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Summary

The in-flight monitoring of the loads and of the induced displacement field is
becoming essential in the development of next generation Structural Health Mon-
itoring framework. To achieve the crucial change from its traditional formula-
tion, based on pre-emptive maintenance, to a new philosophy, based on pro-active
condition-based maintenance, the monitoring of these characteristics is paramount.
The continuous tracking of the loads and the displacements generates information
on the real status of the structure and can guide more accurate maintenance and
sustainment practices. Moreover, anomalies in the monitored characteristics can
also lead to the identification of critical conditions including the detection of struc-
tural damage.

Another recent progress in the design of aerospace structures has increased
the demand for a more accurate monitoring system for loads and displacements,
the development of smart structures. These structures are designed to adapt to
the condition that they are exposed to. Therefore, the knowledge of the actual
condition, in terms of deformed shape and of loading condition, is fundamental for
the correct activation of their morphing capabilities, that allow the structure to
obtain load alleviation and a higher aerodynamic efficiency.

Unfortunately, the direct measure of these characteristics, that prove to be
so crucial for the development of the future aerospace structures, is usually hard
to obtain. For this reason, shape sensing and load reconstruction/identification
methods have been developed in the open literature. These techniques are designed
to compute the displacement and the loads from easily measurable discrete strains.
This research aims to give an important contribution to the further development
of the shape sensing and load reconstruction methods, in particular for the specific
application on aerospace structures.

The most widespread shape sensing methods emerged in the last few years are
the inverse Finite Element Method (iFEM), the Modal Method (MM) and the Ko’s
Displacement theory. Although a lot of effort has been recently involved in the
formulation of these methods, a comprehensive study, that specifically includes the
analysis of the effect of the strain sensing configuration on the performances of
the methods is missing. In this work, the three methods have been numerically
and experimentally tested on the displacement reconstruction of several structures,
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Summary

including a composite wing box, an aluminium swept wing box, an aluminium
C-beam and an aluminium stiffened panel. For these analyses, the effect of the
measurement error and of the number and location of the strain sensors have been
widely investigated. The study has specifically focused on the optimization of the
sensing technology for these methods. In particular, a more efficient approach to
unequivocally determine the sensors locations for the iFEM quadrilateral elements
has been introduced.

The comparative study shows the different scenarios that each method can be
suitable for. The iFEM, also considering the introduced improvements, results as
the most accurate shape sensing method for application, but a considerable amount
of strain sensors is required to achieve this accuracy. The MM, on the other hand, is
not able to reach the same level of accuracy, but can generate moderately accurate
reconstruction of the displacements with fewer sensors. The Ko’s Displacement
theory, although can give a rough estimation of the deformed shape requiring very
few sensors, is the less accurate of the three explored methods. Considering its im-
pressive results, the iFEM has been selected for a further development and has been
enriched with an incremental formulation for the analysis of structures undergoing
large displacements.

The study on the load reconstruction methods has involved two different scenar-
ios. The first one being the reconstruction of the internal loads, for the estimation of
the fatigue life consumption, of a fighter aircraft’s wing, whose physical characteris-
tics were not provided. Only data of strain, loads and some flight parameters have
been made available. For this problem data driven system identification methods
have been explored. The recent progress in the field of these "black box" approaches
has brought to life a vast amount of different model variants and formulations, with
a broad landscape of functional parameters, that have never been explored under
a single benchmark aircraft loads monitoring problem. For the application on the
aircraft’s wing, the investigation of this landscape of functional parameters for the
linear regression based models and for the Artificial Neural Networks is consid-
ered. The broad exploration of these two families of system identification methods
and of their functional parameters proves the superior capabilities of the ANNs
with respect to the linear regression based models. Within the model variants of
ANNs, the Distributed Delay architecture showed the best fatigue life consumption
predictions.

The second scenario has concerned the identification of the external loads of
a numerical aluminium swept wing box from discrete strain measurements. The
loads have been computed using an existing approach, based on the discretization
of the loads and on the computation of the coefficient of influence between the
discretized loads and the discrete strain measurements. The discretization of dis-
tributed pressure fields is obtained using Finite Elements. In previous applications
only triangular elements have been adopted, whereas, in this work, the method has
been improved with the implementation of quadrilateral elements.
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This activity has inspired the formulation of a novel and crucial tool for the
progress of the monitoring systems analysed in this work. This is an innovative
and integrated approach, able to simultaneously reconstruct the external loads and
the displacement field of a structure from the same discrete strain measures. This
2-step approach uses the identified external loads to perform a standard FEM anal-
ysis and thus compute also the displacements of the structure. Therefore, the first
step of the procedure includes the identification of the loads while the second one
provides the application of these loads to the model of the structure to compute the
displacement field. The method has been applied on the same structures analysed
for the shape sensing campaign. The applications show that the 2-step procedure
is able to simultaneously compute the external loads and the displacements with
a remarkable accuracy, if a sufficient number of strain sensors are installed on the
structure and they are not affected by significant measurement error. If the num-
ber of sensors is diminished or they are affected by measurement error, the first
step of the procedure loses accuracy. Nevertheless, the method is still capable of
impressive reconstruction of the deformed shape, making this a viable tool for the
future of the aerospace structures monitoring.

Some of the research and results presented in this thesis have been published in:

A. Tessler, R. Roy, M. Esposito, C. Surace, and M. Gherlone. “Shape Sensing
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based on measured strains: Optimization and comparison of existing approaches”.
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M. Esposito and M. Gherlone. “Material and strain sensing uncertainties quan-
tification for the shape sensing of a composite wing box”. In: Mechanical Systems
and Signal Processing 160 (2021) [3].

M. Esposito, M. Gherlone, and P. Marzocca. “External loads identification and
shape sensing on an aluminum wing box: An integrated approach”. In: Aerospace
Science and Technology 114 (2021) [4].

3



4



Chapter 1

Introduction

Over the last years, Structural Health Monitoring (SHM) has seen a continuous
increase in interest in aerospace applications. In particular, the SHM framework is
rapidly changing its traditional formulation, based on the pre-emptive maintenance,
to a new principle based on pro-active condition-based maintenance. This new con-
cept requires the precise and in-flight monitoring of the structures. The monitoring
of some crucial characteristics of a structure can lead to the optimization of the
maintenance and sustainment practices, that can be guided by the knowledge of
the actual status of the structure and not only by the design based programmed
interventions. Moreover, in parallel with the development of the modern SHM
framework, the birth and progress of the Smart structures has also increased the
demand for a more intensive in-flight monitoring of the aerospace structures. As
a consequence, the requests raised by these two new concepts have caused the si-
multaneous expansion of some monitoring techniques, designed to track the needed
informations. The load reconstruction/identification and shape sensing methods
have attracted considerable attention as crucial tools for the realization of an ef-
fective structural monitoring system. These two families of methods are designed
to compute the loads and the displacement field of a structure from discrete strain
measurements. The loads and the displacements are not easily measurable quanti-
ties, therefore, the use of easy measurable strains to indirectly compute these char-
acteristics has emerged as a viable solution, also thanks to the progresses achieved
by the strain sensing technology [5, 6].

The load identification framework is divided into external and internal load
monitoring. The monitoring of the internal loads is crucial to guide condition-
based maintenance, fatigue life estimation and critical load modelling for the SHM.
In fact, the load spectra modelled during the design process do not always reflect the
one really experienced during flight operation, therefore misleading the fatigue life
prediction and the standard maintenance schedule. Moreover, unexpected highly
impacting flight conditions can lead to the necessity of exceptional maintenance
operation and they must be taken into account as they also strongly impact the
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fatigue life of the structure. The monitoring of the external loads can serve the
same purpose. In fact, the knowledge of the external loads can lead to the compu-
tation of the internal ones through the use of a structural model, able to relate the
external load to the induced internal ones. On the other hand, the monitoring of
the external loads can supply information about the health status of the structures
through the detection of changes in the load paths caused by presence of damages
[7]. Moreover, the knowledge of the in-flight load conditions is fundamental for
the design of innovative smart structures that, thanks to their morphing capabil-
ities, can optimize their shape to obtain load alleviation [8] and to improve the
aerodynamic efficiency of the control surfaces [9].

The shape sensing techniques, starting form easily measurable in-situ character-
istics, the strains, allow the reconstruction of the displacement field of a structure.
The in-flight monitoring of the deformed shape also provide crucial information
about the health status of a structure. The detection of anomalies in the displace-
ment and strain field allows the individuation of damages [10, 11, 12, 13]. Moreover,
the shape sensing can be easily expanded to perform stress sensing. In fact, once
the displacement field is reconstructed, the use of the constitutive equation allows
the computation of the stress field and, consequently, of the internal loads of the
structure. These ones can be used for the same SHM operations already described.
The world of morphing structure is also impacted by these monitoring methods.
The morphing capabilities, to work properly, need to have a feedback on the actual
shape of the structure, in order to modify it accordingly. The shape sensing can
provide this fundamental information [14, 15, 16].

The highlighted importance of the simultaneous use of the shape sensing and the
load reconstruction for the future of the SHM and of the smart structures inspired
this work. In fact, as it will be pointed out in the literature review following this
chapter, although the recent massive efforts, these methodologies still require a
further development of some aspect that generated the following research questions:

• How can the shape sensing and load reconstruction be extended to analyse
complex aerospace structures?

• How can strain sensing technology be optimized to fit requirements of the two
techniques?

• How can the shape sensing be extended to reconstruct non-linear deforma-
tions?

• Can an integrated approach, including shape sensing and load reconstruction,
be implemented?

To try to answer these questions this work has been developed into four main
phases. The first phase is focused on the study of the shape sensing. In particular
to its application on a complex aerospace structure and to the reconstruction of
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the non-linear displacements. The second part is developed around the analysis
of the internal and external load of aerospace structures. The third phase has
seen the development of an integrated approach for the simultaneous monitoring of
the loads and displacements. Finally, the results of these three phases have been
experimentally evaluated on three different structures.

1.1 Thesis outline
The research phases have generated the following activities and the relative

sections of this thesis.
An accurate literature review on the existing shape sensing methods and load

reconstruction ones, focused on highlighting the strength and the weakness of the
existing formulations has been carried on and it is reported in Chapter 2.

From this review, the Modal Method (MM), the Ko’s Displacement theory and
the inverse Finite Element Method (iFEM) have emerged as the most reliable and
successful shape sensing methods in the open literature. Therefore, these methods
have been selected for a comparative study on the displacement reconstruction of a
composite wing box subject to torsion and bending deformation. The study involves
the optimization of the strain sensors’ configuration to fulfil the requirements of the
three methods and the development of a novel formulation for the iFEM quadrilat-
eral element. Although performed only numerically, the investigation also involves
the evaluation of the effect of the uncertainties typical of the experimental envi-
ronments. The shape sensing analysis has been continued with the introduction
of an incremental iFEM formulation for the monitoring of structures undergoing
large displacements. This proposed methodology has been numerically tested on
the shape sensing of a wing-shaped plate. The detailed description of the shape
sensing methods and of the introduced new formulations is reported in Chapter 3,
whereas the numerical studies and their results are described in Chapter 4.

Two different problem have been considered for the study of the load reconstruc-
tion methods. The monitoring of the internal loads, with the purpose of assessing
the fatigue life consumption due to these loads, and the reconstruction of the exter-
nal aerodynamic loads. The identification of the internal loads induced on the wing
of a fighter aircraft, without any knowledge of the airframe’s characteristics, has
been the focus of the first activity. For this problem, a broad investigation on the
data driven system identification methods has been accomplished. The investiga-
tion involved a parametric study on the regression algorithms identified during the
literature review, the linear regression based algorithms, ARX and ARMAX, and
the Artificial Neural Networks. The scope of the parameters’ exploration has been
the evaluation of the best system identification architecture for the prediction of
the loads from discrete strains. The system identification methods are introduced
in Chapter 5 and their application to the wing monitoring is presented in Chapter
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6.
The external loads identification has been implemented using an approach based

on the coefficients of influence between the loads and the induced strains. A generic
system of loads is discretized with concentrated loads or nodal pressures, accord-
ing to the kind of load that the method has to reconstruct. In the case of nodal
pressures, these are interpolated over the structural domains using finite elements,
so that they can effectively simulate a continuously distributed pressure. The dis-
crete loads are then identified by fitting the strain field caused by each discrete unit
load to the measured ones. The detailed formulation of this method is reported in
Chapter 7. This method inspired the formulation of the integrated approach for
the simultaneous computation of the external loads and the displacement field of a
structure, that, through the use of a structural model, can also lead to the recon-
struction of the internal ones. The proposed 2-step method is simply based on the
idea that the identified external loads can be used to run a standard FEM simula-
tion to reconstruct the displacement field, the strain field and the stress field of the
structure. The external loads reconstruction and the consequent 2-step approach
have been tested on the numerical monitoring of a swept aluminium wing box and
compared, in terms of the shape sensing, to the iFEM. Also in this case, a study
on the optimization of the sensing technology and on the influence of the inputs’
uncertainties has been considered. This investigation is described in Chapter 7.

The results of the above mentioned numerical activities have been finally tested
on three different experimental scenarios. An aluminium cantilevered C-Beam, an
aluminium stiffened panel and an aluminium wing box have been analysed. The
results of the numerical investigation have guided the experimental activities and
the introduced formulation have been evaluated on the monitoring of real structures.
The experimental activities are presented in Chapter 8.

Finally, in Chapter 9, the concluding remarks and the suggestion for the future
activities aimed at the further development of the load reconstruction and shape
sensing frameworks are discussed.

1.2 Thesis outcomes
During this research project, several new considerations about already existing

methods and new proposed formulations have been derived.
The study on the shape sensing of the composite wing box lead to the develop-

ment of a new integration scheme for the inverse quadrilateral finite element IQS4.
The new formulation is able to better adapt this element to the strain sensing tech-
nology. In fact, thanks to the novel formulation, the location of the strain sensors
for the application of the method is univocally determined, making the process of
sensors placement easier and more reliable. Moreover, the accuracy of this new
element is proven to be higher on the reconstruction of the in-plane membrane
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displacements.
The same study highlighted some original considerations on the capabilities of

the MM, the Ko’s Displacement theory and the iFEM to analyse complex struc-
tures. The three methods shows different characteristics that make them suitable
for different scenarios, depending on the available strain sensors’ setup. The iFEM
is proven to be the most accurate shape sensing method, even when uncertainty
is present in the system, when the structure is equipped with a high number of
sensors. It also shows a considerable sensitivity to the specific sensors’ locations.
On the other hand, the MM shows more adaptability to the sensors’ configuration
and higher robustness with respect to the input’s variability. Nevertheless, this
method, although capable of moderate accuracy with a low number of sensors, it
is not able to reach the accuracy shown by the iFEM. These results have been also
confirmed by the experimental validation of the two methods. The Ko’s Displace-
ment theory showed the highest inaccuracy and the highest liability with respect to
the input’s uncertainties. However, this method is capable of a rough displacements
reconstruction with a reduced number of strain sensors.

The internal loads study produced the following considerations on the analysed
system identification methods. The Artificial Neural Networks show an overall
higher accuracy than the ARX and ARMAX regression methods. Moreover, the
Distributed Delay Neural Networks is the architecture that is capable of the better
fatigue life prediction with respect to all the considered load spectra. For the
evaluation of these performances, a new parameter for the fatigue life estimation,
not dependent on the geometry of the structure, has been derived. In fact, the lack
of physical informations for this problem needed the development of this parameter.

The identification of the external loads and the use of these to reconstruct
the deformed shape of the structure generated impressive results. First of all the
external load identification method has been enriched with the introduction of a
quadrilateral element for the discretization of the pressure field, whereas only tri-
angular elements have been used in the previous works. This element show an
increased level of accuracy in the reconstruction of the pressure field. The external
load can be predicted by the method if a sufficient amount of strain information is
available. Moreover, the proposed 2-step method demonstrated an extreme accu-
racy in the reconstruction of the displacement field, even when the identified load
are not accurate. This happens when the number of input strains is reduced or
when they are affected by measurement errors. In fact, in this case, the method
is still able to find an equivalent system of loads that, although different from the
applied one, induce the same deformation to the structure and therefore, the shape
sensing is still achievable.
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Chapter 2

Literature review

In this chapter the current state-of-the-art on the shape sensing and load recon-
struction methods is resumed. The different application and the results obtained
by the methods in the past studies are highlighted and the shortcomings of the
existing approaches, that need to be overcome in this work, are also pointed out.

2.1 Shape sensing
Shape sensing techniques have witnessed a rapid development during the last few

decades. As already mentioned in the previous chapter, these techniques allow the
reconstruction of the deformed shape of a structure from discrete strain measure-
ments. These quantities are usually easily measurable through strain gauges. The
technology related to the strain sensing has seen a simultaneous rapid progress. This
has strongly enhanced the possibilities of the shape sensing methods and pushed
the technology towards new horizons. In particular, the development of fibre optics
distributed strain sensing systems [5, 6], based on Rayleigh scattering and Optical
Frequency Domain Reflectometry (OFDR), allows the easy installation of a multi-
tude of strain sensors in a more efficient way. These fibres present a high density of
strain sensors, can be easily installed on a structure and, in the case of composite
materials, can even be embedded in composite laminates during the layup phase.

Among the shape sensing methods that have benefited from the progress of these
technologies and have attracted more attention, four main categories of methods
have emerged: (1) methods based on numerical integration of experimental strains
[17, 18, 19, 20, 21, 22]; (2) methods using global or piece-wise linear continuous
basis functions to approximate the displacement field [23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36]; (3) inverse Finite Element Methods (iFEM), based on
a finite-element discretization and on a variational principle [37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49]; (4) method based on the use of the Artificial Neural
Networks (ANNs) [50, 51]. Within these families of methods, three have emerged

11



Literature review

as the more spread and successful for the shape sensing of aerospace structures,
the the Ko’s Displacement theory, the Modal Method (MM) and the inverse Finite
Element Method (iFEM). They belong to the first, the second and the third families,
respectively.

The Ko’s Displacement theory is based on the double integration of the curva-
ture equation of the Bernoulli-Euler beam. In beam-like structure the curvature
can be expressed in terms of a set of axial strains along the beam span and of the
distance of these strain from the neutral axis of the beam. The double integration
of the curvature can lead to the expression of the deflection of the beam in terms of
the measured strain at the location where these are measured. As a consequence,
the method allows the computation of the deflections along a strain sensing line.
The method was introduced by Ko et al. in [19], numerically validated on the
wing of the Ikhana Unmanned vehicle [20] and then experimentally applied on the
Global Observer UAV [21]. Recently it has also been applied on the shape sensing
of a cantilevered composite beam [52]. A crucial improvement for the method has
been introduced by Pak [53]. In this work, the method is expanded in order to
reconstruct the full displacement field of a beam-like structure, for components and
location different from the ones reconstructable with the standard Ko’s formulation.
By means of a modal transformation [54, 55], the new formulation is able to expand
the displacements reconstructed along the sensing lines to the displacements in lo-
cations outside of these lines, allowing the reconstruction of the full displacement
field. The use of the modal transformation requires the computation of the modal
characteristics of the structure.

The modal characteristics of the structure are also adopted by the Modal
Method. This method has been simultaneously introduced in [26] and [27]. The
method is based on the formulation of the strain field in terms of known spatial
functions, the modal strain shapes, and unknown weights, the modal coordinates.
The modal coordinates are computed by fitting the so formulated strain field to
discrete measured strains. The displacement field is then computed from the de-
rived strain field by means of the strain-displacements relations. The MM has been
applied in [26] to reconstruct the displacement field of a cantilevered aluminium
plate. In this application the modal strain shapes were experimentally computed.
Since the experimental evaluation of the modal strain properties can be really dif-
ficult, in [24] they were numerically computed and then adopted to reconstruct the
deformation of a real plate. Recently, in [56], the MM has been experimentally
validated on the reconstruction of the static and dynamic displacements of a wing.

The inverse Finite Element Method (iFEM) has been developed by Tessler et al.
in [57]. The iFEM is based on the standard discretization of the structural domain
with finite elements. This discretization allows the formulation of the strain field
in terms of the spacial derivatives of the shape functions and of the nodal values of
the displacements. By minimizing the error between the interpolated strain field
and the discrete strains, coming from sensors, the method is able to find the nodal
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displacements that best fit the measured strains. This method has been widely and
successfully applied to a broad variety of structures. Truss and beam structures
has been studied in [41, 42]. Three nodes inverse shell elements have been widely
used for the analysis of thin plates [1, 46, 49] and thin walled structures [39, 45].
Recently, a quadrilateral inverse shell element, the IQS4, has been developed and
broadly applied to marine structures [43, 44, 58]. The quadrilateral element rises
a complication in the attribution of the strain sensors to the inverse elements. In
fact, differently from the triangular elements, where the location of sensors can
be unequivocally determined, in the quad formulation adopted in these works the
location of the sensors can not. The most recent development in the field of iFEM
is represented by the introduction of an isogeometric formulation for variable cross-
section beams [59] and curved shell structures [60]. The reduction in the number
of strain sensors for the iFEM has been the focus of the study in [61]. A smoothing
technique for the computation of the full strain field from discrete strain measures
has been developed to enriched the capabilities of the iFEM. The a priori expansion
of few strain measures, inputs of the method, allows an accurate shape sensing with
fewer strain measurements.

Few comparative studies on the shape sensing methods have been performed.
Devorkian et al. [62] compared the Ko’s Displacement theory and the Modal
Method on a swept cantilevered plate. The only comparison of the three meth-
ods have been performed by Gherlone et al. [63]. The three methods have been
applied on a real swept wing-shaped aluminium plate.

An extensive comparison of the three main shape sensing methods on a structure
that presents the level of complexity of a real aerospace structure is missing in
the open literature. Moreover, the influence of the strain sensors’ configuration
on the three different techniques, in order to evaluate the pros and cons of each
method in applications with different available strain information, has never been
investigated. From the literature review, also emerged the lack of methods for
the shape sensing of structures that experience large displacements, exceeding the
limit of linear elastic behaviour. The possibility to achieve this capability is crucial
to broaden the applicability of the shape sensing tools to real world aerospace
structures.

2.2 Load reconstruction
In this work, two different approaches are adopted for the reconstruction of the

loads, according to the problem’s formulation they have to face. When no physical
information on the structure but data of strain, flight parameters and loads were
made available, the data driven methods have been implemented. On the other
hand, when a model of the structure could be designed, the model based approach
have been investigated.
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2.2.1 Data driven loads reconstruction
The data driven system identification methods, adopting a "Black Box" ap-

proach, are able to create a regression between any inputs and outputs of a system,
without any in-depth knowledge of the investigated system. Within the data driven
system identification methods two families have been widely used in the prediction
of loads from strain measures and other flight parameters, the auto regressive linear
regression with external input models and the Artificial Neural Networks.

The auto regressive (AR) linear regression models are based on the concept
that a value of a time series can be determined as a linear regression of the value
of the time series in the previous time steps. The addition of an external input in
the regression models generates the Auto-regressive with eXtra inputs model, ARX
[64]. Moreover, the inclusion of a Moving Average (MA) term for better modelling
the noise of the system produces the Auto-regressive Moving Average with eXtra
input model, ARMAX [64]. These two System Identification Models have been used
in several application related to the load monitoring and fatigue life prediction of
structures. Mustapha et al. [65] used AR-ARX based regression models to detect
and predict crack in steel reinforced concrete structures (validated by data from
Sydney Harbour Bridge). Yi et al.[66] used system identification to develop models
for failure prediction of composite pipes. Two models based on ARX and ARMAX
were developed based on strain gauge data. Moreover, Ahsan and Lemma [67]
studied the capability of AR models to predict useful life of gas turbine engines.

The Artificial Neural Networks are non-linear parametric function whose pa-
rameters are learned from the data through a process defined as training. They
can be used to approximate highly non-linear functions that relate the outputs to
the inputs of a system [68]. ANNs have been applied in aerospace applications since
the late 1980s when they emerged as a powerful means of dealing with complex non-
linear systems such as parameter estimation during manoeuvrers. The US Naval
Air Warfare centre is one of the pioneers of applying artificial neural networks for
aircraft load prediction. In particular, Hoffman’s report [69] is the first study to
implement ANNs to predict airframe strains.

Artificial Neural Networks were firstly applied to solve the inverse problem of
establishing the external loads-strain relationship by Cao et al. In [70] a simplified
structural model of a wing is analysed. The study is able to successfully reconstruct
a set of concentrated forces applied to a cantilevered beam by means of ANN us-
ing structural strains as an input. An ANN has been developed and trained from
in-flight data to indirectly predict fatigue damage for a Lynx M9 helicopter in
[71]. The predicted stresses are found to be highly accurate. Levinski [72] demon-
strated the viability of ANNs for buffet prediction by developing ANN models for
F/A-18 based on experimental data. The work shows Radial basis function (RBF)
based ANNs to be more accurate than Multi-Layer Perceptron (MLP) based ANNs
trained with backpropagation with orthogonal least square algorithm. Furthermore,
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RMS values and frequency content of tail buffet pressures are accurately predicted
using a full-scale F/A-18 tail buffet test by Levinski [73]. Levinski also considered
a RBF–NN trained with an orthogonal least–squares algorithm and several trans-
fer functions. It is concluded that a multi–quadratic transfer function is the most
robust and accurate approach. In [74] Trivailo et al. tried multiple architecture
of ANN to predict the manoeuvrer and buffet loads acting on the empennage of
a F/A-18 fighter aircraft during a fatigue test. They have been able to obtain
a good indication of the magnitude and frequency of the loads using only strain
gauges as an input. They also demonstrated the applicability of neural networks to
reconstruct loads at different stations from the ones where the loads were located
during training. Wada and Sugimoto compared a Feed-forward Neural Network
(FFN) and a structural based model for the the prediction of distributed aerody-
namic loads from discrete strains measures [75]. They applied the two methods
to a cantilevered beam and studied the accuracy of the methods and the stability
with respect to the number of available strain information. The FFN proves to
outperform the structural based model when a reduction in the number of sen-
sors occurs. On the other hand the structural based model results more reliable
when the load distribution is highly different from the distribution used during the
training of the network. Cooper et al. [76] used data generated from a calibrated
Finite Elements model of a wing rib to train a FFN in order to establish a relation
between the strains and static loads applied to the test article . The FFN is trained
using the Lavemberg-Marquard algorithm. The network is then used to predict the
load experimentally applied during a static test on the real rib. The experiment
shows good correlation between the loads computed from the strains data and the
measured ones. Recently, in [77], Niessen et al. propose the use of ANN for the
static load calibration as an alternative to the standard multiple linear regression
techniques. They use a FFN, trained with Levenberg-Marquardt algorithm, for
the static strain-load calibration of a PC-9/A trainer aircraft. The neural network
shows a smaller calibration error than the multiple linear regression models for
a all the considered load components. In [78] they extend the application of the
ground-calibrated neural network to the in-flight loads reconstruction. In this case
the network shows poor accuracy in the evaluation of loads outside of the original
training range, where extrapolation is needed.

To summarize the current state-of-the-art, a large number of research efforts
within this space surround the use of standard ANN or regression based models
for “black–box” predictive capabilities with generally good success. Both linear
regression models and ANN architectures come with a broad landscape of functional
parameters, variations in model adaptation, numerical optimization schemes, loss
functions, etc., hence, generally only one or two model variations are explored in any
given communication. As a result, there is a clear requirement for a contribution
to the body-of-knowledge that consolidates the extensive range of ANN and linear
regression model variants, including the vast landscape of internal functionality

15



Literature review

variations, under a single benchmark aircraft loads monitoring problem.

