
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Bosonic and fermionic representations of endomorphisms of exterior algebras / Gatto, Letterio; Behzad, Ommolbanin. -
In: FUNDAMENTA MATHEMATICAE. - ISSN 0016-2736. - ELETTRONICO. - 256:(2021), pp. 307-331. [10.4064/fm9-12-
2020]

Original

Bosonic and fermionic representations of endomorphisms of exterior algebras

Publisher:

Published
DOI:10.4064/fm9-12-2020

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2934530 since: 2022-04-22T12:39:49Z

POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN



Bosonic and fermionic representations of endomorphisms of
exterior algebras.
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Abstract. We describe the fermionic and bosonic Fock representation of endomor-
phisms of the exterior algebra of a Q- vector space of infinite countable dimension. We
achieve our goal by exploiting the extension of certain Schubert derivations, originally
defined for exterior algebras only, to the fermionic Fock space.
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Introduction

0.1 The Goal. Let B := Q[x] be the polynomial ring in the infinitely many indeterminates x :=
(x1, x2, . . .) and B(ξ) := B ⊗Q Q[ξ−1, ξ], where ξ is one further indeterminate over Q. The purpose of
this paper is to describe B(ξ), which we refer to as the bosonic Fock space, as a (product of) vertex
operator representation of the Lie superalgebra

gl(
∧
V) ∼=

∧
V ⊗

∧
V∗,

where V :=
⊕

i∈ZQ · bi is a Q-vector space, with basis b := (bi)i∈Z, parametrised by the integers, and
V ∗ :=

⊕
j∈ZQβj is its restricted dual, with basis β := (βj)j∈Z, where βj(bi) = δij. Our goal is achieved

in our Theorem 3.6, already anticipated at the end of this introduction. It generalises, and further
enhances, a classical result which, for convenience, we shall refer to as DJKM representation of gl(V)
(after Date, Jimbo, Kashiwara and Miwa). The latter describes the bosonic Fock space B(ξ) ⊗Q C as
a representation of the Lie algebra gl∞(C) ∼= gl(V)⊗Q C, of all the complex valued matrices (aij)i,j∈Z,
whose entries are all zero but finitely many.

0.2 Some motivations and background. The representation theory of Lie algebras of endomor-
phisms of infinite dimensional vector spaces, often phrased through the physicist’s jargon of charged
free fermions [13, p. 28] which, in down to the earth terms, are basis elements of a canonical Clifford
algebra supported on V ⊕ V∗), got a tremendous impulse from the theory of solitons, as faced by the
Sato’s japanese school of algebraic analysis. In important pioneering work on the subject [3] (see also
[11, Section 1] and [12, Theorem 6.1]), Date, Jimbo, Kashiwara and Miwa deduce a bosonic represen-
tation of the central extension a∞(C) of the Lie algebra of all complex valued matrices (aij)i,j∈Z with
finitely many nonzero diagonals. Its elegant shape remarkably involves a discrete version of the vertex
operators occurring in the Skyrme model of self-interacting meson-like fields [16]. The bosonic vertex
representation of gl∞(C) := gl∞(Q)⊗QC, as in the cited reference [14, Proposition 5.2], can be regarded
as a particular case of the DJKM’s one. Its expression is defined over the rational numbers. That is
why throughout the paper we considers our scalars in the field Q only. On one hand it is more than
enough for our purposes, because the theory could be more generally developed over the integers, like
in [10]. On the other hand, the rational field is big enough to enable the use of exponential functions to
spell our main formulas, turning easier the comparison with earlier related literature. Since gl(V) is a
Lie subalgebra of gl(

∧
V), one must expect our Theorem 3.6 generalising, and therefore recovering, as

a particular case, the DJKM representation of gl(V), as it is the case.

0.3 Generating functions of bases. The idea to compactly describe B(ξ) as a module over the Lie
algebra gl(V), amounts to a convenient phrasing of the generating function

E(z, w) =
∑
i,j∈Z

bi ⊗ βjziw−j, (1)

of the natural basis b⊗β := (bi⊗βj)i,j∈Z of V ⊗V∗. The program then consists in identifying a suitable
extension of the generating function (1) to a natural basis of gl(

∧
V). But first, we must let ta new

character coming into play.
To this end, let P denote the set of all partitions (non increasing sequences of non negative integers

all zero but finitely many). By fermionic Fock space we shall mean a Z-graded Q–vector space F :=

2



F(V) =
⊕

m∈ZFm which, like B(ξ), the bosonic one, possesses a basis [b]m+λ parametrised by Z× P .
More than that, it is essential, from our point of view, to think of F as a B(ξ)-module of rank 1
generated by [b]0 := b0 ∧ b−1 ∧ b−2 ∧ · · · , such that

ξmSλ(x)[b]0 = [b]m+λ = bm+λ1 ∧ · · · ∧ bm−r+1+λr ∧ bm−r ∧ bm−r−1 ∧ · · · , (2)

where Sλ(x) denotes the Schur polynomial associated to the partition λ and to the sequence x. Equal-
ity (2) can be understood either as a Giambelli’s formula for Schubert Calculus on infinite Grassmannian
(see [9]), or as a Jacobi-Trudy-like formula (see [5, p. 32 and 34] and also [15]). To follow more closely
the reference [14, Theorem 6.1], and being more adherent to the subject of the paper, we call (2) the
boson-fermion correspondence. Our starting point is the obvious remark that

∧
V is a (irreducible)

representation of the Lie superalgebra gl(
∧
V) of all endomorphisms vanishing at all but finitely many

basis elements of
∧
V . An explicit generating function encoding the gl(

∧
V)-module structure of

∧
V

has already been proposed in [1] (see also [2] for a finite dimensional example), where the vertex op-
erators shaping the boson-fermion correspondence spontaneously arise in all their splendour, although
in a more classical framework. In addition, as noticed in [10], little effort is needed to extend the

∧
V-

representation to F , mainly because the latter is a module over the former. This reflects in the fact
that each degree Fm of F , as formula (2) suggests, can be thought of as a semi-infinite exterior power.
Finally, one just pulls back on B(ξ) the F–representation of gl(

∧
V), invoking the boson-fermion corre-

spondence. The program still demands, however, to identify a convenient generalisation of the DJKM
generating function (1). Last, but not the least, one is left to determine explicitly its action on

∧
V .

This is the point that, as in our previous contribution, the flexible formalism of Schubert derivations
(a distinguished kind of Hasse-Schmidt derivation on an exterior algebra), extended to F , enters the
game.

