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Summary

The in-flight monitoring of the loads and of the induced displacement field is
becoming essential in the development of next generation Structural Health Mon-
itoring framework. To achieve the crucial change from its traditional formula-
tion, based on pre-emptive maintenance, to a new philosophy, based on pro-active
condition-based maintenance, the monitoring of these characteristics is paramount.
The continuous tracking of the loads and the displacements generates information
on the real status of the structure and can guide more accurate maintenance and
sustainment practices. Moreover, anomalies in the monitored characteristics can
also lead to the identification of critical conditions including the detection of struc-
tural damage.

Another recent progress in the design of aerospace structures has increased
the demand for a more accurate monitoring system for loads and displacements,
the development of smart structures. These structures are designed to adapt to
the condition that they are exposed to. Therefore, the knowledge of the actual
condition, in terms of deformed shape and of loading condition, is fundamental for
the correct activation of their morphing capabilities, that allow the structure to
obtain load alleviation and a higher aerodynamic efficiency.

Unfortunately, the direct measure of these characteristics, that prove to be
so crucial for the development of the future aerospace structures, is usually hard
to obtain. For this reason, shape sensing and load reconstruction/identification
methods have been developed in the open literature. These techniques are designed
to compute the displacement and the loads from easily measurable discrete strains.
This research aims to give an important contribution to the further development
of the shape sensing and load reconstruction methods, in particular for the specific
application on aerospace structures.

The most widespread shape sensing methods emerged in the last few years are
the inverse Finite Element Method (iFEM), the Modal Method (MM) and the Ko’s
Displacement theory. Although a lot of effort has been recently involved in the
formulation of these methods, a comprehensive study, that specifically includes the
analysis of the effect of the strain sensing configuration on the performances of
the methods is missing. In this work, the three methods have been numerically
and experimentally tested on the displacement reconstruction of several structures,

1



Summary

including a composite wing box, an aluminium swept wing box, an aluminium
C-beam and an aluminium stiffened panel. For these analyses, the effect of the
measurement error and of the number and location of the strain sensors have been
widely investigated. The study has specifically focused on the optimization of the
sensing technology for these methods. In particular, a more efficient approach to
unequivocally determine the sensors locations for the iFEM quadrilateral elements
has been introduced.

The comparative study shows the different scenarios that each method can be
suitable for. The iFEM, also considering the introduced improvements, results as
the most accurate shape sensing method for application, but a considerable amount
of strain sensors is required to achieve this accuracy. The MM, on the other hand, is
not able to reach the same level of accuracy, but can generate moderately accurate
reconstruction of the displacements with fewer sensors. The Ko’s Displacement
theory, although can give a rough estimation of the deformed shape requiring very
few sensors, is the less accurate of the three explored methods. Considering its im-
pressive results, the iFEM has been selected for a further development and has been
enriched with an incremental formulation for the analysis of structures undergoing
large displacements.

The study on the load reconstruction methods has involved two different scenar-
ios. The first one being the reconstruction of the internal loads, for the estimation of
the fatigue life consumption, of a fighter aircraft’s wing, whose physical characteris-
tics were not provided. Only data of strain, loads and some flight parameters have
been made available. For this problem data driven system identification methods
have been explored. The recent progress in the field of these "black box" approaches
has brought to life a vast amount of different model variants and formulations, with
a broad landscape of functional parameters, that have never been explored under
a single benchmark aircraft loads monitoring problem. For the application on the
aircraft’s wing, the investigation of this landscape of functional parameters for the
linear regression based models and for the Artificial Neural Networks is consid-
ered. The broad exploration of these two families of system identification methods
and of their functional parameters proves the superior capabilities of the ANNs
with respect to the linear regression based models. Within the model variants of
ANNs, the Distributed Delay architecture showed the best fatigue life consumption
predictions.

The second scenario has concerned the identification of the external loads of
a numerical aluminium swept wing box from discrete strain measurements. The
loads have been computed using an existing approach, based on the discretization
of the loads and on the computation of the coefficient of influence between the
discretized loads and the discrete strain measurements. The discretization of dis-
tributed pressure fields is obtained using Finite Elements. In previous applications
only triangular elements have been adopted, whereas, in this work, the method has
been improved with the implementation of quadrilateral elements.
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This activity has inspired the formulation of a novel and crucial tool for the
progress of the monitoring systems analysed in this work. This is an innovative
and integrated approach, able to simultaneously reconstruct the external loads and
the displacement field of a structure from the same discrete strain measures. This
2-step approach uses the identified external loads to perform a standard FEM anal-
ysis and thus compute also the displacements of the structure. Therefore, the first
step of the procedure includes the identification of the loads while the second one
provides the application of these loads to the model of the structure to compute the
displacement field. The method has been applied on the same structures analysed
for the shape sensing campaign. The applications show that the 2-step procedure
is able to simultaneously compute the external loads and the displacements with
a remarkable accuracy, if a sufficient number of strain sensors are installed on the
structure and they are not affected by significant measurement error. If the num-
ber of sensors is diminished or they are affected by measurement error, the first
step of the procedure loses accuracy. Nevertheless, the method is still capable of
impressive reconstruction of the deformed shape, making this a viable tool for the
future of the aerospace structures monitoring.

Some of the research and results presented in this thesis have been published in:

A. Tessler, R. Roy, M. Esposito, C. Surace, and M. Gherlone. “Shape Sensing
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Chapter 1

Introduction

Over the last years, Structural Health Monitoring (SHM) has seen a continuous
increase in interest in aerospace applications. In particular, the SHM framework is
rapidly changing its traditional formulation, based on the pre-emptive maintenance,
to a new principle based on pro-active condition-based maintenance. This new con-
cept requires the precise and in-flight monitoring of the structures. The monitoring
of some crucial characteristics of a structure can lead to the optimization of the
maintenance and sustainment practices, that can be guided by the knowledge of
the actual status of the structure and not only by the design based programmed
interventions. Moreover, in parallel with the development of the modern SHM
framework, the birth and progress of the Smart structures has also increased the
demand for a more intensive in-flight monitoring of the aerospace structures. As
a consequence, the requests raised by these two new concepts have caused the si-
multaneous expansion of some monitoring techniques, designed to track the needed
informations. The load reconstruction/identification and shape sensing methods
have attracted considerable attention as crucial tools for the realization of an ef-
fective structural monitoring system. These two families of methods are designed
to compute the loads and the displacement field of a structure from discrete strain
measurements. The loads and the displacements are not easily measurable quanti-
ties, therefore, the use of easy measurable strains to indirectly compute these char-
acteristics has emerged as a viable solution, also thanks to the progresses achieved
by the strain sensing technology [5, 6].

The load identification framework is divided into external and internal load
monitoring. The monitoring of the internal loads is crucial to guide condition-
based maintenance, fatigue life estimation and critical load modelling for the SHM.
In fact, the load spectra modelled during the design process do not always reflect the
one really experienced during flight operation, therefore misleading the fatigue life
prediction and the standard maintenance schedule. Moreover, unexpected highly
impacting flight conditions can lead to the necessity of exceptional maintenance
operation and they must be taken into account as they also strongly impact the
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fatigue life of the structure. The monitoring of the external loads can serve the
same purpose. In fact, the knowledge of the external loads can lead to the compu-
tation of the internal ones through the use of a structural model, able to relate the
external load to the induced internal ones. On the other hand, the monitoring of
the external loads can supply information about the health status of the structures
through the detection of changes in the load paths caused by presence of damages
[7]. Moreover, the knowledge of the in-flight load conditions is fundamental for
the design of innovative smart structures that, thanks to their morphing capabil-
ities, can optimize their shape to obtain load alleviation [8] and to improve the
aerodynamic efficiency of the control surfaces [9].