2.2.2 Model based loads reconstruction
The model based loads reconstruction methods are mainly focused on the identi-

fication of the external loads. In fact, the knowledge of the structural model allows
the determination of the internal loads also from the external ones. Moreover,
within the aerospace field, the research is mainly focused on the reconstruction
of the pressure distribution resulting from a continuously distributed aerodynamic
load. Shkarayev et al. [79] developed a method based on the parametric ap-
proximation of the aerodynamic loading. This method requires the formulation
of the unknown pressure distribution as a linear combination of known pressure
distributions multiplied by unknown coefficients. The coefficients are computed
by studying the strain fields caused by each known pressure distribution and by
fitting, in a least-square sense, the linear combination of these strain fields to the
discrete measured strains. The method proved to be really accurate on the iden-
tification of two pressure distributions on a rectangular wing box, but it requires
the a priori definition of a pressure distribution function as close as possible to the
actually applied one. Following the same approach, Cameron et al. extended the
method by adopting single Fourier cosine terms [80] and double Fourier series [81]
to parametrize different two-variables pressure distributions over a square plate. In
[82], Airoldi et al. parametrized the complex external loads acting on a composite
spar with a set of concentrated loads. They used a least-square approach to identify
the parametrized load set from discrete strains. They also used the reconstructed
load to carry on a direct FEM analysis for the evaluation of the strain and of the
displacement field. The study proved that, also in the case where the parametrized
loads were poorly identified, the strain field could be accurately reconstructed. The
main focus of the paper was on the accuracy of the reconstructed strains distribu-
tion and on how the strain sensors could be distributed on the structure. In [83],
Nakamura et al. proposed a pressure distribution identification technique based on
the discretization of the pressure field with Finite Elements. Triangular elements
are used to discretize the spatial domain of a flat wing-shaped plate, where the
pressure is applied. The pressure field is interpolated from its unknown nodal val-
ues using spatial shape functions. The unknown nodal values of the pressure are
computed by fitting the strain field caused by each nodal value of the pressure to
the discrete measured strains. This method does not need any a priori knowledge
of the form of the unknown pressure distribution. In fact, when the method has
been compared to a Neural Network based approach in [84], it has proven to be
more effective when the unknown pressure form was different from the ones that
the network was trained with.

Although the literature review shows a significant effort surrounding the devel-
opment of the shape sensing and loads reconstruction methods, the most crucial
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aspect that is missing in the existing literature is the realisation of an integrated
framework that can allow the simultaneous reconstruction of the loads and of the
displacement field from the same measured quantities.
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Chapter 3

Shape sensing methods

In this chapter, the shape sensing methods, as they have been used throughout
this research project, are described in details. In particular, the general formula-
tion of the Modal Method and the Ko’s Displacement theory for beam-like
structures, with the most recent development that this method has witnessed, are
presented. Moreover, the inverse Finite Element Method is introduced and a
novel approach for the integration of the strain field over the area of the recently
introduced inverse quad element is proposed. This method has been also expanded
to reconstruct large displacements, therefore, the incremental formulation of the
method, designed to face this challenge, is also presented.

3.1 Modal Method
The modal method is a shape sensing technique based on the expression of

the displacement field trough known spacial basis functions and unknown weight
coefficients. The method uses the modal shape as basis function and computes the
unknown weights by fitting the strain field to the measured discrete strains. The
detailed formulation of the method, as firstly introduced by Foss and Haugse [26],
is now described. Assuming that a FE discretization of the displacement field is
adopted, the displacement and the strain field can be expressed, trough the use of
classical modal transformation, in terms of the M modal coordinates q

w = Φd q (3.1)
ε = Φs q (3.2)

where wD×1 is the nodal degrees-of-freedom (DOFs) vector and εS×1 is the
strains vector. The modal matrix [Φd]D×M is constituted by M columns (the i-th
column being the i-th modal eigenvector of the displacement degrees-of-freedom).
The modal matrix [Φs]S×M is also constituted by M columns (the i-th column
being the i-th set of strains corresponding to the i-th mode shape of the FE model
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of the structure). The inversion of 3.2 leads to the computation of the modal
coordinates in terms of the strains

q = Φ−1
s ε (3.3)

and by substituting 3.3 into 3.1, the formulation of the DOFs in terms of the strains
is easily obtained:

w = Φd Φ
−1
s ε (3.4)

The inversion of Φs is possible if the matrix is square and consequently this
formulation is valid for S = M . The number of strains and the number of computed
modes are generally different. Moreover, the method is based on the computation
of the displacement field from discrete strain measures. Therefore, it is necessary
to substitute ε with the vector of the Sm discretely measured strain components
εm

Sm×1. In addition, a finite number of retained modes, Mr, has to be selected. The
modal matrix Φs is modified accordingly, by retaining the rows correspondent to
the actually measured strain components and the columns relative to the retained
modes, thus obtaining [Φm

sr]Sm×Mr . The modal matrix Φd is also modified by only
selecting the columns relative to the selected modes, thus obtaining [Φm

dr]D×Mr .
The Eq. 3.3 can be generalized for the cases where Sm /= Mr, by means of the
Moore-Penrose pseudo inverse matrix formulation, Φm

s
+ [85]. The substitution of

this generalized inverse matrix formulation into 3.3 and 3.4 leads to the general
formulation that allows the computation of the DOFs of the structure from the
discretely measured strains, using the modal characteristics of the structure:

w = Φdr Φ
m
sr

+ εm (3.5)
In practical applications, the most common scenario is the one where the num-

ber of measured strain components is grater than the number of selected modes and,
consequently, Sm > Mr. This implies that Eq. 3.2 usually describes and overde-
termined system of linear equations and that the generalized inverse formulation of
Φm

sr is the following:

Φm
s

+ = (Φsr
TΦsr)−1Φsr

T if Sm > Mr (3.6)
The substitution of 3.6 into Eq. 3.3 represents the least-square solution of the

overdetermined system of linear equation, thus allowing the computation of the
modal coordinates that best-fit, in a least-square sense, the strain field. In the
end, the most common formulation of the Modal Method, for Sm > Mr, is easily
obtained substituting Eq. 3.6 into Eq. 3.5:

w = Φdr (Φsr
TΦsr)−1Φsr

T εm if Sm > Mr (3.7)
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3.1.1 Modal selection criterion
The Modal Method’s formulation requires the computation of the modal char-

acteristics of the structure. Moreover, a finite number of modes and relative mode
shapes need to be selected, so that the deformed shape investigated by the method
could be represented by the combination of the retained modes shapes.

Following the procedure described by Bogert et al. [24], it is possible to cal-
culate the least-square fit of the modal coordinates to the static solution with a
limited number of retained modes (Mr) and consequently non-squared modal ma-
trix, [Φdr]D×Mr . Pseudo-inverting Φdr in Eq. 3.1, in the most common condition
where D > Mr, gives the possibility to compute the approximated modal coordi-
nates qr that can best represent, in a least-square sense, the static deformed shape
w using a limited number of modes:

qr = (ΦT
drΦdr)−1ΦT

dr w (3.8)
Using the least-square approximated modal coordinates qr in Eq. 3.1, it is

possible to compute the approximated modal representation of the static solution,
wr, using only the retained modes:

wr = Φdr qr (3.9)
This matrix expression can be written as the summation of the contribution of

each mode:

wr =
Mr∑︂
i=1

Φdri
qri

(3.10)

where Φdri
is the column of the Φdr matrix relative to the the i-th mode shape and

qri
is the corresponding i-th modal coordinate.
Therefore, the contribution of the i-th mode shape to the representation of the

displacement field is:

wri
= Φdri

qri
(3.11)

and consequently, the strain energy associated with this i-th contribution to the
displacement field is:

Eri
= 1

2w
T
ri
Kwri

(3.12)

where K is the stiffness matrix.
Substituting Eq. 3.11 into Eq. 3.12 yields to:

Eri
= 1

2 qT
ri
ΦT

dri
KΦdri

qri
(3.13)
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If the modal shapes are then normalized with respect to mass matrix:

ΦT
dri
KΦdri

= ω2
i (3.14)

where ωi is the natural angular frequency associated to the i-th mode, Eq. 3.13
becomes:

Eri
= 1

2ω2
i q2

ri
(3.15)

On the other hand, the total strain energy due to the static deformation is:

E = 1
2w

TKw (3.16)

The comparison of the i-th contribution to the total strain energy and the total
strain energy:

Eri

E
(3.17)

allows the quantification of the amount of the static deformation that the i-th
mode is able to represent, thus allowing the selection of the modes that can most
accurately reconstruct the investigated static deformation. To apply this selection
criterion, the investigated static deformation has to be known a-priori to compute
E.

3.2 Ko’s Displacement theory
The Ko’s Displacement [19] theory is a shape sensing method for beam-like

structures. In fact, it is based on the Bernoulli-Euler’s beam formulation. According
to this beam theory, the curvature of the beam is expressed by the second derivative
of the deflection w with respect to the axial coordinate of the beam. The curvature
along the axis of the beam is related to the axial strain measured on top or bottom
surfaces of the beam by the following expression:

w,pp(p) = −ε(p)/z (3.18)
where z is the distance between the neutral axis and the location where the

strain is computed and ε is the strain measured along the p direction (Figure 3.1).
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Figure 3.1: Ko’s Displacement theory - Geometry and sensors’ location.

If N + 1 strain measures are located along p at p = p0, p1, ... , pN (Figure 3.1),
respectively, and the strain is assumed to be linear within two consecutive strain
measures, a function of ε in terms of the axial coordinate of the beam is easily
obtained:

ε(p) = εi−1 + (εi − εi−1)
(pi − pi−1)

(p − pi−1), pi−1 ≤ p ≤ pi (i = 1, 2, ...N) (3.19)

Eq. 3.19 can be substituted into Eq. 3.18 and, under the assumption that the
distance of the strain measures from the neutral axis of the beam remains constant
along p (z = h), the curvature can be integrated two times with respect to p, thus
providing a formulation of the deflection of the beam in terms of the discretely
measured N + 1 strains [63]:

wi = − 1
6h

⎡⎣ i∑︂
j=1

(2εj−1 + εj)(pj − pj−1)2+

+ 3
i−1∑︂
k=1

(εk−1 + εk)(pk − pk−1)(pi − pk)
⎤⎦ (i = 1, 2, ..., N)

(3.20)

This expression is obtained by imposing the clamping boundary conditions (w =
0; w,p = 0) to the section of the beam located at p = p0. This configuration is the
one that is more relevant for the study of wing structures, that resemble a clamped
beam. In general, other formulations, considering different boundary conditions
or a varying distance of the strain measures from the neutral axis have also been
derived [19]. All the derived formulations, as the one reported here, are able to
only compute the deflection of the beam at the specific locations where the axial
strains are measured.

3.2.1 Modal expansion
To overcome the limitations on the displacements that the Ko’s Displacement

theory is able to reconstruct, a modal expansion approach has been developed by

23



Shape sensing methods

Pak [53]. According to this procedure, the displacements along the strain sensing
line are computed using the classic Ko’s Displacement theory described in the
previous section. These displacements are then used in a second analysis step
to compute the whole displacement field of the structure, using only the axial
strain measurements adopted in the previous step. The deflections reconstructed
during the first step are defined as master degrees of freedom, wm and are used to
derive the other degrees of freedom, that are called slave degrees of freedom, ws.
The expansion from the master to slave degrees of freedom is obtained through
the use of the modal shapes of the structure, according to the System Equivalent
Reduction Expansion Process (SEREP) [54]. In fact, the master and slave DOFs
can be expressed in terms of the modal shapes and the modal coordinates through
Eq. 3.1:

wm = Φdm qr (3.21a)
ws = Φds qr (3.21b)

where [Φdm]Dm×Mr and [Φds]Ds×Mr are the modal matrices relative to the master
and slave DOFs, respectively and qrMr×1 is the vector of the modal coordinates.
The pseudo-inversion of Eq. 3.21a, for the most common case scenario, where the
number of master DOFs, Dm, is higher than the number of retained modes, Mr,
gives:

qr = (ΦT
dmΦdm)−1ΦT

dm wm (3.22)
that, substituted into Eq. 3.21b, allows the computation of the slave DOFs in

terms of the master ones and the modal shapes of the structure:

ws = Φds (ΦT
dmΦdm)−1ΦT

dm wm (3.23)
This expression allows the expansion of the displacements calculated with the

Ko’s Displacement theory to the reconstruction of the whole displacement field. As
can be noticed, this procedure requires the computation and the selection of the
modal shapes that can best represent the investigated static deformation. There-
fore, the selection criterion, illustrated for the Modal Method in section 3.1.1, can
be also applied for this method. In the remaining of thesis, when referencing to
Ko’s Displacement theory, this extended formulation is considered.

3.3 Inverse Finite Element Method
The inverse Finite Element Method (iFEM) is a shape sensing method based

on the discretization of the structural domain with Finite Elements [57]. As for
the direct Finite Element method, the displacement field is expressed in terms of
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the kinematic variables according to a specific structural model. In this work, only
thin-walled structures are analysed and therefore the structural model considered
has been the plate theory. Specifically, the First Order Shear Deformation Theory
(FSDT) has been adopted for all the involved applications.

𝑥

𝑦𝑧

𝒖

𝒗
𝒘

𝜃(

𝜃)

𝜃*

2ℎ

Figure 3.2: Plate notation.

Following the notation reported in Figure 3.2, the FSDT model of the displace-
ment field of a plate can be expressed through the following equations:

ux(x, y, z) ≡ ux = u + zθy (3.24a)
uy(x, y, z) ≡ uy = v − zθx (3.24b)
uz(x, y, z) ≡ uz = w (3.24c)

where ux, uy, uz are the displacement’s components along the coordinate axes
(x, y, z), u and v are the plate mid-surface in-plane displacements, w is the trans-
verse deflection, θx and θy are the bending rotations. As a consequence, the strain
field, derived from this formulation is:

e = [u,x, v,y, v,x + u,y]T = [ε1, ε2, ε3]T (3.25a)
k = [θy,x, −θx,y, θy,y − θx,x]T = [ε4, ε5, ε6]T (3.25b)
g = [w,x + θy, w,y − θx]T = [ε7, ε8]T (3.25c)

where e, k and g represent the membrane strains, bending curvatures and trans-
verse shear strains of the plate, respectively.

Once the kinematic model is established, the domain is discretized using FE and
the displacement field inside each element is interpolated using shape functions:

[u, v, w, θx, θy]T = Nue (3.26)
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where N is the shape functions matrix and ue is:

ue = [ue
1 ue

2 ... ue
S]T

ue
i = [ui vi wi θxi θyi]T (i = 1,2, ..., S)

(3.27)

ue
i is the vector of the DOFs relative to the i-th node of the element and S is the

number of the element’s nodes. N and S depend on the chosen element formulation
and will be described in details in the following sections. As a consequence, the i-th
strain component defined in Eq. 3.25 can also be expressed in terms of the nodal
values of the displacements and the spatial derivatives of the shape functions:

εk(ue) = Bkue (k = 1, 2, ..., 8) (3.28)
where Bk is the matrix containing the derivatives of the shape functions related to
the k-th strain measure.

The iFEM is based on the minimization of the error between the strain field,
expressed in terms of the nodal displacements of the discretized structural domain
(Eq. 3.28), and the strain field actually measured on the structure at some discrete
locations. This error is expressed through the following weighted functional:

Ψe(ue) =
8∑︂

k=1
λe

kwe
k

∫︂∫︂
Ae

(εk(ue) − εε
k)2dxdy (3.29)

This functional takes into account for the eight strain components defined in
Eqs. 3.25. The superscript ε denotes an experimentally measured value. The argu-
ment of the integral over the element’s area, Ae, is the squared difference between
the experimentally evaluated strain measure, εε

k, and its analytical counterpart,
εk(ue), depending on the element nodal DOFs. In the case of sparse strain sensors,
the absence of the k-th strain measure within an element is taken into account by
setting the experimental strain measure to zero and by setting the penalization
factor λe

k to a small value (10−4, 10−5, 10−6). Otherwise, if the k-th strain measure
has been experimentally evaluated in the element, the related λe

k is set to be equal
to 1. The we

k are dimensional coefficients required to guarantee the physical units
consistency of Eq. (3.29). They are set as follows: we

k = 1 for k = 1, 2, 3, 7, 8 and
we

k = (2h)2 for k = 4, 5, 6, where h is the half-thickness of the element.
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Figure 3.3: Strain measure.

The k-th integral in Eq. 3.29 is numerically computed using the Gaussian
quadrature. Therefore, it is transformed into a summation of the integrand evalu-
ated over the n × n Gauss points:

∫︂∫︂
Ae

(εk(ue) − εε
k)2dxdy =

n×n∑︂
g=1

J(g)ωg(εk(g)(ue) − εε
k(g))2 (k = 1, 2, ..., 8) (3.30)

where ωg are the quadrature weights, J(g) is the determinant of the Jacobian of
the transformation from the physical coordinates to the natural ones of the element
computed in the g-th quadrature point. The subscript g denotes the computation
of the quantity in the g-th quadrature point.

The first six strain measures that appear in Eqs. 3.29 and 3.30 can be easily
computed from experimentally measured strains on the bottom and top surfaces
of the plate (Figure 3.3). In fact, at a generic i-th location, the membrane strains,
eε

(g) and the bending curvatures kε
(g) can be evaluated as follows:

eε
(g) =

⎧⎪⎨⎪⎩
ε1
ε2
ε3

⎫⎪⎬⎪⎭
(g)

= 1
2

⎧⎪⎨⎪⎩
ε+

xx + ε−
xx

ε+
yy + ε−

yy

γ+
xy + γ−

xy

⎫⎪⎬⎪⎭
(g)

(3.31a)

kε
(g) =

⎧⎪⎨⎪⎩
ε4
ε5
ε6

⎫⎪⎬⎪⎭
(g)

= 1
2h

⎧⎪⎨⎪⎩
ε+

xx − ε−
xx

ε+
yy − ε−

yy

γ+
xy − γ−

xy

⎫⎪⎬⎪⎭
(g)

(3.31b)

On the other hand, since the transverse shear strains are not measurable, the
λe

7,8 are always set to a small value and the εε
7,8 are equal to 0, in the functional.

The procedure is completed with the minimization of the error functional in
(3.29) with respect to the DOFs, thus leading to a system of linear equations that
can be solved to find the nodal DOFs of the element:

∂Ψe(ue)
∂ue

= leue − f e = 0 (3.32a)

ue = le−1f e (3.32b)
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where:

le =
8∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgBT
k(g)Bk(g)] (3.33a)

f e =
6∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgBT
k(g)ε

ε
k(g)] (3.33b)

The subscript g, related to the Bk matrices, denotes the computation of the matrix
in the g-th Gauss point. The summation in Eq. 3.33b is only extended to the first
six strain components that are measurable on the plate, being εε

7,8 always equal to
0.

The extension of the procedure to all the elements of the domain, trough the
assembly process, leads to the system of linear equations for the global DOFs of
the structure, U:

U = L−1F (3.34)
where L is a matrix depending on the shape functions and strain-sensor locations,
whereas F is a vector incorporating the measured strains. The matrix L is a
well-conditioned square matrix that, upon enforcement of the displacement bound-
ary conditions, can be inverted. Assuming that the strain-sensor locations is not
changed, the inversion of L is performed only once whereas the vector F needs to be
updated at each strain-data acquisition increment. Since only strain-displacement
relations are invoked in the formulation, the method does not require the knowl-
edge of the material properties or the applied loads. Thus, it is applicable for
both static and dynamic loading conditions, without requiring inertial or damping
material properties.

3.3.1 Tria formulation
The triangular shell elements are the ones that have been firstly developed for

the iFEM formulation. In fact, these elements presents some characteristic that
facilitate the computation of the required matrices with only one strain measure
within the element, as it will be explained in the following.

The triangular element based on the FSDT, or Mindlin plate theory, is denoted
as iMIN3 [49]. The formulation of the element is obtained by imposing that the
number of nodes of the element, S, is equal to 3 and defining the shape func-
tions matrix in Eq. 3.26. The displacement field, within the element, is expressed
trough C0 continuous shape functions that interpolate the five nodal values of the
displacement in each node, as they are shown in Figure 3.4.
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Figure 3.4: Triangular shell element (iMIN3).

Particularly, an anisoparametric interpolation is used. The deflection, w, is
interpolated by a quadratic polynomial and the other four variables are interpolated
linearly. Therefore, if the shape function matrix is written as follows:

N = [N1 N2 N3] (3.35)
then, the Ni matrices are:

Ni =

⎡⎢⎢⎢⎢⎢⎢⎣
Li 0 0 0 0
0 Li 0 0 0
0 0 Li L2i L1i

0 0 0 Li 0
0 0 0 0 Li

⎤⎥⎥⎥⎥⎥⎥⎦ (i = 1,2,3) (3.36)

where, Li (i = 1,2,3) are the linear interpolation functions represented by the area-
parametric coordinates of the triangle, whereas L1i, L2i (i = 1,2,3) are the following
quadratic shape functions:

L1i = Li

2 (alLm − amLl) L2i = Li

2 (bmLl − blLm)

ak = (xm − xl) bk = (yl − ym)
(3.37)

the xm,l and ym,l being the x and y coordinate of the (m,l)-th node of the triangle.
The subscripts are obtained by the cyclic permutation of k = 1, 2, 3, l = 2, 3, 1
and m = 3, 1, 2.

From N is easy to compute the eight Bk matrices by differentiating the shape
functions, according to Eqs. 3.25. Using the same notation adopted for the shape
function matrix, the Bk becomes:

Bk = [B1
k B2

k B3
k] (3.38)
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and, consequently, the Bi
k matrices can be expressed as it follows:

Bi
1 = [Li,x 0 0 0 0]

Bi
2 = [0 Li,y 0 0 0]

Bi
3 = [Li,y Li,x 0 0 0]

Bi
4 = [0 0 0 0 Li,x]

Bi
5 = [0 0 0 − Li,y 0]

Bi
6 = [0 0 0 − Li,x Li,y]

Bi
7 = [0 0 Li,x L2i,x (L1i,x + Li)]

Bi
8 = [0 0 Li,y (L2i,y − Li) L1i,y] (i = 1, 2, 3)

(3.39)

The derivatives of the linear functions Li are constant over the area of the
triangle. Moreover, J(g), for triangular element is constant and equal to the area
of the triangle, Ae. Therefore, the computation of the integral in 3.30 and the
consequent processing of the matrices le and f e can be easily obtained. In fact, the
first six strain components, that are the ones which are measurable, are constant
over the element’s area. The integrals relative to these components can be simply
computed by multiplying the integrand by the area of the triangle. The matrices
le and f e are thus reduced to:

le =
6∑︂

k=1
Ae[λe

kwe
kBT

k Bk] +
8∑︂

k=7
Ae

n×n∑︂
g=1

[λe
kwe

kωgBT
k(g)Bk(g)] (3.40a)

f e =
6∑︂

k=1
Ae[λe

kwe
kBT

k εε
k(centroid)] (3.40b)

The subscript (centroid) denotes the sensing of the experimentally measured strain
in the centroid of the element. It is important to notice that, since the measurable
strain field is constant over the area of the triangle, this triangular element only
requires one strain measure within an element to compute f e. The unique exper-
imentally measured strain is usually located in the centroid of the element, where
the analytical evaluation of the strain is more accurate. Also in this case, we

k = 1
for k = 1, 2, 3, 7, 8 and we

k = (2h)2 for k = 4, 5, 6, where h is the half-thickness of
the element. λe

k is set to be equal to 1 when the related k-th strain component is
actually measured on the element, whereas it is set to a small value if the measure
is not available.

3.3.2 Quad formulation
The quadrilateral element based on the FSDT, defined as IQS4, has been devel-

oped in [58]. The formulation of this element introduced a higher level of complex-
ity with respect to the integrations required by the iFEM. Moreover, this element
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3.3 – Inverse Finite Element Method

introduced the drilling degree of freedom [86], θz, and therefore, the six nodal dis-
placements for each node are the ones presented in Figure 3.5.
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Figure 3.5: Quadrilateral shell element (iQS4).

As for the triangular element, the formulation uses an anisoparametric interpo-
lation of the displacement field, selecting linear (Ni) and parabolic (Li, Mi) shape
functions. Once again, the shape function matrix can be expressed in the form:

N = [N1 N2 N3 N4] (3.41)
where:

Ni =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni 0 0 0 0 Li

0 Ni 0 0 0 Mi

0 0 Ni −Li −Mi 0
0 0 0 Ni 0 0
0 0 0 0 Ni 0
0 0 0 0 0 Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(i = 1,2,3,4) (3.42)

The detailed expressions of the shape functions Ni, Li and Mi, as reported in [58,
87], can be found in Appendix A.

Using the strain-displacement relation in Eq. 3.25 it is possible to compute the
Bk matrices in the form:

Bk = [B1
k B2

k B3
k B4

k] (3.43)
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where:
Bi

1 = [Ni,x 0 0 0 0 Li,x]
Bi

2 = [0 Ni,y 0 0 0 Mi,y]
Bi

3 = [Ni,y Ni,x 0 0 0 (Li,y + Mi,x)]
Bi

4 = [0 0 0 0 Ni,x 0]
Bi

5 = [0 0 0 − Ni,y 0 0]
Bi

6 = [0 0 0 − Ni,x Ni,y 0]
Bi

7 = [0 0 Ni,x − Li,x (−Mi,x + Ni) 0]
Bi

8 = [0 0 Ni,y (−Li,y − Ni) − Mi,y 0] (i = 1,2,3,4)

(3.44)

In this case, none of the eight strain component is constant over the element’s
area. Therefore, the integration in Eq. 3.30, and the consequent computation of
le and f e, can not be simplified. They remain the same expressed in Eqs. 3.33.
Theoretically, the construction of f e requires the knowledge of the k-th strain mea-
sure in every n × n Gauss point of a sensorized element. In previous works [58,
88, 12], to avoid the excessive number of strain sensors required by the integration,
the same strain measure, located in an arbitrary location within the the element
(εε

k(element)), has been associated to all the quadrature points, thus obtaining the
following formulation:

le =
8∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgBT
k(g)Bk(g)] (3.45a)

f e =
6∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgBT
k(g)ε

ε
k(element)] (3.45b)

In this work, a novel integration scheme is proposed, to increase the accuracy
in the attribution of the strain measure to a specific location within the element,
namely the centroid of the quad. The procedure is inspired by the same penalization
approach adopted in the formulation of the weighted functional. Using an odd
number of Gauss points, there is always a quadrature point located in the centroid
of the element. Therefore, another penalization factor, χg is introduced. This
weight is set to 1 for the Gauss point that is located in the centroid of the element,
where the strain measure is actually extracted, whereas is set to a small value for
the remaining points of the quadrature. The formulation of the matrices is then
modified as it follows:
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3.3 – Inverse Finite Element Method

le =
8∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgχgBT
k(g)Bk(g)]

(︄
χg=centroid = 1
χg /=centroid = 10−4

)︄
(3.46a)

f e =
6∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgχgBT
k(g)ε

ε
k(centroid)]

(︄
χg=centroid = 1
χg /=centroid = 10−4

)︄
(3.46b)

Since the χi weights are introduced to take into account for the exact location
of the strain sensors, they are adopted only when a measure is present within
the element. Therefore, for k = 7, 8 and for elements without sensors, only the
penalization strategy introduced by λe

k is adopted.