0.4 To pursue our program. we use the basis of
∧
V ⊗

∧
V∗ =

⊕
k,l≥0

∧k V ⊗
∧l V∗ given by the union

of those induced on
∧k V⊗

∧l V∗ by b and β, for all k, l ≥ 0. This is quite straightforward, up to getting
aware of one main combinatorial point, i.e. that they are best parametrised by the set P of what, in
Definition 2.1, lacking of a better terminology, we called bilateral partitions. More precisely, given r ≥ 0,
we stipulate to denote by Pr the set of all r-tuples λ = (λ1, . . . , λr) ⊆ Zr, such that λ1 ≥ · · · ≥ λr. We
so have

k∧
V =

⊕
µ∈Pk

Q[b]kµ and
l∧
V∗ =

⊕
ν∈Pl

Q[β]lµ,

where
[b]kµ = bk−1+µ1 ∧ · · · ∧ bµk and [β]lν = βl−1+ν1 ∧ · · · ∧ βνl .

Then
E(zk,w

−1
l ) =

∑
µ,ν∈Pk⊗Pl

[b]kµ ⊗ [β]lνsµ(zk)sν(w−1l ), (3)

is the generating function of the distinguished basis [b]kµ ⊗ [β]lν of
∧k V ⊗

∧l V∗, where zk and w−1l
are, respectively, k-tuples (z1, . . . , zk) and l-tuples (w−11 , . . . , w−1l ) of formal variables. Abusing notation,
we have chosen to denote by the same symbols sµ(zk) and sν(w−1l ) natural extensions of the classical
Schur polynomials occurring in the theory of symmetric functions as in, e.g., [6, Section 3] and/or [4,
Section 2.2.]. The difference with the classical ones is that they are symmetric rational functions. They
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do coincide with the usual Schur symmetric polynomials whenever λ ∈ Pr = P ∩ Nr. We are now in
position to anticipate the statement of our main result.

Theorem 3.6. The (DJKM bosonic) action of E(zk,w
−1
l ) on B(ξ) is given by

E(zk,w
−1
l ) = exp

(∑
n≥1

1

n
pn(z−1k )pn(wl)

)
Γ(zk,wl), (4)

where

i) the expression pn(z±k ) and pn(w±1l ) denote the Newton powers sums symmetric polynomials, in the
variables z±1k and w±1l , i.e. more explicitly

pn(z±1k ) := z±n1 + · · ·+ z±nk and pn(w±1l ) := w±n1 + · · ·+ w±nl ;

ii) the map Γ(zk,wl) : B(ξ)→ B(ξ)Jz±1k ,w±1l K is the vertex operator

R(zk,w
−1
l )exp

(∑
n≥1

xn(pn(zk)− pn(wl))

)
exp

(∑
n≥1

pn(z−1k )− pn(w−1l )

n

∂

dxn

)
; (5)

iii) the map R(zk,w
−1
l ) : B(ξ)Jzk,w−1l K → B(ξ)Jzk,w−1l K is the unique BJzk,w−1l K-linear extension

of

ξm 7→ ξm+k−l
∏

1 ≤ i ≤ k
1 ≤ j ≤ l

zm−l+1
i

wm−l+1
j

.

The meaning of formula (5) is that if P (x, ξ) ∈ B(ξ) is any polynomial, then its “multiplication” by
[b]kµ⊗[β]lν , is the coefficient of sµ(zk)sν(w−1l ) in the expansion E(zk,w

−1
l )P (x, ξ). This may seem tricky.

However multiplying the resulting expression by the product of the two Vandermonde determinants,
∆0(xk)∆0(w

−1
l ), it is sufficient to look at the coefficient of the less intimidating monomial zk−1+µ1k · · · zµk1 ·

w−l+1−ν1
1 · · ·w−νkl .

To end up, reading formula (5) for k = l = 1, putting z1 = z and w1 = w, one has s(i)(z) = zi and
s(j)(w

−1) = w−j, for all i, j ∈ Z. By the definition of the logarithm of an invertible formal power series:

exp

(∑
n≥1

1

n

wn

zn

)
=

1

1− w

z

.

The fact that, in this case, R(z, w−1)ξm = ξm
zm

wm
, equality (4) simplifies into

E(z, w−1)|Bξm =
zm

wm
1

1− w

z

exp

(∑
n≥1

xn(zn − wn)

)
exp

(
−
∑
n≥1

z−n − w−n

n

∂

∂xn

)
, (6)

which is precisely the original DJKM formula for the bosonic representation of gl(V) (like in [14, Propo-
sition 5.2]. This may look surprising indeed, because comparing (5) with (6), it is apparent that the
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former can be obtained from the latter by simply replacing the variables z, w in (6) by the power sums of
the indeterminates (z1, . . . , zk) and (w1, . . . , wl), respectively, used to define the generating function (3).
As in our previous references [1, 9, 10], we have borrowed methods from the theory of Hasse-Schmidt
derivations on an exterior algebra, like in the book [7]. The similarity of DJKM formula with our (4),
however, makes us wonder whether there is any other argument to deduce our Theorem 3.6, bypassing
our methods.

0.5 Organisation of the paper. In the first section we recall some more or less known pre-requisites.
We revise, in particular, the construction of the fermionic Fock space following [10, Section 5], as well
as the way to extend the Schubert derivation on it. A little background on Schur polynomials, mainly
following [6] but also [14, Lecture 6], is included as well. Section 2 is devoted to carefully define the
generating function of the basis elements of

∧k V ⊗
∧l V∗, that is best suited to describe the fermionic

and bosonic representation of gl(
∧
V). In this same section the natural notion of bilateral partition is

also introduced. It is reasonable to suspect that it is somewhere hidden in pieces of less known literature.
Section 3 eventually concerns the statement and proof of our main theorem which, as announced, supplies
the expression of both the fermionic and the bosonic expression of gl(

∧
V). The two cases are treated

in a unified way, reflecting the fact inspiring the references [7, 9, 10] that there is a very little, if not any
at all, substantial difference between the two spaces. Indeed, as explained in [1], the vertex operators
occurring in the representation theory of the Heisenberg algebra, come naturally to life, exactly the
same, already at the level of multivariate Schubert derivations on exterior algebras. With no serious
need, at least for the focused purposes of our research, to cross the walls to enter into the realm of the
infinite wedge powers, as however we did in the present contribution.

1 Background and notation

1.1 We shall deal with a Q-vector space V :=
⊕

i∈ZQ · bi and its restricted dual V∗ :=
⊕

j∈ZQ · βj,
where βj ∈ HomQ(V ,Q) is the unique linear form such that βj(bi) = δji. The generating series of the
basis elements of V and V∗ are, respectively:

b(z) =
∑
i∈Z

biz
i ∈ V Jz−1, zK and β(w−1) =

∑
j∈Z

βjw
−j ∈ V ∗Jw,w−1K. (7)

1.2 Hasse-Schmidt Derivations on
∧
V. A map D(z) :

∧
V →

∧
VJzK is said to be Hasse-Schmidt

(HS) derivation on
∧
V if D(z)(u ∧ v) = D(z)u ∧ D(z)v, for all u,v ∈

∧
V . Write D(z) in the

form
∑

j≥0Djz
j, with Dj ∈ EndQ(

∧
V). Then D(z) is invertible in EndQ(

∧
V)JzK if and only if D0 is

invertible. In this case D(z) is invertible and its inverse D(z) in EndQ(
∧
V)JzK is a HS–derivation as

well.