The shape sensing techniques, starting form easily measurable in-situ character-
istics, the strains, allow the reconstruction of the displacement field of a structure.
The in-flight monitoring of the deformed shape also provide crucial information
about the health status of a structure. The detection of anomalies in the displace-
ment and strain field allows the individuation of damages [10, 11, 12, 13]. Moreover,
the shape sensing can be easily expanded to perform stress sensing. In fact, once
the displacement field is reconstructed, the use of the constitutive equation allows
the computation of the stress field and, consequently, of the internal loads of the
structure. These ones can be used for the same SHM operations already described.
The world of morphing structure is also impacted by these monitoring methods.
The morphing capabilities, to work properly, need to have a feedback on the actual
shape of the structure, in order to modify it accordingly. The shape sensing can
provide this fundamental information [14, 15, 16].

The highlighted importance of the simultaneous use of the shape sensing and the
load reconstruction for the future of the SHM and of the smart structures inspired
this work. In fact, as it will be pointed out in the literature review following this
chapter, although the recent massive efforts, these methodologies still require a
further development of some aspect that generated the following research questions:

• How can the shape sensing and load reconstruction be extended to analyse
complex aerospace structures?

• How can strain sensing technology be optimized to fit requirements of the two
techniques?

• How can the shape sensing be extended to reconstruct non-linear deforma-
tions?

• Can an integrated approach, including shape sensing and load reconstruction,
be implemented?

To try to answer these questions this work has been developed into four main
phases. The first phase is focused on the study of the shape sensing. In particular
to its application on a complex aerospace structure and to the reconstruction of
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the non-linear displacements. The second part is developed around the analysis
of the internal and external load of aerospace structures. The third phase has
seen the development of an integrated approach for the simultaneous monitoring of
the loads and displacements. Finally, the results of these three phases have been
experimentally evaluated on three different structures.

1.1 Thesis outline
The research phases have generated the following activities and the relative

sections of this thesis.
An accurate literature review on the existing shape sensing methods and load

reconstruction ones, focused on highlighting the strength and the weakness of the
existing formulations has been carried on and it is reported in Chapter 2.

From this review, the Modal Method (MM), the Ko’s Displacement theory and
the inverse Finite Element Method (iFEM) have emerged as the most reliable and
successful shape sensing methods in the open literature. Therefore, these methods
have been selected for a comparative study on the displacement reconstruction of a
composite wing box subject to torsion and bending deformation. The study involves
the optimization of the strain sensors’ configuration to fulfil the requirements of the
three methods and the development of a novel formulation for the iFEM quadrilat-
eral element. Although performed only numerically, the investigation also involves
the evaluation of the effect of the uncertainties typical of the experimental envi-
ronments. The shape sensing analysis has been continued with the introduction
of an incremental iFEM formulation for the monitoring of structures undergoing
large displacements. This proposed methodology has been numerically tested on
the shape sensing of a wing-shaped plate. The detailed description of the shape
sensing methods and of the introduced new formulations is reported in Chapter 3,
whereas the numerical studies and their results are described in Chapter 4.

Two different problem have been considered for the study of the load reconstruc-
tion methods. The monitoring of the internal loads, with the purpose of assessing
the fatigue life consumption due to these loads, and the reconstruction of the exter-
nal aerodynamic loads. The identification of the internal loads induced on the wing
of a fighter aircraft, without any knowledge of the airframe’s characteristics, has
been the focus of the first activity. For this problem, a broad investigation on the
data driven system identification methods has been accomplished. The investiga-
tion involved a parametric study on the regression algorithms identified during the
literature review, the linear regression based algorithms, ARX and ARMAX, and
the Artificial Neural Networks. The scope of the parameters’ exploration has been
the evaluation of the best system identification architecture for the prediction of
the loads from discrete strains. The system identification methods are introduced
in Chapter 5 and their application to the wing monitoring is presented in Chapter
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6.
The external loads identification has been implemented using an approach based

on the coefficients of influence between the loads and the induced strains. A generic
system of loads is discretized with concentrated loads or nodal pressures, accord-
ing to the kind of load that the method has to reconstruct. In the case of nodal
pressures, these are interpolated over the structural domains using finite elements,
so that they can effectively simulate a continuously distributed pressure. The dis-
crete loads are then identified by fitting the strain field caused by each discrete unit
load to the measured ones. The detailed formulation of this method is reported in
Chapter 7. This method inspired the formulation of the integrated approach for
the simultaneous computation of the external loads and the displacement field of a
structure, that, through the use of a structural model, can also lead to the recon-
struction of the internal ones. The proposed 2-step method is simply based on the
idea that the identified external loads can be used to run a standard FEM simula-
tion to reconstruct the displacement field, the strain field and the stress field of the
structure. The external loads reconstruction and the consequent 2-step approach
have been tested on the numerical monitoring of a swept aluminium wing box and
compared, in terms of the shape sensing, to the iFEM. Also in this case, a study
on the optimization of the sensing technology and on the influence of the inputs’
uncertainties has been considered. This investigation is described in Chapter 7.

The results of the above mentioned numerical activities have been finally tested
on three different experimental scenarios. An aluminium cantilevered C-Beam, an
aluminium stiffened panel and an aluminium wing box have been analysed. The
results of the numerical investigation have guided the experimental activities and
the introduced formulation have been evaluated on the monitoring of real structures.
The experimental activities are presented in Chapter 8.

Finally, in Chapter 9, the concluding remarks and the suggestion for the future
activities aimed at the further development of the load reconstruction and shape
sensing frameworks are discussed.

1.2 Thesis outcomes
During this research project, several new considerations about already existing

methods and new proposed formulations have been derived.
The study on the shape sensing of the composite wing box lead to the develop-

ment of a new integration scheme for the inverse quadrilateral finite element IQS4.
The new formulation is able to better adapt this element to the strain sensing tech-
nology. In fact, thanks to the novel formulation, the location of the strain sensors
for the application of the method is univocally determined, making the process of
sensors placement easier and more reliable. Moreover, the accuracy of this new
element is proven to be higher on the reconstruction of the in-plane membrane
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displacements.
The same study highlighted some original considerations on the capabilities of

the MM, the Ko’s Displacement theory and the iFEM to analyse complex struc-
tures. The three methods shows different characteristics that make them suitable
for different scenarios, depending on the available strain sensors’ setup. The iFEM
is proven to be the most accurate shape sensing method, even when uncertainty
is present in the system, when the structure is equipped with a high number of
sensors. It also shows a considerable sensitivity to the specific sensors’ locations.
On the other hand, the MM shows more adaptability to the sensors’ configuration
and higher robustness with respect to the input’s variability. Nevertheless, this
method, although capable of moderate accuracy with a low number of sensors, it
is not able to reach the accuracy shown by the iFEM. These results have been also
confirmed by the experimental validation of the two methods. The Ko’s Displace-
ment theory showed the highest inaccuracy and the highest liability with respect to
the input’s uncertainties. However, this method is capable of a rough displacements
reconstruction with a reduced number of strain sensors.

The internal loads study produced the following considerations on the analysed
system identification methods. The Artificial Neural Networks show an overall
higher accuracy than the ARX and ARMAX regression methods. Moreover, the
Distributed Delay Neural Networks is the architecture that is capable of the better
fatigue life prediction with respect to all the considered load spectra. For the
evaluation of these performances, a new parameter for the fatigue life estimation,
not dependent on the geometry of the structure, has been derived. In fact, the lack
of physical informations for this problem needed the development of this parameter.