3.3.3 Incremental formulation
To extend the capabilities of the iFEM, in this work, an incremental formulation

of the method has been developed to allow the reconstruction of large displace-
ments. This procedure is inspired by the standard incremental procedures used for
geometrically non-linear analysis of the direct FEM. If the load (P), that induces
the investigated large displacements and the consequent strains, is divided into N
increments, the standard iFEM procedure can be applied for each load increment.

❑ 1 𝜺= 𝜺1

❑ 2 𝜺=𝜺2 − 𝜺1

❑ 𝑁 𝜺=𝜺𝑁 − 𝜺𝑁−1

0 𝜺 0❑

Figure 3.6: Incremental iFEM.
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Particularly, the following procedure, schematized in Figure 3.6, is proposed:

• Starting from the undeformed structure, the load is divided into N load in-
crements and for each one of them the strains’ increments are also computed.

• For i = 1 the iFEM is applied on the undeformed mesh, using the strains’
increment due to the P1 load increment. The mesh is then updated by adding
the reconstructed nodal displacements to the undeformed one.

• The i-th step, for (i = 2,3, ..., N), is performed applying the standard iFEM
procedure to the updated mesh from the previous step (i = i − 1) and con-
sidering the strains’ increment relative to the i-th load’s increment. The
reconstructed displacements are then used to update the mesh for the next
step (i = i + 1).

• The orientations of the measured strains are updated together with the mesh
in every step, in order to be aligned with the updated geometry.

• The above-stated incremental procedure is repeated until the strain history
is complete.
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Chapter 4

Numerical shape sensing

The shape sensing methods described in the previous chapter are now numeri-
cally applied to different test cases. In particular, the proposed integration scheme
for the quadrilateral iFEM elements is validated on the benchmark problem of a
flat plate and its performances are compared with the ones from the previously
developed integration procedure. Once the formulation is validated, the new iFEM
quad formulation, the tria iFEM, the Modal Method and the Ko’s Displacement’s
theory are all compared on the shape reconstruction of a composite Wing Box sub-
ject to torsion and bending deformations. The comparison involves the study of
the optimal sensor’s configuration for each method and the evaluation of the pros
and cons that each method shows for the considered application. The shape sens-
ing methods are also tested against the uncertainty of the inputs, related to real
experimental scenarios. Finally, the proposed incremental iFEM is also validated
on the sensing of a wing-shaped plate undergoing large displacements.

4.1 Preliminary study on the novel inverse QUAD
element

The first study on the numerical application of the shape sensing methods in-
volves the validation of the proposed inverse quad element’s formulation. The new
integration scheme of the strain field over the element’s area, based on the penal-
ization of the contribution from the gauss points where the strain is not measured
(Section 3.3.2), is tested against the previous formulation that attributes the same
value of the strain to all the gauss point within the element, without any penal-
ization [58]. The two iFEM elements are compared on a benchmark problem. A
thin plate is used to test the accuracy in the reconstruction of the in-plane and
transverse displacements, when the plate is subject to an in-plane shear load or a
transverse load, respectively.
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Figure 4.1: Plate - Benchmark plate for the validation of the novel integration
scheme of the iFEM quad element.

The material properties and the geometry of the plate are illustrated in Figure
4.1, where E is the Young’s Modulus, ν is the Poisson’s ratio and t is the thickness of
the plate. The plate is clamped on the left edge, at (y = 0), and two load cases are
considered on the left edge, at (y = L). The first load case, designed to validate the
membrane response of the new formulation, presents an in-plane shear distributed
load, Px, applied on the left edge. The load and its intensity are reported in Figure
4.1. The second load case, created to test the out-of-plane bending response of the
element, is constituted by a nodal force, Fz, applied in the mid point of the right
edge and directed along the negative direction of the z axis, as illustrated in Figure
4.1. For both the load cases the same inverse mesh and the same strain sensors’
configuration are used. The iFEM mesh is constituted by 64 inverse quad elements
and 85 nodes. Each element is sensorized with a strain rosette, located in the
centroid, that measures the εxx, εyy and γxy strain components on the top (+) and
bottom (-) surface of the plate. The inverse mesh and the sensors’ configuration
are shown in Figure 4.2.
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4.1 – Preliminary study on the novel inverse QUAD element

Figure 4.2: iFEM mesh - The dots represent the location of the strain rosettes
within each element.

A high-fidelity mesh, used to compute the reference displacements and the input
strains for the iFEM, is also realized using 1024 QUAD4 elements, and analysed
trough the commercial FEM solver MSC/NASTRAN®. The mesh is obtained by
splitting the inverse mesh into 4 × 4 quads. By doing so, every node and every
centroid of the inverse mesh has a corresponding node in the high-fidelity direct
mesh.

The reference displacements along x for the in-plane shear load, obtained with
the refined model and reported on the nodes of the inverse mesh, are presented in
Figure 4.3a.
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(a) Reference u displacements

(b) Reconstructed u displacement - old integration scheme

(c) Reconstructed u displacement - new integration scheme

Figure 4.3: In-plane shear load - In the figures, the displacements u along the x
direction are reported for the in-plane shear load load case. The colour bar refers
to the magnitude (in mm) of the u displacements.
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4.1 – Preliminary study on the novel inverse QUAD element

Along with the reference deformed shape along x, in Figure 4.3 are reported the
reconstructed displacements with the iFEM, using the old integration scheme (4.3b)
and the newly proposed one (4.3c). The percentage error on the reconstruction
of the maximum vertical displacement, adopting the old integration scheme, is
6.2%. The same reconstruction, computed with the proposed integration scheme,
generates a more accurate result, being the same percentage error equal to only
0.3%. These results are obtained using the same sensors configuration reported
in Figure 4.2. A more accurate reconstruction can be achieved, using the old
integration scheme, if a different strain sensors’ configuration is chosen. Using the
sensors’ configuration proposed in [58] (Figure 4.4) and the old integration scheme,
the reconstructed shape reported in Figure 4.5 is obtained. In this case, the error
on the maximum vertical displacement is only 0.6%. This value is slightly higher
than the one obtained with the novel integration scheme. Moreover, the sensors’
locations are not unequivocally determined by the geometry of the elements, as it
is for the other sensors’ configuration where the centroid is used, and have to be
somehow determined.

47.625

28.575

76.276.276.276.276.276.276.276.276.276.276.276.276.276.276.2

92.25

57.15

92.25

Figure 4.4: Sensors’ configuration proposed in [58].
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Figure 4.5: In-plane shear load - Reconstruction of the u displacements along the
x direction using the sensors’ configuration reported in 4.4 and the old integration
scheme.

A Different behaviour is observed for the out-of-plane transverse load. The
reference deformed shape along z and the reconstructed one are shown in Figure
4.6. In this case, the shape sensing using the old integration scheme (Figure 4.6b)
and the one using the new scheme (Figure 4.6c) show the same level of accuracy.
The value of the error in the reconstruction of the maximum displacement along z
is 0.2% for both procedures. Therefore, for the bending behavior of the element,
the introduced formulation does not provide measurable advantages.

In conclusion, the proposed integration method, introduced in Section 3.3.2, is
able to generally increase the accuracy of the membrane behaviour of the iQS4
inverse element. Although there are some sensors’ configurations that are able to
increase the accuracy of the old integration scheme, these configurations have to
be determined. On the contrary, the novel formulation clearly identify the location
of the strain sensor needed for the performance of the shape sensing and does not
require the determination of the sensor’s position within the element. In fact, this
position is precisely prescribed to be in the centroid of the element. The bending
behavior is not influenced by the proposed integration scheme.
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4.1 – Preliminary study on the novel inverse QUAD element

(a) Reference w displacements

(b) Reconstructed w displacement - old integration scheme

(c) Reconstructed w displacement - new integration scheme

Figure 4.6: Transverse load - In the figures, the displacements w along the z di-
rection are reported for the transverse load case. The colour bar refers to the
magnitude (in mm) of the w displacements.
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4.2 Shape sensing on a composite wing box
After the validation of the novel integration scheme for the iFEM quadrilateral

element, the study on the shape sensing has been continued with the application of
the three shape sensing methods described in Chapter 3 on a numerical model of a
typical aerospace structure, a composite wing box. The three methods, namely the
iFEM, the Modal Method and the Ko’s Displacement theory, have been applied in
the form and with the novelties introduced in the previous chapter. In particular,
the iFEM has been implemented using both triangular and quadrilateral meshes.
They have been firstly optimized, in terms of the strain sensors’ configuration, and
then compared in terms of the accuracy of the displacements’ reconstructions. A
further comparison on the performance of the three method has been conducted
for the case where the uncertainties, typical of a real word scenario, have been
introduced in the inputs of the shape sensing methods, namely the strains and the
material properties.

4.2.1 The composite wing box
The wing box, object of this analysis, is presented in Figure 4.7. It is composed

of two panels connected by two spars. The connection are made possible by four
L-shaped stringers located at the four corners of the cross section. The two panels
are each one stiffened with two T-shaped stringers and the box is divided in two
bays, along the wing span, by two ribs. The wing box is unswept and presents the
constant cross section described in Figure 4.7a. All the structural components are
composite laminates whose lamina characteristics are summarized in Table 4.1. A
quasi-isotropic (+45/ − 45/0/90)s stacking sequence is assigned to all the compo-
nents. The lamina thickness for the skin and spars is set to 0.25 mm while for the
other components it is set to 0.2 mm.

E11[GPa] E22[GPa] ν12 G12[GPa] G13[GPa] G23[GPa]
111 7.857 0.34 3.292 3.292 3.292

Table 4.1: Lamina characteristics.

The loading condition, considering the coordinate system shown in Figure 4.7b,
is the following. The root section (y = 0) is clamped whereas the tip section
(y = 1600) is loaded with a a trapezoidal distributed load, with q = 16 N/mm. This
loading induces a deformation that shows both bending and torsional components
and, therefore, represents a difficult challenge for the shape sensing algorithms
object of this analysis.
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Figure 4.7: Geometry and loading conditions for the unswept wing box. All the
dimensions are expressed in [mm].
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To numerically simulate the behaviour of the structure, a high-fidelity FE
model has been realized (Figure 4.8a). This model, constituted of 21004 QUAD4
NASTRAN® elements and 16027 nodes, is used to generate the reference displace-
ment and the strain’s inputs for the shape sensing methods. A convergence study
on the displacements resulting from this model proved that the mesh refinement is
enough to capture the behavior of the structure.

(a) High-fidelity FEM

(b) iFEM Tria (c) iFEM Quad

Figure 4.8: Numerical models of the wing box.

Two other meshes are necessary for the application of the the two formulation
of the iFEM considered in this application. A triangular inverse mesh (Figure 4.8b)
and a quadrilateral one (Figure 4.8c) have been realized for this purpose. These
two models are coarser with respect to the hig-fidelity one. The requirement of
a coarser mesh for iFEM is due to the fact that a good ratio between sensorized
and unsensorized elements is necessary. A finer mesh, although capable of better
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representing the deformation, would require a larger number of sensors. There-
fore, the two meshes are composed of 2996 iTRIA3 (1136 nodes) and 1427 iQS4
(1064 nodes) elements, respectively. The formulations of the elements are the one
described in Chapter 3. In particular, the iQS4’s integration scheme is the newly
proposed one (Section 3.3.2). All the nodes of the iFEM models have a correspond-
ing node in the FE model, so that a comparison between the nodal displacements
can be performed. Moreover, the possible locations of the strain sensors within the
inverse elements are located where the FE mesh has a node, to guarantee an easy
assignment of the strain measures.

The Modal Method and the Ko’s Displacement theory, with the extension de-
scribed in Section 3.2.1, need the computation of the modal shapes and the modal
strain shapes of the structure. These characteristics are computed trough the modal
analysis of the high-fidelity model. The first 30 mode shapes have been calculated
with the NASTRAN®’s SOL 103. According to the mode selection criteria reported
in Section 3.1.1, these 30 modes are able to to represent the 90.7% of the total
deformation strain energy related to the investigated deformed shape. Within the
selected range, the modes that contribute most to the total strain energy are the
1st, 3rd and 26th. The summation of these three modes contributes to the total
strain energy for the 89.7%. Therefore, these modes are selected for the construc-
tion of the modal matrices necessary for the application of the Modal Method and
for the extension of the Ko’s Displacement theory.

In conclusion, the reference deformed shape, object of the shape sensing inves-
tigation, and the selected modal shapes, obtained with the high fidelity model are
shown in Figures 4.9 and 4.10, respectively.

Figure 4.9: Reference deformed shape - The colour bar refers to the magnitude (in
mm) of the resultant displacements, w1 and w2 represent, respectively, the vertical
displacement of the top-left and top-right vertex of the tip cross section.
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(a) Mode 1 (b) Mode 2 (c) Mode 26

Figure 4.10: Selected mode shapes for the Modal Method and the Ko’s Displace-
ment theory.

4.2.2 Strain sensors optimization
The three methods’ performance strongly depend on the number and position

of the strains information that are provided to them. In order to make a consistent
comparison of the three methods, it was chosen to compare them when perform-
ing in their optimum condition with a limited number of sensors. Therefore, the
best strains sensors locations and directions, using a fixed number of sensors, were
investigated for each technique.

The investigation over the best sensors configuration can be expressed as the
search for the configuration that minimizes the value of the error between the re-
constructed and the reference deformation. The solution landscape, that represents
the different solutions for the different configurations, can result really complex and
rugged, with multiple local minima values of the error. This kind of solution land-
scapes are particularly suited to be explored with a genetic algorithm optimizer.
Moreover, genetic algorithms have been already successfully applied to the study
of the sensors configuration for shape sensing by Foss and Haugse in [26]. As a
consequence, also in this work, the sensors configuration investigation was carried
on using a genetic algorithm optimizer.

The optimizer operated in two selection phases. During the first one, a selection
criterion based on the individuals’ fitness values was adopted. During the second
one, a selection criterion based on the individuals’ ranking was used. The first phase
is capable of a broader search that helps to not get stuck in local optima whereas
the second phase is capable of increasing the selective pressure towards the best
configuration, only after the broader search is accomplished. Both phases were
stopped when no significant increase in the objective function was observed over 10
generations. Each generation comprised a population of 500 individuals and within
each generation, the one-point crossover, the two-points crossover, the mutation
and the permutation genetic operators have been applied with a probability of 1,
0.9, 0.001 and 0.001 respectively.

The objective function, or fitness function, of the optimization is the %ERMSw,
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formulated as it follows:

%ERMSw = 100 ×

⌜⃓⃓⃓
⎷ 1

n

n∑︂
i=1

(︄
wi − wref

i

wref
max

)︄2

(4.1)

where wref
i is the reference vertical displacement from the high-fidelity model in

the i-th node’s location, wref
max is the maximum reference vertical displacement and

wi is the reconstructed vertical displacement in the i-th node. The displacement
are computed in the n nodes that all the three meshes have in common, in order to
compare the three methods on the reconstruction of the same displacements. The
vertical displacements are the most relevant one for the investigated deformation.
Therefore, the minimization of the error relative to these displacement is chosen as
the objective of the optimization.

The optimization is configured so that it can select different strain sensors’
locations and different strain sensors’ components. The possible sensors’ locations
are presented in Figures 4.11 and 4.12.

Figure 4.11: Sensors’ search space for the upper and lower panels.
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Figure 4.12: Sensors’ search space for the front and rear spars.

The locations are selected on the top and bottom panel and on the front and
rear spars. These locations coincide with the centroids of the inverse quadrilateral
elements and with the centroid of the inverse triangular elements on the spars. This
is not the case for the panels of the iTRIA3 mesh. In this case, an example of the
location of a strain sensor is shown in Figure 4.13. Since the triangular mesh on the
panels is obtained by splitting the quad elements along the diagonal, the centroid
of the quad elements, where the sensors are located, lies on the mid-point of the
side that the two triangles share. The strain measured at this location is associated
with both the iTRIA3 that have the side in common. This strategy is adopted in
order to have a triangular mesh that is refined enough to be able to represent the
deformation of the wing box, but also to lower the ratio between sensorized and
unsensorized elements with a reduced number of sensors.

Figure 4.13: Sensor’s configuration for the triangular elements on the top/bottom
panels - The black square (S1/2) represent the sensors location and the red dots
(C1, C2) represent the location of the centroid for the two iTRIA3 elements.

Considering the practical difficulties connected to the application of sensors in-
side the wing box, only strains measured on the external surface are considered.
Therefore, for the computation of the strain measures in Eqs. 3.31, constant val-
ues of the strains through the thickness of each plate are considered (ε+ = ε−).
This approximation is admissible if the thickness of the skin panels is considerably
smaller than the one of the entire wing box. In that case, the variation of the
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4.2 – Shape sensing on a composite wing box

strains through the plate thickness can be considered negligible with respect to the
variation of the strains through the entire wing box. As a consequence, the areas
were structural components overlap were not considered part of the sensors search
space because of the resulting increase in the global plate thickness.

For the selected locations, two kinds of strain sensors are considered: the single
strain gauge and the strain rosette. The single strain gauge measures the strain
along the xstr direction, as identified in the Figures and 4.11 and 4.12. The strain
rosette measures all the three membrane strain components along xstr, ystr and
xstrystr. The Ko Displacement’s theory is applied considering the entire wing box
as a beam-like structure. Consequently, the only considered strains for this method
are the ones from the upper and lower skins. Moreover, according to the method’s
prescriptions, only the strains in the wingspan direction εxstr have to be considered.
Therefore, only single strain gauges on the top and bottom panels can be selected
by the optimizer for this method.

The genetic optimizer is set to select 108 sensors for each shape sensing method.
For the Ko’s Displacement theory this results in a maximum of 108 single strain
gauges. For the iFEM and MM it results in a minimum of 108 single axial strain
gauges and maximum of 108 strain rosettes, accounting for a maximum of 324 single
strain measures. Nevertheless, the optimizer has the possibility to select one sensor
more than once, thus reducing the effective number of strain information adopted
during the analysis. According to the working principle of the genetic algorithm,
this reduction can be justified only if an increase in the performance of the objective
function is experienced.

4.2.3 Deterministic analysis
In this section, the results of the shape sensing analysis of the wing box, using the

nominal material properties and the strain inputs not affected by any uncertainty,
are described and commented. The results of the strain sensors’ optimization, in
terms of the number of selected sensors and relative accuracy in the reconstruction
of the vertical displacements, are summarized in Table 4.2.

iFEM (Quad) iFEM (Tria) Ko MM

ERMSw [%] 1.8 6.7 6.9 4.8
Sx 14 28 33
Rxy 108 94 40
Stot 324 296 28 153

Table 4.2: Optimization results.

In the table are reported the number of single strain gauges (Sx), strain rosettes
(Rxy) and total measured strain components (Stot) necessary for each method to
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reach the reported value of the ERMSw. The selected sensors configurations and
the consequently obtained deformed shapes, plotted against the reference one, are
presented in the Figures 4.14 - 4.17 for the iFEM with the quadrilateral mesh,
the iFEM with the triangular mesh, the Ko’s Displacement theory and the Modal
Method, respectively. Figure 4.18 shows the deflections, computed with the four
methods and with the high-fidelity Finite Element reference model, of a line of
nodes belonging to the lower panel and located close to the mid-chord position
(x = 363.18 mm).

The best accuracy is obtained by the iFEM (Quad), i.e. the method formu-
lated using quadrilateral elements. An ERMSw slightly below 2% is observed. The
optimization process, in this case, selected the maximum number of sensors to reach
this value of the error. As showed in Figs. 4.14a and 4.14b, the rosettes are all
positioned on the spars of the wing box. The resulting reconstructed deformation
does not show large discrepancy with respect to the reference one. The iFEM
(Tria), formulated using triangular elements, is not capable of such accuracy. In
fact, the ERMSw reached in this case is close to 7%. From Figure 4.18 it is clear
that this method underestimates the vertical displacements along the mid-chord
line. The best sensors’ configuration presents sensors located on the top and bot-
tom panels and on the rear spar (Figs. 4.15a, 4.15b, 4.15c), the one that, due to
torsion, experiences higher deformations. The majority of the selected sensors are
strain rosettes, but few single strain gauges are also chosen. Therefore, the total
amount of strains’ components used by this formulation is slightly smaller than the
one used by the quadrilateral one. Nevertheless, this small saving in terms of strain
sensors does not justify the loss in the accuracy with respect to the quadrilateral
formulation. In fact, the quadrilateral formulation is able to increase the accuracy
of the shape sensing by 73%.

The Ko’s Displacement theory’s results are obtained with a low number of
sensors selected by the optimizer to reach a modest 6.9% value of the ERMSw.
The few sensors are positioned on the lines located as close as possible to the
leading and trailing edge of the wing (Figs. 4.16a, 4.16b). The low number of
sensors is due to the fact that the optimizer selected many times the same sensors.
This behaviour was studied in more details. A second optimization was performed,
adding a penalization factor to all the solutions with repeated sensors, in order to
force the optimizer to select the maximum number of sensors available. The results
showed an even poorer ERMSw value for the optimal solution. A high number
of sensors, for this test configuration, seemed to not have a beneficial effect on
the evaluation of the vertical displacements in the application of the classical Ko’s
theory in the first step of the extended procedure. Therefore, a larger number of
sensors resulted in a larger number of inaccurate vertical displacements used in the
subsequent modal transformation. As a consequence, the transformation somehow
amplified the errors from the master DOFs, leading to a higher value of the global
error.
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4.2 – Shape sensing on a composite wing box

Looking at Fig. 4.16d it is possible to notice some discrepancy between the
reconstructed and the reference deformation. Especially in the bay at the tip, it is
possible to observe that the reconstructed displacement is strongly biased by the
skins’ deflection waves of the first mode shape of the structure (Fig. 4.10). From
Fig. 4.18 it is easy to observe the inaccuracies of the method in the reconstruction of
the deflection inside the last two bays and the tendency of the method to reproduce
the modal shapes.

A trade-off between the methods previously described is provided by the Modal
Method. The method is capable of reaching an acceptable accuracy with a modest
number of sensors.

The optimizer selected both single strain sensors and strain rosettes and some
repetitions occurred. The distribution of the sensors over the structure does not
show a recognizable pattern (Figs. 4.17a, 4.17b). A study that avoided the repeti-
tion was performed for this method too. In this case, the use of all possible sensors
did not’t affect the global error. The study suggested that the 4.8% ERMSw

seems to be the maximum accuracy the method is capable to reach, regardless of
how many strain measurements and modes are used. In fact, an analysis with the
full set of strains measures and including all the 50 computed modes, resulted in
the same ERMSw value of 4.8%, proving that the modes selection and the sensors
optimization is capable to reach an asymptotic best value of the error.

The shapes comparison (Figs. 4.17c, 4.17d) and the bottom mid-chord line
deflection (Fig. 4.18) showed the same behaviour of the Ko’s Displacements theory.
Deflection waves in the second and third bays’ lower and upper panels are observed.
These waves are present in the 1st mode shape (Fig. 4.10) of the structure.

In conclusion, the methods show different characteristics that could be useful for
different purposes and different requirements. The possibility to have a high number
of sensors and the requirement for a high precision suggests the use of the more
accurate iFEM (Quad) method whereas, a scarcity of sensors and the requirement
of a first-approximation estimate suggests the use of the Ko’s Displacement theory.
The Modal Method represent a trade-off between these two methods, being capable
of a decent accuracy with a medium number of sensors.

The Modal Method and the Ko’s Displacement theory, as formulated in this
work, require the knowledge of the modal characteristics of the structure whereas
the iFEM does not have this requirement. Consequently, a further study on the
robustness of the shape sensing methods with respect to uncertainties of the struc-
tural characteristics has been considered for a more complete comparison.Moreover,
a study on the influence of noisy strain data has also been considered and will be
discussed in the next section.
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(a) Front spar (x = 0 mm)

(b) Rear spar (x = 667 mm)

(c) Deformed shape - Isometric view

(d) Deformed shape - Lateral view

Figure 4.14: iFEM Quad - In the panels (a) and (b) the optimized sensors’ config-
uration is reported. In the panels (c) and (d) the reconstructed deformed shape is
presented against the reference one.
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4.2 – Shape sensing on a composite wing box

(a) Top panel (z = 201 mm) (b) Bottom panel (z = 0 mm)

(c) Rear spar (x = 667 mm)

(d) Deformed shape - Isometric view

(e) Deformed shape - Lateral view

Figure 4.15: iFEM Tria - In the panels (a), (b) and (c) the optimized sensors’
configuration is reported. In the panels (d) and (e) the reconstructed deformed
shape is presented against the reference one.
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(a) Top panel (z = 201 mm) (b) Bottom panel (z = 0 mm)

(c) Deformed shape - Isometric view

(d) Deformed shape - Lateral view

Figure 4.16: Ko’s Displacement theory - In the panels (a) and (b) the optimized
sensors’ configuration is reported. In the panels (c) and (d) the reconstructed
deformed shape is presented against the reference one.
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4.2 – Shape sensing on a composite wing box

(a) Top panel (z = 201 mm) (b) Bottom panel (z = 0 mm)

(c) Deformed shape - Isometric view

(d) Deformed shape - Lateral view

Figure 4.17: Modal Method - In the panels (a) and (b) the optimized sensors’
configuration is reported. In the panels (c) and (d) the reconstructed deformed
shape is presented against the reference one.
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Figure 4.18: Vertical displacement along the mid-chord line (x = 363.18 mm) on
the bottom panel.

4.2.4 Uncertainty quantification
To perform a rigorous comparison between the shape sensing methods, the

robustness of these methods to the variability of the inputs has to be considered. In
real world scenario the stain measurement sampled on a structure can be affected by
different sources of variability. The influence of temperature, transverse sensitivity
of the sensor, misalignment, Wheatstone bridge’s non-linearity and measurement
noise, can all affect the accuracy of the measured strains [89, 90]. Moreover, the
material properties and the geometry of a real structure may differ from the nominal
ones. Specially the composite materials, whose manufacturing process is complex
and difficult to control can present characteristics different from the nominal ones.
Fibre-to-matrix volume ratio, alignment of the fibres, temperature effects during
the curing process, porosity in the matrix, bonding between fibres and matrix are
factors that depend on the manufacturing process and that can introduce variability
in the material properties [91].

In this section, the influence of the aforementioned uncertainties on the outputs
of the shape sensing methods is evaluated. The previous deterministic analysis,
carried on the composite wing box, is therefore extended to take into account for
the inputs’ uncertainties. To perform this study, the same formulations and strain
sensors’ configurations previously investigated are adopted for the iFEM (Quad),
the Ko’s displacement’s theory and the Modal Method. The iFEM (Tria) has been
excluded because of its poor performance with respect to the iFEM(Quad).
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4.2 – Shape sensing on a composite wing box

The problem at stake is faced using a probabilistic approach. In fact, the uncer-
tainty quantification process consists in studying the output’s probability density
function (PDF) and its statistical moments when the inputs are subjected to vari-
ability. The more widely used method to perform this kind of analysis is the Monte
Carlo Simulation (MCS). According to this method, a probability distribution is
associated to each input variable. Several values of each variable are sampled from
the assumed probability distribution in order to obtain several input vectors (in-
dividuals) for the investigated model. The sampled input vector are then used to
repetitively run the model, in this case the shape sensing methods, thus obtaining
the PDF of the output. The number of input vectors influences the ability to obtain
a PDF capable to fully describe the phenomenon. When simple random sampling is
used, the required number of input vectors is large and, consequently, the computa-
tional time for the simulation is significant. The use of different sampling methods
can increase the accuracy of the simulation with a smaller number of input vectors.
Latin Hypercube Sampling (LHS) is a stratified sampling method that guarantees
that all the portions of the distributions of each variable are represented in the
sampling [92]. This guarantees a better accuracy with a small number of samples.