1.3 Schubert derivations. Consider the shifts endomorphisms σ±1 ∈ gl(
∧
V) given by σ±1bj = bj±1.

By [7, Proposition 4.1.13], there exist unique HS derivations on σ±(z) :
∧
V →

∧
VJz±1K such that

σ±(z)bj =
∑
i≥0

bj±iz
±i.

Let us denote by σ±(z) their inverses in
∧
VJz±1K. Restricted to V they work as follows

σ+(z)bj = bj − bj+1z and σ−(z)bj = bj − bj−1z−1. (8)
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They are called Schubert derivations in the references [7, 9, 10].

1.4 Fermionic Fock space. We quickly summarise the definition of the fermionic Fock space bor-
rowed from [10]. Let [V ] be a copy of V (framed by square bracket to distinguish by the original V itself).
It is the Q-vector space with basis ([b]m)m∈Z. Identify [V ] with a sub-module of the tensor product∧
V ⊗Q [V ] via the map [b]m 7→ 1⊗ [b]m, seen as a left

∧
V-module. Let W be the left

∧
V–submodule

of
∧
V ⊗Q [V ] generated by all the expressions {bm ⊗ [b]m−1 − [b]m, bm ⊗ [b]m}m∈Z. In formulas:

W :=
∧
V
(
bm ⊗ [b]m−1 − [b]m

)
+
∧
V
(
bm ⊗ [b]m

)
.

where the module structure is given by u(v ⊗ [b]m) = (u ∧ v)⊗ [b]m.

1.5 Definition. The fermionic Fock space is the
∧
V- module

F := F(V) :=

∧
V ⊗Q [V ]

W
. (9)

Let
∧
V ⊗Q [V ]→ F be the canonical projection. The class of u⊗ [b]m in F will be denoted u ∧ [b]m.

Thus the equalities bm ∧ [b]m = 0 and bm ∧ [b]m−1 = [b]m hold in F . For all m ∈ Z and λ ∈ P let, by
definition

[b]m+λ := brm+λ ∧ [b]m−r = bm+λ1 ∧ bm−1+λ2 ∧ · · · ∧ bm−r+1+λr ∧ [b]m−r

where r is any positive integer such that `(λ) ≤ r, which implicitly defines brm+λ as an element of∧r V≥m−r+1, where by V≥j we understand
⊕

i≥j Q · bi. It turns out that F is a graded
∧
V-module:

F :=
⊕
m∈Z

Fm,

where
Fm :=

⊕
λ∈P

Q[b]m+λ =
⊕
r≥0

⊕
λ∈Pr

Qbrm+λ ∧ [b]m−r, (10)

is the fermionic Fock space of charge m [14, p. 36].

1.6 Proposition.

i) The equality bj ∧ [b]m = 0 holds for all j ≤ m;

ii) The image of the map
∧r V ⊗ Fm → F given by (u,v) 7→ u ∧ v is contained in Fm+r.

Proof. They are [10, Proposition 4.4 and 4.5].

1.7 Extending Schubert derivations to F . We now extend the Schubert derivations, in principle
only defined on

∧
V , on F according to [10] to which we refer to for more details. First we define their

action on elements of the form [b]m by setting:

σ−(z)[b]m = σ−(z)[b]m := [b]m, σ+(z)[b]m := σ+(z)bm ∧ [b]m−1

and
σ+(z)[b]m :=

∑
j≥0

[b]m+(1j)z
j

6



where (1j) denotes the partition with j parts equal to 1. Finally, we set

σ±(z)[b]m+λ = σ±(z)brm+λ ∧ σ±(z)[b]m−r and σ±(z)[b]m+λ = σ±(z)brm+λ ∧ σ±(z)[b]m−r. (11)

1.8 Proposition. For all m ∈ Z, Giambelli’s formula for the Schubert derivation σ+(z) holds:

[b]m+λ = det(σλj−j+i)[b]m (12)

Proof. See [10, Proposition 5.13].

We introduce now an operator on F which, in a sense, plays the role of the determinant of the shift
endomorphism σ1. We denote it by ξ. We shall understand it as the unique algebra endomorphism of∧
V such that ξ · bj = bj+1. Being an algebra homomorphism implies that

ξbm+λ = bm+1+λ

It is clearly invertible. Its inverse ξ−1 is such that ξ−1bj = bj−1. Secondly, we extend it to F as
follows:

ξ[b]m+λ = ξ(brm+λ) ∧ [b]m+1+λ, (13)

where r is any integer greater than the length of the partition λ. It is trivial to check that such a
definition does not depend on the choice of r > `(λ). So for instance

ξm
′
[b]m+λ = [b]m+m′+λ.

1.9 Bosonic Fock space. Let B := Q[x], the polynomial ring in infinitely many indeterminates
x := (x1, x2, . . .). As a Q–vector space it possesses a basis of Schur polynomials parametrised by the
set P of all partitions. Moreover, (S1(x), S2(x), . . .) generate B as a Q-algebra, because Si(x) is a
polynomial of degree i, for all i ≥ 0. If λ ∈ P one sets

Sλ(x) = det(Sλj−j+i(x)) (14)

where the sequence (S1(x), S2(x), . . .) is defined by∑
j∈Z

Sj(x)zj = exp(
∑
i≥1

xiz
i). (15)

Let B(ξ) := B⊗QQ[ξ−1, ξ] be the Q[ξ]-algebra of B-valued Laurent polynomials in ξ. We shall refer
to B(ξ) as the bosonic Fock space. It follows that

B(ξ) =
⊕
m ∈ Z,
λ ∈ P

Q · ξmSλ(x)

1.10 The space F can be endowed with a structure of free B(ξ)-module generated by [b]0 of rank one
generated by [b]0 such that ξmSλ(x)[b]0 = [b]λ, by simply declaring

ξmSi(x)[b]λ := σi[b]m+λ. (16)

In fact
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[b]m+λ = ξm[b]λ (Equation (13))

= ξm det(σλj−j+i)[b]0 (Giambelli’s formula for Schubert derivations)

= ξm det(Sλj−j+i)[b]0 (by equality (16))

= ξmSλ(x)[b]0 (Definition of Sλ(x)).

Equality (16) can be also phrased by saying that Si(x) is an eigenvalue of the Q(ξ)-linear map σi : F → F
with Fm as eigenspaces. It implies that

σ+(z)[b]m+λ = exp

(∑
i≥1

xiz
i

)
[b]m+λ, (17)

i.e., abusing terminology, exp(
∑

i≥1 xiz
i) is an eigenvalue of σ+(z).