The identification of the external loads and the use of these to reconstruct
the deformed shape of the structure generated impressive results. First of all the
external load identification method has been enriched with the introduction of a
quadrilateral element for the discretization of the pressure field, whereas only tri-
angular elements have been used in the previous works. This element show an
increased level of accuracy in the reconstruction of the pressure field. The external
load can be predicted by the method if a sufficient amount of strain information is
available. Moreover, the proposed 2-step method demonstrated an extreme accu-
racy in the reconstruction of the displacement field, even when the identified load
are not accurate. This happens when the number of input strains is reduced or
when they are affected by measurement errors. In fact, in this case, the method
is still able to find an equivalent system of loads that, although different from the
applied one, induce the same deformation to the structure and therefore, the shape
sensing is still achievable.
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Chapter 2

Literature review

In this chapter the current state-of-the-art on the shape sensing and load recon-
struction methods is resumed. The different application and the results obtained
by the methods in the past studies are highlighted and the shortcomings of the
existing approaches, that need to be overcome in this work, are also pointed out.

2.1 Shape sensing
Shape sensing techniques have witnessed a rapid development during the last few

decades. As already mentioned in the previous chapter, these techniques allow the
reconstruction of the deformed shape of a structure from discrete strain measure-
ments. These quantities are usually easily measurable through strain gauges. The
technology related to the strain sensing has seen a simultaneous rapid progress. This
has strongly enhanced the possibilities of the shape sensing methods and pushed
the technology towards new horizons. In particular, the development of fibre optics
distributed strain sensing systems [5, 6], based on Rayleigh scattering and Optical
Frequency Domain Reflectometry (OFDR), allows the easy installation of a multi-
tude of strain sensors in a more efficient way. These fibres present a high density of
strain sensors, can be easily installed on a structure and, in the case of composite
materials, can even be embedded in composite laminates during the layup phase.

Among the shape sensing methods that have benefited from the progress of these
technologies and have attracted more attention, four main categories of methods
have emerged: (1) methods based on numerical integration of experimental strains
[17, 18, 19, 20, 21, 22]; (2) methods using global or piece-wise linear continuous
basis functions to approximate the displacement field [23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36]; (3) inverse Finite Element Methods (iFEM), based on
a finite-element discretization and on a variational principle [37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49]; (4) method based on the use of the Artificial Neural
Networks (ANNs) [50, 51]. Within these families of methods, three have emerged
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as the more spread and successful for the shape sensing of aerospace structures,
the the Ko’s Displacement theory, the Modal Method (MM) and the inverse Finite
Element Method (iFEM). They belong to the first, the second and the third families,
respectively.

The Ko’s Displacement theory is based on the double integration of the curva-
ture equation of the Bernoulli-Euler beam. In beam-like structure the curvature
can be expressed in terms of a set of axial strains along the beam span and of the
distance of these strain from the neutral axis of the beam. The double integration
of the curvature can lead to the expression of the deflection of the beam in terms of
the measured strain at the location where these are measured. As a consequence,
the method allows the computation of the deflections along a strain sensing line.
The method was introduced by Ko et al. in [19], numerically validated on the
wing of the Ikhana Unmanned vehicle [20] and then experimentally applied on the
Global Observer UAV [21]. Recently it has also been applied on the shape sensing
of a cantilevered composite beam [52]. A crucial improvement for the method has
been introduced by Pak [53]. In this work, the method is expanded in order to
reconstruct the full displacement field of a beam-like structure, for components and
location different from the ones reconstructable with the standard Ko’s formulation.
By means of a modal transformation [54, 55], the new formulation is able to expand
the displacements reconstructed along the sensing lines to the displacements in lo-
cations outside of these lines, allowing the reconstruction of the full displacement
field. The use of the modal transformation requires the computation of the modal
characteristics of the structure.

The modal characteristics of the structure are also adopted by the Modal
Method. This method has been simultaneously introduced in [26] and [27]. The
method is based on the formulation of the strain field in terms of known spatial
functions, the modal strain shapes, and unknown weights, the modal coordinates.
The modal coordinates are computed by fitting the so formulated strain field to
discrete measured strains. The displacement field is then computed from the de-
rived strain field by means of the strain-displacements relations. The MM has been
applied in [26] to reconstruct the displacement field of a cantilevered aluminium
plate. In this application the modal strain shapes were experimentally computed.
Since the experimental evaluation of the modal strain properties can be really dif-
ficult, in [24] they were numerically computed and then adopted to reconstruct the
deformation of a real plate. Recently, in [56], the MM has been experimentally
validated on the reconstruction of the static and dynamic displacements of a wing.

The inverse Finite Element Method (iFEM) has been developed by Tessler et al.
in [57]. The iFEM is based on the standard discretization of the structural domain
with finite elements. This discretization allows the formulation of the strain field
in terms of the spacial derivatives of the shape functions and of the nodal values of
the displacements. By minimizing the error between the interpolated strain field
and the discrete strains, coming from sensors, the method is able to find the nodal

12



2.2 – Load reconstruction

displacements that best fit the measured strains. This method has been widely and
successfully applied to a broad variety of structures. Truss and beam structures
has been studied in [41, 42]. Three nodes inverse shell elements have been widely
used for the analysis of thin plates [1, 46, 49] and thin walled structures [39, 45].
Recently, a quadrilateral inverse shell element, the IQS4, has been developed and
broadly applied to marine structures [43, 44, 58]. The quadrilateral element rises
a complication in the attribution of the strain sensors to the inverse elements. In
fact, differently from the triangular elements, where the location of sensors can
be unequivocally determined, in the quad formulation adopted in these works the
location of the sensors can not. The most recent development in the field of iFEM
is represented by the introduction of an isogeometric formulation for variable cross-
section beams [59] and curved shell structures [60]. The reduction in the number
of strain sensors for the iFEM has been the focus of the study in [61]. A smoothing
technique for the computation of the full strain field from discrete strain measures
has been developed to enriched the capabilities of the iFEM. The a priori expansion
of few strain measures, inputs of the method, allows an accurate shape sensing with
fewer strain measurements.

Few comparative studies on the shape sensing methods have been performed.
Devorkian et al. [62] compared the Ko’s Displacement theory and the Modal
Method on a swept cantilevered plate. The only comparison of the three meth-
ods have been performed by Gherlone et al. [63]. The three methods have been
applied on a real swept wing-shaped aluminium plate.

An extensive comparison of the three main shape sensing methods on a structure
that presents the level of complexity of a real aerospace structure is missing in
the open literature. Moreover, the influence of the strain sensors’ configuration
on the three different techniques, in order to evaluate the pros and cons of each
method in applications with different available strain information, has never been
investigated. From the literature review, also emerged the lack of methods for
the shape sensing of structures that experience large displacements, exceeding the
limit of linear elastic behaviour. The possibility to achieve this capability is crucial
to broaden the applicability of the shape sensing tools to real world aerospace
structures.

2.2 Load reconstruction
In this work, two different approaches are adopted for the reconstruction of the

loads, according to the problem’s formulation they have to face. When no physical
information on the structure but data of strain, flight parameters and loads were
made available, the data driven methods have been implemented. On the other
hand, when a model of the structure could be designed, the model based approach
have been investigated.
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2.2.1 Data driven loads reconstruction
The data driven system identification methods, adopting a "Black Box" ap-

proach, are able to create a regression between any inputs and outputs of a system,
without any in-depth knowledge of the investigated system. Within the data driven
system identification methods two families have been widely used in the prediction
of loads from strain measures and other flight parameters, the auto regressive linear
regression with external input models and the Artificial Neural Networks.