The input data for the shape sensing are the strain measurements. As already
mentioned, these quantities can be affected by two kinds of uncertainties: uncer-
tainties due to the material properties’ variability and uncertainties affecting the
experimental measurements. In this work, these two effects are treated separately.

Material uncertainties

The material uncertainties influence the strain field of the structure. In this
work, the material uncertainties are analysed at the laminates’ ply level, including
the mechanical characteristics and the geometric ones. The ply mechanical prop-
erties’ variability is modelled with normal distributions, having the mean values
(µ) equal to the nominal ones and a Coefficient of Variation (CoV) of 7.5% [93].
The same distribution is used to represent the thickness of the plies. The fibre
orientations are modelled with normal distributions with µ equal to the nominal
ply angle and a standard deviations (σ) of 3° [94]. The statistical formulation of the
material characteristics are resumed in Table 4.3. The variability represented by
the distributions simulates the uncertainty that can originate from multiple sources.
The deviation from the nominal values due to the complexity of the manufacturing
process, the variation of the material properties due to the fluctuation in the am-
bient conditions and other sources that can influence the composite behaviour are
all taken into account by the generous level of variability selected for the stochastic
distributions of the variables.
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Characteristic Distribution µ σ

E11[GPa] Normal 111 7.5% µ
E22[GPa] Normal 7.857 7.5% µ

ν12 Normal 0.34 7.5% µ
G12[GPa] Normal 3.292 7.5% µ
G13[GPa] Normal 3.292 7.5% µ
G23[GPa] Normal 3.292 7.5% µ

St.seq.(StSeq 1−7) Normal [45/ − 45/0/90]s 3°
t(StSeq 1)[mm] Normal [0.25/0.25/0.25/0.25]s 7.5% µ

t(StSeq 2−7)[mm] Normal [0.20/0.20/0.20/0.20]s 7.5% µ

Table 4.3: Stochastic material characteristics.

The six lamina’s mechanical properties are sampled from their normal distribu-
tions only once per individual and are associated to all the laminates of the wing
box. On the other hand, to simulate a high variability of the composite lay-ups’
characteristics over the wing box, seven different zones are identified (Figure 4.19).
For each zone the values of the thickness and fibre orientations for each zone are
sampled separately for each individual. To summarize, each input vector for the
MCS is constituted by 62 input variables, namely 4 fibre orientations x 7 stacking
sequences, 4 ply thicknesses x 7 stacking sequences and 6 mechanical properties.
The sampling of the variables is obtained using a LHS from the multivariate normal
distributions previously illustrated and summarized in Table 4.3.

𝑆𝑡𝑆𝑒𝑞		 − 1

𝑆𝑇𝑆𝑒𝑞	 − 3
𝑆𝑡𝑆𝑒𝑞	 − 4
𝑆𝑡𝑆𝑒𝑞	 − 5
𝑆𝑡𝑆𝑒𝑞	 − 6
𝑆𝑡𝑆𝑒𝑞	 − 7

𝑆𝑡𝑆𝑒𝑞		 − 2

Figure 4.19: Stacking sequences - The box is divided into seven zones. Each one
has the same nominal stacking sequence but they are sampled separately in order
to guarantee a higher degree of variability of the characteristics over the structure.
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4.2 – Shape sensing on a composite wing box

Once a sufficient number of input vectors are sampled, the MCS’s process is
obtained as ti follows. For each individual, the sampled composites’ characteristics
are implemented into the high-fidelity FE model illustrated in section 4.2.1. From
this model the strains, affected by the variability of the material properties, are
computed for each individual. These strains are then used to perform the shape
sensing with the three selected shape sensing methods in order to obtain a value of
the %ERMSw for each individual. The set of %ERMSws are then used to derive
the PDFs of shape sensing’s output. When computing the ERMSw, the reference
displacements are the one obtained from the FEM analysis of the correspondent
individual. On the other hand, the Modal characteristics, necessary for the appli-
cation of the MM and Ko’s Displacement theory, are the ones obtained from the
deterministic FE model (where all of the properties are set to the nominal values).
This approach is based on the assumption that the modal properties, especially the
one related to the strains, are really difficult to measure experimentally. Therefore,
the idea is to simulate the most common case, i.e., the modal analysis is performed
on the numeric model, whereas the strains and the displacements are measured ex-
perimentally and are affected by uncertainty. The entire process for n input vectors
is schematized in Figure 4.20.

Stochastic

material

LHS

Sample - 1

Sample - 2

Sample - n

FEM
Shape

sensing

Deterministic

material
FEM

Modal

characteristics

ERMSw - 1

ERMSw - 2

ERMSw - n

PDF (ERMSw)

Str. field- 1

Str. field - 2

Str. field - n

Disp. field - 1

Disp. field - 2

Disp. field - n

MCS

Figure 4.20: Material uncertainty simulation - The scheme illustrates the MCS with
LHS procedure for the analysis of the material uncertainties.

The results of this analysis, for the wing box object of this study, are reported
in Figure 4.21. The Figure shows the PDFs of the %ERMSw obtained with the
iFEM, the Modal Method and the Ko’s displacement’s theory as formulated during
the deterministic analysis. The means, the standard deviations and the CoVs of the
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distributions are also reported. The results are extracted using 10000 individuals.
A convergence study to prove that this number of samples is able to characterize the
output variability has been performed. The result of the study has shown that no
variation for the value of the means and a maximum variation of 6% was observed
for the CoV when increasing the number of samples to 20000 and 30000.

Figure 4.21: PDFs - Material uncertainty - Probability density functions of the
%ERMSw obtained for the three shape sensing approaches with 10000 input vec-
tors of material characteristics sampled with LHS.

The means of all the distributions are close to the deterministic results (Table
4.2), although they are slightly higher for all the three methods. The more peaked
distribution is the one relative to the MM. The distribution corresponding to the
iFEM is slightly less peaked, whereas the one relative to the Ko’s Displacement
theory is much flatter. Moreover, looking at the standard deviations, the same
trend of variability for the three histograms can be inferred. The MM is found to
be the less sensitive to the material uncertainty, exhibiting a really small influence of
the input variability on the output. The iFEM shows a higher degree of variability,
although it is important to notice that there is no overlapping between the worst
result for the iFEM histogram and the best one for the MM one. Therefore, despite
the fact that it is more affected by the material uncertainty, the iFEM is still able
to perform better than the other two methods for any individual of the MCS. The
Ko’s displacement theory is strongly influenced by the variability in the material
characteristics. It is interesting to notice that the right side of the MM’s graph
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4.2 – Shape sensing on a composite wing box

extends so that it overlaps to the Ko’s graph. It happens for a portion where the
number of occurrences for the MM and the Ko’s Displacement theory are really
small. It means that, in some particular and rare conditions, the MM and the Ko’s
Displacement theory may perform with the same level of accuracy.

For the iFEM, an additional study on the influence of the penalization factors
relative to the missing strain measurements (Section 3.3.2), λ1−8, was performed.
The results for values of λ1−8 varying from 10−3 to 10−6 are reported in Figure 4.22.
The distributions show that the penalization factors have a significant influence on
the mean value of the distribution, whereas they have almost no influence on the
standard deviation and on the PDFs. They are very similar to each other in shape
and are only translated according to the different mean values. Therefore, it is
proven that the λ1−8 coefficients don’t have an influence on the variability of the
displacements reconstruction due to the material uncertainty, whereas they have
an influence on the deterministic accuracy of the method.

Figure 4.22: PDFs - Material uncertainty - Probability density functions of the
%ERMSw obtained for the iFEM with varying λ1−8 values from 10−3 to 10−6.

Measurement uncertainties

The uncertainties due to the measurement errors can also be evaluated with
the same approach. To take into account for the various source of error that can
affect the strain measurements, a normally distributed error is added to the strain
measures obtained with the deterministic refined FE model. Two levels of the
error are considered for this study, a 5% and a 10% error. Therefore, the statistic
distribution of the strains for the measurement uncertainties evaluation are the one
resumed in Table 4.4.
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Characteristic Distribution µ σ

ε Normal Deterministic value 5 − 10% µ

Table 4.4: Stochastic strain measurements.

From this distribution a certain number of individuals, represented by different
strain input vectors, are sampled with the LHS and are used to repetitively run
the shape sensing methods, thus generating the PDFs of the %ERMSw. In this
case, the number of variables that constitute the input vectors depends on the
number of strain sensors required by each of the shape sensing method. The modal
characteristics are once again computed from the deterministic refined model and,
this time, also the reference displacements are derived from this model. In fact,
the scope is to evaluate the uncertainty that affects the strain measurements only.
As a consequence, the simulated condition is the one where the real structure is
supposed to behave like the deterministic one, but the experimental strains are
affected by the measurement errors. The scheme of the simulation is reported in
Figure 4.23.
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Figure 4.23: Measurements noise effect simulation - The scheme illustrates the MCS
with LHS procedure for the analysis of the measurement uncertainties.

A sample size of 30000 individuals is chose for the LHS. In fact, the convergence
study on the CoV of the outputs proved that the maximum variability in the CoV,
when 50000 or 70000 samples are considered, is less than 2%.

The outputs’ PDFs resulting from the analyses with 5% and 10% normal errors
are reported in Figures 4.24 and 4.25, respectively. The peakedness of the distri-
bution related to the MM is impressive. The 5% error has practically no effect
in the ERMSw distribution and an almost negligible influence in the case of 10%
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error. On the other hand, the iFEM and Ko’s Displacement theory show a more
significant variability.

(a) iFEM (b) Modal Method (c) Ko’s Disp. theory

Figure 4.24: PDFs - Strain error 5% - Probability density functions of the ERMSw
obtained for the three shape sensing approaches with 30000 input vectors of strains
affected by a normal error of 5%.

(a) iFEM (b) Modal Method (c) Ko’s Disp. theory

Figure 4.25: PDFs - Strain error 10% - Probability density functions of the ERMSw
obtained for the three shape sensing approaches with 30000 input vectors of strains
affected by a normal error of 10%.

When a 5% error is present, the two methods exhibit values of the standard
deviations comparable to the ones obtained during the material analysis. These
values appear approximately twice as big in the case of 10% error. The iFEM
shows less variability and, in the two error scenarios, its histograms still never over-
laps to the other two, showing better results for any occurrence. The overlapping
between the MM and the Ko’s Displacement theory’s histograms is noticed when
the normal error reaches the 10%, but this happens in the area where really small
occurrence bars are present. The iFEM and Ko’s histograms share another com-
mon feature, a nearly symmetric distribution with respect to the mean value. This
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feature indicates an equal possibility of having better or worst results with respect
to the mean value. On the contrary, although with really lower variability, the
MM’s one is characterized by a highly positive skewness, only showing occurrences
for solutions with a higher value of the ERMSw with respect to the mean one.

The present study on the effect of the measurement errors has also considered the
effect that these have on the reconstruction of the stress field. The displacements
computed with the shape sensing method can be used to reconstruct the stress
field through the use of the constitutive equations. Therefore, the displacement
fields that generated the distributions reported in Figs. 4.24 and 4.25 can be used
to generate a distribution of the stress field reconstructions. For this particular
application, taking into account the typical failure analysis relevant to multilayered
composite structures, these displacement field are used to reconstruct the Tsai-
Hill failure index’s distributions. To compute the Tsai- Hill index, the material
strength properties reported in Table 4.5 have been used. The deterministic value
of the maximum Tsai-Hill index, computed using the reference displacements from
the high-fidelity model without any uncertainty in the system, is 0.73.

Characteristic Value

Longitudinal tensile strength 749 [MPa]
Longitudinal compressive strength 351 [MPa]

Transverse tensile strength 30 [MPa]
Transverse compressive strength 100 [MPa]

In-plane shear strength 25 [MPa]
Inter-laminar shear strength 14 [MPa]

Table 4.5: Material strength characteristics.

The distributions of the maximum values of the reconstructed Tsai-Hill index
are plotted in Figures 4.26 and 4.27. The trend in the mean values of the error is
the same noticed during the displacements analysis. The iFEM is the most accu-
rate of the three method. Moreover, in this case, the advantage in the accuracy in
favour of the iFEM is even more remarkable. The mean values of the estimations of
the Tsai-Hill index for the MM and the Ko’s Displacement theory are highly inac-
curate. The standard deviations of the distributions relative to the three methods
are comparable and also the CoVs are closer than in the shape sensing case. As
a consequence, the higher robustness of the MM, in particular with respect to the
iFEM, is still exhibited but less marked.

To sum up the results of the uncertainty quantification analysis, it has been
observed that the Modal Method is the less influenced by any source of uncertainty
present in the system. Therefore it represents an useful shape sensing tool when
there is no confidence in the reliability of the material characteristics or the accuracy
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4.2 – Shape sensing on a composite wing box

of the strain sensing system. The iFEM is more influenced by the inputs’ variability.
Nevertheless, although requiring a higher number of sensors, its most negatively
influenced reconstructions are still capable of a greater accuracy than the best one
from MM. As a consequence, when more accuracy is required and more sensors
are available, the iFEM is still to be preferred. Moreover, the advantages of the
iFEM are even more remarkable when the reconstructions are extended to the
stress field of the structure. In this case the iFEM is strongly recommended. The
Ko’s Displacement’s theory is not suitable when uncertainty is present. The high
variability in the output prevents from confidently rely on the obtained results.

Figure 4.26: PDFs - Strain error 5% - Probability density functions of the percent-
age error (%Err Tsai-Hill) in the reconstruction of the maximum Tsai-Hill failure
index.

Figure 4.27: PDFs - Strain error 10% - Probability density functions of the percent-
age error (%Err Tsai-Hill) in the reconstruction of the maximum Tsai-Hill failure
index.
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4.3 Plate undergoing large displacements
The last numerical application related to the shape sensing is aimed at the

validation of the incremental iFEM formulation introduced in Section 3.3.3. The
proposed procedure is tested on the reconstructions of the traverse displacements
of a wing-shaped aluminium cantilevered plate subject to a uniformly distributed
transverse pressure of 2.466E − 03 MPa. This level of load is able to induce highly
non-linear deformation in th plate. The plate’s geometry and boundary conditions

(a) Geometry and boundary conditions (b) Mesh and sensors’ placement.

Figure 4.28: Wing-shaped plate

are presented in Figure 4.28a. The material is an aluminium alloy (Young’s modulus
E = 72017 MPa, Poisson’s ratio ν = 0.325). The plate is meshed with triangular
elements, as reported in Figure 4.28b. In the same figure are also reported the
positions of the axial strain gauges used for the iFEM computation. They are
denoted by the black lines running along the wing span. Every line represents
a strain sensor that measure the strain on the upper and lower surfaces of the
plate along the line’s direction. The same triangular mesh is used for both the
direct non-linear analysis and the inverse one. The direct non-linear analysis, that
gives the reference values of the vertical displacements and the measured strain
values, is carried on using 132 S3R shell elements in ABAQUS/Standard 6.13.
The inverse mesh is constituted of the same amount of iMIN3 elements. The
accuracy of the iFEM predictions is assessed by calculating the Root Mean Square
Error (%ERMSw) of the nodal transverse deflections (w) with respect to the ones
computed in the direct analysis (Eq. 4.1).

The direct non-linear analysis is obtained dividing the load into 32 increments.
As prescribed by the iFEM incremental formulations, for each of these load incre-
ments the strains are collected, the displacements are computed with the iFEM and
the mesh is updated for the next step of the procedure by adding the computed dis-
placements to the inverse mesh’s nodes. The reconstruction of the wing deformed
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shape, against the reference one, is reported in Figure 4.29. A high accuracy of the
shape reconstruction is observed.

Figure 4.29: Wing-shaped plate - Shape sensing at the maximum load level.

A further inspection of the reconstructed maximum transverse displacement of
the wing tip highlights the same significant level of accuracy. In Figure 4.29 the
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Figure 4.30: Maximum transverse displacement.

reference maximum vertical displacement and the reconstructed ones are plotted
for every load increment. Moreover, the same displacement, reconstructed using
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the strains from the last loading step and computed with the standard linear iFEM
procedure, is reported. It can be notice that the incremental IFEM formulation
is able to accurately reconstruct the displacements for every load increment and
especially for the final value, whereas the standard formulation is not able to capture
the non-linearity of the displacement. This is enforced by the trend observed for
the %ERMSw as a function of the load percentage (Figure 4.31). The %ERMSw,
derived with the incremental iFEM, never exceeds 1%, whereas the one computed
with the standard linear iFEM is always higher than 1% and reaches significant
values for the final level of the load.
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Figure 4.31: %ERMSw error corresponding to linear iFEM and incremental iFEM
solutions as a function of the load range

This numerical activity proves that the incremental iFEM formulation is accu-
rate in reconstructing the non-linearities of the displacement field of a structure
experiencing large displacements.
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Chapter 5

Data driven methods for loads
identification and reconstruction

After addressing the shape sensing of aerospace structures, the focus of this next
step is another crucial aspect of the Structural Health Monitoring, the load recon-
struction methods. Monitoring the loads that affect a structure is fundamental for
several key aspects: the targeting of critical loading conditions during service; the
evaluation of the load cycles for the assessment of the fatigue life consumption; the
monitoring of the external loads as a feedback for the load alleviation mechanisms
of the Smart/Morphing Structures.

In this chapter, data driven load identification/reconstruction methods, used in
this research, are introduced. These are System Identification Methods that, adopt-
ing a "Black Box" approach, are able to create a regression between any inputs and
the outputs of a system, without any in-depth knowledge of the investigated system.
These methods will be applied to the reconstruction of the internal loads of a fighter
aircraft’s wing from flight parameters and strain inputs. The choice of this "Black
Box" approach is driven by the lack of any knowledge of the physical characteristics
that define the considered structure. For this application, two families of methods
emerged from the literature review as the most widespread, linear regression based
models and Artificial Neural Networks. These frameworks are described in details
and a particular attention is dedicated to the description of the different parameters
that characterize and define the models. These parameters will be object of a broad
exploration during the investigation of the best System Identification Method for
the monitoring of the fighter aircraft’s wing internal loads.

5.1 Linear regression based algorithms
One of the most widespread System Identification Method, based on the linear

regression, is the Auto-regressive with eXtra inputs model, ARX. This model is
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based on the following linear difference equation [64]:

y(t) + a1y(t − 1) + ... + anay(t − na) = b1x(t − 1) + ... + bnb
x(t − nb) + e(t) (5.1)

where y(t) and x(t) are the output and the input of the system at the time-step t,
respectively, ai are the na output’s regressors, bi are the nb input’s regressors and
e(t) is the white noise disturbance term. The equation express the concept that the
output can be expressed as a linear regression of the previous time-steps values of
the output (Auto-regression), plus the linear regression of the previous time-steps
values of an external input (eXtra input), plus a disturbance white noise term. In
fact,the next output’s value, y(t)pr can be predicted as follows:

y(t)(pr) = −a1y(t−1)− ...−anay(t−na)+b1x(t−1)+ ...+bnb
x(t−nb)+e(t) (5.2)

The regressors, ai and bi are the coefficients of this linear regression. If data of inputs
and outputs of a system over a certain time interval are available, the regressors
can be computed by fitting the output’s values in Eq. 5.2 to the measured outputs
through a process of minimization of the error between predicted and measured
outputs of the system. Therefore, the numbers of the inputs and outputs’ regressors
are the parameters that define this model.

The limitation of the ARX model is the lack of adequate freedom in describing
the properties of the disturbance term. It is possible to add flexibility to that by
describing the equation error as a moving average of white noise, thus obtaining a
different System Identification Method, the Auto-regressive Moving Average with
eXtra input model, ARMAX. The formulation describing this model is:

y(t)(pr) = − a1y(t − 1) − ... − anay(t − na) + b1u(t − 1) + ... + bnb
x(t − nb)+

+ e(t) + c1e(t − 1) + ... + cnce(t − nc)
(5.3)

where ci are the nc regressors relative to the disturbance term. To the parameters
that describe the ARX model, the number of disturbance term’s regressors is added
in the ARMAX model.

The expressions of the ARX and ARMAX models can be easily modified to
describe a Multi-Input-Single-Output (MISO) system by expressing each x(t −
1)...x(t − m) and its relative regressors as vectors.

5.1.1 Search methods
Similar to the ’Training Algorithms’ that will be analysed for ANNs, the re-

gression search method is an iterative numerical optimization algorithm which is
used to update the regressors values at each iteration to relate the system inputs to
the output whilst minimizing the Mean Square Error (MSE) between the predicted

70



5.1 – Linear regression based algorithms

values from the regression algorithm (y(pr)) and the measured ones (y). The MSE
is a function of the parameters that appears in the formulation of y(pr):

MSE(p) = 1
Nt

Nt∑︂
i=1

(y(p)(pr)i − yi)2 (5.4)

where p is the vector of the parameters of the model, i.e for ARX it contains the ai

and bi regressors, Nt is the number of time steps of the time series and the subscript
i denotes the computation of the quantity at the i-th time step.

Several optimization algorithms exist and some of them have been involved
in the parametric exploration of the ARX and ARMAX models. The following
minimization algorithms have been considered for these methods.

Gradient descent [95] is an unconstrained iterative minimization algorithm
based on the computation of the gradient of the function that is the objective of
the minimization. The function is minimized by moving in the direction of the
negative gradient. In the context of regression algorithms, the gradient descend
iterative procedure can be summarized as follows. It is started with a guess value
of the parameters, p0, and then the next values are computed by moving against
the gradient:

pn+1 = pn − γn∇MSE(pn)T (5.5)
so that the following monotonic sequence is obtained:

MSE(p0) ≥ MSE(p1) ≥ MSE(p2) ≥ ...MSE(pn) (5.6)

The γn parameter defines the step size of the iteration. It influences the convergence
speed. If increased, it can speed up the optimization process, but, if set too large,
can cause the method to diverge. This minimization algorithm is really efficient
and guarantees the convergence to the global minimum for convex function. On
the other hand, for functions with a more complex and rugged solution landscape
the method can often be able to only find a local minimum.

Newton’s method [95] is another unconstrained iterative minimization method.
It is based on the computation of the stationary point of the function through the
minimization of the second-order Taylor approximation of the function around a
candidate point. Starting from an initial set of guessed parameters, p0, the method
performs the iterations:

pn+1 = pn − γn
∇MSE(pn)
∇2MSE(pn) (5.7)

where γn is the step size of the iteration. The Newton’s method is more efficient
than the Gradient descent algorithms and can converge in less iterations. How-
ever, it needs the computation of the second order derivatives for each iteration.
Unfortunately, calculating this quantity is a formidable task from both CPU and
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memory perspectives. To overcome this limitation, the Gauss-Newton method
was introduced. It is derived from the Newton’s method, but it is computation-
ally more efficient because it does not require the computation of the second order
derivatives. If the residuals of the regression are defined as:

r(p) = y − y(p)(pr) (5.8)

where y is the vector of measured outputs and y(p)(pr) is the vector of predicted
outputs. The Gauss-Newton method iteratively minimizes the squared sum:

S(p) =
Nt∑︂
i=1

r2
i (5.9)

where ri are the components of the residual vector and Nt is the total number
of output’s observations. The minimization is carried on iteratively updating the
parameters’ vector, starting from a trial value, in the following form:

pn+1 = pn + (J(pn)T
y(pr)J(pn)y(pr))−1J(pn)T

y(pr)r(pn) (5.10)

where J(pn)y(pr) is the Jacobian matrix of the regression function y(pn)(pr). The
Jacobian matrix only includes first order derivatives of the function.

The third search method is the Constrained non-linear programming solver
based on trust-region. Essentially, this algorithm searches for the minimum of
a non-linear multi variable function, subject to constraints. The constraints can
be described as mathematical rules that need to be considered as the algorithm
searches for the minimum of an objective function (in the context of this work,
MSE). The general constrained minimization problem can be described mathemat-
ically according to

min MSE(r) for

⎧⎨⎩c(r) > a

a < g(r) < b
(5.11)

where c(r) and g(r) are constraint functions and, a and b are integers. This is
different from to the other unconstrained algorithms in which the algorithm searches
for the minimum without having to adhere to constraints. In this work, the trust–
region method is used, which means that to improve upon the current value of
the objective function MSE, it is initially approximated with a simpler function
q which reasonably represents MSE within a neighbourhood around the current
value Ne, this is known as the trust–region. At each iteration the updated minimum
is constrained to be within the trust–region, and furthermore at each iteration the
trust–region gets decrease in size [96].
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5.1.2 Regularization
Regularization is an mathematical process that reduces the effects of over–fitting

in cases where the input–output time–series are heavily contaminated with noise.
The regularization is obtained by penalizing some areas of the function space to
improve generalization.

Regularization is implemented within the search method of the ARX model,
the standard Gauss–Newton search method is used and regularization constants
are calculated for the input and output regressors using the default ’tuned and
correlated’ regularization kernel [97].

5.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) provide a method to approximate a non–linear

function. A Neural Network can be interpreted as a non–linear parametric function
whose parameters are learned from the data through a process defined as training.
The network can continuously improve on its regressions based on the number of
examples that it is trained with. ANNs do not need any inside knowledge of the
system to build the input-output regression model.

The core of a Neural network are the nodes. Within the j-th node, the sum
of weighted inputs (xi) is summed with a bias (bj) and a non-linear activation
function (σ) is applied to obtain the output (yj). The working scheme of a node is
reported in Figure 5.1. A network is constituted of layers of nodes connected to each
other. The input layer receive the inputs of the system, the middle layers (hidden
layers) receive the output from the previous layers of nodes and finally the output
layer, where a linear activation function is usually applied, return the output of the
network. These allows the definition of a complex non-linear parametric function
of the inputs. An example of the structure of simple Multi-Inputs-Single-Output
(MISO) network is presented in Figure 5.2. Every connection of the network has
its own weight and every neuron its own bias. The kind of connections between
the layers, the number of hidden layers and the number of neurons defines the
architecture of the network. The parameters of the networks, i.e., the weights and
the biases, are determined through the training process. In practice, the input and
output data of a system are given to the network, that, by fitting the data’s outputs
to the network’s ones, is able to determine the best-fitting parameters. The reader
is directed to [98] for a more detailed mathematical framework behind ANNs.
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Figure 5.1: ANN node considering 4 inputs

Figure 5.2: A MISO neural network - The circles represent the nodes of the network
and the lines the weighted connections. The symbol is related to nodes with
a sigmoid activation function, whereas the symbol denotes a linear activation
function.

5.2.1 Architectures
The architecture of the neural network describes the pathway that the network

follows between the input, hidden and output neurons. The simplest architecture,
the feedforward, is presented in Figure 5.2. However, more complex architectures
have been developed thanks to the recent advances within the field. Each architec-
ture comes with pros and cons depending on the problem that the neural network
is being designed to solve. The architectures which are investigated in this work
are summarized in this section.

