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ABSTRACT 

Augmented reality (AR) and virtual reality (VR) applications can take advantage of efficient 

digitalization of real objects as reconstructed elements can allow users a better connection between real 

and virtual worlds than using pre-set 3D CAD models. Technology advances contribute to the spread of 

AR and VR technologies, which are always more diffuse and popular. On the other hand, the design and 

implementation of virtual and extended worlds is still an open problem; affordable and robust solutions 

to support 3D object digitalization is still missing. This work proposes a reconstruction system that 

allows users to receive a 3D CAD model starting from a single image of the object to be digitalized and 

reconstructed. A smartphone can be used to take a photo of the object under analysis and a remote server 

performs the reconstruction process by exploiting a pipeline of three Deep Learning methods. Accuracy 

and robustness of the system have been assessed by several experiments and the main outcomes show 

how the proposed solution has a comparable accuracy (chamfer distance) with the state-of-the-art 

methods for 3D object reconstruction. 
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1. INTRODUCTION 

In computer graphics and computer vision, 3D object reconstruction tackles the problem of 

generating a digital three-dimensional representation of an object given some observations 

(e.g., multiple images from different points of view) of it. Nowadays, digital 3D objects are 

extensively used in architecture, gaming, augmented reality (AR) and virtual reality (VR), 

filmmaking, product design, advertisement, manufacturing, cultural heritage, and in many 

other fields. Common techniques used to generate digital 3D objects are photogrammetry and 

digital sculpting; the former is the process of extracting three-dimensional information from 
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two-dimensional data by identifying common points in two or more photos taken from 

different positions (stereo photogrammetry), whereas the latter can be seen as an artistic 

approach that allows specialized artists to use software and hardware tools to manually make 

the digital models of objects; for games and other 3D applications modeling 3D assets using 

software such as Maya, 3ds Max or Blender has been a proved method for many years, but the 

cost and time resources involved in such a process do not scale well with a society where there 

is a growing demand for virtual assets. 

The digitalization of many human activities in recent decades, connected to the explosion 

in popularity of computers and smartphones, AR and VR, Internet of Things, and robotics, 

have entailed a rising demand for less expensive and better 3D object reconstruction systems. 

For example, digital twins (DTs) can be exploited to train technicians in a safe and  

cost-efficient manner; virtual environments can be a place to socialize when far apart, and it 

can also be a safe way to meet friends or relatives when global events such as the Covid-19 

pandemic happen. 

The most common representations of 3D objects are polygonal meshes, voxels and point 

clouds (Figure 1 shows different 3D representations of the Stanford bunny1). A polygonal 

mesh is a collection of vertices connected through edges and faces, whereas the point clouds 

are sets of points with no topological information. The voxels are elements of a regular grid 

similar to a pixel matrix but in 3D space. Besides the positional information, vertices and 

points can also have other attributes, such as normals and colors. Polygonal meshes are the 

preferred representation in games or other interactive applications that have to run in real-time, 

for several reasons: 1) they are efficient to store in memory, 2) modern GPUs are designed to 

efficiently process/render triangles, which are a common type of polygonal meshes where all 

faces are triangles, and 3) they are fast to render because almost always the only information 

that is required for visualization is the object surface, and polygonal meshes are very fit for 

representing surfaces. 

 

 

Figure 1. The Stanford bunny represented as (a) polygonal mesh, (b) point cloud and (c) voxels 

Recently, some researchers have considered implicit representations for 3D objects such as 

implicit occupancy functions (Mescheder et al., 2019; Saito et al., 2020) and signed distance 

functions (Lin et al., 2020). The occupancy function of a volumetric object is the function 

which, for each point in the three-dimensional space, gives a single real number which is one 

 
1 https://graphics.stanford.edu/software/scanview/models/bunny.html 
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if the point lies on the surface of the object or inside its volume and zero if the point is outside 

its volume. Similarly to occupancy functions, distance functions and signed distance functions 

evaluate to zero if the point lies of the surface, whereas they give the distance (or signed 

distance) from the closest surface point in any other case. Contrary to polygonal meshes and 

point clouds, implicit models represent shapes continuously, this can result in higher quality 

reconstructions. 

Following the success of Machine Learning (ML), and specifically Deep Learning (DL) 

and neural networks (NNs), in solving several image-related tasks (e.g., classification, 

segmentation, super sampling, deblurring, edge detection, keypoint detection, etc.), many 

researchers (Guo et al., 2015; Izadinia et al., 2016; Mescheder et al., 2019; Avetisyan  

et al., 2019; Han et al., 2019; Chen et al., 2020; Lin et al., 2020; Li et al., 2020; Popov  

et al., 2020) have been trying to apply the same basic principle of learning from data to the 3D 

object reconstruction problem. Since three-dimensional data can have various representations, 

different approaches have been proposed that have specific advantages and disadvantages in 

different applications (Xiao et al., 2020; Fahim et al., 2021). 

