
the proper failure labels per each table entry. These last column in the green table
in Fig. 6.10, labelled as "Target", constitutes the vector of classes t the supervised
classifier needs to correctly identify. Once the target column t has been filled,
two parallel tasks needs to be logically fulfilled. The first one, within the blue
square, regards the HFs selection with the ANOVA f-score method, previously
described in paragraph 6.3, with the goal to extract the list of most promising
HFs for failure classification of the target component. The second task regards
the df_hfs split into Training and Test dataframes. The necessity of splitting a
dataset for evaluating a SML performance is a well established methodology to avoid
the so called "overfitting" problem: avoiding misclassification on new data-point,
since the algorithm has just been trained with a unique set of data. More details
about this important step are reported in 6.5.1. Once these subset of points have
been extracted, their columns have been normally standardized, using the same
StandardScaler python function mentioned in paragraph 6.3, and afterwards only
the output subset of HFs from the Feature Selection method are picked.

One the complete df_hfs has been split, normalized and the most promising HFs
extracted, then it is necessary to tune the candidate classifiers using the training
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dataset. From the descriptions in paragraphs 6.4.1 to 6.4.4, it is evident how the
chosen classifier to be tested present a wide range of parameters or hyper-parameters
to tune in order to perform a correct classification. Another well-established method
for ML algorithm tuning is the "Cross-Validation" technique [112–115]. More details
about the parameters ranges and tuning methods are described in paragraph 6.5.1.
These tuned algorithms are then fit over the training dataframe with the complete
set of selected HFs, and then the predicted classes ytest are forecasted by the test set.
The comparison between predicted ytest and target ttest failure labels are graphically
reported in Confusion Matrix per each classifier. These plots summarize as table
layouts visualize the performance of a SML, and they are typically used to evaluate
the typical classification metrics such as the algorithm prediction Accuracy. These
results and classification performance metrics are described in paragraph 6.5.2.

With the multi-dimensional datasets, as the extracted training and testing ones,
it is often useful to project the data in to a lower dimensional subspace "which
captures the essence of the data" [116] and for visualization purposes. The green
box in Fig. 6.26 reports the steps that have been followed to project the multi-
dimensional dataset into two-dimensional projection using a PCA algorithm. As
reported in [117], this technique transform the set of data into a new coordinate
system, by linearly combining the set of features in order to maximize the variance
of data distributions along the new coordinates. Reducing the set of selected HFs
with two main Principal Components coordinates, it is possible to visualize the
decision boundaries each tuned classifier can identify per each failure label. This
technique is in detail described in paragraph 6.5.2 and the performance of each
classifier is compared before and after the PCA application.

6.5.1 Dataset split and Classifier Tuning
As reported in [91], the problem of overfitting is typically generated when the

parameters (or hyper-parameters) of a SML are tuned and tested over the same
dataset. Due to this methodological error, the model would not be able to correctly
classify a novel set of data. The best practice to follow in order to avoid this
problem are showed in Fig. 6.27. This typical cross-validation workflow indicates
as first step the dataset split into training and test subset: the first one is used
to fit the SML algorithm and tune its parameters, while the second one allows to
evaluate the SML performance using new "un-seen" data. This procedure is easily
implemented in the adv_diagnose_classification using the Scikit-learn function
train_test_split. This function has been applied to the df_hfs dataframe, as
reported in Listing 6.3:

Listing 6.3: Training and Test split
df_train, df_test, target_train, target_test =

train_test_split(df_hfs[list_selected_hfs], df_hfs[COMP],
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Figure 6.27: Best Practice Guideline to avoid overfitting [91]

stratify=df_hfs[COMP], random_state=0, test_size=0.33)

This function takes input the complete dataset and the relative labels-target column
(df_hfs[COMP]), and it returns both training and test features dataset and their
relative labels columns. It allows to set the split percentage, which is in this case
33% for the test set and the remaining 67% in the training one, through the setting
test_size. Normally, the dataset rows are split randomly between the two outputs
dataframes, and this procedure ensures the resulting dataset to be representative
samples of the original one. However, typically when comparing different SML, it
is preferred that these are trained and evaluated over the same subsets: this task is
solved in Python assigning the random_state variable to an integer value, in order
to fix the seed of pseudo-random number generator [118]. The last input stratify
ensures that both training and test sets have a the same proportions of example
per each observed class in the original dataset.

Keeping a proportional training dataset, composed by balanced samples for all
the target classes in t, is fundamental for an effective tuning of the classifier. A
well-established method for parameters (or hyper-parameters) evaluation is called
Cross-Validation (CV) [113, 114, 119, 120]. For instance, considering the SVM
hyper-parameter C introduced in Eq. 6.22, its manual set may induce a risk of
overfitting on the test subset, since it still can be optimized to include new data-
points as support vector of the decision hyper-planes. A possible solution for this
issue can be to introduce a third "validation" set part of the initial dataset, than can
be used after the training process to check its effectiveness. However, an additional
split may reduce the performance training, especially if the dataset does not contain
several examples per all the different classes. This issue is solved by applying a CV
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Figure 6.28: Cross-Validation Technique [91]

technique over the training set. In Fig. 6.28, the k−fold CV technique is presented:
the training set is divided in k smaller sets and, per each of them:

• The classifier is trained over the k − 1 subsets;

• The trained classifier is then validated on the remaining one, and the perfor-
mance metric is then averaged at the end of this loop.

In this process, the performance metric needs to be appropriately selected ac-
cording to the user need, in terms of classification Precision and Recall. More
details about the selected classifier metrics are reported in paragraph 6.5.2.

The best CV score is typically used to find the best set of classifier parameters
(or hyper-parameters). This concept is graphically reported in the left branch of
the workflow in Fig. 6.27: the idea is to pick the best combination of parameters,
each of them defined within a range, training the classifier, according to the CV
loop, in order to maximize a specific performance score. This task is fulfilled by
the Scikit-Learn function GridSearchCV.

Fig. 6.29 shows how this function exploits Cross-Validation for building and
evaluating the performance of each model, built from combination of specified in-
put parameters. The idea is to test different models, obtained combining each
parameter within each range, over k subsets of randomly sampled data-points, us-
ing CV technique for training and testing each models. The GridSearchCV function
outputs the set of parameters that define the model with the highest model per-
formance score, specified as input. In the adv_diagnose_classification script,
this function has been used to tune the parameters (or hyper-parameters) of the

218



6.5 – Classifiers Comparison and Results

classifier candidates algorithms. The code in 6.4 shows both the fixed settings and
the ranges of parameters that needs to be tested by GridSearchCV:

Listing 6.4: Classifier Parameters
classifiers = [
(LogisticRegression(class_weight=’balanced’, random_state=0), {

’penalty’: [’l1’, ’l2’],
’C’: np.logspace(-4, 2, 20),
’solver’: [’liblinear’, ’saga’]}),

(KNeighborsClassifier(weights=’distance’), {
’n_neighbors’: list(range(3, 9))}),

(SVC(class_weight=’balanced’), {
’kernel’: [’rbf’, ’linear’, ’sigmoid’],
’C’: [1, 10, 100, 1000],
’gamma’: [1e-3, 1e-2, 1e-1, 1, 2]}),

(MLPClassifier(max_iter=1000), {
’hidden_layer_sizes’: [3, 10, 30, 50, 100],
’activation’: [’logistic’, ’relu’],
’alpha’: [1e-4, 1e-3, 1e-2, 1e-1, 1]})]

• For the Logistic-Regression algorithm the balanced method has been imposed
by default in order to reduce penalization for less populated classes. The other
parameters to be tuned regards both the penalization strategies, if LASSO in
Eq. 6.13 or RIDGE L2 in Eq. 6.12, the regularization parameter C and the
optimization algorithms for the cost-function.