Feedforward neural networks [98] (FFN) are the original and simplest ar-
chitectures of ANN. The data moves only in the forward direction and only the
weights and biases of the forward connections need to be estimated in the training
process. The working scheme of this architecture, as it will be used in this work, is
reported in Figure 5.3.
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Figure 5.3: Feedforward Network - The scheme is reported for a network with one
time series input and one node in the hidden layer, but it can be easily extended
to consider n time series inputs and nHL nodes in the hidden layer. The activation
function in the hidden layer is the sigmoid function ( ), whereas it is the linear
function ( ) in the output layer.

Cascade forward neural networks [99] are derived from FFN. However,
they include connections between the input and each hidden layer. The weights
of this connections are added to the parameters of the network. The CFN archi-
tecture, although introducing new parameters to be estimated, often shows better
convergence performances than FFN. The CFN network is described in Figure 5.4

Figure 5.4: Cascade Forward Network - The scheme is reported for a network with
one time series input and one node in the hidden layer, but it can be easily extended
to consider n time series inputs and nHL nodes in the hidden layer. The activation
function in the hidden layer is the sigmoid function ( ), whereas it is the linear
function ( ) in the output layer.

Time–delay neural networks [100] (TDN) introduce the concept of tap delay
in the context of ANNs. With respect to the FFN architecture, a tap delay is
associated to the input weights. That means that inputs from previous time steps
are added to the inputs of the network and the relative weights are added to the
parameters of the network. The lagged input variables in the input layer allow
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TDNs to provide a finite dynamic response and hence the architecture is particularly
applicable to time–series predictions [101].

Figure 5.5: Time–delay Neural Networks - The scheme is reported for a network
with one time series input and one node in the hidden layer, but it can be easily
extended to consider n time series inputs and nHL nodes in the hidden layer. The
scheme considers nIDL input delays for every input. The activation function in the
hidden layer is the sigmoid function ( ), whereas it is the linear function ( ) in the
output layer. Every connection has a weight (w) and every node a bias (b).

The Distributed Delay Network [99] (DDN) is similar to TDN, however,
the tap delays are also added to the hidden layer’s outputs (Figure 5.6). For
this reason the DDN architecture provides higher fidelity with fewer iterations,
however, the addition of the weights relative to the delayed outputs means that it
is computationally less efficient.

Figure 5.6: Distributed Delay Network - The scheme is reported for a network with
one time series input and one node in the hidden layer, but it can be easily extended
to consider n time series inputs and nHL nodes in the hidden layer. The scheme
considers nDDL1 input delays and nDDL2 output delays. The activation function in
the hidden layer is the sigmoid function ( ), whereas it is the linear function ( )
in the output layer. Every connection has a weight (w) and every node a bias (b).

Layer Recurrent Networks [99] (LRN) introduce the concept of memory in
the training/learning process. In fact, they use the delayed output from from the
hidden layer as an input for the layer itself (Figure 5.7). The advantage of the
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LRNs is that they retain memory between iterations using their own output from
the current iteration as an input for the next iteration.

Figure 5.7: Layer Recurrent Network - The scheme is reported for a network with
one time series input and one node in the hidden layer, but it can be easily extended
to consider n time series inputs and nHL nodes in the hidden layer.The scheme
considers nLDL layer delays. The activation function in the hidden layer is the
sigmoid function ( ), whereas it is the linear function ( ) in the output layer.
Every connection has a weight (w) and every node a bias (b).

Figure 5.8: Non-linear Auto–regressive Network - The scheme is reported for a
network with one time series input and one node in the hidden layer, but it can be
easily extended to consider n time series inputs and nHL nodes in the hidden layer.
The scheme considers nIDL input delays and nF DL feedback delays. The activation
function in the hidden layer is the sigmoid function ( ), whereas it is the linear
function ( ) in the output layer. Every connection has a weight (w) and every node
a bias (b).
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Non-linear Auto–regressive Network [99] (NXN) is based on the auto-
regression principle that inspired the ARX and ARMAX models, although intro-
ducing the non-linearity in the regression model. As a consequence, the outputs
from the previous time steps are used as inputs from the current time step. As
for the TDN, the inputs from the previous time steps are also considered as in-
put for the current time step (Figure 5.8). The presence of multiple connections
ad the consequent high number of weights makes the approach suitable for highly
non-linear dynamic systems but also makes it computationally expensive.

5.2.2 Training Algorithms
For all the different architectures the output predicted by the network at the

i-th time step (y(pr)i) can be expressed as a function of the inputs of the systems
and of the weights and biases of the network:

y(pr)i = f(xi, p) (5.12)

where p is the vector of the weights and biases of the network. Therefore, the same
expressions of the MSE, reported in Eq. 5.1.1, and of the residual, included in Eq.
5.1.1, can be adopted to define the training of the networks. The training function
is iteratively working to search for a set of weights and biases which can best
relate the inputs to the output whilst minimizing the error. The Gradient descent
and the quasi-Newton methods described in Paragraph 5.1.1 can be also used for
the training of ANNs. They are, nevertheless, extremely memory intensive and,
therefore they have been discarded from this study. The two following extremely
efficient training algorithms have been considered:

Levenberg-Marquardt optimization is an iterative minimization algorithm
that combines the features of the gradient decent and Gauss-Newton algorithms
[102]. As for the Gauss-Newton optimizer, this algorithm works to minimize the
squared sum in Eq. 5.1.1. Adopting the same notation of Eq. 5.1.1, the iteration
process of this algorithm for the n-th+1 step is defined as:

pn+1 = pn + (J(pn)T
y(pr)J(pn)y(pr) + λnI)−1J(pn)T

y(pr)r(pn) (5.13)

where λn > 0 is a damping factor and I is the identity matrix. The damping
factor controls whether the method behave closely to the gradient descent or Gauss-
Newton algorithms. In fact, if the reduction of the squared sum of the residuals
(Eq. 5.1.1) is rapid, a smaller value can be used, bringing the algorithm closer to
the Gauss–Newton algorithm, whereas if an iteration gives insufficient reduction,
λn can be increased, giving a step closer to the gradient-descent direction. This
method is widely used for the training of ANNs.

The second considered algorithm is the Levenberg-Marquardt method with
Bayesian regularization. This method implements a regularization algorithm
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within the standard Levenberg-Marquardt iterative procedure. For every iteration,
the weights and biases computed by this algorithm are then further optimised to
achieve a better generalisation and avoid over fitting, according to the Bayesian
approach [103].
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Chapter 6

Internal wing loads reconstruction
of a fighter aircraft

This activity, undertaken in collaboration with Australian Defence Science &
Technology (DST) Group, focuses on identifying the most appropriate strategy
for the prediction of structural loading cases, where poorly calibrated and weakly
coherent strain sensors and flight parameters data are used as an input to predict
individual load spectra for a modern fighter air platform. The final goal is to
estimate the fatigue life consumption of the airframe due to the monitored loads.
The System Identification Methods described in Chapter 5 have been investigated
to achieve this goal. For every method, a broad parameter exploration is performed
and the best configurations are compared. The main difficulty arisen by the problem
is the lack of physical information about the structure due to export restrictions.
This poses a serious challenge for the evaluation on the fatigue life consumption.
To overcome this limitation, a new parameter, independent from the geometry of
the structure and able to statistically account for different possible materials is
developed. This work is part of a broader investigation on the load monitoring
of aircraft structures undertaken by RMIT and DST whose other outcomes are
reported in [104, 105].

6.1 The dataset
Thanks to a collaborative research agreement between RMIT University and

DST Group, surrogate data created from a normalised dataset and generated from
defence fighter air platform flight test data, is provided by DST Group. The data
consist of responses from NSG strain sensors (the exact number not given to preserve
data anonymity), the flight parameters (angle of attack and dynamic pressure)
and six loading sensors on the main wing from 100 separate aircraft manoeuvrers.
The loading data is comprised of values for bending moment and torsion at three
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sections of the wing. Therefore, the multi-input strain sensor information and flight
parameters are used to predict the following load spectra: section one bending
(S1B), section one torsion (S1T), section 2 bending (S2B), section two torsion
(S2T), section three bending (S3B) and section three torsion (S3T). The increase
in the numbering of the sections denotes an increase in the distance from the root
section of the wing.

This activity focuses on the study of the low-frequency manoeuvrers loads.
However, it is part of a broader study that includes also the analysis of the high-
frequency buffet loads. These have been considered by Candon et. al in [104,
105]. Therefore, to analyse the low frequency manoeuvrer loads, a low-pass IIR
zero-phase filter is applied to both the input strains and the output loads signals,
whereas the data used to analyse the buffet is processed through a band-pass IIR
zero-phase filter. The cut-off and band frequencies for the two filters are chosen
according to consideration derived from the knowledge of the stiffness properties
of the wing. These frequencies are not supplied to preserve data anonymity. An
example of the filtered data for the manoeuvrer and buffet loads, along with the
unfiltered data, is given in Fig. 6.1.

For this application, the 50% of the filtered data are used to train the investi-
gated System Identification Methods, whereas the remaining 50% are used to verify
the predictions of the methods.

It is important to highlight that no other information about the geometry and
the material of the investigated structure is made available and, therefore, consid-
ered for the load identification process.

Figure 6.1: Example of available load data and filtering

Moreover, the challenging scenario posed by this application is highlighted by
the analysis of the magnitude–squared coherence between a representative set of
inputs (four wing strain sensors) and outputs (2 load spectra) data. The magnitude
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squared coherence measures how well two signals correlate to each other for each
frequency. For two signals l(t) and s(t), the magnitude–squared coherence is defined
as it follows:

Cls(f) = |Pls(f)|2
Pll(f)Pss(f) (6.1)

where f is the frequency, Pll(f) and Pss(f) are the power spectral densities of l(t) and
s(t), respectively, and Pls(f) is the cross power spectral density of l(t) and s(t). For
each frequency, the perfect correlation between the signals generates Cls(f) equal
to 1 and no correlation generates Cls(f) equal to 0.

Figure 6.2a presents the coherence analysis for S1B input-output problem which
is the most coherent. There is reasonable correlation between the strain signal
and the load (0.7 - 0.8) for the main peak at approximately 14.5 Hz, moderate
correlation (0.3 - 0.6) from a single strain gauge (SG3) for the secondary peak, at
approximately 5 Hz, and no correlation beyond 40 Hz.

Figure 6.2b shows the coherence for Section 3 torsion input-output problem
which is the least coherent, hence, presents a significant challenge for the regression
algorithms, as is shown in the remaining of this chapter. This load case is repre-
sentative of all the torsion load spectra. In general, for the torsional loads, there
is moderate correlation (0.5 – 0.6) for the main peak at approximately 15 Hz, a
weaker correlation (0.2 - 0.4) for the peak between 20 Hz and 40 Hz and again no
correlation above 40 Hz. These mostly poor coherences significantly increase the
difficulty in obtaining accurate prediction of the load spectra. In fact, the regres-
sion models are trying to predict frequencies in the outputs which scarcely exist in
the inputs.
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Figure 6.2: Input–output magnitude–squared coherence for a) Section 1 bending
and b) Section 3 torsion
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6.2 Fatigue prediction assessment
One of the main difficulties of this application, that inspired the use of data

driven regression algorithms, is the lack of knowledge of a physical model and of
the characteristics of the structure. Although this does not represent an obstacle for
the application of the selected methods, it raises a significant challenge for the final
goal of the project, the evaluation of the accuracy of the methods on the estimation
of the fatigue life consumption.

A crucial tool for the fatigue life estimation is the rainflow–counting algorithm
[106]. Essentially, a complex load spectrum can be reduced into a set of load
reversals (peaks and troughs) which are grouped according to a set of pre–defined
load cycle ranges, which represent the extent of fatigue cycles. These are then
represented in what is known as a load cycle exceedance curve. From the measured
and predicted load spectra of the section loads it is possible to easily compute the
load cycle exceedance curves with the rainflow–counting approach [106]. These
curves are typically used for the fatigue life analysis through the use of different
fatigue models. One of the most simple method to estimate the number of cycles to
failure is the Miner’s rule. However, this rule is based on the stress levels induced
by the load cycles and not on the load cycles themselves. Without the knowledge of
the material of the structure and of the properties of the sections, the computation
of the stress level induced by each load cycle is not measurable and consequently
also fatigue life considerations are not derivable. The further analysis of the Miner’s
rule formulation and some hypothesis on the behaviour and modelisation of a wing
structure led to the overcoming of this issue and to the consequent formulation of
a parameter able to asses the accuracy of the fatigue life predictions.

The miner’s rule is formulated as follows:
l∑︂

i=1

ni

Ni

= D (6.2)

where ni are the number of cycles that exceed the i-th stress level, Ni is the number
of cycles to failure for the i-th stress cycle range. The summation is performed over
the l stress cycles ranges identified by the stress cycle exceedance curve. According
to the rule, the failure due to fatigue happens when the value of D reaches 1.
Therefore, D represents the percentage of consumed fatigue life for the load spectra
that produced the considered stress cycle exceedance curve. The number of cycles
to failure for a certain stress cycle range, Ni, is derived from the S/N curves. These
are curves that report the values of these experimentally measured characteristics
for a certain material. To sum up, the application of the Miner’s rule, starting from
the load cycle exceedance curve, requires the transformation of the load cycles into
stress cycles, through the adoption of a structural model, and the knowledge of the
S-N curve of the material (Figure 6.3).
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Figure 6.3: Miner’s rule from the load cycles exceedance curve - The ni are directly
derived from the Load cycles exceedance curve. The stress ranges (Si) are computed
from the load ranges (Li) through a structural model (f(Li)). The cycles to failure
(Ni) are computed from the stress rages through the S/N curve of the material
(g(Si)).

On a first approximation, the wing of an aircraft can be modelled as a beam-like
structure. Therefore, for this application a beam analytical structural model can
be considered for the computation of the stresses. Following the scheme reported
in Figure 6.3, the function, f , that express the stresses, Si, in terms of the generic
section loads, Li, according to the beam model, can be expressed as it follows:

Si = f(Li) = Li

I
d (6.3)

where I is an inertial characteristic of the section and d is a length that is also a
characteristics of the section. These two parameters change according to considered
load, a bending load or a torsion one, and are only dependent on the geometry of
the beam section.

On the other hand, the relation (g(Si)) between the stresses and the number
of cycles to failure, Ni, given by the S/N curves of the material, has the following
analytical formulation:

Ni = g(Si) = kS−m
i (6.4)

where the k and m coefficient are evaluated experimentally and are a characteristic
of the material. By combining Eq. 6.3 and Eq. 6.4 and substituting the derived
expression of Ni into Eq. 6.2, the analytical formulation of the Miner’s rule is
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obtained:
D =

l∑︂
i=1

ni

Ni

=
l∑︂

i=1

ni

k(Li

I
d)−m

(6.5)

This expression depends on the geometry of the section through the characteristics
I and d and on the material of the structure through the coefficients k and m.
Following Eq. 6.5, the comparison of the consumed fatigue life, D, for the mea-
sured load cycles ranges and for the ones predicted trough the investigates System
Identification Methods, can be expressed mathematically in a fraction form:

(D)pr

(D)meas

=
∑︁l

i=1
(ni)pr

(Ni)pr∑︁l
i=1

(ni)meas

(Ni)meas

=

∑︁l
i=1

(ni)pr

k( (Li)pr
I

d)−m∑︁l
i=1

(ni)meas

k( (Li)meas
I

d)−m

(6.6)

where (·)meas and (·)pr denotes measured and predicted quantities, respectively. In
the last expression of Eq. 6.6, some parameters can be simplified, leading to:

(D)pr

(D)meas

=
∑︁l

i=1
(ni)pr

(Li)−m
pr∑︁l

i=1
(ni)meas

(Li)−m
meas

(6.7)

The percentage error in the predicted fatigue life consumption with respect to the
measured one, %Edf , can be computed as follows:

%Edf = 100 ×
(︄

(D)pr

(D)meas

− 1
)︄

= 100 ×

⎛⎜⎝
∑︁l

i=1
(ni)pr

(Li)−m
pr∑︁l

i=1
(ni)meas

(Li)−m
meas

− 1

⎞⎟⎠ (6.8)

This parameter does not depend on the geometry of the section any more, however
it still depends on the material through the m parameter of the S/N curve. To get
rid of this dependency from an unknown characteristic of the investigated structure,
a statistical approach is adopted. This error is computed for four aluminium alloys
and then averaged to get a parameter able to provide a quantification of the error
in the fatigue consumption not dependent on the unknown physical quantities of
the problem. The fatigue life consumption error averaged with respect to the four
materials, %Fdf , is defined as:

%Fdf =
4∑︂

j=1

|%Edfj|
4 (6.9)

where the subscript j denotes the quantity computed for th j-th material. The four
considered aluminium alloys are 7075, 2024, 7050 and 6061. The values of the m
parameters for these materials are reported in Table 6.1.
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Alloy m Source
7075-T6 5.80 MIL-HDBK-5H (fig. 3.7.6.1.8 (d))
2024-T4 9.09 MIL-HDBK-5H (fig. 3.2.3.1.8 (a))

7050-T7451 3.24 MIL-HDBK-5H (fig. 3.7.4.2.8 (a))
6061-T6 9.84 MIL-HDBK-5H (fig. 3.6.2.2.8)

Table 6.1: m values for the considered aluminium alloys.

Since very different load spectra can produce the same consumed fatigue life ac-
cording to the Miner’s rule, another parameter is considered, along with %Fdf , to
asses the accuracy of the predictions, the coefficient of determination. In this con-
text, the coefficient of determination, R2, for a time series of N measured, y(i=1,..,N),
and predicted, y(pr)(i=1,..,N) loads, is defined as:

R2 = 1 −
∑︁N

i=1(yi − y(pr)i)2∑︁N
i=1(yi − ȳ)

(6.10)

where ȳ is the mean value of the time series y(i=1,..,N). R2 gives a statistical eval-
uation of how well the observed data are fitted by the regression model. A value
of R2 = 1 indicates that the model explains all the variability of the observed data
around their mean, whereas R2 = 0 indicates that the model explains none of the
variability of the observed data around their mean. The coefficient of determi-
nation, R2, with respect to the measured and predicted load spectra, is used to
define an interval of confidence for the predictions of fatigue. In fact, it can be used
as a reliability parameter to validate that the fatigue life consumption predictions
are produced by a well predicted load spectrum and not by a different one able
to produce similar fatigue life estimations. Within the parametric exploration of
each System Identification Method, only predictions that show a value of the R2

higher than the 90% of the maximum coefficient of determination measured for the
selected method are considered. I.e., for the prediction of the S1T with ANNs, only
prediction that resulted in a R2 higher than 90% of the architecture that obtained
the maximum value of R2 for this load spectrum are considered.

6.3 Linear regression based analysis
In this section, the application of the linear regression based models on the

loads and fatigue life prediction is described. The ARX and ARMAX models,
as described in Paragraph 5.1, are applied using the strain gauges and the flight
parameters as inputs to predict the loads and the fatigue life consumption error
from the derived load cycles exceedance curves. Each load spectrum is analysed
separately, thus considering six different Multi-Inputs-Single-Output models.
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For the ARX model, Gauss–Newton (GN) search method, otherwise known as
the quasi–Newton search method, is used. Within this framework, the default
’tuned and correlated’ (TC) regularization kernel is also implemented. Hence,
two ARX configurations are considered, ARX and ARX-reg. On the other hand,
for the ARMAX model, the GN search method, the Gradient Descent (GD) and
constrained non-linear programming (FMC) search methods are implemented in
this section. This provides three frameworks, ARMAX-GN, ARMAX-GD and
ARMAX-FMC.

For each one of the above mentioned frameworks, an intensive parametric ex-
ploration is performed. The parameters which are investigated for these regression
models include:

• na (number of output regressors) = 2:2:10 – ARX and ARMAX

• nb (number of input regressors) = 2:2:10 – ARX and ARMAX

• nc (number of disturbance regressors) = 1:6 – ARMAX

In practice, 50 ARX architectures are considered: [2 configurations (ARX, ARX-
reg)] x [5 output regressors’ configurations (2:2:10)] x [5 input regressors’ configura-
tions (2:2:10)]. For the ARMAX, 450 architectures are considered:[3 configurations
(ARMAX-GN, ARMAX-GD and ARMAX-FMC)] x [5 output regressors’ config-
urations (2:2:10)] x [5 input regressors’ configurations (2:2:10)] x [6 disturbance
regressors’ configurations (1:6)].

The best performing configurations of this parametric exploration for each one
of the six load spectra are reported in Table 6.2.

Load spectrum
S1B S1T S2B S2T S3B S3T

framework ARMAX ARMAX ARMAX ARMAX ARMAX ARMAX
search meth. FMC GD FMC FMC GN FMC

na 10 4 4 4 8 4
nb 8 4 6 10 4 6
nc 1 1 4 6 1 6

%Fdf 4.6 25.3 0.97 3.6 5.8 20.7
R2 0.97 0.61 0.88 0.69 0.78 0.66

Table 6.2: Highest performing results for linear regression based models with a 90%
R2 condition.

It can be noticed that for all the six load spectra the ARMAX model produces
the most accurate fatigue life consumption predictions. Nevertheless, this frame-
work is able of accurate predictions only for the bending load spectra and for S2T,
where the error in the predicted fatigue life never exceeds 6%. The torsion load
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spectra, which according to the coherence analysis in Section 6.1 are the most dif-
ficult cases to predict, show a significant inaccuracy of the predictions. The same
trend can be observed from the analysis of the values of R2.

6.4 Artificial Neural Networks analysis
The investigation is continued with the exploration of the Artificial Neural Net-

works. The architectures described in Paragraph 5.2.1 are tested on the recon-
struction of the load spectra and the fatigue life consumption from strain and
flight parameters inputs. Also in this case each load spectrum is treated sepa-
rately trough a Multi-Inputs-Single-Output system. Within each architecture two
training algorithms are implemented, the Lavenberg-Marquardt optimization (LM)
and the Lavenberg-Marquardt with Bayesian regularization algorithm (BR). Also in
this case, a broad parameter exploration is performed for each architecture-training
algorithm configuration. The functional parameter space investigated includes:

• nHL (number of neurons in the hidden layer) = 1:Ninputs

• nIDL (number of input delays) = 1:[2:Ninputs] – TDN and NXN

• nF DL (number of feedback delays) = 1:[2:Ninputs] – NXN

• nLDL (number of layer delays) = 1:[2:Ninputs] – LRN

• nDDL1 (number of distributed delays) = 1:[2:Ninputs] – DDN

• nDDL2 (number of distributed delays) = 1:[2:Ninputs] – DDN

where Ninputs is the number of input parameters, that includes the angle of attack,
the dynamic pressure and the strain sensors, whose quantity is not reported due
to exportation restrictions. As for the ARX and ARMAX models the quantity of
the tested network is obtained by multiplying each architecture by the number of
tested training algorithms and the number of explored parameters.

The best performing configurations, resulting from this parametric study, are
reported in Table 6.3. In this case, a unique best architecture can not be identified,
although the DDN architecture, with the BR training algorithm, shows the highest
accuracy in the fatigue evaluation for three out of six load spectra. The values
of the error in the fatigue life consumption are smaller than 9% for all the load
spectra. Nevertheless, once again, the torsion loads result as the most difficult to
predict. The values of R2 show a better overall accuracy than the linear regression
based models.
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Load spectrum
S1B S1T S2B S2T S3B S3T

Arch. DDN DDN CFN NXN DDN TDN
training alg. BR BR LM BR BR BR

nHL 5 2 3 3 5 4
nIDL - - - 2 - 4

nDDL1 3 6 - - 5 -
nDDL2 5 3 - - 5 -
nF DL - - - 4 - -
%Fdf 0.84 8.3 1.1 3.3 0.93 4.3

R2 0.97 0.72 0.99 0.72 0.84 0.75

Table 6.3: Highest performing results for ANNs with a 90% R2 condition.

6.5 Statistical Analysis and global best
In this section, the assessment of the global best architecture is performed ac-

cording to multiple considerations. The first evaluation involves a statistical anal-
ysis of the R2 index, that is used as a primary condition to quantify the overall
reliability for each explored System Identification Method. This statistical eval-
uation is performed via the box and whisker plots in Figure 6.4. The box are
obtained considering all the R2 values obtained by every tested architecture for
the two families of methods. The plots for S1B, S2B, S3B, and S3T load spectra
show a significantly higher consistency of the ANNs’ predictions. In fact, the boxes
(representing the first upper and lower quartiles) relative to ANNs are compara-
tively smaller than the linear regression based ones and the whiskers are within
close range of the box. Moreover, the median lines within the boxes highlight the
observation of a higher mean value of the ANNs for four out of six load spectra. On
the contrary, for S1T and S2T, the statistical evaluation of the regression methods
proves that these methods are more consistent than the ANNs, resulting in less
dispersion and higher values of the first quartile and median values. Neverthe-
less, the majority of the load spectra suggests an overall better performance of the
ANNs. Moreover it has to be mentioned that there is a large number of outliers (red
crosses) for both ANN and regression results, indicating a significant dispersion of
the results. This dispersion calls the attention to the importance of an accurate
parameter optimization within each model, necessary to avoid these bad outliers.
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(a) (b)

Figure 6.4: Box and whisker plots for R2 - a) presents the linear regression based
predictions and b) presents the ANN based predictions.

The overall better accuracy of the ANNs is further demonstrated by the compar-
ison of the best fatigue life consumptions predictions reported in Table 6.2 and 6.3
for the linear regression based models and the ANNs, respectively. This comparison
is graphically summarized in the bar plot of Figure 6.5. The better accuracy of the
ANNs architectures is shown for all the load spectra and with respect to both R2

and %Fdf , with the only exception of the S2B load spectrum, that, anyway, shows
a only trifling advantage in the %Fdf . Moreover, for the load spectra S1T and
S3T, that belong to the most difficult to predict torsion load spectra, the difference
in the estimation of the fatigue life consumption is strongly in favour of the ANNs.

(a) (b)

Figure 6.5: Best results comparison - a) presents the comparison between the best
linear regression based models (ARMAX only) and the best ANNs in terms of R2 b)
presents the comparison between the best linear regression based models (ARMAX
only) and the best ANNs in terms of %Fdf .

These analysis restricted the search space for the unique best performing ar-
chitecture to the ANN family. The further investigation on the best performing
ANNs architectures highlights the prevalence of the Distributed Delays Network
with the Bayesian regularization training algorithm. This architecture shows the
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highest accuracy for four out of six load spectra, with the exception of the S2B,
S2T, and S3T. Therefore, the DDL is selected as the global best candidate and the
predictions of the three remaining load spectra are analysed. Table 6.4 shows the
lowest fatigue life consumption errors obtained for all the six load spectra using the
DDL-BR architecture. They are consistently under 9% for every load spectra, even
for the ones that presented the best prediction from a different architecture. The
DDL-BR is the only architecture that shows this level of consistency and accuracy
for all the six load spectra and it is therefore selected as the global best System
Identification Method for the selected problem.

Load spectrum
S1B S1T S2B S2T S3B S3T

Arch. DDN DDN DDN DDN DDN DDN
training alg. BR BR BR BR BR BR

nHL 5 2 4 6 5 3
nDDL1 3 6 5 2 5 6
nDDL2 5 3 6 5 5 5
%Fdf 0.84 8.3 3.2 6.3 0.93 5.0

R2 0.97 0.72 0.98 0.72 0.84 0.75

Table 6.4: Global best performing System Identification Model.