1.11 Lemma.

i) The Schubert derivations σ±(z), σ±(z) commute with multiplication by ξ, i.e.

ξσ±(z) = σ±(z)ξ and ξσ±(z) = σ±(z)ξ; (18)

ii) by regarding the Schubert derivation σ−(z) (resp. σ−(z)) as a map B → B[z−1] by setting
(σ−(z)Sλ(x))[b]m = σ−(z)[b]m+λ (resp. (σ−(z)Sλ(x))[b]m = σ−(z)[b]m+λ, one has:

σ−(z)Si(x) = Si(x)− Si−1(x)

z
(19)

σ−(z)Si(x) =
i∑

j=0

Si−j(x)

zj
; (20)

iii) the maps σ−(z) and σ−(z) are Q(ξ)-algebra endomorphism of B(ξ). In particular

σ−(z)Sλ(x) = det(σ−(z)Sλj−j+i(x)) (21)

and
σ−(z)Sλ(x) = det(σ−(z)Sλj−j+i(x)); (22)

iv) the maps σ−(z) and σ−(z) act on B as exponential of a first order differential operators, namely:

σ−(z)Sλ(x) = exp

(∑
n≥1

1

nzn
∂

∂xn

)
Sλ(x) (23)

and

σ−(z)Sλ(x) = exp

(
−
∑
n≥1

1

nzn
∂

∂xn

)
Sλ(x). (24)
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Proof. i) First we show that the commutation holds on the exterior algebra
∧
V . This is nearly obvious,

because
σ±(z)ξbj = σ±(z)bj+1 =

∑
i≥0

bj+1±iz
±i = ξ

∑
i≥0

bj±iz
±i = ξσ±(z)bj

The same holds for σ±(z). We have

σ±(z)ξbj = σ±(z)bj+1 = bj+1 − bj+1±1z
±1 = ξ(bj − bj±1z±1) = ξ σ±(z)bj.

Secondly, the commutation rules hold for elements of the form [b]m. In fact:

σ−(z)ξ[b]m = σ−(z)[b]m+1 (Definition of ξ)

= [b]m+1 (σ−(z) acts as the identity)

= ξ[b]m = ξσ−(z)[b]m (Definition of ξ and σ−(z) acts
as the identity on [b]m)

Similarly one sees that σ−(z)ξ = ξσ−(z). The check for σ+(z) and σ+(z) works analogously as follows.

σ+(z)ξ[b]m = σ+(z)[b]m+1 (Definition of ξ)

= σ+(z)bm+1 ∧ [b]m (Definition of σ+(z)[b]m)

=
∑

i≥0 bm+1+iz
i ∧ [b]m (Definition of σ+(z)bm)

=
∑

i≥0 ξbm+i ∧ ξ[b]m−1 = ξσ+(z)[b]m

and

σ+(z)ξ[b]m = σ+(z)[b]m+1 (Definition of ξ)

=
∑

j≥0(−1)jbm+1+(1j) ∧ [b]m−jz
j (Definition of σ+(z)[b]m+1)

=
∑

j≥0(−1)jξbm+(1j) ∧ ξ[b]m−1−jz
j (Definition of multiplying by ξ)

= ξ
∑

j≥0(−1)jbm+(1j) ∧ [b]m−1−jz
j = ξσ+(z)[b]m

Let us show now that (18) holds when evaluated against a general element of F . We check for σ+(z),
the others being analogous and even easier. Let λ be any partition and r any integer such that `(λ) < r.
Then:

9



σ±(z)(ξ[b]m+λ) = σ±(z)[b]m+1+λ (definition of multiplication by ξ)

= σ±(z)(brm+1+λ ∧ [b]m+1−r) (decomposition of [b]m+1+λ)

= σ±(z)brm+1+λ ∧ σ±(z)[b]m+1−r (σ±(z) is a derivation)

= σ±(z)ξbrm+λ ∧ σ±(z)ξ[b]m−r (definition of multiplication by ξ)

= ξσ±(z)brm+λ ∧ ξσ±(z)[b]m−r (Lemma 1.11, item i))

= ξσ±(z)[b]m+λ.

The proof for the Schubert derivations σ−(z) and σ±(z) works the same.

ii) The proof of this second statement works verbatim as in [8, Proposition 5.3], where the Si(x) are
denoted by hi;

iii) In this case the check follows by combining [8, Proposition 7.1] and [8, Corollary 7.3];

iv) Recall that B(ξ) = Q(ξ)[S1(x), S2(x), . . .]. Equation (15) implies that

∂Si(x)

∂xj
= Si−j(x),

Then (19), e.g., says that

σ−(z)Si(x) =

(
1− 1

z

∂

∂x1

)
Si(x) = exp

(
−
∑
n≥1

1

nzn
∂n

∂xn1

)
Si(x) (25)

Now
∂n

∂xn1
Si(x) =

∂

∂xn
Si(x). Since Si(x) generate B as a Q-algebra and σ−(z) are algebra homomor-

phisms coinciding on generators, (24) follows. The proof of (23) is analogous, but it also follows from
inverting both members of the equality (24), obtaining

σ−(z) = exp

(∑
n≥1

1

nzn
∂

∂xn

)
.

1.12 In the sequel we will need the following observation. Suppose that φ is anyone among the
endomorphism σ±i of σ±j, for i and j arbitrary non negative integers. Suppose further that

φ[b]m+λ =
∑
µ

aµ[b]m+µ.

Then, for any m′ ∈ Z, ∑
µ

aµ[b]m+m′+µ = φ[b]m+m′+λ.

The proof is based on the definition of multiplication by ξ.∑
µ

aµ[b]m+m′+µ =
∑
µ

aµξ
m′ [b]m+µ = ξm

′∑
µ

aµ[b]m+µ

= ξm
′
φ[b]m+λ = φξm

′
[b]m+λ = φ[b]m+m′+λ.
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2 The generating functions of the bases of
∧k V and

∧l V∗

Let
∧
V =

⊕
k≥0
∧k V and

∧
V∗ =

⊕
l≥0
∧l V∗ be the exterior algebra of V and V∗ respectively. To

describe the bases of
∧k V and

∧l V∗ induced by the basis b of V and of β of V∗ (Cf. Section 1.1), we
need to explain what we shall mean by bilateral partition.

2.1 Definition. A bilateral partition of length at most r ≥ 1 is an element of the set:

Pr := {λ := (λ1, λ2, . . . , λr) ∈ Zr |λ1 ≥ λ2 ≥ · · · ≥ λr} .