This work proposes a 3D scene reconstruction system designed for indoor environments 

that only requires a computer and a smartphone supporting the Google ARCore framework. 

The smartphone is used (a) to acquire a single RGB image of each real object that the user 

intends to reconstruct, (b) to visualize the digital object after it has been reconstructed and, if 

necessary, (c) to adjust its position, rotation and scale relative to the real environment. The 

computer is used to compute the 3D object geometry as the smartphone is not powerful 

enough to support the reconstruction task, which is organized as a pipeline whose major steps 

are the following: (a) image masking aimed at isolating the object of interest by removing the 

background, (b) watertight mesh construction and (c) rotation estimation. The core of the 

reconstruction system is a DL solution called BSP-Net (Chen et al., 2020) capable of 

producing a mesh representation of an object given a single picture of it. The contribution of 

this paper is twofold: (a) a reconstruction pipeline based on state-of-the-art DL methods for 

reconstructing a 3D model of a real object given a single RGB image and  

(b) a smartphone-based system to generate the whole scene that can be used, for example, for 

AR and VR single or multi-user applications. 

This paper is organized as follows: the most relevant works on object reconstruction are 

presented in Section 2, whereas the proposed reconstruction system is presented in Section 3. 

The experiments are discussed in Section 4 along with the related results; finally, some 

possible future work is proposed in Section 5. 

2. RELATED WORK 

2.1 Deep Learning-Based 3D Object Reconstruction Methods 

Several methods for 3D object reconstruction based on Deep Learning that produce  

three-dimensional assets from a single or multiple images have been proposed in the last 

decade, thanks to the availability of large-scale 3D shape datasets, such as ShapeNet (Chang  

et al., 2015), ModelNet (Wu et al., 2015) and ScanNet (Dai et al., 2017). The first approaches 

used multiple view-representations and voxels and were derived from the growing literature 
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on machine learning applied to common 2D image-related tasks, such as classification, since 

generalizing the devised neural networks to the 3D case was mostly trivial; for example, using 

a convolutional neural network model designed to classify 2D images for voxel classification 

could only require to switch from 2D convolutions to 3D convolutions. Examples of these are 

3D-R2N2 by Choy et al. (2016), Häne et al. (2017), OctNet by Riegler et at. (2017), 

Tatarchenko et al. (2017) and Pix2Vox by Xie et al. (2019). Voxel-based models are easier to 

devise, but the very high requirement in terms of memory occupation (the memory scales 

cubically with the grid resolution) can severely limits the resolution of the final output. 

Implicit representations usually have much lower memory occupation than voxel-based 

approaches. Mescheder et al. (2019) use a neural network classifier to represent an implicit 3D 

surface; instead of generating a volume directly, they can query their classifier to determine if 

a point is inside or outside the object volume. Similarly, Saito et al. (2020) devised  

a multi-layer perceptron to act as an occupancy function to reconstruct high resolution human 

models with color information. SDF-SRN (Lin et al., 2020) learns signed distance functions 

from 2D images and it only requires a single view of objects at the training time. Although 

implicit representations give good results in some cases, for example when dealing with 

organic objects, they are not suitable for objects with hard edges. 

Mesh-based and point-based methods are harder to design because meshes and point 

clouds might have a varying number of vertices/points, whereas neural network-based 

approaches usually favor fixed data sizes. Some works (Groueix et al., 2018; Pan et al., 2018; 

Wang et al., 2020) use a template mesh that is deformed to match the shape of the object to be 

reconstructed or one of its parts, whereas Chen et al. (2020) combine a fixed number of planes 

whose parameters are inferred using a NN to first produce some convexes, that are then 

combined to produce the final concave shape. Badki et at. (2020) use meshlets, or mesh 

patches, and iteratively deform and transform them to match the target shape by optimizing a 

given loss function; since meshlets are fitted locally, this method is more robust to unseen 

objects and poses during training compared to approaches that favor global features. 

Popov et al. (2020) can reconstruct multiple objects at the same time from a single image 

computing them in a common coordinate frame. 