To conclude, the study proves the overall superior capabilities of the ANNs
based model with respect to the linear regression based ones on the prediction of
the wing’s load spectra of a fighter aircraft. In particular, the ANNs outperforms the
other methods for the prediction of the torsion loads, that showed poor correlation
with the strain inputs. In particular, the DDL-BR architecture shows the overall
best prediction of the fatigue life consumption for the investigated application.
Moreover, the statistical analysis of the parameter exploration for the different
models, also highlights the importance of the parameters’ calibration to find the
best performing set of parameters within each model.

To generalise these conclusions and infer about the robustness of monitoring for
the internal loads of a fighter aircraft, the future works should verify the obtained
results for different data sets coming from different platforms.
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Chapter 7

External loads reconstruction and
shape sensing on an aluminium
wing box

7.1 An integrated approach
In this section an integrated framework to simultaneously reconstruct the ex-

ternal loads and the deformed shape induced by the loads is proposed. The method
is based on a 2 steps procedure. In the first step the external loads are identified
from discrete strain measurements through the computation of the coefficients of
influence between the discretized loads and the measured strains. The second step
exploits the identified load to reconstruct the deformed shape through a standard
FEM analysis. For simplicity, in the remaining of this thesis, this procedure will
be defined as 2-step method.

The proposed 2-step procedure, once defined, is applied on the numerical mon-
itoring of the external loads and the induced displacements of an aluminium swept
wing box. Two load cases are considered, one constituted by a pressure distribution
and one constituted by a set of concentrated forces. The pressure distribution is
discretized with FE and, for the first time, quadrilateral elements are implemented
for this discretization. The accuracy of the method to perform the shape sensing
of the structure is compared with the well-established iFEM. Moreover, the effect
of the measurement error, typical of experimental scenarios, is considered to assess
the robustness of the method to this kind of uncertainty.

7.1.1 External loads identification (1st step)
The first step concerns the identification of the external loads. The external

loads can be computed from discrete strain measurements through the computa-
tion of the coefficients of influence between the investigated loads and a set of
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measured strains. To perform this task, the loads applied on a structure needs to
be discretized in some way. Airoldi et. al. [82] developed this concept for concen-
trated loads. If a load case can be modelled with a set of concentrated forces, the
load identification problem is formulated as it follows.

If the hypothesis of linear elasticity is considered, the j-th measured strain com-
ponent, εm

j , can be expressed as the superposition of the εm
ji strains induced by the

mf concentrated forces, Fi. Moreover, in the linear elastic regime, the i-th strain
contribution, εm

ji , induced by the i-th Fi is linearly proportional to the i-th nodal
force itself. These considerations lead to the following formulation of the j-th strain
component:

εm
j =

mf∑︂
i=1

εm
ji =

mf∑︂
i=1

sf ji Fi (7.1)

where sf ji is the i-th unknown coefficient of linear combination that relates the
j-th strain component to the i-th nodal values of the pressure. When ms measured
strain components are available, the Eq. 7.1, expressed in matrix form, becomes:

{εm}ms×1 = [sf ]ms×mf
{F}mf ×1 (7.2)

If a detailed FE model of the structure is available, the matrix of the coefficients
of influence, [sf ]ms×mp , can be easily computed through the iterative resolution of
a standard direct FE problem. The i-th column of the matrix is computed by
imposing that Fi = 1 and Fk = 0 (k /= i). The i-th nodal force is then applied to
the FE model of the structure and the desired ms strain components are extracted.
Iterating the procedure to the mf columns, allows the computation of the entire
matrix. The application of this procedure requires the construction of an accurate
FE model of the structure. Therefore, the geometry, the material properties and
the constraints of the structure have to be known.

Once the [sf ] matrix is populated, the expression of the unknown nodal forces
as a function of the measured strain is easily obtained by inverting Eq. 7.2. Since
in practical applications ms /= mf , the inversion of [sf ] is obtained by means of
Moore-Penrose pseudo inverse matrix formulation, [sf

+]:

{F} = [sf
+]{εm} (7.3)

By substituting the actually measured values of the strains into {εm}, the expression
gives the nodal values of the forces that best fit the actually applied loads that
induced the measured strains.

This method has been expanded to identify pressure fields by Nakamura et
al. in [83]. In order to adopt the same approach, a distributed pressure has to
be discretize. The discretization of the pressure field is obtained through a Finite
Element formulation. As for the classical FEM, the structural domain, where the
pressure is applied, is discretized using Finite Elements. Within the element, the
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pressure distribution is interpolated from the nodal values of the pressure using
shape functions. Mathematically, it can be formulated as follows:

pe(x, y) =
n∑︂

i=1
N e

i (x, y) pe
i (7.4)

where pe(x, y) is the pressure distribution over the element’s x-y plane, N e
i (x, y)

are the shape functions dependent from the chosen element’s formulation, n is the
number of nodes of the element and pe

i are the nodal values of the pressure.
If the domain is discretized with a mesh of pressure elements, the global Ni(x, y)

shape functions, related to the global mp nodes of the pressure mesh, can be com-
puted by means of the assembly procedure adopted by the standard FEM. Conse-
quently, the pressure distribution over the entire domain, p(x, y), can be expressed
as follows:

p(x, y) =
mp∑︂
i=1

Ni(x, y) pi (7.5)

where pi is the nodal value in the i-th node of the mesh.
Therefore, in analogy with the classical structural FEM problem, in this case,

the degrees of freedom (DOFs) of the system, that represents the unknowns of the
problem, are the nodal values of the pressure, pi. Once these values are computed,
the full pressure distribution can be derived using the interpolation through the
selected shape functions.

The nodal values of the pressure can be computed following the same scheme
defined for the concentrated forces. In the same hypothesis of linear elasticity, ms

strain components can be expressed as a linear combination of the strains induced
by the mp nodal pressures, pi:

{εm}ms×1 = [s]ms×mp{p}mp×1 (7.6)

The matrix [s]ms×mp can be easily computed through the iterative resolution of a
direct FE problem. The i-th column of the matrix is computed by imposing that
pi = 1 and pk = 0 (k /= i) in Eq. 7.5. The resulting pressure field is then applied
to a FE model of the structure and the desired strain components are measured.
Iterating the procedure to the mp nodal pressures, allows the computation of the
entire matrix. The Pseudo-inversion of Eq. 7.6 leads to the formulation of the
unknown nodal values of the pressure that fit the measured strains:

{p} = [s+]{εm} (7.7)

These nodal values of the pressure can then be used to compute the pressure dis-
tribution trough the FE interpolation expressed in Eq. 7.5.
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7.1.2 Shape sensing (2nd step)
The second step of the proposed procedure involves the shape sensing, i.e. the

reconstruction of the displacement field. The 2-step procedure has been inspired
by the standard direct structural analysis. The direct structural problem aims to
compute the displacement field, and from it the stress and strain field of a structure,
when the structure’s geometry, material properties, constraints and external loads
are known. The direct problem is usually solved by the application of the FEM.
It is mathematically well-conditioned, that is, small perturbations in the inputs
produce small perturbations in the outputs [107]. On the other hand, the shape
sensing and the external loads identification are inverse problems and are often
more difficult to solve. They are mathematically ill-posed and small perturbations
in the inputs generally produce greater perturbations in the outputs [107]. In the
previous section, a solution for the loads identification inverse problem has been
presented. The objective of the proposed method is to use the results of the loads
identification for the formulation of the shape sensing problem so that it could be
reduced to a direct structural problem. By doing this, the resolution of only one
inverse problem leads to the easy resolution of the other.

As already mentioned, the load identification step requires the design of a de-
tailed FE model of the structure. Therefore, if this model is available and the loads
can be identified with the described method, they can also be applied to the FE
model of the structure and a direct FEM analysis performed. This method allows
the integration of the two structural health monitoring tools in a unique procedure,
as illustrated in the scheme in Fig. 7.1, where the fist step is depicted in green
colour and the second step is depicted in orange colour. The second step allows
the computation of the displacement field and of the stress and strain fields of the
whole structure.

Figure 7.1: 2-step integrated approach - The inputs of the process are highlighted
in blue. The load identification step is highlighted in green and the shape sensing
step is highlighted in orange.
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Although the procedure can seem complex and laborious, it is not. In fact,
once the strain sensors configuration is established, the computationally intensive
procedure is only represented by the preliminary computation of the [s] or [sf ]
matrix, that requires the iterative solution of a FEM problem. Once this matrix
is populated, and the FEM model of the structure established, the matrix of the
coefficients of influence and the stiffness matrix ([K]) of the model need to be
inverted or pseudo-inverted only once and don’t need to be updated if the values
of the measured strains are modified. Therefore, every different vector of measured
strains is simply multiplied by [s+] or [s+

f ] to derive {p} or {F}, that are, in turn,
multiplied by [K−1] to compute the displacements. In practice, the whole procedure
of computing the loads and the displacements is reduced to two simple and fast to
compute matrices multiplications.

7.2 Application on an aluminium wing box
The 2-step procedure is applied on the reconstruction of the external loads and

the deformed shape of an aluminium swept wing box. This application is performed
numerically. The study includes the analysis of two different load cases, one con-
stituted by concentrated forces and one constituted by a pressure distribution. For
the first time, quadrilateral elements are introduced for the discretization of this
distribution. The results of the shape sensing part of the method are compared with
the results from a iFEM analysis. The study is completed with the exploration of
the influence of the strain configuration and of the effect of strain measurement
error on the performance of the method.

7.2.1 The wing box
The structure object of this investigation has been inspired by and represent a

preliminary study for an experimental campaign that will be presented in the next
chapter. In fact, the wing box’s geometry and material characteristics have been
chosen according to considerations guided by the experiment conceptualization,
considering the already available components and testing facilities.

The wing box is illustrated in Figure 7.2. The structure is composed of two swept
panels and two spars. The panels are connected to the spars by four L-stiffeners
and are reinforced with two L-stiffeners, one per each panel. The box is divided into
seven bays by seven ribs. The spars and the stiffeners’ sections are constant along
the wing span, whereas the panels are swept. The selected configuration considers
clamped boundary conditions at the root section.

The components of the structures are made of two different aluminium alloys,
whose mechanical properties are reported in Table 7.1. The panels, the spars and
the ribs are made of the 7075 alloy, whereas the stiffeners are made of the 6060
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alloy.

Alloy E [GPa] ν G [GPa]
6060 66 0.33 24.8
7075 72 0.32 27.2

Table 7.1: Aluminium alloys mechanical properties.

(a) top view
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(b) root section (y = 0)
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(c) tip section (y = 994)

Figure 7.2: Wing box geometry - In the figure, the panel and the spars are indicated
by 1⃝, the stiffeners that connect the skin panels to the spars are indicated by 2⃝,
the stringers are indicated by 3⃝ and the ribs are indicated by 4⃝. All dimensions
are expressed in [mm].

7.2.2 Load cases
Two load cases and the relative deformed shapes are considered for the described

wing structure. The two different discretization approaches highlighted for the
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load identification method (Section 7.1.1) are explored by these two load cases.
Therefore a pressure distribution and a 2D distributed load are examined.

The Load case 1 considers a pressure distribution applied on the upper panel
of the box and it is representative of an aerodynamic pressure distribution. The
distribution is displayed in Figure 7.3. The distribution is a multiplication of a cubic
polynomial function of x and a quadratic one of y. The structural domain, where the
distribution is defined, and the relative x and y coordinates are illustrated in Figure
7.2a. The chosen distribution, along the wing span direction, has a maximum at the
root section and vanishes at the tip section. Along the chord direction, it vanishes at
the leading and treadling edge and has a maximum at one-third of the chord. As a
consequence, mathematically, the polynomial function of y is constructed imposing
that the function vanishes at the tip section, it has a maximum at the root section
and this maximum is equal to 1. The cubic polynomial of x is defined by imposing
that it vanishes at the trailing and leading edges, it has a maximum at one third of
the chord and this maximum is equal to 1. The detailed mathematical expression
of the pressure distribution p(x, y) and of the aforementioned conditions can be
found in Appendix B. The deformed shape of the wing box, when subjected to this
pressure distribution, is reported in Figure 7.4.

The Load case 2 is intended to simulate the presence of a pod on the wing tip.
This condition is simulated through a distributed load along the chord applied on
the tip rib. The load has a constant value of of 100 N/mm. The discretization of
this load is obtained trough a set of concentrated forces applied in the nodes of the
FE mesh. This discretization is shown in Figure 7.5. These concentrated forces are
the unknowns of the load identification problem for this second load case and their
values are reported in Table 7.2. The deformed shape induced by this load case
and investigated by the second step of the procedure is shown in Figure 7.6.

To summarize, the two load cases, object of the load identification in the next
sections, are summarized in Table 7.2 and the deformed shapes, object of the shape
sensing investigation, are reported in Figures 7.4 and 7.6.

Load Case Loads Constraints

Load case 1 p(x, y) = (axx3 + bxx2 + cxx + dx) · (ayy2 + byy + cy) Clamped root section

Load case 2 F1 = F19 = 749N ; F2 = F18 = 1,499N ; F3 = F17 = 937N ;
F4−8 = F12−16 = 375N ; F9 = F11 = 562N ; F10 = 749N

Clamped root section

Table 7.2: Load Cases.

7.2.3 Numerical models
The application of the 2-step procedure requires the definition of two models.

A detailed and refined FE model of the entire structure to compute the matrices
for the application of the load identification step is required. Considering the
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Figure 7.3: Load Case 1 - The figure shows the pressure distribution applied on the
refined FE model of the wing box. The pressure is expressed in [N/mm2]

Figure 7.4: Deformed shape for the Load Case 1 - The figure shows the refined Fe
model of the wing box deformed under the pressure distribution of the Load Case
1. The color bar refers to the magnitude (in mm) of the resultant displacements.

numerical nature of this study, this model is also used as a reference to model the
real behaviour of wing box. On the other hand, a coarser FE model, limited to the
domain where the pressure distribution is defined, is needed for the discretization
of the distribution.
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𝐹2

𝐹3𝐹1 𝐹10
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𝐹17

𝐹18

𝐹19
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Figure 7.5: Load Case 2 - The figure shows the distributed load applied on the
wing tip section, discretized to nodal forces according to the FEM. The value of
the nodal forces are reported in Table 7.2.

Figure 7.6: Deformed shape for the Load Case 2 - The figure shows the refined FE
model of the wing box deformed under the distributed load of the Load Case 2.
The color bar refers to the magnitude (in mm) of the resultant displacements.

The refined model is the one that appears in the Figures 7.3, 7.4 and 7.6. It is
presented in details in Figure 7.7a. It is constituted of 9,792 QUAD4 NASTRAN®

elements and of 7,129 nodes.
The pressure distribution for Load case 1 is defined on the top panel only. As

a consequence, the pressure mesh is restricted to this domain. Differently from the
previous application [83], where triangular elements were selected, in this work, for
the first time, the pressure field is discretized with quadrilateral elements. Within
each quadrilateral element the pressure is interpolated from its nodal values with
the standard bilinear shape functions. Consequently, in Eq 7.4 n = 4 and N e

i =
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(a) Refined mesh

(b) iFEM/Pressure mesh

Figure 7.7: Models - In (a), the refined mesh is presented. In (b), the elements
whose contours are shown in red belong to the iFEM mesh and the pressure mesh.
The elements whose contours are shown in black belong to the iFEM mesh only

(1 + χiχ)(1 + ηiη), where χ and η are the quadrilateral isoparametric coordinates
and the subscript i denotes the computation relative to the i-th node. The pressure
mesh is therefore composed of 405 quadrilateral elements and of 405 nodes and it
is presented in Figure 7.7b.

The application of the iFEM, used as a term of comparison to assess the accuracy
of the shape sensing part of the procedure, requires the definition of a third mesh.
To simplify this task, this mesh is developed starting from the discretization of the
upper panel adopted for the pressure mesh. The model is composed of 1818 iQS4
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formulated as described in Paragraph 3.3.2. This model is reported in Figure 7.7b,
together with the pressure mesh. Since the formulation of the inverse quad elements
prescribes the location of the strain sensors in the centroid of the elements, the
mesh is designed so that the centroid of the inverse elements have e corresponding
node in the refined mesh. This allows the easy association of the strains from the
high-fidelity model to the iFEM elements.

7.2.4 Matrices computations
Once the models are defined, the next step is the computation of the matrices

necessary for the resolution of the load identification problem. To compute the [s]
and [sf ] matrices, relative to the two load cases, it is necessary to identify all the
strain components that can be used for the reconstructions of the discretized loads.
Afterwards, it is possible to select a reduced set of sensors, among all the identified
components, by selecting the row of the matrices correspondent to the selected
components. The possible sensors’ configurations, chosen for this application, have
been inspired by the use of strain sensing systems based on optical fibres. This
technology is in continuous development and it is establishing itself as one of the
most effective for SHM applications. As a consequence, the eligible strain sensors
are located on lines running from the root section to the tip section of the box, along
the wing span. To allow the application of the iFEM, these lines pass through the
centroid of the inverse elements. From these locations only the strain component
along the lines’ direction are considered, according to the sensing possibilities of
the optical-fiber-based sensors. The sensing lines are distributed over the box as
illustrated in Figure 7.8. As it can be observed, 9 sensing line for each panel and
6 for each spar are considered, accounting for a total of 30 lines. For each line 45
location are selected. A total of 1,350 strain components along the sensing lines
represent the possible strain components. All the considered strain components
are measured on the external surface of the box. This implies that, for the iFEM
formulation, each measured strain is considered constant through the thickness of
the plate.

Once the set of measurable strains is defined it is possible to populate the [s]
and [sf ] matrices. The i-th column of the [s] matrix is computed by imposing that
pi = 1 and computing the resulting pressure field trough Eq. 7.5. This pressure
field is then applied on the refined model and the induced 1,350 selected strains
are computed and used to populate the i-th column of the matrix. To apply this
pressure to the refined model it is necessary to compute the pressure values at
the points, within the pressure elements, where nodes of the refined FE model
are located. This can be done by mapping these nodes to the elements’ natural
coordinates [108] and by computing the values of the pressures at these locations.
The iteration of this process to the 460 nodes of the pressure mesh allows the
computation of the entire [s]1,350×460 matrix. The same procedure is adopted for
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(a) Upper/Lower panels

(b) Front/Rear spar

Figure 7.8: Sensing lines - In the figure, the sensing lines and the sensing locations
within each line are showed only for one panel and one spar. The same configura-
tions should be considered for the other components.

the determination of the [sf ] matrix. Although, in this case, the values of the i-th
concentrated load do not need to be expanded through the shape functions and
can be simply applied to the refined mesh in order to compute the 1,350 strain
components. For the second load case, the iterative process needs to be extended
to all the 19 concentrated forces to obtain the [sf ]1,350×19 matrix.

7.2.5 Sensors optimization
In this work, the influence of the sensors’ configuration on the load identification

and shape sensing steps is considered. This study is performed considering ten
different sensors’ configurations for each load case. Each configuration is obtained
selecting an increasing number of lines among the candidate lines described in
Figure 7.8. In practice, the first configuration considers a subset of 1 line, the
second a subset of 2 lines and so on. As already mentioned, in the framework of
the load identification, the selection of a subset of strain components is translated
into considering only the correspondent rows of the [s]/[sf ] matrices and discarding
the others.
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Each configuration is optimized so that the accuracy of the external load iden-
tification is the best that can be obtained with the correspondent finite number of
sensing lines. More in details, the optimization is obtained by means of the Genetic
Algorithm described in Section 4.2.2, whose objective is to minimize the root mean
square percent error (%ERMS) between the computed nodal value of the load and
the actually applied one. The expression of the %ERMS for a generic quantity, g,
is:

%ERMSg = 100 ×

⌜⃓⃓⃓
⎷1

k

k∑︂
i=1

(︄
gi − gref

i

gref
max

)︄2

(7.8)

where k is the number of nodes where the quantity is computed, gi is the recon-
structed quantity in the i-th node, gref

i is the reference value of the quantity in
the i-th node and gref

max is the maximum value of the reference quantity. For the
optimization of Load case 1 g = p, on the other hand, for Load case 2, g = F .

To summarize, the optimisation process generates 10 optimal sensors’ config-
urations for each load case and, consequently, 10 sets of identified loads. These
loads are then applied to the refined FEM model to perform the second step of the
analysis and compute the displacements of the structure for the 10 configurations.

The iFEM, used to compare the results of the shape sensing, is also optimised
in terms of sensors’ configuration. The exact same approach is adopted to find the
10 best sensor’s configurations for the method. The objective of the optimisation
process for the 10 configurations is, in this case, the minimization of the %ERMSw,
where w represents the transverse displacement along the z direction (Figure 7.7b)
and it is selected because it is prevalent with respect to the displacements in the
other directions. This parameter is also used to evaluate the shape sensing accuracy
of the 2-step approach.

7.2.6 From Tria to Quad
Before the assessment of the accuracy of the 2-step approach in the solution of

the double task and before the study on the influence of the sensors’ configuration
and of the effect of measurement error, a preliminary study is performed in order
to validate the improvements in the pressure distribution identification introduced
by the discretization of the pressure field with the newly proposed quadrilateral
elements. To perform this task, the reconstruction of the pressure field from Load
case 1, using the selected quad mesh, is compared with the one obtained with a
set of triangular meshes. Four triangular meshes, with varying characteristics in
terms of the number of DOFs and of the regularity of the mesh, are considered.
The Tria 1 mesh, showed in Figure 7.9a, has been obtained splitting the elements
of the quad mesh along one diagonal and, consequently, presents the same number
of nodes and unknown nodal values of the pressure (460) of the quad mesh. The
Tria 2 mesh (Figure 7.9b), on the other hand, has been constructed splitting the
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quadrilateral elements of a different mesh along both diagonals. It has a slightly
lower number of nodes (434). Finally, the Tria 3 (Figure 7.9c) and Tria 4 (Figure
7.9d) meshes are obtained by meshing the structural domain with a varying number
of triangular elements. For this application the whole set of strain measurements

(a) Tria 1 (Nodes = 460) (b) Tria 2 (Nodes = 434)

(c) Tria 3 (Nodes = 430) (d) Tria 4 (Nodes = 468)

Figure 7.9: Triangular meshes - In the figure are illustrated the four triangular
meshes used to compare the accuracy of the newly introduced quad element.

identified in Section 7.2.4 is considered.
In table 7.3 the results of this preliminary study are reported. The accuracy is

assessed trough the %ERMSp parameter.

Mesh #nodes %ERMSp %Diff
Quad 460 0.732 -
Tria 1 460 0.768 +4.9%
Tria 2 434 2.564 +250.3%
Tria 3 430 0.984 +34.4%
Tria 4 464 1.021 +39.5%

Table 7.3: Quadrilateral and triangular meshes comparison .

The values of this parameter show that the quadrilateral mesh is able to reduce the
error in the identification of the nodal values of the pressure with respect to all the
considered triangular meshes. The reduction in the error is of 4.9% with respect
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to the mesh presenting the same number of nodes and, therefore, the same number
of DOFs. Moreover, the adoption of different meshing schemes for the triangular
elements increases the advantage in the accuracy in favour of the quad mesh.

7.2.7 Results
In this section, the results of the sensors’ optimisation for the two load cases

are presented. The results include the analysis of the load identification step and
of the shape sensing one for the 2-step method. The results of the last step are
also compared with the displacements’ reconstruction of the optimised iFEM. This
application considers deterministic values of the strain measurements, not affected
by any measurement error. These effects will be considered afterwards, in Section
7.2.8.

Load case 1

The results for the identification of the Load case 1 in terms of the %ERMSp

for the optimised 10 sensors’ configurations are reported in Figure 7.10. Using
only one sensing line produces an error of 16.05% in the identification of the nodal
values of the pressure. This error rapidly decrees when increasing the number of
selected lines from 2 to 7 where it reaches a value of 1.65%. Adding more sensing
lines does not provide a significant increment in the accuracy. In fact, the best
results, obtained with 10 sensing lines, is slightly better than the one obtained with
7, giving an %ERMSp value of 1.24%.

Figure 7.10: Pressure field reconstruction of Load Case 1 - The %ERMSp for the
best sensors configuration, with the number of sensing lines varying from 1 to 10,
are reported.

The pressure distributions reconstructed from the optimized sets of strain sen-
sors are reported for the configurations with 1 and 7 sensing lines in the Figure
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7.11. A more detailed analysis of the reconstructions is reported in Figure 7.12.
The figure shows the identified values of the nodal pressures along the wing span
for the sensors configurations with 1, 3, 5 and 7 sensing lines. The reconstructions
are obtained along the line of nodes, from the pressure mesh, closest to points lo-
cated at one-third of the chords. The analysis of the Figures 7.11 and 7.12 further
highlights the loss of accuracy caused by the reduction in the strain information
provided to the method.

The shape sensing is obtained applying these reconstructed pressure fields to
the refined FE model and by performing a standard FEM analysis. The %ERMSw

obtained for the 10 considered configurations are shown in Figure 7.13. The errors
are reported along with the ones derived with the iFEM for comparison. The com-
parison points out the extreme level of accuracy of the two-step method. Although
the two methods show the same trend with respect to the variation in the number
of sensing lines, the two-step method is able to reach an %ERMSw that is, in the
worst case (1 sensing line), equal to 0.19% and in the best one (10 sensing lines)
2.64 × 10−4%. On the other hand, the iFEM’s error is comprised between the best
value of 6.61% (10 sensing lines) and the worst of 38.80% (1 sensing line).

In addition, these results are supported by Figure 7.14. The figure shows the
reconstructed and reference deflections along the wing span, on the same line of
nodes considered in Figure 7.12. The deflections are reported for the best iFEM
configuration and for the 2-step method considering 1, 3, 5 and 7 sensing lines. The
deflections of the two-step method are superimposed to the reference one for every
sensors’ configuration and are significantly more accurate than the iFEM one. Only
the configuration with 1 sensing line presents a slight deviation from the reference
close to the root section of the wing.

It is important to notice that the 2-step approach is capable of extremely accu-
rate reconstructions of the transverse displacements, even when the identification
of the pressure field is not accurate. In fact, comparing Figure 7.3 and7.11a, it is
shown that the configuration with only one sensing line produces an identified pres-
sure field that is highly inaccurate. Nevertheless, the method is able of an accurate
shape sensing also with only one sensing line. This aspect will be examined more
in deep when analysing the results of the second load case.

Finally, the two best sensors’ configurations for the 2-step method, using 7
sensing lines, and for the iFEM, using 10 sensing lines, are reported in Figure 7.15.
The optimisation process selected only lines on the spars for the iFEM, whereas
only sensors on the panels for the 2-step method.
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(a) 1 sensing line

(b) 7 sensing lines

Figure 7.11: Pressure field reconstructions for Load Case 1.
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(a) 1 sensing line (b) 3 sensing lines

(c) 5 sensing lines (d) 7 sensing lines

Figure 7.12: Pressure reconstruction along the wing span for Load Case 1.

(a) Two-step shape sensing results (b) iFEM shape sensing results

Figure 7.13: Shape sensing for Load Case 1 - The %ERMSw for the best sensors
configuration, with the number of sensing lines varying from 1 to 10, are reported
for the two-step method (a) and the iFEM (b).
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Figure 7.14: Vertical deflection along the wing span for Load Case 1.

(a) two-step method.