Clearly, Pr := Pr ∩Nr is the set of the usual partitions of length at most r, namely the non–increasing
sequences of non–negative integers with at most r non zero parts. If i1 > · · · > ik is a decreasing
sequence of integers, there exists one and only one bilateral partition µ ∈ Pk such that ij = k− j + µj.
Therefore ([b]kµ)µ∈Pk

and ([β]lν)ν∈Pl
where:

[b]kµ = bk−1+µ1 ∧ . . . ∧ bµk and [β]lν = βl−1+ν1 ∧ . . . ∧ βνl ,

are Q-bases of
∧k V and

∧l V∗ respectively. Let zk := (z1, . . . , zk) and w−1k := (w−11 , . . . , w−1k ) be two

ordered finite sequences of formal variables. The
∧k V-valued formal power series

b(zk) ∧ · · · ∧ b(z1)

vanishes whenever zi = zj, for all 1 ≤ i < j ≤ k. Therefore it is divisible by the Vandermonde
determinant ∆0(zk) =

∏
1<≤i<j≤k(zj−zi). We then define, for all λ ∈ Pk, the extended Schur polynomial

sλ(zk)

through the equality ∑
µ∈P

[b]kµsµ(zk)∆0(zk) := b(zk) ∧ · · · ∧ b(z1), (26)

and therefore the expression

[b]k(zk) :=
∑
µ∈Pk

[b]kµsµ(zk) (27)

is a generating function of the basis elements of
∧k V induced by the given basis b of V . Similarly, a

generating function for the basis elements ([β]lν)ν∈Pl
is given by

[β]l(w−1l ) :=
∑
ν∈Pν

[β]lν · sν(w−1l ), (28)

where sν(w−1l ) is now defined, for all ν ∈ P l, via the equality∑
ν∈P

[β]lνsν(w−1l )∆0(w
−1
l ) := β(w−11 ) ∧ · · · ∧ β(w−1l ), (29)

where

∆0(w
−1
l ) =

∏
1<≤i<j≤l

(w−1j − w−1i ) =

∏
1≤i<j≤l(wi − wj)∏l

i=1w
l−1
i

. (30)

Notice the different numbering adopted for the variables z (formula (26)) and the variables w−1 (formula
(29))
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2.2 Remark. If λ ⊆ Nk, then sλ(zk) is the usual Schur symmetric polynomial in (z1, z2, . . . , zk). If
λ := (λ1, λ2, . . . , λk) ∈ Pk, with all λi < 0, then

sλ(zk) =
s−λ(z−1k )

zk−11 · · · zk−1k

. (31)

where −λ = (−λk,−λk−1, . . . ,−λ1). If λ1 > 0 and λk < 0, instead

sλk
(zk) =

s(λ1+λk,··· ,λk−1+λk,0)(zk)∏k
j=0 z

λk
j

. (32)

It is then clear that all sλ(z), where λ runs on Pk, are Q-linearly independent. The same holds true for
∆0(w

−1
l ).

2.3 Let β ∈ V∗. The contraction βy :
∧
V →

∧
V can be depicted via the following diagram:∣∣∣∣∣∣

β(br−1+λ1) β(br−2+λ2) . . . β(bλr)

br−1+λ1 br−2+λ2 . . . bλr

∣∣∣∣∣∣ (33)

to be read as follows. The scalar β(br−j+λj) is the coefficient of the element of
∧r−1 V obtained by

removing the j-th exterior factor from [b]rλ.

The contraction of
∧r V against [β]lν ∈

∧l V∗ is well defined as well. It is an element of
∧r−l V which

can be represented as (See [1]):

[β]lνy[b]rλ =

∣∣∣∣∣∣∣∣∣∣∣

βl−1+ν1(br−1+λ1) . . . βl−1+ν1(bλr)
...

. . .
...

βνl(br−1+λ1) . . . βνl(bλr)

br−1+λ1 . . . bλr

∣∣∣∣∣∣∣∣∣∣∣
(34)

to be read as follows. The Laplace-like expansion of the array (34) along the first row is an alternating
linear combination of contractions of elements of

∧k−1 V against elements of
∧l−1 V∗. Having already

set the case k = 1 in (33), we have described it completely.

2.4 Although it may be easily guessed, let us now make precise the definition of the contraction of an
element of F against an element of

∧l V∗. Giving the definition on bases elements [b]m+λ of F and [β]lν
(ν := (ν1 ≥ . . . ≥ νl) of

∧l V∗ will suffice. Let r ≥ 0 such that `(λ) ≤ r and νl ≥ m− r and define:

[β]lνy[b]m+λ := ([β]lνy[b]rm+λ) ∧ [b]m−r.

It is straightforward to see that the definition does not depend on the choice of the non-negative integer
r > `(λ).

2.5 Let
E(zk,w

−1
l ) = [b]k(zk)⊗ [β]l(w−1l ) =

∑
µ,ν

[b]kµ ⊗ [β]lνsµ(zk)sν(w−1l ), (35)

12



be the generating function of the basis of
∧k V ⊗

∧l V∗. It defines two maps

Ef (zk,w−1l ) : F → FJzk,wl, z
−1
k ,w−1l ] (36)

and

Eb(zk,w−1l ) := B(ξ)→ B(ξ)Jzk,wl, z
−1
k ,w−1l ] (37)

which we distinguish by putting a subscript in the notation and satisfying the compatibility relation
imposed by the boson-fermion correspondence. More precisely we define:

Ef (zk,w−1l )[b]m+λ := [b]k(zk) ∧ [β]l(w−1l )y[b]m+λ (38)

and (
Eb(zk,w−1l )ξmSλ(x)

)
[b]0 = Ef (zk,w−1l )[b]m+λ (39)

where we have used the notation of (27) and (29).

2.6 Products of Schubert derivations. To further elaborate the shape of (38) and (39), we need
to introduce the following new piece of notation. Let

σ+(zk) = σ+(z1) · · ·σ+(zk), σ+(zk) = σ+(z1) · · ·σ+(zk), (40)

and
σ−(wl) = σ−(w1) · · ·σ−(wl), σ−(zl) = σ−(w1) · · ·σ−(wl). (41)

Equalities (40) and (41) must be read in EndQ(
∧
V)JzkK and EndQ(

∧
V)Jw−1l K respectively. They

are multivariate HS-derivations of
∧
V in the following sense: i) they are multi-variate because are

EndQ(
∧
V) formal power series in more than one indeterminate, namely zk := (z1, . . . , zk) and w−1l :=

(w−11 , . . . , w−1l ), and ii) are HS derivations, being compatible with the wedge product:

σ±(zk)(u ∧ v) = σ±(zk)u ∧ σ±(zk)v and σ±(zk)(u ∧ v) = σ±(zk)u ∧ σ±(zk)v.