Figure 6.29: GridSearchCV strategy [121]
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Table 6.6: Classifiers tuned parameters

Classifier Parameters EHSV RD MSV
LogReg Penalty RIDGE LASSO LASSO

C 0.3 0.3 0.62
Solver saga liblinear liblinear

KNN k 3 3 6
SVM Kernel linear sigmoid rbf

C 1 100 10
γ 0.001 0.001 0.01

MLP Hidden Layer size 30 50 3
Activation function logistic relu relu
α 0.0001 0.001 0.01

• The KNN hyper-parameter to be tuned is only the number of neighbours k
to take into account for determining the class.

• The same balanced method has been set for the SVM, as for the Logistic-
Regression one. In this case, the function GridSearchCV needs to compare
different kernel functions, and a set of C and γ to be tested.

• The only fixed parameter of the MLP algorithm regards the allowed maxi-
mum number of iterations for back-propagation tuning of the internal neurons
weights. All the other settings, such as size of hidden layer, activation func-
tion and regularization parameter α.

The classifier candidates in Listing 6.4 needs to be tuned and evaluated per all
target-component datasets. In this way, it is possible to compare each classifier
performance for both EHSV, RD and MSV failures classification, and decide which
algorithm can be used per each target component. Since each classification problem
includes peculiar characteristic and data distribution over the failure label, it would
be very challenging to define a unique classifier that can be used per all of them.
Therefore, with this strategy, it is possible to tailor a specific and optimized solution
per each component and decide to implement all of them in the final Reasoner
module in Fig. 6.1.

Table 6.6 summarizes the tuned settings of the candidates in Listing 6.4 obtained
by GridSearchCV, per each target-component classification problem. These results
have been calculated over the training dataset, considering all the selected HFs with
the ANOVA-F score method per each target-component, and setting a k-fold CV
process with k = 5.
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Figure 6.30: Confusion matrix and related performance measure [123]

6.5.2 Classification Results
One of the most common methods for reporting the classification results of

a SML algorithm is the Confusion Matrix. In Fig. 6.30 an example for binary
classification is reported. Each matrix row and column may include respectively
the instances of a predicted class versus the actual classified one, or vice versa. For
binary classification, each matrix cell represents a possible classification outcome
[122]: the diagonal cells indicates the number of points for which the predicted and
actual classes coincide, while the other off-diagonal elements are the misclassified
ones. Therefore, it is easy to observe how the classifier performances are influenced
by the number of points indicated in the matrix diagonal. In [91], it is reported
that, by definition, any cell i, j reports the number of observation actually in the
i-th group but predicted in the j-th one.

These elements are commonly referred with terms from binary classification,
where typically "positive" and "negative" refer to the prediction, while "true and
"false" to whether the prediction corresponds to the actual class. For this reason,
the diagonal elements in Fig. 6.30 are indicated as True Positive (TP) for correct
results and True Negative (TN) for correct absence of result, while the off-diagonal
elements are False Positive (FP) for unexpected results and False Negative (FN) for
miss-classified actual positive ones . Based on this notation, this graphical repre-
sentations allows to easily calculate different performance metrics for classification
[92]:

• Accuracy: most common used metric to evaluate classification performance,
defined as ratio between the number of correct predictions and the total num-
ber of predictions (Eq.6.31):

ACC = TP + TN

TP + TN + FP + FN
(6.31)
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This metric gives a clear indication of SML performance, however it can
lead to unclear results especially for class-imbalanced data set or negative
impact of misclassified results. For instance, in [124] it is reported an binary
classifier for benign or malign tumor diagnose. In this case, it is highlighted
how, despite the high level of accuracy of 91%, due to the imbalance of the
classes, it does not provide any additional benefit in distinguishing benign
from malign tumor. In addition, it has to be considered the "nature" of the
obtained results since, like in this example, misclassifying a sample (benign
as malign or vice versa) could have serious consequences.

• Recall or True Positive Rate: metric that describes the classifier capability
to correctly identify the positive samples:

TPR = Recall = TP

TP + FN
(6.32)

• Precision: it provides a measure the portion of actually correct positive
classification or, in other words, "the proportion of positive predictions that
match with the true class membership" [92].

Precision = TP

TP + FP
(6.33)

• F1 score: a typical problem when evaluating a classifier performance regard
the commonly diverging trends of both Precision and Recall. The F1 score
represents the harmonic mean of these two metrics, and it is widely used in
case of imbalanced classes problem or correct classification of positive class:

F1 = 2 ∗ Precision · Recall

Precision + Recall
(6.34)

Due to the harmonic mean, the F1 score would be always closer to the smaller
value between Precision and Recall than to the larger one, penalizing any poor
value of the two averaged metrics. A cons of this score in case of multi-class
classification regards its sensitivity to data distribution, unless it is particu-
larly important to correctly classify the sample of a low populated class.

The correct metric choice is fundamental not only for comparing the different
candidate classifier, but also to set a reference value during the tuning process. It
has been already mentioned in paragraph 6.5.1 how the CV tuning process with
GridSearchCV requires a metric to be specified during each training dataset fold.
Considering the aforementioned metrics, the choice is based on two possible metric
candidates: accuracy and F1 score. For multi-class problem, the Scikit-Learn
package allows the user to set three significant possible ways to average the F1
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score in Eq. 6.34 per each class, in order to obtain a unique harmonic mean result
from Precision and Recall of each class:

• micro: the Precision and Recall in Eq. 6.34 are calculated evaluating the
individual TP, FP and FN per each i-th class:

Precisionmicro =
∑︁K

i TPi∑︁K
i TPi +∑︁K

i FPi

(6.35)

Recallmicro =
∑︁K

i TPi∑︁K
i TPi +∑︁K

i FNi

(6.36)

This measure gives a significance to each class population.

• macro: in this case, the Precision and Recall of each class are averaged to
evaluate a global macro values:

Precisionmacro = 1
K

K∑︂
i

Precisioni (6.37)

Recallmacro = 1
K

K∑︂
i

Recalli (6.38)

This metric can be used to know how the model performs overall across all
the data points, without considering the classes population.

• weighted: this method differs from the previous since it consider a weighted
average by the number of true instances per each label, making the macro-
average more imbalance sensitive.

Considering the failure classification problem for the described target compo-
nent, the micro F1 score can be considered as a good candidate for metric score,
since the failure classes are imbalanced due to the few number of collected mea-
surements but also to the large possible observable failures. In fact, even increasing
the number of measurements and therefore samples in the dataset, it needs to be
considered also the possibility to observe new failure that needs to be labelled and
assigned at each measurement. This phenomena would therefore increase the level
of granularity of observed failures but also may lead to less populated groups of
samples with the same label that need to be compared to a possible larger set
of no-faulty units. However, considering the Eq. 6.35 and 6.36 for N multi-class
problem, if any instance needs to be classified in one unique class, therefore any FN
per one class can be considered as a FP for an "adjacent" one in a NxN confusion
matrix. Therefore, with this hypothesis, the micro-average F1 score coincides with
the global Accuracy. For these reasons, the overall Accuracy score has been taken
into account as reference metrics for classifier tuning and comparison.
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The confusion matrices from Fig. 6.31a to 6.33d report the multi-class classifica-
tion results that have been obtained from the tuned classifiers with GridSearchCV,
considering the complete set of HFs selected with the ANOVA F-Score method.
These number of each square represent the percentage of classified TP, TN, FP
or FN per each class, considering the test subset. In addition, both the Accuracy
and F1 macro-averaged score are reported per each classifier. These scores have
been summarized in Table 6.7. The classification confusion matrices reports the
classifier results in terms of overall accuracy, and they gives an effective insight of
the algorithms potentials in terms of discerning between different failure labels. In
particular, the percentage of correctly or wrongly classified failure labels highlight
how the each classifier can find some difficulties when distinguish between contin-
gent classes. For instance, in the EHSV classification, it can be noticed that all the
tuned classifier are not able to distinguish between the "EHSV LVDT NOISY" and
"EHSV GAIN TOO LOW" class. This can be physically explained by the great
influence the noise level of Usek in the EHSV LVDT has over the EHSV hysteresis
curve in Sequence n.26. Therefore, this observation gives an insight for further in-
vestigation about the noise level of the EHSV LVDT secondary coil, and whether it
is determined by external disturbances or by internal sources such as the first stage
Torque Motor. In Appendix A a detailed investigation about the noise effect over
LVDT demodulation has been conducted, however this classification issue suggests
to perform some closer study via an experimental campaign. On the other hand,
the candidates classifiers perform better for both RD and MSV failure classification
problems, such as the SVM for both the targets components. It is important to
remember however how for both these latter components a more accurate inspec-
tions of the possible faults or degradations have been conducted from samples of
defective components, while it has not been possible to perform the same inspection
on the EHSV.