(b) iFEM

Figure 7.15: Optimal sensors configurations for Load case 1 - The figures show the
optimal sensors configurations for the two-step method (a) and the iFEM (b). In
the legends, Upper and Lower refer to sensors located on the upper or lower panel,
whereas Upper/lower refers to sensors located on both panels. Front and Rear
refers to sensors that are located on the front or the rear spar, whereas Front/Rear
refers to sensors located on both spars.
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Load case 2

The identification of Load case 2 generates the results summarized in Figure
7.16. The %ERMSF has a worst maximum value of 50.10%, when only one line of
sensors is available. The selection of 2 sensing lines does not increase the accuracy
of the reconstruction. Therefore, the best configuration with only one line is still
considered the best also for this configuration. On the other hand, including more
lines in the analysis, form 3 to 7, continuously improves the accuracy of the method.
The configuration with 7 sensing lines produces highly accurate identifications of the
concentrated forces, showing a value of the error that is %ERMSF = 0.49%. These
relevant accuracy is further incremented for the configurations with 8 (%ERMSf =
0.11%), 9 (%ERMSf = 0.060%) and 10 (%ERMSf = 0.034%) lines of sensors.

Figure 7.16: Nodal forces identification of Load Case 2 - The %ERMSF for the
best sensors configuration, with the number of sensing lines varying from 1 to 10,
are reported.

The identified nodal values of the force, that generated the above mentioned errors,
for the configurations with 1, 3, 5 and 7 sensing lines, along the wing tip chord, are
reported in Figure 7.17.

The application of these identified loads to the refined model of the wing box al-
lows the shape sensing of the structure. The results, in terms of the %ERMSw and
the number of optimized sensing lines, are illustrated in Figure 7.18a. Also in this
case, they are compared with the best results from the 10 configurations obtained
with the iFEM. For this load case, the iFEM shows a better accuracy. Nevertheless,
the 2-step procedure is still consistently more accurate. The minimum value of the
%ERMSw for the iFEM is generated by the configuration with 4 sensing lines.
This minimum error of 2.75% is not modified by adding more sensors and thus,
the 4 lines configuration is considered the best one for this shape sensing method.
The iFEM shows good reconstructions also for the configuration with only 3 and 4
sensing lines (%ERMSw = 4.10). On the other hand, for the 1 line configuration,
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(a) 1 sensing line (b) 3 sensing lines

(c) 5 sensing lines (d) 7 sensing lines

Figure 7.17: Nodal forces identification along the wing tip chord for Load Case 2.

the error rises to reach the value of 31.5%. The two-step technique sees a constant
decreasing in the quality of the shape sensing with the decrease in the number of
sensing lines too. Nevertheless, the values of the %ERMSw are comprised between
4.13 × 10−6%, when 10 line are selected, and 0.015%, when 1 line is selected, thus
resulting in an impressive accuracy for all the sensors configurations. The same

(a) Two-step shape sensing results (b) iFEM shape sensing results

Figure 7.18: Shape sensing for Load Case 2 - The %ERMSw for the best sensors
configuration, with the number of sensing lines varying from 1 to 10, are reported
for the two-step method (a) and the iFEM (b).

considerations can be inferred by looking at Figure 7.19. The graph shows the
reconstructed and reference transverse deflections on the wing tip along the chord.
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There is no visible deviation of the two-step solutions from the reference one for the
reported sensors configurations. On the other hand, the best iFEM results, using
4 sensing lines, show an almost constant offset in the reconstruction of the vertical
displacements along the chord.

Figure 7.19: Vertical deflection along the wing tip chord for Load Case 2.

The best sensors’ configurations for the two considered shape sensing methods
are reported in Figure 7.20. The sensing schemes are reported for the 7 lines
configuration for the 2-step method and for the 4 lines configurations for the iFEM.
Also in this case the optimisation process selected sensors only on the spars for the
iFEM. Differently, the best configuration for the 2-step approach comprises sensing
lines mainly on the two panels, but it also includes one sensing line on the rear
spar.

The configuration with only one sensing line deserves more attention, also to
better explain the results from Load case 1. The identified forces and the actu-
ally applied ones for this configuration are reported in Table 7.4. The values of
the %ERMSF and also the comparison of the nodal forces highlights a relevant
discrepancy of the reconstructions. Nevertheless, the resultants, Rz, of the two
systems of loads, the reference and the reconstructed, show almost no discrepancy.
Moreover, the computation of the resultant moment with respect to the centre of
gravity of the tip section, MG

z , also shows the same result for the two systems of
loads. This results can explain the extreme accuracy of the novel shape sensing
method for both the load cases, when few strain information is available and the
external loads identification is not effective. The method is able to identify an
equivalent system of loads that, although different from the applied one, induces
the same deformation on the structure. In the end, it seems that the method, when
few inputs are available, is able to find one of the infinite systems of loads that
can generate the deformed shape, whose induced strains are used as inputs for the
method.
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(a) two-step method.

(b) iFEM

Figure 7.20: Optimal sensors configurations for Load case 2 - The figures show the
optimal sensors configurations for the two-step method (a) and the iFEM (b). In
the legends, Upper and Lower refer to sensors located on the upper or lower panel,
whereas Upper/lower refers to sensors located on both panels. Front and Rear
refers to sensors that are located on the front or the rear spar, whereas Front/Rear
refers to sensors located on both spars.
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Loads %ERMSF Rz MG
y

Ref F1 = F19 = 749N ; F2 = F18 = 1,499N ; F3 = F17 = 937N ;
F4−8 = F12−16 = 375N ; F9 = F11 = 562N ; F10 = 749N

- 11,993N 0N · mm

Rec

F1 = 814N ; F2 = 1,313N ; F3 = 1,832N ; F4 = 957N ;
F5 = −1,221N ; F6 = 367N ; F7 = 853N ; F8 = 155N ;
F9 = 953N ; F10 = 592N ; F11 = 858N ; F12 = −926N ;

F13 = 1,056N ; F14 = 878N ; F15 = −661N ; F16 = −139N ;
F17 = 2,276N ; F18 = 726N ; F19 = 1,307N

50.10% 11,990N 0N · mm

Table 7.4: Load identification of Load Case 2 with only 1 sensing line - The positive
directions and the identification numbers of the forces are the ones depicted in
Figure 7.5.

7.2.8 Effect of measurement error
In this section the effect of the errors that can affect the measured strains is

evaluated for the 2-step method. The best and worst configurations, namely the 7
sensing lines and the 1 sensing line configurations, considered in the previous anal-
ysis are analysed, but this time a random error is added to the strains computed
from the refined FE model. Two cases of normally distributed errors with zero
mean and a standard deviation of 1% and 5% of the nominal value are added to
the strains. Moreover, the effect of the Tikhonov regularisation in smoothing the
amplification of the error due to the ill-posedness of the problem is investigated. the
Tikhonov regularization has been introduced in the solution of the inverse problem
formulated in Eqs. 7.3 and 7.7. For each case, the Tikhonov regularization param-
eter (λ) has been computed empirically, searching for the value that maximized
the accuracy in the reconstruction of the external loads. In Table 7.5 and 7.6, the
results of this investigation are reported for the two load cases respectively. The
results, in terms of %ERMSp, %ERMSf and %ERMSw, are presented for the
reconstructions obtained with and without the use of the Tikhonov regularization.
In the tables, the values of the regularization parameters, λ, are also reported.

NO regularization Tikhonov regularization
%Err Sensors %ERMSp %ERMSw %ERMSp %ERMSw λ

1% 1 line 934.6 9.9 23.1 0.5 7.0E-06
7 lines 29478.4 13.6 15.5 0.06 8.0E-05

5% 1 line 2782.2 19.8 27.3 0.8 7.0E-05
7 lines 247754.6 66.4 18.3 1.1 2.4E-04

Table 7.5: Effect of measurement error for Load case 1.
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NO regularization Tikhonov regularization
%Err Sensors %ERMSF %ERMSw %ERMSF %ERMSw λ

1% 1 line 21512113.2 448.7 22.1 3.5 2.0E-09
7 lines 210209.8 32.0 23.3 0.04 3.0E-08

5% 1 line 130845922 2578.9 25.8 7.2 7.0E-09
7 lines 4749253.5 58.5 23.5 0.2 2.0E-08

Table 7.6: Effect of measurement error for Load case 2.

The values of the errors show that the measurement error strongly influence the
accuracy of the method in the application of both the steps. Even an error of 1%
generates highly inaccurate reconstructions of the loads and, consequently, of the
displacements. The introduction of the Thikonov regularization is able to reduce
the negative effect of the measurement error. In fact, the regularization allows the
reduction of the errors in the reconstruction of the loads (%ERMSp,%ERMSf )
from values that reach, in the best case, almost 1000%, to values that, in the
worst case, are close to 27%. However, the accuracy in the reconstruction of the
loads is still not extremely accurate. On the other hand, the regularisation has a
stronger positive effect on the shape sensing step of the procedure. Once again,
the method generates accurate reconstructions of the displacement field, even with
moderately accurate identified loads. As a matter of fact, the deformed shape is
reconstructed with impressive accuracy for all the analysed configurations (0.06 <
%ERMSw < 1.2), with the exception of the Load case 2 with only one sensing line
(%ERMSw > 3).

The analysis of the configuration with 7 sensing lines helps to demonstrate the
above mentioned behaviours. Figure 7.21 presents the identified pressure distri-
butions obtained by the load identification step for the cases with 1% and 5%
measurement error. The considered configuration is the one with 7 sensing line and
with the regularisation implemented. The graphs, if compared with the reference
pressure field in Figure 7.3, reveal the moderate level of accuracy reached by the
method. However, the application of these identified distributions to the refined
model of the structure produces the extremely accurate transverse displacements’
reconstructions reported in Figure 7.22.

The same evaluation is performed for the Load case 2. The forces identified with
the regularised configuration using 7 sensing lines are plotted in Figure 7.23, along
with the resultant force, Rz, and the resultant moment with respect to the centre of
gravity of the tip section, MG

y . The accuracy in the prediction of the single values
of the nodal forces is modest and, although Rz, compared with the reference one
reported in Table 7.4, is well predicted, the values of the resultant moment, MG

y , are
far from the reference one, especially for the 5% error configuration. Nevertheless,
the derived wing tip displacements, shown in Figure 7.24, prove once again the good
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(a) 1% Error. (b) 5% Error.

Figure 7.21: Pressure field reconstructions for Load Case 2 when strains are af-
fected by a normal error of 1% (a) and 5% (b) and the Thikonov regularization is
implemented. The results are showed for the 7 sensing lines configuration.

Figure 7.22: Vertical deflection along the wing span for Load Case 1 when strains
are affected by a normal error of 1% and 5% and the Thikonov regularization is
implemented. The results are showed for the 7 sensing lines configuration.

results obtained by the shape sensing step. As a consequence, it can be inferred
that the magnitude of the discrepancy in the identified resultant moment is not so
relevant to induce considerable effects on the deformation of the box.
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𝑅𝑧 = −12,003 𝑁

𝑀𝑦
𝐺 = −4,7814 𝑁 ∙ 𝑚𝑚

(a) 1% Error.

𝑅𝑧 = −12,068 𝑁

𝑀𝑦
𝐺 = −133,302 𝑁 ∙ 𝑚𝑚

(b) 5% Error.

Figure 7.23: Nodal forces identification for Load Case 1 when strains are affected
by a normal error of 1% (a) and 5% (b). The results are showed for the 7 sensing
lines configuration.

Figure 7.24: Vertical deflection along the wing tip chord for Load Case 2 when
strains are affected by a normal error of 1% and 5%. The results are showed for
the 7 sensing lines configuration.

In conclusion, an integrated procedure to simultaneously and efficiently compute
the external loads and the induced displacements from discrete strain measures is
proposed. The testing of this procedure on the numerical study of an aluminium
wing box produced the following considerations. The method is proven to be accu-
rate in the external loads identification, if a sufficient number of strain information
is provided. In particular, the introduction of the quadrilateral elements for the dis-
cretization of the distributed loads helps to increment that accuracy. A reduction
in the number of strain sensors and the presence of errors in the strain measure-
ments significantly reduce the quality of these reconstructions. Nevertheless, the
simultaneous reconstruction of the displacement field is impressively accurate, even
when the number of strain sensors is strongly reduced. In this case, also the nega-
tive effect of the measurement error can be effectively smoothed with the use of the
Thikonov regularisation. In the following chapter the results of this investigation
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and of the previous ones will be validated on real structure in a broad experimental
campaign.
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Chapter 8

Experimental validation

The final part of this work regards the experimental validation of the methods
firstly described and then numerically applied in the previous chapters. The consid-
erations resulting from the numerical studies guided this experimental activity. The
iFEM and the Modal Method are optimized and compared on the reconstruction
of the displacement field of three structures, an aluminium cantilevered C-beam, a
stiffened aluminium plate and an aluminium wing box. Along with these two shape
sensing methods the two-step method is also applied on the same structures, allow-
ing the simultaneous reconstruction of the displacements and the external loads.
The Ko’s Displacement theory has been discarded from the experimental activity
because of its poor accuracy, especially when the uncertainties, typical of the ex-
perimental scenarios, are present in the system. In the following, the experimental
configurations for the three test cases are presented and the results of the comparing
activities are discussed.

8.1 Aluminium cantilevered C-beam
The test case for this activity is a C-beam. The geometry of the beam is

presented in Figure 8.1, along with the reference coordinate system that will be
used in the remaining of the discussion. The beam is made of a 6060 aluminium
alloy, whose properties have been derived with a standard tensile test, conducted
on three specimens made of the same material. The resulting Young’s modulus (E)
and Poisson’s ratios (ν) from the three tests and the average values are reported in
Table 8.1.

Specimen 1 Specimen 2 Specimen 3 Averages
E [MPa] 68100 70000 66000 68033

ν 0.346 0.330 0.328 0.335

Table 8.1: 6060 aluminium alloy mechanical properties.
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(a) Lateral view

(b) Cross section

Figure 8.1: Aluminium C-Beam - The lateral view (a) and the cross section of the
beam are shown. All the dimensions are expressed in [mm].

The root section of the beam (y = 0) is clamped. The clamping is obtained by
holding a portion of the beam within two iron blocks. This portion of the beam is
not considered in the length reported in Figure 8.1b. The tip end (y = 1100 mm)
is loaded with a concentrated force along the z axis (Fz). The test configuration
is shown in Figure 8.2. The load is applied through a loading system that permits
to move the load direction along the x axis (Figure 8.3). This allows to realize two
loading conditions, one of pure bending, with the load aligned with the shear centre
of the section, and one of bending+torsion, with the load not aligned with the shear
centre. The load is applied through weights hanged on the load application system.
The load application system is also equipped with two Linear Variable Differential
Transformers (LVDTs), that measure the tip displacements along z at two different
locations, (x = −43.3 mm) and (x = 47.2 mm) (Figure 8.3 and 8.4). These two
measured displacements are the objective of the displacements reconstructions.
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8.1 – Aluminium cantilevered C-beam

Figure 8.2: Test configuration for the aluminium C-Beam.

Figure 8.3: Load and displacement sensing system at the tip section (y = 1100 mm).
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Besides the displacements sensors, the strain sensors, necessary for the shape
sensing, are also installed on the beam. The strain sensors’ configuration for this
experiment has not been specifically designed for the shape sensing methods that
are going to be tested, but for another experimental application. This condition,
although can negatively affect the performance of the investigated methods, can
represent an interesting test. In fact, it can allow the study of the versatility of the
methods to different sensing configurations not natively designed for them. The
strains are measured with a LUNA® high-definition distributed fibre optic strain
sensing system. This strain sensing system is able to measure the strains along
the fibre’s direction with a density of a measure every 0.65 mm. A 5 m long fibre
is installed on the beam. The fibre is installed on the beam along the beam’s
length, making three loops, so that it defines three sensing lines: one on the top
cap of the beam (Fibre Top), one on the lateral web (Fibre Lateral) and one on the
bottom cap (Fibre Bottom). The sensor is only installed on the external surfaces
of the structure. The fibre’s locations on the section of the beam are illustrated in
Figure 8.4. A detail on the installation of the fibre on the beam’s bottom surface
is presented in Figure 8.5.

Figure 8.4: LVDTs and fibre optics location on the C-Beam’s cross section.
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8.1 – Aluminium cantilevered C-beam

Figure 8.5: Fibre optic installed on the beam.

Once the experimental set-up has been defined, the numerical models can be de-
signed. A refined shell FE model of the beam, constituted of 8712 MSC/NASTRAN®

QUAD4 elements and 8992 nodes, is realized (Figure 8.6). This model is used to

Figure 8.6: Refined mesh.

compute the modal characteristics of the structure, needed by the Modal Method,
and to build the matrix of the coefficient of influence for the 2-step method. The
modes selection criterion, illustrated in Section 3.1.1, has been used to select the
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modes that could represent the bending deformation. The first twelve modes con-
tribute to the total strain energy for the 99.8% and have been selected according to
that criterion. The same modes are also considered for the bending+torsion load
case, in order to verify the robustness of the modal method to the variation in the
load configuration. An iFEM model is also designed with 2178 iQS4 elements and
2318 nodes. The nodes and the centroid of each element have a corresponding node
in the refined mesh. The mesh is presented in Figure 8.7 along with the locations
of the axial strain measurements (εy). These locations lay on the installed fibre and
are located on the centroid of the inverse elements. These precise locations will be
mapped to the several sensing locations on the fibre and the experimental strains
in these positions will be extracted for the application of all the three monitoring
methods. It can be noticed that the first elements, from (y = 0), of each sensing
line do not have strain sensors. This is because of the impossibility to glue the fibre
that close to the clamped end.

Figure 8.7: C-Beam - iFEM mesh and strain sensors’ configuration.
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8.1 – Aluminium cantilevered C-beam

Load case 1

The fist load case consists of a concentrated transverse force passing trough the
shear centre, resulting in a pure bending deformation of the beam. To experimen-
tally locate the shear centre, a load of 39.24 N has been applied to the loading
system and the two LVDTs’ measured displacements have been collected. Thanks
to the mechanism of the load application system, the line of action of this load could
be varied along x (Figure 8.3). The location for which a negligible difference (< 1%)
between the two LVDTs’ measurements has been experienced has been defined as
the experimental shear centre. The same procedure has been performed numeri-
cally on the high-fidelity model of the experiment. The shear centre’s location is
shown in Figure 8.8.

This preliminary test has been used to evaluate the accuracy of the refined
model and to perform a model updating. The comparison between the vertical
displacement recorded by the two LVDTs and the one from the refined FE model,
initially implemented using the average values of the mechanical characteristics
in Table 8.1, suggested an update of the Young’s modulus of the model to E =
60761 MPa.

The load system in Figure 8.8 is used to generate the matrix of coefficient for
the 2-step method. Imposing (Fz = 1) and collecting the numerical axial strains
(εy) from the updated refined model, the matrix can be easily populated. The Fz

also represents the only unknown load for the load identification problem whereas
the vertical displacement of the tip section represent the unknown of the shape
sensing problem.

The collected strains from the fibre sensor, when a load of 39.24 N is applied
through the shear centre of the experimental beam generated the reconstruction of
the traverse displacement (wz) and force (Fz) reported in Table 8.2 for the three
investigated methods. In the Table, the reference experimentally measured values
are also reported. The detailed strain data from this experiment are reported in
Appendix C.1.

Experimental 2-step MM iFEM

Fz [N ] 39.24 36.61
(%ErrFz) (-6.7%)
wz [mm] 4.127 3.856 3.924 3.478
(%Errwz) (-6.7%) (-4.9%) (-15.7%)

Table 8.2: Shape sensing and load identification results for Load case 1. In paren-
thesis, the percentage error with respect to the experimental values are reported.

The Modal Method is the most accurate in the reconstruction of the vertical
displacement, with an error in the reconstruction that is less than 5%. The 2-step
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Figure 8.8: Load case 1 - Shear centre’s location and loading condition.

method shows a moderate accuracy in the reconstruction of the load and of the
vertical displacement, with an error close to 7%. On the other hand, the iFEM is
significantly less accurate and the error reaches a value that is higher than 15%.
These results will be further commented in the following section, together with the
results from the study of the Load case 2.

Load case 2

The second load case is obtained by moving the line of action of the vertical load
along the negative direction of the x axis, in order to get a deformation that com-
bines bending and torsion. The magnitude of the translation is not measured and,
therefore, the location of the force in the refined numerical model is not modified.
This condition simulate a realistic and challenging scenario for the 2-step method
for which the applied load system on the structure is unknown, not only in the
intensity, but also in the general configuration of loads. Moreover, the knowledge
of the real loading condition is not necessary for the application of the MM and the
iFEM, that only rely on the strain measurements on the structure.
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8.1 – Aluminium cantilevered C-beam

Figure 8.9: Load case 2 - The forces and moments applied in the shear centre
represent the unknown of the 2-step method; Fz(exp.) represent the experimentally
applied force. w1z and w1z are the investigated displacements.

To take into account for the different scenario that the 2-step approach is con-
fronted with, the other five components of the load, other than the vertical one, are
added to the unknowns of the problem. Figure 8.9 shows the loading condition for
both the experimental configuration and the numerical one, necessary for the ap-
plication of the 2-step method. The inclusion of all the six load components allows
the 2-step method to identify an equivalent, but different, load system from the one
experimentally applied, without knowing the real loading condition a-priori. The
matrix of the coefficients of influence is once again computed by iteratively impos-
ing a unit value of the load for each load component and collecting the numerical
strains in the sensors’ locations.

The investigated displacements, this time, are the the ones identified in Figure
8.9 and denoted with the w1z and w2z symbols. The displacements measured by
the two LVDTs can be easily transported in these desired locations using obvious
geometrical considerations from Figure 8.4.

The beam is loaded with 34.33 N and the strains are collected to generate the
reconstructions with the three methods. The strains collected from the fibres are
reported in Appendix C.1. Since this load case have not been simulated, only the
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experimental values are reported. The results of the experiment are listed in Table
8.3.

Experimental 2-step MM iFEM

Fx [N ] -0.58
Fy [N ] 37.74
Fz [N ] 34.33 32.19

(%ErrFz) (-6.2%)
Mx [N · mm] 483.23
My [N · mm] -60.08
Mz [N · mm] 357.86

w1z [mm] 3.506 3.416 3.481 2.986
(%Errw1z) (-2.6%) (-0.71%) (-14.8%)
w2z [mm] 3.624 3.856 3.669 3.049
(%Errw2z) (-5.2%) (-4.1%) (-20.3%)

Table 8.3: Shape sensing and load identification results for Load case 2. In paren-
thesis, the percentage error with respect to the experimental values are reported.

As expected, the 2-step approach identifies a different system of loads whose
induced strains fit the strain field measured by the sensors and it is therefore capable
of an accurate reconstruction of the two investigated displacements. Moreover, the
identified vertical component of the load is also close to the applied one. Also for
this case, the most accurate predictions for the displacements are the one produced
by the MM and the less accurate are the ones generated by the iFEM.

In conclusion, the two experiments performed on the C-Beam confirm some of
the considerations derived during the numerical studies. The experiment proves
the extreme versatility of the MM to the sensors’ configuration. In fact, the MM is
able to provide good accuracy with a small number of strain sensors, not natively
optimized for the application of the method. On the other hand, the investigation
demonstrates that the iFEM requires a higher number of strain sensors and a
specific sensors’ configuration to reach the extreme level of accuracy showed in the
numerical applications and in the experimental scenario that will be introduced
next. The 2-step method also shows good level of adaptability to the unoptimized
sensors’ configuration and to the variation in the loading system. The method can
reconstruct the displacements and the load with a good level of accuracy, when the
applied load is coherent with the one hypothesized a-priori. On the other hand, if
the applied load system is different from the defined one, the method is capable of
finding a different load system that induces the same displacements and, therefore,
the accuracy of the shape sensing is still preserved.
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8.2 – Aluminium stiffened panel

8.2 Aluminium stiffened panel
The second experimental activity involves the study of a typical aerospace com-

ponent, an aluminium stiffened panel. The panel is made of an aluminium-lithium
alloy whose characteristics have been previously computed through a tensile test
and are reported in Table 8.4. The panel has been manufactured by RINA Consult-
ing – CENTRO SVILUPPO MATERIALI SpA and has been courteously conceded
for this activity.

Al-Li alloy
E [MPa] 75958

ν 0.300

Table 8.4: AL-Li alloy mechanical properties.

The aluminium-lithium alloy has the peculiarity that can be welded. In fact,
the three L-shaped stiffeners, that reinforce the panel, are directly welded to it and
are of same material. The resulting geometry is presented in Figures 8.10 and 8.11,
along with the reference coordinate frame. Besides the presence of the stiffeners, the
panels also presents some other structural complexity. Between each bay, defined
by the stiffeners, there are rectangular areas where the panel is thinner, as it can
be observed in the figures.

The tested configuration considers simply supported boundary conditions for
all the points located at (y = 30 mm) and (y = 820 mm). The plate is loaded in
the centre point of the surface free of the stringers with a concentrated force. The
test configuration is presented in Figure 8.12a. The supported boundary condition
is obtained through the use of two iron half cylinder bars that constrain the plate
so that the transverse displacements are not allowed but the bending rotations are
(Figure 8.12c). The panel is loaded by tightening two nuts on two threaded rods.
The nuts push down a iron half cylinder bar placed on top of the panel. An iron
sphere is located between the bar and the panel. When the bar is pushed down,
this sphere transmits the load to the centre point of the panel. The load generated
by the nuts is measured by two load cells. The resultant concentrated force, applied
in the centre of the plate, is the sum of these two measured loads.

Figure 8.10: Stiffened panel’s lateral view.
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(a) Photo

(b) Top view

(c) Section A

Figure 8.11: Stiffened panel’s geometry. All the dimensions are expressed in [mm].
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8.2 – Aluminium stiffened panel

(a) Photo

(b) Detail of the load application system

(c) Scheme

Figure 8.12: Stiffened panel - Test configuration

From this test configuration the numerical models, necessary for the application
of the iFEM, the MM and the 2-step approach, are designed. The iFEM mesh is
constituted by 914 iQS4 elements and 978 nodes, not modelling the parts of the
panel that exceed the supports (Figure 8.13). The refined one, used to compute
the matrices for the Modal Method and the 2-step method, is obtained from the
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inverse one by splitting each element into four elements. The modes selection
criteria (3.1.1), suggested the use of the first 22 mode shapes, that account for the
97.6% of the total strain deformation energy.

Figure 8.13: iFEM mesh and strain sensors’ configuration.

Differently from the previous experiment, this time, a numerical study on the
optimal sensors’ configuration has been performed. Using the strain and the dis-
placements extracted from the refined model of the experiment, an optimal sensors’
configuration, that is able to guarantee a good level of accuracy for all the three
methods, has been investigated. The optimization process has been performed con-
sidering the sensing technology that was intended to be used experimentally, the
LUNA® high-definition distributed fibre optic strain sensing system. A 10 m long
fibre has been considered. By making loops on the panels, the fibre is able to sense
the strains on six lines along the panels’ length in a back-to-back configuration,
i.e. every sensor on the top surface of the panel has a corresponding one on the
bottom surface of the panel. The optimal six back-to-back lines have been searched
between the lines defined by the consecutive centroids’ locations of the inverse el-
ements along the x axis. As prescribed by the fibre optic sensing scheme, only
strain measures along the x axis have been considered. The optimization has been
carried on with the same genetic algorithm adopted in Section 4.2.2. The optimal
trade-off configuration for the three shape/load reconstruction methods is reported
in Figure 8.13 and the consequent fibre optic set-up is presented in Figure 8.14.
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8.2 – Aluminium stiffened panel

Figure 8.14: Stiffened panel fibre’s configuration - The six sensing lines, installed
in a back-to-back configuration, are shown.