2.7 Lemma. The following commutation rule holds:

σ−(w1)σ+(w2) =

(
1− w2

w1

)
σ+(w2)σ−(w1), (42)

in EndQ(F)[w−11 , w]]

Proof. First of all we notice that

σ−(w1)σ+(w2)u = σ+(w2)σ−(w1)u, (43)

for all u ∈ V . It is sufficient to check for one basis element. One one hand

σ−(w1)σ+(w2)bj = σ−(w1)(bj − bj+1w2) =
∑
i≥0

bj−iw
−i
1 −

∑
i≥0

bj+1−iw
−i
1 w2

13



=
∑
i≥0

bj−iw
−i
1 − σ1(

∑
i≥0

bj−iw
−i
1 )w = σ+(w2)σ−(w1)bj

and (43) is proven. Now we prove that (42) holds for elements of the form [b]m. In fact

σ−(w1)σ+(w2)[b]m = σ−(w1)
(
[b]m − (bm+1 ∧ [b]m−1)w2 + (bm+1 ∧ bm ∧ [b]m−2)w

2
2 + · · ·

)
= [b]m −

(
bm+1 −

bm
w1

)
∧ [b]m−1w2 + bm+1 ∧

(
bm −

bm−1
w1

)
∧ [b]m−2)w

2
2 + · · ·

= σ+(w2)[b]m −
w2

w1

σ+(w2)[b]m =

(
1− w2

w1

)
σ+(w2)[b]m =

(
1− w2

w1

)
σ+(w2)σ−(w1)[b]m

To conclude the proof we must check it on the general basis element [b]m+λ ∈ F . One has:

σ−(w1)σ+(w2)[b]m+λ = σ−(w1)σ+(w2)([b]rm+λ ∧ [b]m−r)

= σ−(w1)σ+(w2)[b]rm+λ ∧ σ−(w1)σ+(w2)[b]m−r

= σ+(w1)σ−(w2)[b]rm+λ ∧
(

1− w2

w1

)
σ+(w2)σ−(w1)[b]m−r

=

(
1− w

w1

)
σ+(w1)σ−(w2)([b]rm+λ ∧ [b]m−r)

=

(
1− w

w1

)
σ+(w1)σ−(w2)[b]m+λ

and the Lemma is proven.

2.8 Corollary. Let wl \ w1 := (w2, . . . , wl) and w−1l \ w
−1
1 := (w−12 , . . . , w−1l ). Then

σ−(w1)σ+(wl \ w1) =
l∏

j=2

(
1− wj

w1

)
· σ+(wl \ w1)σ−(w1). (44)

Proof. Induction on l ≥ 2. Lemma 2.7 sets the case l = 2. Suppose that the property holds for all
l − 1 ≥ 2. Then

σ−(w1)σ+(wl\w1) = σ−(w1)σ+(wl−1\w1)σ−(wl)

=
l−1∏
j=2

(
1− wj

w1

)
· σ+(wl−1\w1)σ−(w1)σ+(wl)

=
l−1∏
j=2

(
1− wj

w1

)
σ+(wl−1\w1)

(
1− wl

w1

)
σ+(wl)σ−(w1)
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=
l∏

j=2

(
1− wj

w1

)
· σ+(wl\w1)σ−(w1)

because σ+(wl−1\w1)σ+(wl) = σ+(wl\w1), by definition.

2.9 Proposition. The following equality holds:

β(w−11 ) ∧ · · · ∧ β(w−1l )y[b]m+λ =
∆0(w

−1
l )∏l

j=1w
m−l+1
j

σ+(wl)σ−(wl)[b]m−l+λ. (45)

Proof. If l = 1 formula (46) reads as

β(w−11 )y[b]m+λ = w−m1 σ+(w1)σ−(w1)[b]m−1+λ

and this is precisely [10, Proposition 6.13]. Assume the formula holds for l − 1 ≥ 0. For notational
simplicity let wl\w1 := (w2, . . . , wl) and w−1l \w

−1
1 := (w−12 , . . . , w−1l ). Then

β(w−11 ) ∧ · · · ∧ β(w−1l )y[b]m+λ

= β(w−11 )y
(
β(w−12 ) · · · ∧ β(w−1l )y[b]m+λ

)
(Associativity of ”∧” )

= β(w−11 )y

(
∆0(w

−1
l \w

−1
1 )∏l

j=2w
m−l+2
j

)
σ+(wl\w1)σ−(wl\w1)[b]m−l+1+λ

= w−m+l−1
1

∆0(w
−1
l \w

−1
1 )∏l

j=2w
m−l+2
j

σ+(w1)σ−(w1)σ+(wk\w1)σ−(wk\w1)[b]m−k+λ.

Using the commutation rule (2.8) one then obtains

=
w−m+l−1

1

wl−11

(w1 − w2) · · · (w1 − wl)
∆0(w

−1
l \w

−1
1 )∏

wm+l−2
j

· σ+(wl)σ−(wl)[b]m−k+λ

=
w−m1

wl−11 w2 · · ·wl

∏(
1

wj
− 1

w1

)
∆0(w

−1
l \w

−1
1 )∏

wm+l−2
j

σ+(wl)σ−(wl)[b]m−k+λ

=
∆0(w

−1
l )∏l

j=1w
m−l+1
j

σ+(wl)σ−(wl)[b]m−k+λ,

as desired.

2.10 Corollary. The generating function (28) acts on F according to:∑
ν∈Pl

[β]lνsν(w−1l )y[b]m+λ =
l∏

j=1

w−m+l−1
j σ+(wl)σ−(wl)[b]m−l+λ. (46)

Proof. It is a consequence of equality (29) and of Proposition 2.9 up to dividing by the Vandermonde
determinant.
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2.11 Proposition. For all k ≥ 1:

b(zk) ∧ · · · ∧ b(z1) ∧ [b]m+λ =
k∏
j=1

zm+1
j ∆0(zk)σ+(zk)σ−(z−1k )[b]m+k+λ.

Proof. By induction on k ≥ 1. If k = 1, the formula reads as

b(z1) ∧ [b]m+λ = zm+1
1 σ+(z1)σ−(z1)[b]m+1+λ

and this is Proposition 6.9 in [10]. Assume the formula holds for k − 1 ≥ 0. Then,

b(zk) ∧ · · · ∧ b(z1) ∧ [b]m+λ

= b(zk) ∧ (b(zk−1) ∧ · · · ∧ b(z1) ∧ [b]m+λ) (Associativity of ”∧” )

= b(zk) ∧ zm+1
k−1 · · · z

m+1
1 σ+(zk−1)σ−(zk−1)[b]m+k−1+λ ·∆0(zk−1)

= zm+k
k zm+1

k−1 · · · z
m+1
1 ∆0(zk−1)σ+(zk)σ−(zk)σ+(zk−1)σ−(zk−1)[b]m+k+λ

= zm+k+1
k

∏k−1
j=1 z

m+1
j

∏k−1
j=1

(
1− zj

zk

)
∆0(zk−1)·

· σ+(z1)σ+(zk−1)σ−(z1)σ−(zk−1)[b]m+k−1+λ

=
zm+k+1
k

zk−1k

k−1∏
j=1

zm+1
j

k−1∏
j=1

(zk − zj)∆0(zk−1) · σ+(zk)σ−(zk)[b]m+k−1+λ

=
k∏
j=1

zm+1
j ∆0(zk)σ+(zk)σ−(zk)[b]m+k+λ

as desired.