These kind of observation can be deducted by the reported numbers in the clas-
sification matrices, but it becomes really difficult to visualize these misclassification
problem in a multidimensional space, such as the one defined by the selected HFs
with ANOVA F-score in paragraph 6.3. A possible solution would be to apply a
further dimensionality reduction method to better visualize the potential of each

Table 6.7: Classifier Performance Metrics

Classifier EHSV failure classif. RD failure classif. MSV failure classif.
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

LogReg 0.77 0.71 0.79 0.83 0.75 0.74
KNN 0.77 0.63 0.79 0.83 0.90 0.92
SVM 0.85 0.67 0.84 0.87 0.87 0.89
MLP 0.69 0.67 0.74 0.79 0.90 0.92
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tuned classifier. In the light of this, the Principal Component Analysis (PCA) has
been adopted in order to project the set of data per each target component into a
new two-dimensional coordinate system. Before showing how this algorithm works,
it is important to assert that the PCA is actually considered as a dimensionality-
reduction technique, but from a different perspective of the aforementioned feature-
selection methods. These latter methods in 6.3 are actually developed to select an
optimal subset from the available features that are statistically relevant for classifi-
cation purposes. The PCA creates a new set of M principal components by linearly
combining the uncorrelated available HFs and therefore it define M new features
from these combinations that, in this particular classification case, do not repre-
sent any physical variable. The main purpose of the PCA algorithm is to minimize
the averaged distance between each datapoint and the new defined coordinates. In
this case, the PCA has been used for visualization purposes: the first two compo-
nents (K = 2) are therefore used to project the MHF s dimensional space over a
bidirectional space, and therefore visualize the classifiers decision boundaries.

There are two equivalent definition of Principal Component Analysis (PCA):

1. This algorithm aims to find the orthogonal projection of the data into a lower
dimensional space, defined by D orthogonal principal components, in order
to maximize the projected datapoints variance over the principal components
directions.

2. Alternatively, the PCA is defined as the linear projection that minimize the
average squared distance between the data and their projections.

Both the definitions are correct, and in [58] both of them are mathematically ex-
plained. The explaining plot in Fig. 6.34 shows how the data points would be better
described if projected into the bidimensional space defined by the green and red
principal components, maximizing the variance along both the new dimensions ac-
cording to the first definition. Mathematically, considering the dataset {xn}n=1,...,N

with N points and M defining features, the algorithm goal is to project each point
into a lower dimensionality space K < M while maximizing the variance. Consid-
ering the one-dimensional projection K = 1, each point can be projected taking as
reference the unit vector of the u1 with M dimension, so that each point is pro-
jected onto a scalar value uT

1 xn. Along this dimension, it is possible to determine
the mean of the projected data uT

1 x̄ and variance as:

1
N

N∑︂
n=1

{uT
1 xn − uT

1 x̄}2 = uT
1 Su1 (6.39)

where S represents the covariance matrix:

S = 1
N

N∑︂
n=1

(xn − x̄)(xn − x̄)T (6.40)
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Figure 6.31: EHSV target component: Classifiers Confusion Matrices
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Figure 6.32: RD target component: Classifiers Confusion Matrices
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Figure 6.33: MSV target component: Classifiers Confusion Matrices
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The goal is to obtain the correct direction of u1 that maximize the projected
variance uT

1 Su1. The Lagrange multiplier λ1 is introduced to correct the second
term in Eq. 6.39 as follow:

uT
1 Su1 + λ1(1 − uT

1 u1) (6.41)
By deriving the Eq. 6.41 with respect to u1 in order to find the maximum,

it is possible to assert that the unit vector u1 needs to be an eigenvector of the
covariance matrix S:

Su1 = λ1u1 → uT
1 Su1 = λ1 (6.42)

From Eq. 6.42, it is possible to assert that the variance is maximized when the
u1 is equal to the eigenvector with the largest eigenvalue λ1. This eigenvector is
therefore the first principal component and these considerations can be extended
to all the possible K − 1 orthogonal directions defined by ascending sorting the S
matrix eigenvalues.

As already mentioned, this technique has been adopted in this work to reduce
project each component dataset into a two-dimensional equivalent space, in order to
allow a clearer visualization of the decision boundaries each tuned classifier define.
Each component dataframe, defined by each set of selected HFs from the ANOVA
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Figure 6.34: Two Principal component over example dataframe [91]
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F-score method, has been processed using the sklearn.decomposition.PCA func-
tion, in order to extract the first two principal components. The scatter plots from
Fig. 6.35a to 6.35c illustrates how the failure classes points are distributed in the
principal components pc1 and pc2 space. Looking at these plots, it is already pos-
sible to intuitively trace decision boundaries that clearly separate the serviceable
components (labelled as "OK" in green) with the faulty ones. Within the wider
group of degraded components, typically coloured from yellow to red, it is in some
cases possible to distinguish separable groups, like for the RD component in Fig.
6.35b, while in other cases the different groups are too overlapped, like for the
EHSV case in Fig. 6.35a. However, these results are actually coherent with the
classifier performances in the previous confusion matrices. For instance, the recur-
rent misclassification between the "EHSV Lvdt Noisy" and "EHSV Gain too low" is
also visible in this two-dimension projection where yellow and red data points are
overlapping in the same region. In case of the RD, the separation between classes is
clearer than the previous case: the "RD Defective" class, which gather the cases of
units that are not recentering at all, is way further than the other classes; while all
the units with wearing phenomena in the control shaft or bell crank are gathered
together in separable but still adjacent groups.

Looking at the points distributions of Fig. 6.35a, 6.35b and 6.35c, it is simple to
distinguish separable areas by human eye and therefore it is important to find within
the candidates classifiers the best solution that can replicate such class separation
in the best way possible. For this reason, each tuned candidate classifier has been
fit over a training set that has been built by picking the same datapoints of the
previous classifier performance analysis. Since the goal is to visualize the decision
boundaries between the different failure label classes, the classifiers have not been
tuned again over the new reduced principal components dataframe.

The plots in Fig. 6.36a, 6.36b and 6.36c illustrates the decision boundaries
the candidates tuned classifier are able to trace over the projected data points in
the principal components space. The different coloured areas denotes the areas
in the projected space where the classifier is able to discern a specific class. The
borders between these areas are the identified decision boundaries and circled points
represents the testing dataframe elements.

Looking at these plots, it is possible to observe how the projection in the two-
dimensional principal components space can give significant insights about the data
distribution, however the tuned classifier do not always perform better in case of
low-dimensional space. For instance, in the new principal component space, the Lo-
gisitic Regressor is not able to distinguish between the aforementioned overlapping
classes in the EHSV classification problem in Fig. 6.36a, while the KNN is affected
by overfitting when discerning between red and yellow points. Analogous consid-
eration can be made when observing the Logistic Regressor decision boundaries in
the second subplot in Fig 6.36b, which is not able to define a larger decision area
for the "RD Ok" class. In this case, any misclassification of serviceable components,
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Figure 6.36: Classifier decision boundaries after PCA

generally labelled as "Ok" with green dots, has to be penalized more than any mis-
leading classification in the other failure classes. A well-traced decision boundaries
are instead traced by the SVM with linear kernel and the MLP classifier for all the
target components problems.
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Chapter 7

Conclusion

The presented Ph.D. research project aims to demonstrate the feasibility and
explain all the required necessary steps to develop an advanced diagnostic system
for FBW flight control systems. The described approach has been developed and
tested in several aspects on the A320 elevator, aileron and spoiler servoactuators.
However, this methodology has been designed in order to be scaled and adaptable
to other FBW units of other aircraft. This aspect is also strategical from a market
perspective, since the hydraulic technology for primary FBW systems will be still
extensively used in the next decades fleet. Due to the crucial safety role of these
components and the high volume of repairing events, the standard maintenance
procedures need to be improved in terms of testing automation, data collection
and effective automatic failure identification. These three key enablers have been
in detail described in the previous chapters while, in this last one, a comprehensive
summary is reported of both strengths and flaws of each of them. Furthermore, the
guidelines for future project development are suggested in the last paragraph.