For this configuration, the numerical %ERMS , with respect to the transverse
deflections of all the nodes of the inverse mesh, are 3.5, 3.7 and 5.9E-06 for the
iFEM, the MM and the 2-step method respectively.

Once the strain sensors’ configuration has been designed and installed on the
panel, the displacements sensing system, necessary for the validation of the shape
sensing methods, is also outlined. Four LVDTs have been located on the surface of
the panel where the load is applied. These sensors measure the transverse displace-
ments along y in the location where the concentrated force is applied (v1) and in
other three randomly distributed locations on one of the symmetric halves of the
panel (v2−4). The displacement sensors’ configuration is illustrated in Figure 8.15.

Figure 8.15: LVDTs’ configuration - The location of the four LVDTs (v1−4) on the
surface of the panel are shown. All dimension are expressed in [mm]

135



Experimental validation

Finally, the experiment is performed loading the panel with (Fy = 882 N) and
recording the outputs of the strain sensing system and of the LVDTs. The measured
strains are reported in Appendix C.2. The measured displacements and the ones
reconstructed with the three methods are reported in Table 8.5. The iFEM shows
extremely accurate and consistent results, never exceeding an error of 2.5%, for
every reconstructed displacement.

The Modal Method also shows a good overall accuracy except for the v4 dis-
placement. In this case, an error of −29.3% is observed. This phenomenon can
be explained in the view of the results obtained during the numerical analysis in
Paragraph 4.2.3. In that study it has been observed that, in some areas of the
structure, the shape reconstruction from the Modal Method was strongly biased
by the shape of some of the retained modes. Therefore, the method was able of an
overall good accuracy but it lost that accuracy in some areas. The same behaviour
can be observed in this experimental scenario.

The 2-step method is able to identify the applied load precisely. Nevertheless,
the consequent displacements reconstruction show higher values of the errors. This
is because, when applying the identified load to the FE model of the structure, the
computed displacements also include the error due to the discrepancies between
the real structure and the high-fidelity model. However, the sum of these errors
never exceed the 8% and a good simultaneous reconstruction of the load and the
displacement field can be obtained by the method.

Experimental 2-step MM iFEM

Fy [N ] -882 -899.7
(%ErrFy) (+2.0%)
v1 [mm] -3.004 -3.201 -3.138 -3.034
(%Errv1) (+6.6%) (+4.5%) (+1.0%)
v2 [mm] -2.649 -2.862 -2.834 -2.701
(%Errv2) (+8.0%) (+7.0%) (+2.0%)
v3 [mm] -1.622 -1.727 -1.626 -1.644
(%Errv3) (+6.5%) (+0.2%) (+1.3%)
v4 [mm] -1.609 -1.664 -1.137 -1.649
(%Errv4) (+3.4%) (-29.3%) (+2.5%)

Table 8.5: Shape sensing and load identification results for the stiffened panel.
In parenthesis, the percentage error with respect to the experimental values are
reported.

Once again, this activity proves the extreme accuracy of the iFEM when an
optimized sensors’ configuration, able to provide a sufficient number of strain infor-
mation, is considered. It also proves that the Modal Method’s performance can not
exceed a certain level of accuracy even when a high number of strain sensors are
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available. Moreover, it is confirmed that this method can generate highly inaccurate
reconstructions in some areas of the structure. The 2-step method, although not
able to reach the accuracy of the iFEM in the reconstruction of the displacement
field, has the advantage of the simultaneous reconstruction of this characteristic
and of the external load with a good average level of accuracy.

8.3 Swept aluminium wing box
The last experimental scenario is modelled on the aluminium wing box analysed

in Chapter 7. However, from the initial design, studied in the previous analysis,
and the experimental realization of the box, some differences have arisen. The
necessity to reduce the stiffness of the box, in order to make it possible to easily
obtain measurable displacements and strains in an experimental scenario, led to the
installation of only three ribs instead of the eight previously considered. Moreover,
the length of the web of the stiffeners that connect the skin panels to the spars has
also been reduced from 30 mm to 15 mm. The modified geometry is presented in
Figure 8.16.

All the components of the box are jointed together by bolts. The two skin
panels are connected to the root rib, the mid-span rib and the corners stiffeners by
two rows of M4 bolts, each one separated by 10 mm. The spars are connected to
the corner stiffeners by one row of M4 bolts, each one separated by 10 mm. Also
the central stiffener is connected to the panels by one row of bolts. The tip rib
presents threaded holes and it is fastened with the spars and skin panels by M4
screws. The pictures in Figure 8.17 show the wing box during the assembly process
and the final assembled structure. For more details, the technical drawings of the
wing box are reported in the Appendix D.

The skin panels and the spars of the box are made of a 7075 aluminium alloy,
whereas the other components are made of the same 6060 alloy analysed in Section
8.1. The two aluminium alloys have been experimentally characterized with tensile
tests and the resulting mechanical properties are reported in Table 8.6.

Alloy E [MPa] ν

6060 68033 0.335
7075 72017 0.325

Table 8.6: Aluminium alloys mechanical properties.

The designed experimental configuration considers a clamped root section and
a concentrated traverse force at the tip section. This configuration is realized by
clamping a 300 mm long portion of the wing box between two iron blocks, tighten
together by bolts. The clamped portion of the wing box is not reported in Figure
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(a) Top view (z = 80)

(b) Root section (y = 0) (c) Tip section (y = 994)

Figure 8.16: Experimental wing box geometry - In the figure, the panel and the
spars are indicated by 1⃝, the stiffeners that connect the skin panels to the spars
are indicated by 2⃝, the stringers are indicated by 3⃝ and the ribs are indicated by
4⃝. All dimensions are expressed in [mm].

8.16, where only the clear span is reported. The concentrated force is applied on the
tip rib by a jack . The jack is equipped with an iron sphere that transmits the load
to the wing box and a load cell able to measure the transmitted load. The loading
system is suspended from the ground and directly connected to the test bed, that
the wing box is clamped to, in order to avoid the rotation of the test bed due to
applied load. At the tip section, two LVDTs, that measure the displacements in
the same direction of the load, are installed on the leading edge and trailing edge
corners, respectively. The test configuration is shown in Figures 8.18 and 8.19.
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8.3 – Swept aluminium wing box

(a) Assembly process. (b) Assembled wing box.

Figure 8.17: Swept wing box

(a) Photo.

(b) Scheme.

Figure 8.18: Swept wing box -Test configuration on the wing span view
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(a) Photo. (b) Scheme.

Figure 8.19: Swept wing box -Test configuration on the tip section view section

From this experimental set-up the inverse FE model and the high-fidelity FE
model have been derived. The inverse model is constituted of 5842 iQS4 elements
and 4528 nodes. The high-fidelity one has been derived from this model by split-
ting each quad element into four MSC/NASTRAN® QUAD4 elements. From this
model, the first 22 mode shapes have been selected for the application of the MM
and the matrices of the coefficient of influence have been extracted for the 2-step
method. These modes are able to account for the 97.3% of the total strain energy
of the investigated deformation. The bolted joints between the overlapped compo-
nents of the structures have not been modelled in detail. These regions have been
simulated with elements associated with the overlapped components having the
reference plane off-setted and the nodes equivalenced, thus considering the bolted
joint capable of a perfect connection. The inverse mesh is presented in Figure 8.20.

The same LUNA® high-definition distributed fibre optic strain sensing system
has been adopted for this experimental activity. Therefore, the optimization of
the sensors’ placement has been performed according to the use of this technology.
Considering a 10 m long fibre, eight optimal sensing lines along the entire wing span
plus one sensing line along one half of the wing span have been searched between the
ones defined by the centroid of the inverse elements. From this search, the portions
of the structure where the bolts were located have been excluded. Only sensors on
the external surface of the skin panels and the spars have been considered. The
optimization, carried on with the usual genetic algorithm, was set to minimize the
%ERMSw error with respect to the transverse displacements along z of all the
nodes of the inverse mesh. The optimized configuration is reported in Figure 8.20
and the relative fibre location is shown in Figure 8.21. The numerical %ERMSw,
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8.3 – Swept aluminium wing box

Figure 8.20: Swept wing box - iFEM mesh and strain sensor’s configuration.

obtained with this configuration, are 4.2, 0.9 and 1.5E-06 for the iFEM, the MM
and the 2-step method respectively.

Finally, the experiment is performed applying a load of 1507 N to the wing
box’s tip and acquiring the induced strain and displacement. The results of this
test are reported in Table 8.7. Along with the results from the load/displacements
reconstructions, the resulting displacements from the high-fidelity model of the test
are also reported.

Experimental FEM 2-step MM iFEM

Fz [N ] 1507 1729
(%ErrFz) (+14.7%)

w1 [mm] 3.54 2.26 2.59 2.58 2.19
(%Errw1) (-36.31%) (-26.28%) (-27.1%) (-38.1%)

w2 [mm] 3.37 2.14 2.46 2.43 2.06
(%Errw2) (-36.5%) (-27.0%) (-27.9%) (-38.9%)

Table 8.7: Shape sensing and load identification results for the swept wing box.
In parenthesis, the percentage error with respect to the experimental values are
reported.

The results highlight a significant inaccuracy of all the three considered methods.
The errors in the computation of the transverse displacements exceed 26% for
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(a) Upper panel (z = 80).

(b) Lower panel (z = 0).

Figure 8.21: Swept wing box fibre’s configuration - 8 sensing lines along the entire
wing span ( 1⃝- 8⃝) plus one sensing line along one half of wing span ( 9⃝). All
dimension are expressed in [mm].

all the methods. It is however important to notice that also the high fidelity
FE model is not able to accurately simulate the behaviour of the wing box. In
fact, the analysis of the measured strains, compared with the one extracted from
the simulated experiment, also shows considerable discrepancies. This discrepancy
increases when moving along the wing chord from the trailing to the leading edge,
as shown in Figure 8.22 for Fibre 1 and 4. The lines closer to the trailing edge show
a better correlation, whereas the lines closer to the leading edge show extremely
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(a) Sensing line 1⃝. (b) Sensing line 4⃝.

Figure 8.22: Strain comparison between the experimental values and the simulated
ones.

poor correlation. These phenomena is observed on both the upper and the lower
panel. The detailed distribution of the strains for all the fibres is reported in
Appendix C.3. These considerations highlight the inadequacy of the considered
numerical model to simulate the real behaviour of the structure. Therefore, it also
explains the inaccuracy of the shape sensing and load identification algorithms,
that is not to be attributed to some inadequate formulation, but to the inaccuracy
of the numerical model that they rely on to simulate the experiment.

The modelisation of the bolted joints with equivalenced nodes is a strong claim
and, therefore, this aspect of the model has been further investigated. A model
updating has been tried in order to take into account the experienced reduction in
the stiffness of the structure, probably caused by the presence of the joints. Two
penalization factors have been attributed to the Young’s modulus of the two alloys
associated to the portions of the box where one row of bolts is present. Two differ-
ent penalization factors have been adopted for the areas where two rows of bolts are
installed. These four coefficients have been determined trough an optimization pro-
cess aimed at simultaneously minimize the %ERMS error of the numerical strains
and the displacements with respect to the experimentally measured ones. The min-
imization problem has been tackled with the same genetic algorithm adopted for
the previous optimizations. Unfortunately, this model updating has not proven to
be effective in the minimization of the observed discrepancies. The updated model,
whose material properties and resulting displacements are resumed in Table 8.8,
shows some reduction in the absolute value of the error on the displacements, that
however remain highly inaccurate. Moreover, the update has not been able to sig-
nificantly reduce the discrepancy observed for the sensing line close to the leading
edge, as shown in Figure 8.23. Therefore, a more detailed model for the joint needs
to be designed for this application in future work.
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Updated FEM

E6060 1 row [Mpa] 55227
E6060 2 rows [Mpa] 64565
E7075 1 row [Mpa] 15533
E7075 2 rows [Mpa] 48859

w1 [mm] 3.94
(%Errw1) (+11.3%)
w2 [mm] 3.74
(%Errw2) (+11.0%)

Table 8.8: Updated model characteristics and resulting displacements.

(a) Sensing line 1⃝. (b) Sensing line 4⃝.

Figure 8.23: Strain comparison between the experimental values and the simulated
ones from the updated model.

This experimental activity shows the inaccuracy of the shape sensing/load iden-
tification methods when a inadequate model is designed to simulate the real charac-
teristics of the structure. In fact, being model based approaches, they strongly rely
on the ability of the model to simulate the real structure’s behaviour. Nevertheless,
this activity does not highlight a limitation of the proposed methods’ formulation,
instead it points out some limitation about the general simulation of the structures
with multiple bolted joints. In future works, a more detailed model of the joints
should be taken into account and, consequently, the studied methods’ formulations
should be updated according to the new modelisation.
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Chapter 9

Conclusions and future work

9.1 Conclusions
This work has focused on the analysis of two fundamental tools for the develop-

ment of a modern Structural Health Monitoring framework and for the monitoring
of the Smart structures, the shape sensing and load reconstruction/identification
methods. These methods allow the reconstruction of the displacement field and of
the loads of structure from discrete easily measurable strains. This research project
started with the formulation of the following research questions:

• How can the shape sensing and load reconstruction be extended to analyse
complex aerospace structures?

• How can strain sensing technology be optimized to fit requirements of the two
techniques?

• How can the shape sensing be extended to reconstruct non-linear deforma-
tions?

• Can an integrated approach, including shape sensing and load reconstruction,
be implemented?

This work has been developed around the answers to these research questions.

How can the shape sensing and load reconstruction be extended to anal-
yse complex aerospace structures?

How can strain sensing technology be optimized to fit requirements of
the two techniques?

To answer these two questions this research project has involved the use of
already existing methods on complex aerospace structures, that these methods have
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never been tested on, and also the implementation of new formulations able to push
these technology toward the achievement of an accurate monitoring of aerospace
structures. Moreover, an extreme consideration has also regarded the study of the
adaptability of these methods to the available sensing technology. This part of the
project has been developed on multiple activities, both numerical and experimental.

In particular, the most promising shape sensing methods, the Modal Method,
the Ko’s Displacement theory and the inverse Finite Element Method have been
numerically tested on the displacements reconstruction of a composite wing box.
From an applicability point of view, this activity has highlighted the different ca-
pabilities of the three methods and has provided useful information on how the
methods can adapt to different scenarios. An evaluation of the influence of the
stain configuration and of the material and sensors’ uncertainties has showed that
the iFEM is the most accurate shape sensing method. However, it requires a rele-
vant amount of strain information to reach that significant accuracy. On the other
hand, the Modal Method is able to generate accurate reconstructions with less
strain sensors and it also proves to be less sensitive to the variability of the inputs,
typical of the experimental scenarios. Nevertheless, it is not able to reach the ac-
curacy of the iFEM, even using the same significant number of strain sensors. The
Ko’s displacement theory proved to be not accurate and strongly influenced by the
inputs’ variability. It is only able to provide a rough estimation of the displacement
field of the structure, although with a really limited number of strain sensors.

The impressive accuracy demonstrated by the iFEM on the numerical end ex-
perimental activities has also been possible thanks to a new formulation developed
in this work that extend the capabilities of the method to analyse complex struc-
tures and optimize the method for the strain sensing technology. The quadrilateral
inverse element, iQS4, has been modified to better take into account for the effective
locations of the strain sensors. The integration scheme of the measured strain field
over the inverse element’s area is modified according to a penalization approach,
so that the location of the strain measurement is unequivocally identified in the
centroid of the element. These allows an easier and more efficient allocation and
association of the strain measurements for the application of the method and a
better accuracy in the in-plane displacements’ reconstruction.

Another research activity, aimed to provide a further contribution to the ex-
tension of the load reconstruction methods to complex aerospace structures, has
been investigated. This activity has been developed around the monitoring of the
internal loads of the wing of a fighter aircraft for the evaluation of the fatigue
life consumption induced by these loads. For this case, the lack of knowledge of
the structural characteristics of the investigated structure moved the research from
model-based approaches to the exploration of the data driven system identification
methods. Linear regression based ARX and ARMAX systems and several Artificial
Neural Networks architectures have been studied in order to find the best system
identification method to relate the strain inputs of the wing to the load outputs.
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For each system a broad exploration of the parameters defining each architecture
has been performed. The problem required the formulation of a parameter for the
evaluation of the fatigue life estimation, without any knowledge on the material and
the geometry of the structure. This problem has been solved with the definition of
a new parameter, based on the Miner’s rule formulation and on the beam structural
model, that allowed the evaluation of the fatigue life consumption without these
crucial information. The ANNs shows an overall best accuracy for this application
and in particular, the Distributed Delay Artificial Neural Network generates the
best predictions.

Following the analysis of the internal loads, the exploration of the load identifi-
cation framework has been continued with the reconstruction of the external loads
on a numerical swept wing box, subject to a distributed load and a pressure dis-
tribution. An already existing method has been applied for the first time on a 3D
structure. This method is based on the discretization of the loads with concentrated
nodal forces or nodal values of the pressure, according to the investigated type of
load. The pressure field’s domain is discretized with finite elements and, therefore,
the nodal values of the pressure are interpolated over the elements’ areas with shape
functions. The computation of the strains induced by each discrete load allows the
computation of the matrix of the coefficients of influence between the loads and
the strains. The fitting of these coefficients to the measured discrete strains allows
the computation of the unknown discrete loads. This method has been originally
formulated with triangular elements for the discretization of the pressure field. In
this work, the quadrilateral elements, that proved to be more accurate, have been
introduced to extend the capabilities of the method.

How can the shape sensing be extended to reconstruct non-linear defor-
mations?

The extension of the shape sensing to the reconstruction of non-linear deforma-
tions is fundamental for the monitoring of high-performance aerospace platforms
whose structure often exceeds the limit of linear deformations. The study on large
displacements has been performed considering the results of the investigation on
the standard shape sensing methods. The promising results obtained by the iFEM
on that application inspired the further development of this technology. The ex-
tension of the method to the analysis of large displacements has been achieved
with a novel incremental formulation inspired by the direct FEM for geometrically
non-linear analysis. The strains, inputs of the method, are divided into increments
and for each increment the iFEM method is applied. At each iteration the inverse
mesh, used for the application of the iFEM, needs to be updated by considering the
reconstructed displacements from the previous step. The method has been tested
on the analysis of a numerical wing-shaped plate subject to highly non-linear dis-
placements. This application shows the extreme accuracy of the method in the
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reconstruction of the large displacements and the highly superior performances of
the novel formulation with respect to the standard iFEM for these kind of applica-
tions.

Can an integrated approach, including shape sensing and load recon-
struction, be implemented?

A tool capable of simultaneously compute the loads and the displacement from
the same discrete strain measurements has never been formulated in the existing
literature, although it could be crucial for the progress of aerospace structural
monitoring. In this research, a decisive attention has been dedicated to the design
of this integrated framework.

The activity on the external load reconstruction inspired the formulation of an
innovative 2-step approach for the simultaneous reconstruction of the external loads
and of the displacement field. The 2-step procedure is easily obtained by identifying
the loads with the above mentioned external loads reconstruction method and then
using these load to perform a standard direct FEM analysis, thus computing the
displacements induced by the loads. This integrated approach has shown promising
results during the numerical analysis of a swept wing box. The external loads and
the displacement field can be accurately reconstructed by the method when a suffi-
cient number of strain sensors are installed on the structure and the measurements
are not affected by errors. When the number of strains is reduced or measurement
error is present in the system, the load predictions are poor. Nevertheless, the
2-step procedure is still capable of identifying an equivalent system of loads that,
although different from the actually applied one, induces the same deformation on
the structure. Therefore, in this case, the shape sensing from the proposed method
is still impressively accurate.

Finally an experimental campaign, aimed at verifying the findings of the numer-
ical study and validate the answers to the research questions, has been carried
on. Three experiments have been designed to test the performances of the Modal
Method, the iFEM and the 2-step approach. A cantilevered aluminium C-Beam,
a stiffened aluminium panel and a swept aluminium wing box have been designed
and tested. The experiments on the beam and on the stiffened panel confirmed
some of the findings from the numerical analysis. In particular, the iFEM once
again shows impressive accuracy, higher than the other methods, when the sensors’
configuration provides a high amount of information and is optimized for the shape
sensing. On the other hand, the MM and the 2-step method shows more versatility
with respect to the sensor’s configuration, being able to moderately accurate re-
constructions of the displacements, even for sensors’ configurations not optimized
for the specific application. Moreover, the 2-step approach proves to be able to
simultaneously identify the loads and the deformed shape when the applied system
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of loads coincides with the one prescribed during the formulation of the method.
But, more important, it is still able to compute the displacements even when the
system of loads is different from the prescribed one, by identifying a system of loads
that induces the same deformations.

The experiment on the swept wing box evidenced bad reconstruction of the
load and of the deformed shape for all the three methods. A further analysis of
the results showed that the inaccuracy of the methods was not to be attributed to
their formulations or their inadequacy. In fact, the comparison of the experimental
results, in terms of measured strains and displacements, with the one from a detailed
standard FE model showed the same level of discrepancy. The investigation showed,
therefore, the inadequacy of the numerical model that the methods were based
on. The source of the error has been identified in the simulation of the bolted
joints present on the wing box. These joints have been modelised with a perfect
equivalence of the nodes associated with the jointed components.

9.2 Future work
Starting from this last mentioned results, there are still several aspect of the

shape and load monitoring that should be addressed in future work. A more de-
tailed modelisation of the bolted joints should be considered for the analysis of
the swept wing box and of similar structures. In particular, the impact of this
more detailed model on the formulation and accuracy of the considered monitoring
methods should be examined in depth.

Moreover, the experimental campaign performed in this work only considered
very simple load cases constituted by concentrated forces. Therefore, to validate
the capabilities of the external load reconstruction method and of the consequent 2-
step approach, more complex loading cases, including distributed pressures, should
be analysed in a more advanced experimental campaign.

The prediction of the internal load through the use of data driven system iden-
tification systems should also be further investigated. The findings on the most
appropriate Artificial Neural Network architecture should be validated through the
study of the same problem on different platforms, to prove the robustness of the
architecture to different scenarios.

In addition, the elevate accuracy of the iFEM, but its demanding requirements in
terms of sensing technology, should inspire the study and development of techniques
able to virtually expand few sensors, in order to make this method also exploitable
for structures not equipped with many strain sensors.
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Appendix A

Shape functions

The shape functions for the iQS4 element are the following:

N1 = (1 − s)(1 − t)
4 (A.1)

N2 = (1 + s)(1 − t)
4 (A.2)

N3 = (1 + s)(1 + t)
4 (A.3)

and

L1 = y14N8 − y21N5 (A.4)

L2 = y21N5 − y32N6 (A.5)

L3 = y32N6 − y43N7 (A.6)

L4 = y43N7 − y14N8 (A.7)

M1 = x41N8 − x12N5 (A.8)

M2 = x12N5 − x23N6 (A.9)

M3 = x23N6 − x34N7 (A.10)

M4 = x34N7 − x41N8 (A.11)
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Shape functions

where

N5 = (1 − s2)(1 − t)
4 (A.12)

N6 = (1 + s)(1 − t2)
4 (A.13)

N7 = (1 − s2)(1 + t)
4 (A.14)

N8 = (1 − s)(1 − t2)
4 (A.15)

The shape functions are expressed in terms of the local coordinates of the nodes
of the iQS4 element:

xij = xi − xj

yij = yi − yj

}︄
(i = 1, 2, 3, 4) (j = 1, 2, 3, 4) (A.16)

and the parent space coordinates s, t ∈ [−1,1].

166



Appendix B

Pressure distribution

The pressure distribution is obtained by multiplying a third order polynomial
of x and a second order polynomial of y:

p(x, y) = p1(x) · p2(y) = (axx3 + bxx2 + cxx + dx) · (ayy2 + byy + cy) (B.1)

To find the coefficients of the polynomials it is necessary to impose the conditions
described in Section 7.2.2. They can be expressed mathematically as follows. The
three conditions necessary to find the three coefficients of the p2(y) polynomial are:⎧⎪⎨⎪⎩

p2(y = 994) = 0 p2 equal to 0 at the tip section
p2(y = 0) = 1 p2 is equal to 1 at the root section
p2,y(y = 0) = 0 p2 has a maximum at the root section

(B.2)

The four conditions necessary to find the four coefficients of the p1(x) polynomial
are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p1
(︂
x = 528.52

994 y
)︂

= 0 p1 equal to 0 at the leading edge
p1
(︂
x = 270.52

994 y + 378
)︂

= 0 p1 equal to 0 at the trailing edge
p1
(︂
x = 618.69

994 y + 126
)︂

= 1 p1 equal to 1 at one third of the chord
p1,x

(︂
x = 618.69

994 y + 126
)︂

= 0 p1 has a max. at one third of the chord

(B.3)

where (x = 528.52
994 y + 378) is the equation of the leading edge, (x = 270.52

994 y + 378) is
the equation of the trailing edge and (x = 618.69

994 y + 126) is the equation of locus of
the points at one-third of the chords.

Since the wing box’s panel is swept, the leading edge, the trailing edge and the
point at one third of the chord have different x values for every y section of the
wing panel. Therefore, the coefficients of the p1(x) polynomial depend on the y
coordinate, as expressed in Eqs. B.3, and they have to be computed for each value
of y.
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Appendix C

Experimental strain
measurements

In this appendix the strain measurement from the three performed experiment
are reported. For every experiment, the strains from the fibres are compared, if
possible, with the one computed with the high fidelity FE model. In the graph
that report the sensed strains also the %ERMS error between the experimentally
measures strains and the simulated ones are noted.
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Experimental strain measurements

C.1 C-Beam

(a) Fibre Top (b) Fibre Bottom

(c) Fibre Latreal

Figure C.1: Experimental strains for Load case 1 - The strains from the fibres and
the ones from the refined model are reported.
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C.1 – C-Beam

(a) Fibre Top (b) Fibre Bottom

(c) Fibre Latreal

Figure C.2: Experimental strains for Load case 2 - The strains from the fibres are
reported. Since in this case no simulation has been performed, the strains from the
high-fidelity model are not reported
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Experimental strain measurements

C.2 Stiffened panel

(a) Fibre 1 Top (b) Fibre 1 Bottom

(c) Fibre 2 Top (d) Fibre 2 Bottom

(e) Fibre 3 Top (f) Fibre 3 Bottom

Figure C.3: Experimental strains from the stiffened panel - The numbering of the
fibres is the one reported in Figure 8.14.
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C.2 – Stiffened panel

(a) Fibre 4 Top (b) Fibre 4 Bottom

(c) Fibre 5 Top (d) Fibre 5 Bottom

(e) Fibre 6 Left (f) Fibre 6 Right

Figure C.4: Experimental strains from the stiffened panel - The numbering of the
fibres is the one reported in Figure 8.14.
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Experimental strain measurements

C.3 Swept aluminium wing box

(a) Fibre 1 (b) Fibre 2

(c) Fibre 3 (d) Fibre 4

Figure C.5: Experimental strains from the upper panel of the swept aluminium
wing box - The numbering of the fibres is the one reported in Figure 8.21 and s is
the coordinate along the fibres’ length.
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C.3 – Swept aluminium wing box

(a) Fibre 5 (b) Fibre 6

(c) Fibre 7 (d) Fibre 8

(e) Fibre 9

Figure C.6: Experimental strains from the lower panel of the swept aluminium
wing box - The numbering of the fibres is the one reported in Figure 8.21 and s is
the coordinate along the fibres’ length.
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Appendix D

Swept wing box technical
drawings
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