2.12 Corollary. The generating function (26) acts on on the basis element [b]m+λ ∈ Faccording to:

∑
µ∈Pk

[b]kµsµ(zk) ∧ [b]m+λ =
k∏
j=1

zm+1
j σ+(zk)σ−(zk)[b]m+k+λ (47)

Proof. By Proposition 2.11, using expression (26), dividing by the Vandermonde ∆0(zk).

3 Fermionic and Bosonic Vertex Representation of gl(
∧
V).

3.1 Lemma. The following commutation rule holds in EndQ(F)[z−1, wK

σ−(z)σ+(w) =
(

1− w

z

)−1
σ+(w)σ−(z), (48)
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= exp

(∑
n≥0

1

n

wn

zn

)
σ+(w)σ−(z). (49)

Proof. Formula (48) is [10, Proposition 8.4, Formula (54)] and (49) uses the equality of formal power
series (1− x)−1 = exp(

∑
n≥1 x

n/n).

3.2 Proposition. Let pn(z−1k ) =
k∑
i=1

z−ni and pn(wl) =
l∑

j=1

wnj (the symmetric power sums Newton

polynomials). The following equalities holds on EndQ(ξ)B(ξ):

σ−(zk) =
k∏
j=1

σ−(zj) = exp

(
−
∑
n≥1

1

n
pn(z−1k )

∂

∂xn

)
. (50)

and

σ−(wl) =
l∏

j=1

σ−(zj) = exp

(∑
n≥1

1

n
pn(w−1l )

∂

∂xn

)
(51)

Therefore

σ−(zk)σ−(wl)[b]m+λ =

[
exp

(
−
∑
n≥1

1

n
(pn(z−1k )− pn(w−1l ))

∂

∂xn

)
ξmSλ(x)

]
[b]0. (52)

Proof. The operators∑
n≥1

1

n

1

zni

∂

∂xn
,
∑
n≥1

1

n

1

znj

∂

∂xn
,
∑
n≥1

1

n

1

wnp

∂

∂xn
,
∑
n≥1

1

n

1

wnq

∂

∂xn

commute for all choices of 1 ≤ i, j ≤ k and 1 ≤ p, q ≤ l. Then the product of their exponential is the
exponentials of their sum:

σ−(zk) =
k∏
j=1

σ−(zj) =
k∏
j=1

exp

(
−
∑
n≥

1

nznj

∂

∂xn

)

= exp

(
−
∑
n≥1

1

n

(
1

zn1
+ · · ·+ 1

znk

)
∂

∂xn

)

= exp

(
−
∑
n≥1

1

n
pn(z−1k )

∂

∂xn

)
,

which validates (50). Formula (51) is checked analogously. Formula (52) follows from (50) and (51) and

using again the fact that the operators
∑
n≥1

1

n
pn(z−1k )

∂

∂xn
and

∑
n≥1

1

n
pn(w−1l )

∂

∂xn
commute. Thus:

σ−(zk)σ−(wl) = exp

(
−
∑
n≥1

1

n
pn(z−1k )

∂

∂xn

)
exp

(∑
n≥1

1

n
pn(w−1l )

∂

∂xn

)
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= exp

(
−
∑
n≥1

1

n
(pn(z−1k )− pn(w−1l ))

∂

∂xn

)
. (53)

3.3 Proposition. The following commutation rules holds:

σ−(zk)σ+(wl) = exp

(∑
n≥1

1

n
pn(wl)pn(z−1k )

)
σ+(wl)σ−(zk). (54)

Proof. We first prove that

σ−(zk)σ+(wl) =
k∏
i=1

l∏
j=1

(
1− wj

zi

)−1
σ+(wl)σ−(zk) (55)

For k = l = 1 the formula is Proposition (3.1). Suppose it holds for k − 1 ≥ 1 and l = 1. Then

σ−(zk)σ+(w1) =
k∏
i=1

σ−(zi) · σ+(w1) (definition of σ+(zk))

=

(
1− w1

zk

)−1 k−1∏
i=1

σ−(zi)σ+(w1)σ−(zk) (first step of induction on l)

=

(
1− w1

zk

)−1 k−1∏
i=1

(
1− w1

zi

)−1
σ+(w1)

k−1∏
i=1

σ−(zi)σ−(zk) (inductive hypothesis

on k)

=
k∏
i=1

(
1− w1

zi

)−1
σ+(w1)σ−(zk) (definition of σ−(zk)).

Suppose now that (55) holds for all k ≥ 1 and l − 1 ≥ 0. Then

σ−(zk)σ+(wl) = σ−(zk) · σ+(wl)σ−(wl−1)

=
k∏
i=1

(
1− wl

zi

)−1
σ+(wl)σ−(zk)σ+(wl−1)

=
l∏

j=1

(
1− wl

zi

)−1 ∏
1 ≤ i ≤ k

1 ≤ j ≤ l − 1

(
1− wj

zi

)−1
σ+(wl)σ+(wl−1)σ−(zk)

=
∏

1 ≤ i ≤ k
1 ≤ j ≤ l

(
1− wj

zi

)−1
σ+(wl)σ−(zk),
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which is precisely (55). To phrase (55) in the form (54) one first notice that(
1− wj

zi

)−1
= exp

(∑
n≥1

1

n

wnj
zni

)
.

By a simple manipulation one sees that

∏
1 ≤ i ≤ k
1 ≤ j ≤ l

(
1− wj

zi

)−1
=

∏
1 ≤ i ≤ k
1 ≤ j ≤ l

exp

(∑
n≥1

1

n

wnj
zni

)
= exp

(∑
n≥1

1

n
pn(wl)pn(z−1k )

)

as desired.

3.4 Let Rf (zk,w
−1
l ) : F → F [z±1k ,w±1l ] defined on homogeneous elements as:

Rf (zk,w
−1
l )[b]m+λ =

∏k
i=1 z

m−l+1
i∏l

j=1w
m−l+1
j

ξk−l[b]m+λ

and Rb(zk,w
−1
l ) ∈ HomQ[ξ](B(ξ), [z±1k ,w±1l ]) defined by

(Rb(zk,w
−1
l )ξmSλ(x))[b]0 = Rf (zk,w

−1
l )[b]m+λ

from which

Rb(zk,w
−1
l ) · 1 =

∏k
i=1 z

m−l+1
i∏l

j=1w
m−l+1
j

ξk−l

3.5 Proposition. The map Rf (zk,w
−1
l ) commutes with Schubert derivations, in the sense that

σ±(zk)Rf (zk,w
−1
l ) = Rf (zk,w

−1
l )σ±(zk) and σ±(zk)Rf (zk,w

−1
l ) = Rf (zk,w

−1
l )σ±(zk).