The auto regressive (AR) linear regression models are based on the concept
that a value of a time series can be determined as a linear regression of the value
of the time series in the previous time steps. The addition of an external input in
the regression models generates the Auto-regressive with eXtra inputs model, ARX
[64]. Moreover, the inclusion of a Moving Average (MA) term for better modelling
the noise of the system produces the Auto-regressive Moving Average with eXtra
input model, ARMAX [64]. These two System Identification Models have been used
in several application related to the load monitoring and fatigue life prediction of
structures. Mustapha et al. [65] used AR-ARX based regression models to detect
and predict crack in steel reinforced concrete structures (validated by data from
Sydney Harbour Bridge). Yi et al.[66] used system identification to develop models
for failure prediction of composite pipes. Two models based on ARX and ARMAX
were developed based on strain gauge data. Moreover, Ahsan and Lemma [67]
studied the capability of AR models to predict useful life of gas turbine engines.

The Artificial Neural Networks are non-linear parametric function whose pa-
rameters are learned from the data through a process defined as training. They
can be used to approximate highly non-linear functions that relate the outputs to
the inputs of a system [68]. ANNs have been applied in aerospace applications since
the late 1980s when they emerged as a powerful means of dealing with complex non-
linear systems such as parameter estimation during manoeuvrers. The US Naval
Air Warfare centre is one of the pioneers of applying artificial neural networks for
aircraft load prediction. In particular, Hoffman’s report [69] is the first study to
implement ANNs to predict airframe strains.

Artificial Neural Networks were firstly applied to solve the inverse problem of
establishing the external loads-strain relationship by Cao et al. In [70] a simplified
structural model of a wing is analysed. The study is able to successfully reconstruct
a set of concentrated forces applied to a cantilevered beam by means of ANN us-
ing structural strains as an input. An ANN has been developed and trained from
in-flight data to indirectly predict fatigue damage for a Lynx M9 helicopter in
[71]. The predicted stresses are found to be highly accurate. Levinski [72] demon-
strated the viability of ANNs for buffet prediction by developing ANN models for
F/A-18 based on experimental data. The work shows Radial basis function (RBF)
based ANNs to be more accurate than Multi-Layer Perceptron (MLP) based ANNs
trained with backpropagation with orthogonal least square algorithm. Furthermore,
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RMS values and frequency content of tail buffet pressures are accurately predicted
using a full-scale F/A-18 tail buffet test by Levinski [73]. Levinski also considered
a RBF–NN trained with an orthogonal least–squares algorithm and several trans-
fer functions. It is concluded that a multi–quadratic transfer function is the most
robust and accurate approach. In [74] Trivailo et al. tried multiple architecture
of ANN to predict the manoeuvrer and buffet loads acting on the empennage of
a F/A-18 fighter aircraft during a fatigue test. They have been able to obtain
a good indication of the magnitude and frequency of the loads using only strain
gauges as an input. They also demonstrated the applicability of neural networks to
reconstruct loads at different stations from the ones where the loads were located
during training. Wada and Sugimoto compared a Feed-forward Neural Network
(FFN) and a structural based model for the the prediction of distributed aerody-
namic loads from discrete strains measures [75]. They applied the two methods
to a cantilevered beam and studied the accuracy of the methods and the stability
with respect to the number of available strain information. The FFN proves to
outperform the structural based model when a reduction in the number of sen-
sors occurs. On the other hand the structural based model results more reliable
when the load distribution is highly different from the distribution used during the
training of the network. Cooper et al. [76] used data generated from a calibrated
Finite Elements model of a wing rib to train a FFN in order to establish a relation
between the strains and static loads applied to the test article . The FFN is trained
using the Lavemberg-Marquard algorithm. The network is then used to predict the
load experimentally applied during a static test on the real rib. The experiment
shows good correlation between the loads computed from the strains data and the
measured ones. Recently, in [77], Niessen et al. propose the use of ANN for the
static load calibration as an alternative to the standard multiple linear regression
techniques. They use a FFN, trained with Levenberg-Marquardt algorithm, for
the static strain-load calibration of a PC-9/A trainer aircraft. The neural network
shows a smaller calibration error than the multiple linear regression models for
a all the considered load components. In [78] they extend the application of the
ground-calibrated neural network to the in-flight loads reconstruction. In this case
the network shows poor accuracy in the evaluation of loads outside of the original
training range, where extrapolation is needed.

To summarize the current state-of-the-art, a large number of research efforts
within this space surround the use of standard ANN or regression based models
for “black–box” predictive capabilities with generally good success. Both linear
regression models and ANN architectures come with a broad landscape of functional
parameters, variations in model adaptation, numerical optimization schemes, loss
functions, etc., hence, generally only one or two model variations are explored in any
given communication. As a result, there is a clear requirement for a contribution
to the body-of-knowledge that consolidates the extensive range of ANN and linear
regression model variants, including the vast landscape of internal functionality
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variations, under a single benchmark aircraft loads monitoring problem.

2.2.2 Model based loads reconstruction
The model based loads reconstruction methods are mainly focused on the identi-

fication of the external loads. In fact, the knowledge of the structural model allows
the determination of the internal loads also from the external ones. Moreover,
within the aerospace field, the research is mainly focused on the reconstruction
of the pressure distribution resulting from a continuously distributed aerodynamic
load. Shkarayev et al. [79] developed a method based on the parametric ap-
proximation of the aerodynamic loading. This method requires the formulation
of the unknown pressure distribution as a linear combination of known pressure
distributions multiplied by unknown coefficients. The coefficients are computed
by studying the strain fields caused by each known pressure distribution and by
fitting, in a least-square sense, the linear combination of these strain fields to the
discrete measured strains. The method proved to be really accurate on the iden-
tification of two pressure distributions on a rectangular wing box, but it requires
the a priori definition of a pressure distribution function as close as possible to the
actually applied one. Following the same approach, Cameron et al. extended the
method by adopting single Fourier cosine terms [80] and double Fourier series [81]
to parametrize different two-variables pressure distributions over a square plate. In
[82], Airoldi et al. parametrized the complex external loads acting on a composite
spar with a set of concentrated loads. They used a least-square approach to identify
the parametrized load set from discrete strains. They also used the reconstructed
load to carry on a direct FEM analysis for the evaluation of the strain and of the
displacement field. The study proved that, also in the case where the parametrized
loads were poorly identified, the strain field could be accurately reconstructed. The
main focus of the paper was on the accuracy of the reconstructed strains distribu-
tion and on how the strain sensors could be distributed on the structure. In [83],
Nakamura et al. proposed a pressure distribution identification technique based on
the discretization of the pressure field with Finite Elements. Triangular elements
are used to discretize the spatial domain of a flat wing-shaped plate, where the
pressure is applied. The pressure field is interpolated from its unknown nodal val-
ues using spatial shape functions. The unknown nodal values of the pressure are
computed by fitting the strain field caused by each nodal value of the pressure to
the discrete measured strains. This method does not need any a priori knowledge
of the form of the unknown pressure distribution. In fact, when the method has
been compared to a Neural Network based approach in [84], it has proven to be
more effective when the unknown pressure form was different from the ones that
the network was trained with.