7.1 Summary
The main goal of the presented research project, in collaboration with Lufthansa

Technik, was to design and implement novel testing methodologies that aim to
improve and automate diagnostic tasks for electro-hydraulic FBW systems. In this
work, the A320 primary flight control systems have been considered as project use-
cases, however the explained methods and techniques can be adapted per other
FBW systems of different aircraft. During the three-years HyDiag Project, four
main milestones have been reached and they are hereby summarized in paragraphs
7.1.1, 7.1.2, 7.1.3 and 7.1.4

233



Conclusion

7.1.1 Automatic and Scalable testing procedure
The first significant achievement is represented by the described testing proce-

dure reported in Chapter 4. After an extensive study of the physical characteristics
of the target FBW systems (described in Chapter 2) and their testing procedures,
it has been noticed how the project-use cases units share several structural com-
ponents and therefore also testing procedures for maintenance purposes. In this
framework, an automatic test has been designed in order to obtain a modular test-
ing protocol, built upon parametric command sequences that are concatenated in
order to create a unique and tailored excitation signal. These signals have actually
been designed with the multiple goals to reduce the testing time but at the same
time to cover most the prescribed tests in the standard procedure and add new
possible signals which target specific unit components. These multiple goals have
been all successfully achieved thanks to the constant improvements of the signal
Sequences from the preliminary design phase, to the middle prototyping test in the
H-Lab research lab and the final implementation in the LHT repairing shops (both
described in Chapter 3). More specifically, the following achievements in this field
are worthy to be mentioned:

• The designed signals covers more than 75% of the standard testing proce-
dures, and additionally they includes some specific "extra-CMM" testing sig-
nals which are helpful to investigate the health status of specific target com-
ponents.

• The HyDiag Signals have been fully implemented in the LHT shops test-rig
and their effectiveness have been proved over more than 100 FBW units tested
with this method. The testing time in this final form have been drastically
reduced from 90’ of the standard manual procedure up to maximum 30’ for the
longest Elevator signal. It is important also to mention that these signals have
been tailored according to the feedbacks received directly from expert LHT
operators, which have given a valid contribution to adapt the HyDiag Signals
to the LHT test-bench. In case of testing facilities upgrade, the HyDiag
test can be shorten even to 20’: several tests in this perspective have been
conducted in the research H-Lab.

• The HyDiag Sequences, the building blocks of the testing signals, are auto-
matically developed by a unique MatlabTM generation code and therefore they
are easy to be adapted and parametrized. Each Sequence shape is uniquely
defined in terms of type of command to move the main ram (closed or open
loop), supply pressure signal and the eventual signals to the Electrovalves for
switching the unit working modes.
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7.1.2 Automatic Health-Features extraction from experi-
mental data

After completing the automatic test, it is fundamental to analyse the collected
results in order to detect particular signal features that are characterizing for any
anomalous behaviour of the unit component. This task involves a preliminary phase
of definition of these so called Health Features, starting from the study of each unit
CMM and the physical interaction between components, and the implementation of
an automatic way to extract them and properly store. This phase has been in detail
described in Chapter 5, where the HyDiag software structure and fundamentals
algorithms have been described. This particular tool has been fundamental for the
complete development of the HyDiag protocol itself, since it is considered a central
node for both the test phase and the following data collection and analysis phase.

The signal post-processing software, developed in MatlabTM, has been imple-
mented in two versions: the first one with a GUI interface for off-line data pro-
cessing, and a second one that has been tested and debuged for an on-line signal
processing in the LHT shops test-rig. For this latter case, the setting phase of
the testing computer and measurement channels has required significant effort and
collaboration with other colleagues from the partner company. In both the ver-
sions, the software includes specific algorithms of signal processing that include
automatic recognition of signal change-points, peaks finding and frequency or spec-
tral analysis. These techniques allow to automatically extract the HFs from the
collected signals: these features includes both the traditional ones from the stan-
dard procedure, but more importantly some additional ones that target specific
critical components. For instance, the Sequences n.13 and n.26 of the Elevator
signal have been designed specifically to extract the health conditions of both RD
and EHSV. At the end of the signal processing phase, these set of HFs are then
collected and reported in a unique HyDiag Report. This document is also printed
in two different versions: a ready-to-read version directly delivered to the opera-
tor, with a complete set of troubleshooting instructions, and a tabular version for
data-analytics purposes. The whole collected reports in this latter format lay the
foundation for the further data-collection framework and classifier implementation
with ML techniques.

7.1.3 Data collection of experimental results and test re-
ports

Another important achievement of this research project regards the design of
a robust data-collection protocol for both test measurements and extracted results
from the HyDiag software. This whole infrastructure has been described in para-
graphs 5.6 and 6.1. In particular, in the first one the whole setting of data and
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reports folders have been described. These mentioned "HyDiag Data" and "Hy-
Diag reports" folders are automatically populated by the aforementioned HyDiag
software at the end of each test. Their coherent division in subfolders, identified
with uniquely defined labels, gives a great advantage in terms of traceability of a
particular performed test and allows the user to easily retrieve data about a certain
unit during a consecutive test. The "HyDiag Data" folder contains all the extracted
measurement channels from each signal Sequence, and it represent a valuable source
of information that have been largely used during the phases of development and
debug of the HyDiag software. The "HyDiag reports" folder instead represent the
core source of information at the base of the so-called HyDiag database, described
in 6.1. As shown in Fig. 6.2 this database contains both information of the per-
formed tests and each extracted HFs, but also important information coming from
the repairing shops. In this way, it is possible to have a complete overview about
the tested component in a unique environment.

7.1.4 Failure recognition through ML algorithms
The HyDiag database represents the principal source of information for train-

ing and testing the core algorithm of the Classifier in the Diagnostic module in
Fig. 6.1. The concept is to implement an intelligent algorithm, based on Machine
Learning technique, that is able to identify any failure within the tested unit and
assert the health-status of each part. In this work, the main steps for training,
testing and evaluate the performance of four different Supervised ML algorithms
candidates have been presented. Firstly, the supervised strategy has been preferred
over the un-supervised technique since it allows the chosen algorithm to "replicate"
the knowledge of the user, which has to assign specific labels based on a-priori
knowledge or experimental observations. For instance, in paragraph 6.2 it has been
described the procedure to assign specific failure labels, based on observed degra-
dations over dismounted components (f.e. RD and MSV) and physical hypothesis
(f.e. EHSV). Through the correct assignment of these labels, based on the charac-
terizing HFs of each target component, it is possible to train any SML to replicate
these results over a large set of data. In this framework, four candidates algorithms
have been considered as core function of the Failure classifier module. In order to
perform an effective failure recognition through ML techniques, the following steps
have been defined and developed:

• Data preprocessing and failure labels assignment through dedicated Python
functions

• Features selection with ANOVA F-score method for dimensionality reduction.
This step results particularly important firstly to avoid the so-called "curse
of dimensionality" problem and extract the most statistically significant HFs
that ensures a good separability of the defined classes, through the assigned
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failure labels. This method has been preferred over any other technique (f.e
wrapper methods) since it is a valid technique that allows to detect significant
features without any preliminary information of the SML to be adopted.
Therefore, as first approach to the problem, it has been considered a suitable
solution.

• Classifiers parameters and hyper-parameters tuning through cross-validation
technique. Each of the candidates algorithms is characterized by a set of
parameters and solver settings that need to be correctly tuned in order to
maximize the classifier performances. This tuning process has been imple-
mented through Cross-Validation techniques over the training portion of the
whole dataset. This method is broadly recognized as a suitable technique to
avoid overfitting problems when testing the chosen classifier. In this work,
per each candidate, ranges of parameters and performance metrics to opti-
mize have been defined and the Cross-Validation tuning process developed
through dedicated Python function.