Proof. It is enough to prove that it commutes with σ±i and σ±j, i, j ≥ 0, which are by definition
Q[xk,w

−1
l ]-linear. First of all recall that the product σ±i[b]m+λ (λ ∈ Pr) is ruled by some Pieri’s-like

formulas
σ±i[b]m+λ =

∑
µ∈P±

[b]m+µ,

where P+ (resp. P−) is the set of all partitions µ1 ≥ µ2 ≥ · · · ≥ µr (r ≥ `(λ)) such that µ1 ≥ λ1 ≥
· · · ≥ µk ≥ λk and |µ| = |λ|+ i (resp. λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λr ≥ µr and |µ| = |λ| − i). Then we
have

σ±iRf (zk,w
−1
l )[b]m+λ = σ±i

∏
1 ≤ i ≤ k
1 ≤ j ≤ l

zm+l−1
i

wm−l+1
j

ξk−l[b]m+λ =
∏

1 ≤ i ≤ k
1 ≤ j ≤ l

zm+l−1
i

wm−l+1
j

ξk−lσ±i[b]m+λ
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=
∏

1 ≤ i ≤ k
1 ≤ j ≤ l

zm+l−1
i

wm−l+1
j

ξk−l
∑
µ∈P±

[b]m+µ = Rf (zk,w
−1
l )

∑
µ∈P±

[b]m+µ

= Rf (zk,w
−1
l )σ±i[b]m+λ

Thus σ±(zk) commutes with Rf (zk, z
−1
l ) and so do σ±(zk). Indeed:

σ±(zk)Rf (zk, z
−1
l ) = σ±(zk)R(zk, z

−1
l )σ±(zk)σ±(zk)

= σ±(zk)σ±(zk)R(zk,w
−1
l )σ±(zk)

= Rf (zk,w
−1
l )σ±(zk).

3.6 Theorem. Notation as in (38) and (39). Then:

Ef (zk,w−1l ) = exp

(∑
n≥1

1

n
pn(wl)pn(z−1k )

)
Γf (zk,wl) (56)

and

Eb(zk,w−1l ) = exp

(∑
n≥1

1

n
pn(wl)pn(z−1k )

)
Γb(zk,wl.) (57)

where the fermionic and bosonic vertex operators are, respectively

Γf (zk,wl) = Rf (zk,w
−1
l )σ+(zk)σ+(wl)σ−(zk)σ−(wl)

= Rf (zk,w
−1
l ) exp

(∑
n≥1

xn(pn(zk)− pn(wl))

)
σ−(zk)σ−(wl). (58)

and

Γb(zk,wl)=Rb(zk,w
−1
l ) exp

(∑
n≥1

xn(pn(zk)− pn(wl))

)
exp

(
−
∑
n≥1

pn(z−1k )− pn(w−1l )

n

∂

∂xn

)
(59)

Proof. We have:

Ef (zk,w−1l ))[b]m+λ = [b]k(zk) ∧ [β]l(w−1l )y[b]m+λ (definition of Ef (zk,w−1l ))

= [b]k(zk) ∧
l∏

j=1

w−m+l−1
j σ+(wl)σ−(w−1l )[b]m−l+λ (Corollary 2.10)

=

∏k
i=1 z

m−l+1
i∏l

j=1w
m−l+1
j

σ+(zk)σ−(zk)σ+(wl)σ−(w−1l )[b]m+k−l+λ (Corollary

2.12)

= R(zk,w
−1
l )σ+(zk)σ−(zk)σ+(wl)σ−(w−1l )[b]m+λ (Definition

of R(zk,w
−1
l ))
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By invoking the commutation relation proven in Proposition 3.3, one obtains

Ef (zk,w−1l )[b]m+λ = exp

(∑
n≥1

1

n
pn(wl)pn(z−1k )

)
R(zk,w

−1
l )σ+(zk)σ+(wl)σ−(zk)σ−(wl)[b]m+λ (60)

which already proves that the expression of Ef (zk,w−1l ) is exactly (56). To continue with, the B(ξ)-
module structure of F says that Fm is an eigenspace of σ+(zk)σ+(wl) with eigenvalue

k∏
i=1

exp

(∑
n≥1

xnz
n
i

)
l∏

j=1

exp

(
−
∑
n≥1

xnw
n
j

)
= exp

(∑
n≥1

xnpn(zk)

)
exp

(
−
∑
n≥1

xnpn(wl)

)

= exp

(∑
n≥1

xn(pn(zk)− pn(wl))

)
. (61)

Thus formula (60), up to replacing σ+(zk)σ+(wl) by its eigenvalue (61) with respect to Fm, is precisely
(56), with Γf (zk,wl) given by expression (58). To prove (57) we recall that

(Eb(zk,w−1l )ξmSλ(x))[b]0 = Ef (zk,w−1l )[b]m+λ = exp

(∑
n≥1

1

n
pn(wl)pn(z−1k )

)
Γf (zk,wl)[b]m+λ.

Now

Γf (zk,wl)[b]m+λ = Rf (zk,w
−1
l ) exp

(∑
n≥1

xn(pn(zk)− pn(wl))

)
σ−(zk)σ−(wl)[b]m+λ.

However, by Proposition 3.2, formula (52),

σ−(zk)σ−(wl)[b]m+λ =

[
exp

(
−
∑
n≥1

pn(z−1k )− pn(w−1l )

n

∂

∂xn

)
ξmSλ(x)

]
[b]0.

which shows that
Γf (zk,wl)[b]m+λ = (Γb(zk,w

−1
l )ξmSλ(x))[b]0,

proving the theorem.

3.7 Remark. In formula (57) let us set k = l = 1 and call z = z1 and w = w1. Then pn(z±1) = z±n

and pn(w±1) = w±n. Then

Eb(z, w) = exp

(∑
n≥1

1

n

wn

zn

)
Γb(z, w)

where

Γb(z, w) = Rb(z, w) exp(
∑
n≥1

xn(zn − wn)) exp

(
−
∑
n≥1

z−n − w−n

n

∂

∂xn

)
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Keeping into account that

exp

(∑
n≥1

1

n

wn

zn

)
=

1

1− w

z
and using the definition of Rb(z, w

−1) one sees that

Eb(z, w)|B(m) =

zm

wm

1− w

z

exp(
∑
n≥1

xn(zn − wn)) exp

(
−
∑
n≥1

z−n − w−n

n

∂

∂xn

)

which is the celebrated DJKM formula.
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[8] , On Plücker equations characterizing Grassmann cones, Schubert varieties, equivariant
cohomology and characteristic classes — IMPANGA 15, EMS Ser. Congr. Rep., Eur. Math. Soc.,
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