Although the literature review shows a significant effort surrounding the devel-
opment of the shape sensing and loads reconstruction methods, the most crucial
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aspect that is missing in the existing literature is the realisation of an integrated
framework that can allow the simultaneous reconstruction of the loads and of the
displacement field from the same measured quantities.
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Chapter 3

Shape sensing methods

In this chapter, the shape sensing methods, as they have been used throughout
this research project, are described in details. In particular, the general formula-
tion of the Modal Method and the Ko’s Displacement theory for beam-like
structures, with the most recent development that this method has witnessed, are
presented. Moreover, the inverse Finite Element Method is introduced and a
novel approach for the integration of the strain field over the area of the recently
introduced inverse quad element is proposed. This method has been also expanded
to reconstruct large displacements, therefore, the incremental formulation of the
method, designed to face this challenge, is also presented.

3.1 Modal Method
The modal method is a shape sensing technique based on the expression of

the displacement field trough known spacial basis functions and unknown weight
coefficients. The method uses the modal shape as basis function and computes the
unknown weights by fitting the strain field to the measured discrete strains. The
detailed formulation of the method, as firstly introduced by Foss and Haugse [26],
is now described. Assuming that a FE discretization of the displacement field is
adopted, the displacement and the strain field can be expressed, trough the use of
classical modal transformation, in terms of the M modal coordinates q

w = Φd q (3.1)
ε = Φs q (3.2)

where wD×1 is the nodal degrees-of-freedom (DOFs) vector and εS×1 is the
strains vector. The modal matrix [Φd]D×M is constituted by M columns (the i-th
column being the i-th modal eigenvector of the displacement degrees-of-freedom).
The modal matrix [Φs]S×M is also constituted by M columns (the i-th column
being the i-th set of strains corresponding to the i-th mode shape of the FE model
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of the structure). The inversion of 3.2 leads to the computation of the modal
coordinates in terms of the strains

q = Φ−1
s ε (3.3)

and by substituting 3.3 into 3.1, the formulation of the DOFs in terms of the strains
is easily obtained:

w = Φd Φ
−1
s ε (3.4)

The inversion of Φs is possible if the matrix is square and consequently this
formulation is valid for S = M . The number of strains and the number of computed
modes are generally different. Moreover, the method is based on the computation
of the displacement field from discrete strain measures. Therefore, it is necessary
to substitute ε with the vector of the Sm discretely measured strain components
εm

Sm×1. In addition, a finite number of retained modes, Mr, has to be selected. The
modal matrix Φs is modified accordingly, by retaining the rows correspondent to
the actually measured strain components and the columns relative to the retained
modes, thus obtaining [Φm

sr]Sm×Mr . The modal matrix Φd is also modified by only
selecting the columns relative to the selected modes, thus obtaining [Φm

dr]D×Mr .
The Eq. 3.3 can be generalized for the cases where Sm /= Mr, by means of the
Moore-Penrose pseudo inverse matrix formulation, Φm

s
+ [85]. The substitution of

this generalized inverse matrix formulation into 3.3 and 3.4 leads to the general
formulation that allows the computation of the DOFs of the structure from the
discretely measured strains, using the modal characteristics of the structure:

w = Φdr Φ
m
sr

+ εm (3.5)
In practical applications, the most common scenario is the one where the num-

ber of measured strain components is grater than the number of selected modes and,
consequently, Sm > Mr. This implies that Eq. 3.2 usually describes and overde-
termined system of linear equations and that the generalized inverse formulation of
Φm

sr is the following:

Φm
s

+ = (Φsr
TΦsr)−1Φsr

T if Sm > Mr (3.6)
The substitution of 3.6 into Eq. 3.3 represents the least-square solution of the

overdetermined system of linear equation, thus allowing the computation of the
modal coordinates that best-fit, in a least-square sense, the strain field. In the
end, the most common formulation of the Modal Method, for Sm > Mr, is easily
obtained substituting Eq. 3.6 into Eq. 3.5:

w = Φdr (Φsr
TΦsr)−1Φsr

T εm if Sm > Mr (3.7)
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3.1.1 Modal selection criterion
The Modal Method’s formulation requires the computation of the modal char-

acteristics of the structure. Moreover, a finite number of modes and relative mode
shapes need to be selected, so that the deformed shape investigated by the method
could be represented by the combination of the retained modes shapes.

Following the procedure described by Bogert et al. [24], it is possible to cal-
culate the least-square fit of the modal coordinates to the static solution with a
limited number of retained modes (Mr) and consequently non-squared modal ma-
trix, [Φdr]D×Mr . Pseudo-inverting Φdr in Eq. 3.1, in the most common condition
where D > Mr, gives the possibility to compute the approximated modal coordi-
nates qr that can best represent, in a least-square sense, the static deformed shape
w using a limited number of modes:

qr = (ΦT
drΦdr)−1ΦT

dr w (3.8)
Using the least-square approximated modal coordinates qr in Eq. 3.1, it is

possible to compute the approximated modal representation of the static solution,
wr, using only the retained modes:

wr = Φdr qr (3.9)
This matrix expression can be written as the summation of the contribution of

each mode:

wr =
Mr∑︂
i=1

Φdri
qri

(3.10)

where Φdri
is the column of the Φdr matrix relative to the the i-th mode shape and

qri
is the corresponding i-th modal coordinate.
Therefore, the contribution of the i-th mode shape to the representation of the

displacement field is:

wri
= Φdri

qri
(3.11)

and consequently, the strain energy associated with this i-th contribution to the
displacement field is:

Eri
= 1

2w
T
ri
Kwri

(3.12)

where K is the stiffness matrix.
Substituting Eq. 3.11 into Eq. 3.12 yields to:

Eri
= 1

2 qT
ri
ΦT

dri
KΦdri

qri
(3.13)
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If the modal shapes are then normalized with respect to mass matrix:

ΦT
dri
KΦdri

= ω2
i (3.14)

where ωi is the natural angular frequency associated to the i-th mode, Eq. 3.13
becomes:

Eri
= 1

2ω2
i q2

ri
(3.15)

On the other hand, the total strain energy due to the static deformation is:

E = 1
2w

TKw (3.16)

The comparison of the i-th contribution to the total strain energy and the total
strain energy:

Eri

E
(3.17)

allows the quantification of the amount of the static deformation that the i-th
mode is able to represent, thus allowing the selection of the modes that can most
accurately reconstruct the investigated static deformation. To apply this selection
criterion, the investigated static deformation has to be known a-priori to compute
E.

3.2 Ko’s Displacement theory
The Ko’s Displacement [19] theory is a shape sensing method for beam-like

structures. In fact, it is based on the Bernoulli-Euler’s beam formulation. According
to this beam theory, the curvature of the beam is expressed by the second derivative
of the deflection w with respect to the axial coordinate of the beam. The curvature
along the axis of the beam is related to the axial strain measured on top or bottom
surfaces of the beam by the following expression:

w,pp(p) = −ε(p)/z (3.18)
where z is the distance between the neutral axis and the location where the

strain is computed and ε is the strain measured along the p direction (Figure 3.1).
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Figure 3.1: Ko’s Displacement theory - Geometry and sensors’ location.