• The tuned classifier performance have been tested considering the whole set
of selected HFs. In order to evaluate the performance, per each target com-
ponent, the multi-class confusion matrices have been reported that show the
correctly labelled and misclassified results per each defined class.

• In order to visualize the decision boundaries that each classifier is able to
define, the whole dataset has been projected in a two dimensional space using
the Principal Components method. Even if this technique is widely used also
for dimensionality reduction purposes, in this case it has been initially con-
sidered as valid tool to visualize the class separability and how each classifier
works when defining the proper decision boundaries for classification. The
last paragraph in Chapter 6 reports both the results for multi-dimensional
problem and the ones obtained after the PCA.

7.2 Future Development
The presented work presents several margins of improvement in different fields,

which are actually dependent from each other. In order to have a deeper under-
standing of the possible improvements, it is better to evaluate how to obtain a
better failure recognition through ML algorithms. The key-point of te future de-
velopments is basically centred over the amount of experimental data which are
collected through the HyDiag Sequence. The more data are collected, the better
the failure labels assignment can be. As previously mentioned in Chapter 6.3,
the defined Failure labels, assigned at each tested unit, are strictly dependent
on the number of measurements: due to the structural complexity of each unit
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and the huge amount of possible failures, it cannot be excluded to encounter new
possible anomalies as long as the experimental campaign is extended. Therefore,
even the assignment criteria can be updated and improved by looking directly at
the time-responses from each collected measurement channels, and very likely add
other target-component that have not been considered (such as the main ram, the
electrovalves etc.). This latter point brings the improvement analysis to another
observation over the extracted HFs: in the future, there could be the necessity to
extract new unseen HFs and discard some defined ones. This consideration influ-
ence both the structure of the HyDiag Software and also the shape of the signal,
that could need new defined Sequences or different parametrization of the existing
ones. Any change or improvement in these two cardinal stages of the test procedure
are all related to the number of collected data. Other possible improvements regard
surely the tuning and choose of the correct SML to use as Classifier and relative
Feature selection technique. In this work, as first approach to the problem, four
promising SML algorithms have been compared and a Filtered method for feature
selection has been tested. However, increasing the number of datapoints and conse-
quently the complexity of the classification problem, it could be possible that other
SML techniques (such as Decision Trees or Random Forest Classifier) may need to
be evaluated with other feature selection techniques (such as the wrapper-ones).
About the classification problem, in Chapter 6 it has been presented as a simple
multi-class one where all the classes are mutually exclusive. Due to the physical
complexity of the problem, it is difficult to think about isolated failures that do
not influence each others. Therefore, a possible improvement of the classification
problem may regard the class-influence definition or a multi-label approach.

Once these improvement have been tested and implemented, and a final testing-
pipeline defined, with the correct testing signal, extracted features and fine-tuned
classifier, the last improvement regards the collection of all these information in
a new version of the presented HyDiag report. This report could then include an
health-status map of each unit component, the experimental results, and smart
troubleshooting instructions that includes both mandatory indications about bro-
ken components to replace and recommendation about failures in early stages. This
latter form would be the final recap of all the informations coming both from the
classifier module, and from the previous "history" of the tested components. These
historical information have been considered in this work for different analysis (as
reported in Appendix B), however they need to be considered properly to enrich
the set of information per each tested unit.
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Appendix A

Synchronous Demodulation

A.1 Synchronous Demodulation - Integral For-
mulation

As previously described in 2.6, the AC output of a 4-wires LVDT Uab needs
to be demodulated in order to extract both magnitude and direction of the linked
component movement. The synchronous demodulator returns "...the magnitude of
the DC component proportional to the amplitude of the fundamental frequency
component of the periodic signal to be detected" [125]. This DC component is
evaluated at each instant of time, and its sign indicates the direction of the LVDT
magnetic core movement. In this section, an integral formulation of the expected
output from the demodulator is presented. Due to the periodicity of both primary
and secondary AC voltages, the results are always presented during the first period
T of the sinus waves. Through an integral formulation, it is possible to compare how
close the time-series outputs are with their reference scalar values. The presented
results include both the effects of a phase-shift ϕ between primary and secondary
and noisy-harmonics with their own random amplitudes and phases.

A.1.1 Nominal conditions: no phase-shift between signals
Let consider the following expressions for the secondary Uab and primary Up

voltages:
Uab = Assin(2πft) (A.1)
Up = Apsin(2πft) (A.2)

where As and Ap are their relative amplitudes, f is the supply frequency of the
primary voltage. Due to the mutual inductance, this frequency characterizes also
the secondary voltage shape. Since their periodicity, let consider the first period
from 0 to T in order to calculate the average value of the rectified signal.
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Urect = 1
T

∫︂ T

0
(sign(Up))Uabdt = 1

T
(
∫︂ T/2

0
Uabdt −

∫︂ T

T/2
Uabdt) (A.3)

Substituting the equation A.1 in A.3:

Uavg = 2
T

(
∫︂ T/2

0
Uabdt) = 2

π
As (A.4)

Eq. A.4 represents the expected amplitude of the filtered rectified signal. This
scalar value is proportional to the secondary amplitude with a factor of 2

π
. From

this result A.4, the rms value of the secondary coil can be easily evaluated:

Udemod = Urms = As√
2

= π

2
√

2
Uavg (A.5)

Figure A.1 shows the comparison between the output from a digital synchronous
demodulator with the results of equations A.5:

• Red line: primary AC voltage of equation A.2 with Ap = 10V and f =
1976Hz;

• Green-dashed line: raw secondary AC voltage of equation A.1 with As = 7V
and same frequency of the primary one;

• Green line: rectified secondary voltage according to the sign of the primary
voltage;

• Black-dashed line: nominal mean rectified value evaluated according to equa-
tion A.4;

• Blue line: nominal rms value calculated from equation A.5. Both this scalar
value and the previous one have been reported per each instant of time;

• Violet line: output of the synchronous demodulator.
The adopted filter in the digital demodulator is a second order zero-phase lag

Butterworth filter, with a cut off frequency fcut = 200Hz, which is almost 1/10 of
the carrier one. This filter has ensured high accuracy in the final estimation of the
demodulated voltage.

In particular, Fig. A.2 reports how the filter order influence the percentage error
between nominal integral value and filtered one. In particular, the curves refers to
the mean voltage obtained as output from the filter. The second column values in
Fig A.2 are calculated as reported in eq. A.6:

err = 100 ∗ Uavgintegral − Uavgfiltered

Uavgintegral

(A.6)

As it is possible to observe from both time-series and table in Fig. A.2, the
second-order filter ensures the smallest percentage error.
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Figure A.1: Synchronous Demodulation (ϕ = 0)
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Figure A.2: Effect of filter order on Synchronous Demodulator

A.1.2 Phase-shift between signals
The results in paragraph A.1.1 are evaluated in ideal nominal condition with

no phase-shift between primary and secondary voltage. In this case, it has been
proofed that the synchronous demodulator returns almost the exact RMS value
from the integral expression, with an error of 0.15%. However, as already reported
in 2.6, this technique is particularly affected by a phase-shift between primary and
secondary voltages, in particular during the rectification step. It is possible to
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Figure A.3: Synchronous Demodulation with variable phase-shift

quantify this effect by solving the equation A.4 considering a certain angle ϕ > 0:

Urect|ϕ = 2
T

(
∫︂ T/2

0
Assin(2πft + ϕ)dt) = 2

π
Ascos(ϕ) (A.7)

From this equation A.7, the rms value extracted by the demodulator is lower
than the nominal by a factor of cos(ϕ):

Urms|ϕ = Urms|ϕ=0cos(ϕ) (A.8)

Figure A.3 shows how the rms value decreases due to the phase-shift ϕ. The
second and third subplots illustrates how the rectified signal (continuous green
line) presents periodic counter-sign peaks which contribute to underestimate the
final rms value.