If N + 1 strain measures are located along p at p = p0, p1, ... , pN (Figure 3.1),
respectively, and the strain is assumed to be linear within two consecutive strain
measures, a function of ε in terms of the axial coordinate of the beam is easily
obtained:

ε(p) = εi−1 + (εi − εi−1)
(pi − pi−1)

(p − pi−1), pi−1 ≤ p ≤ pi (i = 1, 2, ...N) (3.19)

Eq. 3.19 can be substituted into Eq. 3.18 and, under the assumption that the
distance of the strain measures from the neutral axis of the beam remains constant
along p (z = h), the curvature can be integrated two times with respect to p, thus
providing a formulation of the deflection of the beam in terms of the discretely
measured N + 1 strains [63]:

wi = − 1
6h

⎡⎣ i∑︂
j=1

(2εj−1 + εj)(pj − pj−1)2+

+ 3
i−1∑︂
k=1

(εk−1 + εk)(pk − pk−1)(pi − pk)
⎤⎦ (i = 1, 2, ..., N)

(3.20)

This expression is obtained by imposing the clamping boundary conditions (w =
0; w,p = 0) to the section of the beam located at p = p0. This configuration is the
one that is more relevant for the study of wing structures, that resemble a clamped
beam. In general, other formulations, considering different boundary conditions
or a varying distance of the strain measures from the neutral axis have also been
derived [19]. All the derived formulations, as the one reported here, are able to
only compute the deflection of the beam at the specific locations where the axial
strains are measured.

3.2.1 Modal expansion
To overcome the limitations on the displacements that the Ko’s Displacement

theory is able to reconstruct, a modal expansion approach has been developed by
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Pak [53]. According to this procedure, the displacements along the strain sensing
line are computed using the classic Ko’s Displacement theory described in the
previous section. These displacements are then used in a second analysis step
to compute the whole displacement field of the structure, using only the axial
strain measurements adopted in the previous step. The deflections reconstructed
during the first step are defined as master degrees of freedom, wm and are used to
derive the other degrees of freedom, that are called slave degrees of freedom, ws.
The expansion from the master to slave degrees of freedom is obtained through
the use of the modal shapes of the structure, according to the System Equivalent
Reduction Expansion Process (SEREP) [54]. In fact, the master and slave DOFs
can be expressed in terms of the modal shapes and the modal coordinates through
Eq. 3.1:

wm = Φdm qr (3.21a)
ws = Φds qr (3.21b)

where [Φdm]Dm×Mr and [Φds]Ds×Mr are the modal matrices relative to the master
and slave DOFs, respectively and qrMr×1 is the vector of the modal coordinates.
The pseudo-inversion of Eq. 3.21a, for the most common case scenario, where the
number of master DOFs, Dm, is higher than the number of retained modes, Mr,
gives:

qr = (ΦT
dmΦdm)−1ΦT

dm wm (3.22)
that, substituted into Eq. 3.21b, allows the computation of the slave DOFs in

terms of the master ones and the modal shapes of the structure:

ws = Φds (ΦT
dmΦdm)−1ΦT

dm wm (3.23)
This expression allows the expansion of the displacements calculated with the

Ko’s Displacement theory to the reconstruction of the whole displacement field. As
can be noticed, this procedure requires the computation and the selection of the
modal shapes that can best represent the investigated static deformation. There-
fore, the selection criterion, illustrated for the Modal Method in section 3.1.1, can
be also applied for this method. In the remaining of thesis, when referencing to
Ko’s Displacement theory, this extended formulation is considered.

3.3 Inverse Finite Element Method
The inverse Finite Element Method (iFEM) is a shape sensing method based

on the discretization of the structural domain with Finite Elements [57]. As for
the direct Finite Element method, the displacement field is expressed in terms of
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the kinematic variables according to a specific structural model. In this work, only
thin-walled structures are analysed and therefore the structural model considered
has been the plate theory. Specifically, the First Order Shear Deformation Theory
(FSDT) has been adopted for all the involved applications.

𝑥

𝑦𝑧

𝒖

𝒗
𝒘

𝜃(

𝜃)

𝜃*

2ℎ

Figure 3.2: Plate notation.

Following the notation reported in Figure 3.2, the FSDT model of the displace-
ment field of a plate can be expressed through the following equations:

ux(x, y, z) ≡ ux = u + zθy (3.24a)
uy(x, y, z) ≡ uy = v − zθx (3.24b)
uz(x, y, z) ≡ uz = w (3.24c)

where ux, uy, uz are the displacement’s components along the coordinate axes
(x, y, z), u and v are the plate mid-surface in-plane displacements, w is the trans-
verse deflection, θx and θy are the bending rotations. As a consequence, the strain
field, derived from this formulation is:

e = [u,x, v,y, v,x + u,y]T = [ε1, ε2, ε3]T (3.25a)
k = [θy,x, −θx,y, θy,y − θx,x]T = [ε4, ε5, ε6]T (3.25b)
g = [w,x + θy, w,y − θx]T = [ε7, ε8]T (3.25c)

where e, k and g represent the membrane strains, bending curvatures and trans-
verse shear strains of the plate, respectively.

Once the kinematic model is established, the domain is discretized using FE and
the displacement field inside each element is interpolated using shape functions:

[u, v, w, θx, θy]T = Nue (3.26)
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where N is the shape functions matrix and ue is:

ue = [ue
1 ue

2 ... ue
S]T

ue
i = [ui vi wi θxi θyi]T (i = 1,2, ..., S)

(3.27)

ue
i is the vector of the DOFs relative to the i-th node of the element and S is the

number of the element’s nodes. N and S depend on the chosen element formulation
and will be described in details in the following sections. As a consequence, the i-th
strain component defined in Eq. 3.25 can also be expressed in terms of the nodal
values of the displacements and the spatial derivatives of the shape functions:

εk(ue) = Bkue (k = 1, 2, ..., 8) (3.28)
where Bk is the matrix containing the derivatives of the shape functions related to
the k-th strain measure.

The iFEM is based on the minimization of the error between the strain field,
expressed in terms of the nodal displacements of the discretized structural domain
(Eq. 3.28), and the strain field actually measured on the structure at some discrete
locations. This error is expressed through the following weighted functional:

Ψe(ue) =
8∑︂

k=1
λe

kwe
k

∫︂∫︂
Ae

(εk(ue) − εε
k)2dxdy (3.29)

This functional takes into account for the eight strain components defined in
Eqs. 3.25. The superscript ε denotes an experimentally measured value. The argu-
ment of the integral over the element’s area, Ae, is the squared difference between
the experimentally evaluated strain measure, εε

k, and its analytical counterpart,
εk(ue), depending on the element nodal DOFs. In the case of sparse strain sensors,
the absence of the k-th strain measure within an element is taken into account by
setting the experimental strain measure to zero and by setting the penalization
factor λe

k to a small value (10−4, 10−5, 10−6). Otherwise, if the k-th strain measure
has been experimentally evaluated in the element, the related λe

k is set to be equal
to 1. The we

k are dimensional coefficients required to guarantee the physical units
consistency of Eq. (3.29). They are set as follows: we

k = 1 for k = 1, 2, 3, 7, 8 and
we

k = (2h)2 for k = 4, 5, 6, where h is the half-thickness of the element.
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Figure 3.3: Strain measure.

The k-th integral in Eq. 3.29 is numerically computed using the Gaussian
quadrature. Therefore, it is transformed into a summation of the integrand evalu-
ated over the n × n Gauss points:

∫︂∫︂
Ae

(εk(ue) − εε
k)2dxdy =

n×n∑︂
g=1

J(g)ωg(εk(g)(ue) − εε
k(g))2 (k = 1, 2, ..., 8) (3.30)

where ωg are the quadrature weights, J(g) is the determinant of the Jacobian of
the transformation from the physical coordinates to the natural ones of the element
computed in the g-th quadrature point. The subscript g denotes the computation
of the quantity in the g-th quadrature point.

The first six strain measures that appear in Eqs. 3.29 and 3.30 can be easily
computed from experimentally measured strains on the bottom and top surfaces
of the plate (Figure 3.3). In fact, at a generic i-th location, the membrane strains,
eε

(g) and the bending curvatures kε
(g) can be evaluated as follows:

eε
(g) =

⎧⎪⎨⎪⎩
ε1
ε2
ε3

⎫⎪⎬⎪⎭
(g)

= 1
2

⎧⎪⎨⎪⎩
ε+

xx + ε−
xx

ε+
yy + ε−

yy

γ+
xy + γ−

xy

⎫⎪⎬⎪⎭
(g)

(3.31a)

kε
(g) =

⎧⎪⎨⎪⎩
ε4
ε5
ε6

⎫⎪⎬⎪⎭
(g)

= 1
2h

⎧⎪⎨⎪⎩
ε+

xx − ε−
xx

ε+
yy − ε−

yy

γ+
xy − γ−

xy

⎫⎪⎬⎪⎭
(g)

(3.31b)

On the other hand, since the transverse shear strains are not measurable, the
λe

7,8 are always set to a small value and the εε
7,8 are equal to 0, in the functional.

The procedure is completed with the minimization of the error functional in
(3.29) with respect to the DOFs, thus leading to a system of linear equations that
can be solved to find the nodal DOFs of the element:

∂Ψe(ue)
∂ue

= leue − f e = 0 (3.32a)

ue = le−1f e (3.32b)
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where:

le =
8∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgBT
k(g)Bk(g)] (3.33a)

f e =
6∑︂

k=1

n×n∑︂
g=1

[J(g)λe
kwe

kωgBT
k(g)ε

ε
k(g)] (3.33b)

The subscript g, related to the Bk matrices, denotes the computation of the matrix
in the g-th Gauss point. The summation in Eq. 3.33b is only extended to the first
six strain components that are measurable on the plate, being εε

7,8 always equal to
0.

The extension of the procedure to all the elements of the domain, trough the
assembly process, leads to the system of linear equations for the global DOFs of
the structure, U:

U = L−1F (3.34)
where L is a matrix depending on the shape functions and strain-sensor locations,
whereas F is a vector incorporating the measured strains. The matrix L is a
well-conditioned square matrix that, upon enforcement of the displacement bound-
ary conditions, can be inverted. Assuming that the strain-sensor locations is not
changed, the inversion of L is performed only once whereas the vector F needs to be
updated at each strain-data acquisition increment. Since only strain-displacement
relations are invoked in the formulation, the method does not require the knowl-
edge of the material properties or the applied loads. Thus, it is applicable for
both static and dynamic loading conditions, without requiring inertial or damping
material properties.

3.3.1 Tria formulation
The triangular shell elements are the ones that have been firstly developed for

the iFEM formulation. In fact, these elements presents some characteristic that
facilitate the computation of the required matrices with only one strain measure
within the element, as it will be explained in the following.

The triangular element based on the FSDT, or Mindlin plate theory, is denoted
as iMIN3 [49]. The formulation of the element is obtained by imposing that the
number of nodes of the element, S, is equal to 3 and defining the shape func-
tions matrix in Eq. 3.26. The displacement field, within the element, is expressed
trough C0 continuous shape functions that interpolate the five nodal values of the
displacement in each node, as they are shown in Figure 3.4.
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Figure 3.4: Triangular shell element (iMIN3).

Particularly, an anisoparametric interpolation is used. The deflection, w, is
interpolated by a quadratic polynomial and the other four variables are interpolated
linearly. Therefore, if the shape function matrix is written as follows:

N = [N1 N2 N3] (3.35)
then, the Ni matrices are:

Ni =

⎡⎢⎢⎢⎢⎢⎢⎣
Li 0 0 0 0
0 Li 0 0 0
0 0 Li L2i L1i

0 0 0 Li 0
0 0 0 0 Li

⎤⎥⎥⎥⎥⎥⎥⎦ (i = 1,2,3) (3.36)

where, Li (i = 1,2,3) are the linear interpolation functions represented by the area-
parametric coordinates of the triangle, whereas L1i, L2i (i = 1,2,3) are the following
quadratic shape functions:

L1i = Li

2 (alLm − amLl) L2i = Li

2 (bmLl − blLm)

ak = (xm − xl) bk = (yl − ym)
(3.37)

the xm,l and ym,l being the x and y coordinate of the (m,l)-th node of the triangle.
The subscripts are obtained by the cyclic permutation of k = 1, 2, 3, l = 2, 3, 1
and m = 3, 1, 2.

From N is easy to compute the eight Bk matrices by differentiating the shape
functions, according to Eqs. 3.25. Using the same notation adopted for the shape
function matrix, the Bk becomes:

Bk = [B1
k B2

k B3
k] (3.38)
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and, consequently, theB i
k matrices can be expressed as it follows:

B i
1 = [ L i;x 0 0 0 0]

B i
2 = [0 L i;y 0 0 0]

B i
3 = [ L i;y L i;x 0 0 0]

B i
4 = [0 0 0 0 L i;x ]

B i
5 = [0 0 0 � L i;y 0]

B i
6 = [0 0 0 � L i;x L i;y ]

B i
7 = [0 0 L i;x L2i;x (L1i;x + L i )]

B i
8 = [0 0 L i;y (L2i;y � L i ) L1i;y ] (i = 1; 2; 3)

(3.39)

The derivatives of the linear functionsL i are constant over the area of the
triangle. Moreover, J (g), for triangular element is constant and equal to the area
of the triangle, Ae. Therefore, the computation of the integral in 3.30 and the
consequent processing of the matricesle and f e can be easily obtained. In fact, the
�rst six strain components, that are the ones which are measurable, are constant
over the element's area. The integrals relative to these components can be simply
computed by multiplying the integrand by the area of the triangle. The matrices
le and f e are thus reduced to:

le =
6X

k=1

Ae[� e
kwe

kB T
k B k ] +

8X

k=7

Ae
n� nX

g=1

[� e
kwe

k ! gB T
k(g)B k(g) ] (3.40a)

f e =
6X

k=1

Ae[� e
kwe

kB T
k " "

k(centroid ) ] (3.40b)

The subscript (centroid) denotes the sensing of the experimentally measured strain
in the centroid of the element. It is important to notice that, since the measurable
strain �eld is constant over the area of the triangle, this triangular element only
requires one strain measure within an element to computef e. The unique exper-
imentally measured strain is usually located in the centroid of the element, where
the analytical evaluation of the strain is more accurate. Also in this case,we

k = 1
for k = 1; 2; 3; 7; 8 and we

k = (2 h)2 for k = 4; 5; 6, whereh is the half-thickness of
the element. � e

k is set to be equal to 1 when the related k-th strain component is
actually measured on the element, whereas it is set to a small value if the measure
is not available.

3.3.2 Quad formulation

The quadrilateral element based on the FSDT, de�ned as IQS4, has been devel-
oped in [58]. The formulation of this element introduced a higher level of complex-
ity with respect to the integrations required by the iFEM. Moreover, this element
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introduced the drilling degree of freedom [86],� z, and therefore, the six nodal dis-
placements for each node are the ones presented in Figure 3.5.

Figure 3.5: Quadrilateral shell element (iQS4).