A.1.3 Noise effect
All the previous considerations in paragraphs A.1.1 and A.1.2 are based consid-

ering a perfect sinus-wave as secondary LVDT coil input. In reality, due to the kind
of 4-wires connection, the shape of this input may be affected by external noise.
In this case, it can be demonstrated that the synchronous demodulator response is
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Figure A.4: Noisy signal and its frequency spectrum

influenced by both amplitude and phase of each odd-order harmonics. Let consider
a noisy periodic signal which can be written, using Fourier series decomposition as:

Uab = As0 +
N∑︂

n=1
Asnsin(2πnft + ϕn) (A.9)

Let exclude any steady part of the signal (As0 = 0) and let truncate the equation
A.9 at the third harmonic n = 1, 2, 3:

Uab = As1sin(2πft + ϕ1) + As2sin(4πft + ϕ2) + As3sin(6πft + ϕ3) (A.10)

The rectification of the signal in eq. A.10 includes both the effects of the first
and third harmonic and their relative phase. These contributes can be calculated
by solving the integral in eq. A.11:

Urect = 2
T

(
∫︂ T/2

0
Uab(t)dt) = 2

π

(︂
As1cos(ϕ1) + As3

3 cos(ϕ3)
)︂

(A.11)

The result in eq. A.11 shows that the even-order harmonic effect has been can-
celled during the rectification, while all the other harmonics influence the rectified
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Figure A.5: Rectification of noisy signal

amplitude with both their phases (as in eq. A.3) and amplitudes, which are scaled
with a factor of 1/n. This result can be generalized as follow:

Urect = 2
π

(︂Nodd∑︂
n=1

Asn

n
cos(ϕn)

)︂
(A.12)

with n is the odd-harmonic order index. As the previous analysis in eq. A.5, the
output rms value from the synchronous demodulator is obtained multiplying the
result A.12 with the gain π

2
√

2 . In order to validate the eq. A.12, the results from
the integral formulation and from a digital synchronous demodulator have been
compared. The input signal has been built considering five different harmonics
with their own amplitude and phase-shift. In Fig. A.4 both the raw signal and its
relative frequency spectrum have been reported. In particular, the second subplot
shows both amplitudes and phases of each harmonic. Fig. A.5 reports the result of
both rectification. The red and the blue lines represents the raw periodic primary
Uprim and secondary Usek signals. The green and yellow lines instead shows the
integral result of eq. A.12 and the output of the synchronous demodulator. The
overlapping of these two curves demonstrates the accuracy of expected integral
formulation A.12 with the demodulator output.

The results from eq. A.12 can be generalized for all the harmonics in the
frequency spectrum which are characterized by their proper amplitude, frequency
and phase shift. Beside the contribute of the n odd-order, the other k harmonics
with a non-integer order in the Fourier series A.9 influence the demodulation. In
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Figure A.6: 4-wires secondary LVDT coil signal and its frequency spectrum

fact, referring to each of these harmonics with its frequency fk, Amplitude Ask and
phase ϕk, the noise-effect is expressed expanding the eq. A.12 as follow:

Urect = 2
π

⎛⎝Nodd∑︂
n=1

Asn

n
cos(ϕn)

⎞⎠+ (A.13)

+ f1

∞∑︂
kϵR−n

Ask

πfk

(︄
1 − cos

(︄
πfk

f1

)︄)︄[︄
sinϕk · sin

(︄
π fk

f1

)︄
− cosϕk · sin

(︄
π fk

f1

)︄]︄

where f1 is the frequency of the first principal harmonic.
In order to validate the results in eq. A.13, a real noisy signal from a 4-wires LVDT
has been considered, whose time-series and frequency spectrum are reported in
Fig.A.6. In particular, this signal is a small portion of the EHSV Elevator LVDT in
its null position. The signal has been sampled with a f = 50kHz, and the digital
synchronous demodulator parameters are still the one reported in the previous
paragraph A.1.1.

Comparing the frequency spectrum in Fig. A.4 with the one in Fig. A.6, it
is evident that the latter presents n-integer odd harmonics at multiple frequency
of f1, but also it is filled with other k harmonics, especially around the area of
the first one. All these harmonics are not discarded during both rectification and
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Figure A.7: Alignment of first harmonic of Usek signal with Up

filtering steps, but they need to be included in the second term of the sum in eq.
A.13. The integral formulation need to be compared with the output from the
developed digital synchronous demodulator, which need to be slightly modified in
order to eliminate the phase shift between primary coil voltage Up and the first
carrier frequency harmonic of the secondary one. This preprocessing step results
fundamental in order to have a correct evaluation of the other harmonics phases. In
this way, re-aligning the secondary signal with the primary one, the first harmonic
contribute in eq. A.13 takes into account a correct phase ϕ1 value, without any
slicing error of the recorded signals. The plot in Fig. A.7 shows the results of this
alignment process between Up and the first harmonic, at the same carrier frequency
of the primary voltage, of the noisy signal Usek. Using cross-correlation as in [126],
it has been been possible to eliminate the phase-shift between the reference blue
line and red one, which represent the first harmonic of the frequency spectrum in
Fig. A.6. The black-dashed line represents the final result of this preprocessing
step. Once evaluated, the equivalent time-lag between signals, the raw vector has
been aligned accordingly.

The first subplot of Fig. A.8a shows three main lines:

• Blue one: preprocessed noisy raw signal from the secondary coil. This time-
series has been preprocessed and aligned to the primary voltage;

• Red line: output from the digital synchronous demodulator;

• Yellow line: result of the integral formula A.13.
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The comparison between these two last lines show how robust the integral formu-
lation is compared to the real time-series. The second subplot reports the absolute
value at each sample between red and yellow line, while in its title the Root Mean
Squared Error is reported:

RMSE =

⌜⃓⃓⎷ N∑︂
i=1

(x̂i − xi)2

N
(A.14)

This metric is typically used to measure the error between a predecited value
and a quantitative measured one. In this case, it quantifies how spread the observed
demodulator output is from the expected integral one: the smaller it is, the more
the variables are correlated. The second subplot in A.8a reports the absolute error
every n sampled points. Imposing a threshold to the average absolute or rms error,
can be considered an health indicator which helps to identify a possible fault in
the LVDT itself or in the connected spool. The last plot in Fig. A.8b shows the
difference between the results of equations A.12 and A.13 in case of noisy signal. In
case of high level of noise, using just the contribute of all the odd-order harmonics
can estimation error of about 6%, which decreases around 3.5% when considering
also the noisy harmonics effect.
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Appendix B

Health Features limits reduction

In paragraph 5.6 it has been mentioned how the HyDiag reports has been de-
signed in order to include information from both the Diagnostic Module and results
from the analysis of previously collected data. This latter aspect implies the re-
ports results from the standard CMM testing procedure. This Appendix reports
the results from the identification process of possible fixing sweet-spots in the CMM
limits. The idea behind this analysis was born from a recurrent observation of the
standard test reports. In fact, it has been noticed how some units which are ini-
tially labeled as No Fault Found (NFF) , since they have passed all the CMM tests,
may return in the LHT shop after few Flight Hours (FH) for further testing and
fixing. This inconvenience can be avoided defining acceptability sub-ranges within
the suggested CMM limits ranges. These latter intervals are essential to re-certify
the units, however they lead to binary labelling of each test (PASSED or FAILED)
which seems to be not enough. For this reason, the identification of possible sweet-
spot within the suggested CMM test ranges can be useful to identify how close
each HF is to the limits, and if it falls within a "risk-area" where the interested
sub-component may need a further investigation. This kind of analysis has been
conducted comparing the NFF results with the recertified units ones, labelled as
"Ausgang" test. Paragraph B.1 explains the Historical database structure, the next
one B.2 illustrates the methods used for preprocessing and clean the collected data,
while the last B.3 shows the results and sweet-spot identification.