As for the triangular element, the formulation uses an anisoparametric interpo-
lation of the displacement �eld, selecting linear(N i ) and parabolic(L i ; M i ) shape
functions. Once again, the shape function matrix can be expressed in the form:

N = [ N 1 N 2 N 3 N 4] (3.41)

where:

N i =

2

6
6
6
6
6
6
6
6
4

N i 0 0 0 0 L i

0 N i 0 0 0 M i

0 0 N i � L i � M i 0
0 0 0 N i 0 0
0 0 0 0 N i 0
0 0 0 0 0 N i

3

7
7
7
7
7
7
7
7
5

(i = 1;2;3;4) (3.42)

The detailed expressions of the shape functionsN i , L i and M i , as reported in [58,
87], can be found in Appendix A.

Using the strain-displacement relation in Eq. 3.25 it is possible to compute the
B k matrices in the form:

B k = [ B 1
k B 2

k B 3
k B 4

k ] (3.43)
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where:
B i

1 = [ N i;x 0 0 0 0 L i;x ]

B i
2 = [0 N i;y 0 0 0 M i;y ]

B i
3 = [ N i;y N i;x 0 0 0 (L i;y + M i;x )]

B i
4 = [0 0 0 0 N i;x 0]

B i
5 = [0 0 0 � N i;y 0 0]

B i
6 = [0 0 0 � N i;x N i;y 0]

B i
7 = [0 0 N i;x � L i;x (� M i;x + N i ) 0]

B i
8 = [0 0 N i;y (� L i;y � N i ) � M i;y 0] (i = 1;2;3;4)

(3.44)

In this case, none of the eight strain component is constant over the element's
area. Therefore, the integration in Eq. 3.30, and the consequent computation of
le and f e, can not be simpli�ed. They remain the same expressed in Eqs. 3.33.
Theoretically, the construction off e requires the knowledge of the k-th strain mea-
sure in everyn � n Gauss point of a sensorized element. In previous works [58,
88, 12], to avoid the excessive number of strain sensors required by the integration,
the same strain measure, located in an arbitrary location within the the element
(" "

k(element )), has been associated to all the quadrature points, thus obtaining the
following formulation:

le =
8X

k=1

n� nX

g=1

[J (g)� e
kwe

k ! gB T
k(g)B k(g) ] (3.45a)

f e =
6X

k=1

n� nX

g=1

[J (g)� e
kwe

k ! gB T
k(g)"

"
k(element ) ] (3.45b)

In this work, a novel integration scheme is proposed, to increase the accuracy
in the attribution of the strain measure to a speci�c location within the element,
namely the centroid of the quad. The procedure is inspired by the same penalization
approach adopted in the formulation of the weighted functional. Using an odd
number of Gauss points, there is always a quadrature point located in the centroid
of the element. Therefore, another penalization factor,� g is introduced. This
weight is set to 1 for the Gauss point that is located in the centroid of the element,
where the strain measure is actually extracted, whereas is set to a small value for
the remaining points of the quadrature. The formulation of the matrices is then
modi�ed as it follows:
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le =
8X

k=1

n� nX

g=1

[J (g)� e
kwe

k ! g� gB T
k(g)B k(g) ]

 
� g= centroid = 1

� g == centroid = 10� 4

!

(3.46a)

f e =
6X

k=1

n� nX

g=1

[J (g)� e
kwe

k ! g� gB T
k(g)"

"
k(centroid ) ]

 
� g= centroid = 1

� g == centroid = 10� 4

!

(3.46b)

Since the� i weights are introduced to take into account for the exact location
of the strain sensors, they are adopted only when a measure is present within
the element. Therefore, fork = 7; 8 and for elements without sensors, only the
penalization strategy introduced by� e

k is adopted.

3.3.3 Incremental formulation

To extend the capabilities of the iFEM, in this work, an incremental formulation
of the method has been developed to allow the reconstruction of large displace-
ments. This procedure is inspired by the standard incremental procedures used for
geometrically non-linear analysis of the direct FEM. If the load (P), that induces
the investigated large displacements and the consequent strains, is divided intoN
increments, the standard iFEM procedure can be applied for each load increment.

Figure 3.6: Incremental iFEM.
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Particularly, the following procedure, schematized in Figure 3.6, is proposed:

ˆ Starting from the undeformed structure, the load is divided into N load in-
crements and for each one of them the strains' increments are also computed.

ˆ For i = 1 the iFEM is applied on the undeformed mesh, using the strains'
increment due to theP1 load increment. The mesh is then updated by adding
the reconstructed nodal displacements to the undeformed one.

ˆ The i-th step, for (i = 2;3; :::; N ), is performed applying the standard iFEM
procedure to the updated mesh from the previous step (i = i � 1) and con-
sidering the strains' increment relative to the i-th load's increment. The
reconstructed displacements are then used to update the mesh for the next
step (i = i + 1).

ˆ The orientations of the measured strains are updated together with the mesh
in every step, in order to be aligned with the updated geometry.

ˆ The above-stated incremental procedure is repeated until the strain history
is complete.
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Chapter 4

Numerical shape sensing

The shape sensing methods described in the previous chapter are now numeri-
cally applied to di�erent test cases. In particular, the proposed integration scheme
for the quadrilateral iFEM elements is validated on the benchmark problem of a
�at plate and its performances are compared with the ones from the previously
developed integration procedure. Once the formulation is validated, the new iFEM
quad formulation, the tria iFEM, the Modal Method and the Ko's Displacement's
theory are all compared on the shape reconstruction of a composite Wing Box sub-
ject to torsion and bending deformations. The comparison involves the study of
the optimal sensor's con�guration for each method and the evaluation of the pros
and cons that each method shows for the considered application. The shape sens-
ing methods are also tested against the uncertainty of the inputs, related to real
experimental scenarios. Finally, the proposed incremental iFEM is also validated
on the sensing of a wing-shaped plate undergoing large displacements.

4.1 Preliminary study on the novel inverse QUAD
element

The �rst study on the numerical application of the shape sensing methods in-
volves the validation of the proposed inverse quad element's formulation. The new
integration scheme of the strain �eld over the element's area, based on the penal-
ization of the contribution from the gauss points where the strain is not measured
(Section 3.3.2), is tested against the previous formulation that attributes the same
value of the strain to all the gauss point within the element, without any penal-
ization [58]. The two iFEM elements are compared on a benchmark problem. A
thin plate is used to test the accuracy in the reconstruction of the in-plane and
transverse displacements, when the plate is subject to an in-plane shear load or a
transverse load, respectively.
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Figure 4.1: Plate - Benchmark plate for the validation of the novel integration
scheme of the iFEM quad element.

The material properties and the geometry of the plate are illustrated in Figure
4.1, whereE is the Young's Modulus,� is the Poisson's ratio andt is the thickness of
the plate. The plate is clamped on the left edge, at (y = 0), and two load cases are
considered on the left edge, at (y = L). The �rst load case, designed to validate the
membrane response of the new formulation, presents an in-plane shear distributed
load, Px , applied on the left edge. The load and its intensity are reported in Figure
4.1. The second load case, created to test the out-of-plane bending response of the
element, is constituted by a nodal force,Fz, applied in the mid point of the right
edge and directed along the negative direction of thez axis, as illustrated in Figure
4.1. For both the load cases the same inverse mesh and the same strain sensors'
con�guration are used. The iFEM mesh is constituted by 64 inverse quad elements
and 85 nodes. Each element is sensorized with a strain rosette, located in the
centroid, that measures the" xx , " yy and 
 xy strain components on the top (+) and
bottom (-) surface of the plate. The inverse mesh and the sensors' con�guration
are shown in Figure 4.2.
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