B.1 Historical Database
The Historical Database represents a useful source of information since it collects

all the reports information from 1996 of all the tested units, including the use-cases
PFCS. As reported in [31], it has been built mining different set of datas from
different databases, as shown in Fig. B.2. Six different LHT databases are queried
to extract not only the CMM HFs reports, but other important set of data such as
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Figure B.1: Sweet spot identification

Figure B.2: Source databases for the Historical one [31]

the material quantity, Time Since Installation (TSI) , cost and exchanged parts.
Joining all these information, the final Historical Database is exported in .xls

format for an easier processing. The latest version used for this analysis includes all
the recorded test from September 1995 to January 2020. This collection of data has
been already analyzed in previous works. In [31], the author has demonstrated how
the average TSI, which is used to estimate the time range between two consecutive
SLE, drastically decreases after the first repairing event. Furthermore, the author
has given an important contribution during the identification of the most critical
components, evaluating per each PN which were the must exchanged parts in the
past. This analysis has supported the design process of the HyDiag testing proce-
dure, designed in order to evaluate in particular the health status of these parts.
Another useful study has been conducted in [33], where the HyDiag reports have
been compared with the traditional one, highlighting both the coherence of the
extraction methods and the impact the automatic HFs extraction makes in terms
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of avoiding any reporting mistake from the operator.
In this Appendix, the focus is related to the HFs distribution between NFF units
and recertified ones, in order to identify any optimal adjustment range within the
suggested CMM one.

B.2 Data cleansing and pre-processing
Before starting, a preliminary cleansing and preprocessing of the Historical

Database data are necessary to extract the useful results for the sweet-spot identi-
fication. First of all, the database file in its .xls format is converted in .csv, then it
is processed by two Python scripts which need to executed consecutively to obtain
the final result:

1. db_build_histodb_fix.py: it performs all the necessary fixing over the table
columns.

2. hist_db_cmm_shrink.py: it takes as input the fixed output of the previ-
ous script and executes the sweet-spot range identification just for NFF and
recertified units.

B.2.1 Data cleansing with db_build_histodb_fix.py

It may happen the information stored in the Historical Database might be in-
complete, due to the mining and joining process from different data sources or to
human error during reports compiling. The goal of db_build_histodb_fix.py
is to improve the quality of this database and preprocess the data for further
CMM limits analysis. The high-level flowchart in Fig. B.3 illustrates the strategy
used in db_build_histodb_fix.py. Firstly, the code loads and import the latest
database version in .csv format, stored in the proper folder, as Pandas dataframe
[reback2020pandas]. This Python library allows to user to query the dataframe,
process the datas row and column-wise and merge the information between two or
more dataframes. All these features are used by the db_build_histodb_fix.py to
improve the quality of the collected data.
The dataframe contains 39 columns with several information about the tested unit,
such as the HFs test results, removal and testing dates, exchanged parts, SLE index
and TSI in hours and days. To improve the processing process, it is necessary to as-
sign to each the proper data type. For example, the flowchart shows the subprocess
of converting the PN and SN columns into strings, the dates related columns into
date-type, SLE index in integer number and the numbervalue column into float.
This latter one is particularly important since it includes the CMM HFs numeric
value extracted during the standard tests. Another important column which need
to be fixed if data are missing is the TSI one. This parameter is a good estimator
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START

Load the latest .csv file in the reference folder

Convert columns type

END

QUERY 1: Extract the Elevator related rows

QUERY 2: Extract the results from 2015

PN, SN and «unity of measure» columns into strings
Date related columns in datettype format
SLE and numbervalue columns in numeric (respectively int and float) type

Load the 
pn_tsi_distrubutions.csv file

Fix the SLE and TSI columns, according to removal dates of consecutive events 

Load the pn_cmm_limits.csv dataframe 

Merge the dataframes in order to add the CMM limits columns per each HFs

Check if the reported HFs respects the CMM limits, and correct the 
testresult column accordingly

Fix the 
testresult_totalaccordingly

Export the dataframe in csv format

Figure B.3: Simplified flowchart for data cleaning

of the tested unit life, since it is calculated between two consecutive SLEs. Any
missing data in this column is a lack of knowledge of the quality of the previous
SLE.

In order to fix this eventual missing information, the script checks per each
tested unit (identified with a unique label pn_sn) how many SLE the unit has
experienced and if there is any missing value in the TSI column. It may happen
to have units which presents just the first SLE, because they are still installed
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CMM Test N. HyDiag test name HyDiag sequence CMM test name HDb Test N. HFs name U.o.m Lower limit Upper limit Flag HyDiag

Table B.1: pn_cmm_limits.csv structure

on board and did not receive any fixing in the LHT shops yet. In this case, if
the TSI information is missing, the code replaces the relative empty TSI cell with
a conventional value stored in the previously loaded pn_tsi_distribution.csv
dataframe. This short table collects, per each PN, the descriptive statistic features
of the TSI column per each SLE, excluing NaN values. Using the Pandas function
describe, it is possible to extract per each SLE the mean and maximum values
and the first, second and third quartiles. In particular, the second one is used as
reference value to replace in case the TSI cell of the first SLE is empty. If the
missing TSI value is referred to a following SLE (second, third etc.), its value is
calculated using as reference the removal date of the previous one. Actually this
method is also used if the TSI value is anomalously low, for example less than
38 FH. This reference value has been estimated takins as reference an average
2000 FH per year. After fixing the TSI column values, the dataframe can be
queried in order to extract the necessary results for the CMM limits evaluation.
For this analysis, only the Elevator reports after a reference date (e.g. 01/01/2015)
have been extracted from the whole dataframe. Once this sub-dataframe has been
extracted, in correspondence to each CMM HFs, the suggested limits values are
inserted merging the obtained dataframe with the reference pn_cmm_limits.csv
one. This file has been compiled manually and it is loaded also by the HyDiag
software for report compiling.

This dataframe in Table B.1 contains the following columns:

1. CMM Test N.: with this field, three columns have been grouped. Together
they form the correct CMM test enumeration composed by Test (N), Sub-test
(M) and Measurements numbers (K).

2. HyDiag test name: this field is contains the CMM test name which is then
reported in the csv version of the HyDiag report. The name structure is build
from the CMM Test Numbers columns as cmm_N_M_K.

3. HyDiag Sequence: this column contains the HyDiag Sequence number where
the relative CMM test is included.

4. CMM Test name: it contains the original CMM test name.

5. HDb Test N.: together with CMM Test N., it allows to link the correct CMM
enumartion with the one reported in the Historical Database. It has been
indeed observed that the aforementioned CMM test numbers N, M and K
often differ from the one contained in the Historical Database.
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6. HFs name: HFs name (e.g: "Sm" is the total speed in extended stroke).

7. U.o.m: HFs unity of measure.

8. Lower limit: CMM HFs lower limit. If the CMM does not report any lower
limit, a default value of 0 is imposed by default

9. Upper limit: CMM HFs upper limit.

10. Flag HyDiag: binary column value: 1 if the CMM test is included in the
HyDiag procedure, and 0 otherwise.

The merge between this dataframe and the Historical data one is made on
the CMM Test N. and HDb Test N. columns. In this way, the bigger Historical
Database is enriched with information regarding the HyDiag procedure but more
importantly it includes also the Lower and Upper limits columns per each HFs.
These two columns are used in the script to perform an additional check over the
reported HFs. In fact, the last two process in Fig. B.3 refer to both fixing the
testresult and testresult_total columns. The first one contains binary values: 1
if the relative CMM test has passed and 0 otherwise. The second column instead
reports the same binary value considering the whole HFs per that unit: the whole
measurement is labelled as Failed (therefore 0) if at least one of the collected test
is failed as well. This additional test over the reported results ensure to correctly
identify both the NFF units, which have been tested just once and they have success
in all the CMM tests, and the re-certified units, which needed a previous fixing or
replacement of faulty components. These kind of units are the main actors of the
further analysis of sweet-spot identification within the CMM ranges. The last task
performed by the script is the export of the new fixed dataframe in a new .csv file.

B.3 Sweet-spots identification in limits range
Once the db_buld_histodb_fix.py has exported the final fixed dataframe in

.csv format, it can be used to identify the HFs sweet-spots within the suggested
CMM ranges. This task is performed by the Python script histo_db_cmm_shrink.py.
As previously anticipated, the main actors of these study are both the NFF units,
labelled as "EA" (Eingang-Ausgang) units, and the certified ones labeleed as "A"
(Asugang). All the units which belong to these categories have one common char-
acteristic: they have passed all the tests. The EA units represents the units which
have been shipped in the LHT shop and they have passed all the CMM tests dur-
ing the first trial. The A units are instead the ones which have been certified after
being tested and repaired. However, it is possible that this test-label (EA or A) is
wrongly reported in the Historical Database, due to one or more misreported failed
test. Vice versa, it is possible that some test procedures have been labelled as Entry
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Figure B.4: NFF and Recertified units

Test (E) but they actually should have been marked as EA because they do not
present any failed units. In order to avoid these possibilities, the first part of the
histo_db_cmm_shrink.py present these pre-processing phases. From the updated
testresult_total column, the code checks if the units labelled as passed are also
marked as EA or A. If a NFF unit has been wrongly marked as E, then the code
includes it in the EA ones. With the same approach, all the units with at least one
failed test and wrongly labelled as NFF or certified are discarded by this analysis.
Therefore, only rows of the corrected marked EA and A units are selected.
Another interesting observation regards all the NFF units that actually presents a
consecutive SLE event after few FHs. These particular units need to be marked
and in detail analyzed, since they actually represent a missed chance of repairing.
This particular group of units could have presented an incipient fault in one or
more sub-components which have not been correctly identified by the CMM tests.
This inconvenience can be avoided by the identification of sweet-spots and risky
area within the CMM ranges, discouraging a binary classification of each test.

The pie-plot in Fig. B.4 shows the percentages of units which have passed all
the CMM tests, therefore labelled as NFF (EA) tests or Recertified (A) test after
repairing. It is possible to notice how actually the NFF units are 55% of this
group. This considerable percentage can be explained considering the standard
protocol followed when the units are disembarked from the aircraft. As reported
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in [17], the NFF rate can be particularly high especially in case of redundant on-
board architecture, such as for the Elevator. If the FCC detects a failure in one of
the two Elevator on one side of the horizontal stabilizer, the protocol recommend
to disembark both the units for an additional check. This procedure ensures high
safety level, however it drastically increases the NFF ratio, since it is very likely that
at least one of the disembarked unit does not present any failure. The percentage of
the wrongly labelled NFF units which actually should have been labelled as Entry
tested (E) is about 2% of the overall population. Almost 1% of NFF units present
a consecutive SLE event after few HFs. Even if this class percentage content is the
smallest, it has driven the authors to focus on the recertified and repaired units
(A tests) for the identification of possible sweet-spots in the CMM ranges. This
conservative approach is also driven by the fact that actually the background of
the repaired units can be easily tracked and the exchanged or repaired components
information are collected within the Historical Database. Taking as reference the
Ausgang tests results, the distributions of the CMM HFs included in HyDiag have
been analyzed. In particular, the sweet-spots identification in the CMM ranges has
been conducted comparing the IQR scores of the HFs distributions for both EA
and A tests. The IQR Score represents the interquartile range and it measures the
statistical dispersion of the data:

IQR = Q3 − Q1 (B.1)

where Q3 and Q1 are the upper and lower quartiles. The HFs with IQRA <
IQREA has been chosen for the sweet-spot identification, penalizing the NFF units
with wider dispersion around the median value. According to this criteria, it has
been possibile to identify the sweet-spot within the CMM ranges for 15 CMM HFs
which are also included in the HyDiag procedure. Fig. B.5 and B.6 illustrate
the results of this analysis over two representative HFs: IE is the nominal bias
current value in extended position, and SR’ represents the recentering speed from
totally extended stroke. As already mentioned in Chapters 5 and 6, these HFs have
been used for the RD health status detection, so it becomes particularly useful to
evaluate the best possible range of adjustment for these two. Therefore, they have
been selected and presented in this work to demonstrate the results of this analysis.

The first subplot represents the swarm-plot and boxplot graphs for both HFs
distributions for EA and A tests. This kind of graph is widely used in statistics to
visually represent the data distributions and each quartile [127]. The amplitude of
the central box represents the IQR score. The values have been normalized taking
as reference the maximum value of the range, therefore the right-limit of the CMM
range. Both the nominal limits are signed with continuous horizontal red lines in
the first subplot and accordingly with vertical red lines in the second subplot. The
green dashed lines represents the IQR score limits of the recertified units, and they
mark the beginning and the end of the sweet-spot range. In the lower histogram, all
the bars within this range are coloured in green. The upper and lower whiskers in
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B.3 – Sweet-spots identification in limits range

the box-plot are signed with vertical black dashed lines in the lower histogram. The
upper whisker is evaluated as the greatest value in the distribution which is smaller
than Q3 + 1.5IQR while, in the same way, the lower whisker is estimated as the
smallest distribution value which is greater than Q1−1.5IQR, These values delimit
the yellow areas in the lower histogram which can be considered as acceptable ranges
but with higher risk than the best central spot. The values between the whiskers
values and the CMM limits have to be considered with an higher level of risk or
may even represent an incipient fault in the tested component.
The validation of this CMM range partition method is showed directly by the two
possible class of units identified in the first subplot swarmplot. Each point represent
a NFF or recertified unit, and the red dots in the EA distribution represents the
NFF units which have been lately tested for further repair (the 1% of unit in the
pieplot B.4). It is possible to observe how actually most of these dots are outside
the optimal range identified by the green-dashed line, therefore they represent a
missed opportunity of further investigation since a possible incipient fault has not
been correctly detected.
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Health Features limits reduction
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Nomenclature

Acronyms / Abbreviations

ANN Artificial Neural Network

APU Auxiliary Power Unit

ATA Air Transport Association

CAGR Compound Annual Growth Rate

CBM Condition-Based Maintenance

CFDS Centralized Fault Display System

CM Condition Monitored Maintenance

CMM Component Maintenance Manual

CV Cross-Validation

DV Display Variable

EHSV Electro-Hydraulic Servovalve

EIS Electronic Instrument System

ELAC Elevator and Aileron Computers

EV Electro-Valve

FAA U.S. Federal Aviation Administration

FAC Flight Augmentation Computer

FCC Flight Control Computer

FCDC Flight Control Data Concentrators

FCS Flight Control Systems
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Nomenclature

FH Flight Hours

FMEA Failure Mode & Effects Analysis

FN False Negative

FP False Positive

HFs Health Features

HP High Pressure

HT Hard Time action

IBIT Initiated Built-In Test

ISO International Standard Organization

KNN K-Nearest Neighbors

LHT Lufthansa Technik

LHT Lufthansa Technik

LP Low Pressure

LPF Low Pass Filter

LV DT Linear Variable Differential Transformer

MLP Multilayer Perceptron

MRO Maintenance Repair and Overhaul

MRO Maintenance Repairing and Overhaul

MSG Maintenance Steering Group

MSV Mode Switching Valve

NFF No Fault Found

NFF No Fault Found

OC On Condition action

OEM Original Equipment Manufacturer

OEM Original Equipment Manufacturer
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Nomenclature

PAC Pressurization Air Conditioning

PCA Principal Component Analysis

PFCS Primary Flight Control Systems

PHM Prognostic and Health Management

PSD Power Spectral Density

PTU Power Transfer Unit

PV Process Variable

RAT Ram Air Turbine

RCM Reliability-Centered Maintenance

RD Recentering Device

RMSE Root Mean Squared Error

RUL Remaining Useful Life

RV DT Rotary Variable Differential Transformer

SEC Spoiler and Elevator Computer

SFCC Slats Flaps Control Computer

SFCS Secondary Flight Control Systems

SML Supervised Machine Learning

SV M Support Vector Machines

THS Trimmer Horizontal Stabilazer

TM Torque Motor

TN True Negative

TP True Positive

TPR True Positive Rate

TSI Time Since Installation

TST Time Since Installation
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Nomenclature

UUT Unit Under Test

UUT Unit Under Test

V C Virtual Channels
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