2.2 Smartphone-based 3D Object Reconstruction Systems 

In this Section the most relevant object reconstruction systems that use a smartphone (or a 

tablet) as a capturing device are presented. Some reconstruction approaches (Tanskanen  

et al., 2013; Ondrúška et al., 2015) are based on creating a dense representation of the desired 

object by capturing several observations from different points of view. Tanskanen et al. (2013) 

use the integrated inertial sensors on the device to make the tracking and mapping process 

more robust; an efficient stereo matching algorithm is used to compute the depth values from 

which a dense 3D model with absolute scale is created. Ondrúška et al. (2015) propose an 

interactive system similar to the KinectFusion (Newcombe et al., 2011) where depth maps 

obtained through stereo-matching of RGB images are fused volumetrically; an implicit surface 

representation of the object is extracted, thus allowing the system to estimate a 6 degrees of 

freedom (DoF) pose for each frame. Muratov et al. (2016) can reconstruct an object with a  

2-stage process: in the first stage they scan (i.e., capture multiple pictures) the real object by 

using the monocular camera of a smartphone while simultaneously acquiring IMU sensors 

data; then, in the second stage, depth maps are calculated by a bundle adjustment technique 



3D SCENE RECONSTRUCTION SYSTEM BASED ON A MOBILE DEVICE 

19 

(Triggs et al., 2000) and used to construct a textured polygonal mesh. Donlic et al. (2017) 

exploit the Digital Light Processing (DLP) projector available on some tablets and pair it to 

the commonly available RGB camera to make a depth sensor, which works similarly to the 

Microsoft Kinect; they also take advantage of the built-in IMU sensors to get a robust and 

accurate point registration that is used to fuse multiple depth maps in a single voxel 

representation of the object. 

The work presented in this paper differs from those approaches by requiring only one 

picture of the real object, thus making the proposed system much simpler to use. 

3. THE 3D OBJECT RECONSTRUCTION SYSTEM 

The proposed system is composed of an Android smartphone, which runs an application based 

on Unity3D2 and Google ARCore3, and a computer running an application written in Python. 

Unity3D is a popular engine allowing an application to run on the major operating systems 

and platforms with minimal modifications for the specific target platform. Applications 

powered by Unity3D are usually developed in the Unity3D editor, which allows to intuitively 

place different assets directly in the scene by drag and drop; the logic is coded in the C# 

programming language. 

ARCore is a framework developed by Google providing common functionalities for AR 

applications that run on Android devices, such as smartphones and tablets. The most important 

features of ARCore are cloud anchors, depth estimation, Visual SLAM-based motion tracking, 

environmental understanding and light estimation. 

The system is designed as a client-server architecture; the client (i.e., a smartphone) is used 

(a) for capturing pictures of an indoor scene with embedded camera pose information and  

(b) for 3D object visualization in an AR visualization mode (Section 3.1), whereas the server 

(i.e., a computer) is used to process the captured photos of objects in order to transform them 

into 3D models (Section 3.2). 

3.1 The Client 

The smartphone application has two modes: (a) photo mode and (b) AR object visualization 

mode (Figure 2 illustrates the two modes). The photo mode allows users to take photos of the 

environment; similar to the photo application available on Android or iOS phones, this mode 

provides a gallery where users can visualize all the pictures they have taken and eventually 

delete some of them. After taking a picture, the users can save it in the gallery or discard it to 

take another image. 

 

 

 

 

 

 

 
2 https://unity.com 
3 https://arvr.google.com/arcore 
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Figure 2. The smartphone application has two modes: (a) photo mode and (b) AR object visualization 

mode. The user can capture new photos of the environment in the photo mode (a), whereas images can 

be displayed in the gallery. The transformation controls can be used to move, rotate or scale virtual 

objects in the scene in the AR visualization mode (b). The scale is uniform across all dimensions, 

whereas rotation is limited to the vertical axis. When translated, virtual objects are constrained to stay 

within the room boundaries 

 

The application converts a new photo from the YUV-420-888 encoding format, that 

ARCore returns when using the function GoogleARCore.CameraImageBytes(), to the RGB 

format that is required for the correct visualization of the pictures in the Unity3D application 

and for the reconstruction software running on the server. 

Besides using ARCore to take pictures, the smartphone application takes advantage of the 

Google AR framework to map the environment using its environmental understanding and 

Visual SLAM-based tracking capabilities; in this way, it is possible to keep track of the 

smartphone position and rotation relative to a coordinate frame that is constructed at the start 

of the application; having a global reference frame fixed to the real world is necessary for 

virtual object visualization because it allows the virtual objects to stay in fixed positions 

relative to the real objects. 

In order to place the digital objects within the boundaries of the real environment, the 

ARCore plane detection functionality is used to detect floors and walls, which are shown as 

virtual grids overlapping the actual scene. The user can place one anchor for each object, 

which is used as a placeholder to position the digital object, on the planes detected by 

ARCore; using anchors is useful because users will not have to place 

all virtual objects manually after they have been reconstructed, although adjustments could 

still be necessary in order to better align virtual and real objects. On the contrary, the rotation 

is automatically estimated by the server during the reconstruction process by using a DL 

solution, as explained in Section 3.2. 

When at least one object has been reconstructed by the server and sent to the client, users 

can switch to the AR object visualization mode in order to visualize the reconstructed virtual 

objects and manipulate them by using the provided on-screen controls. By selecting an object, 

the user can apply three different transformation operations: translation, rotation and scaling. 

When an object is selected, the transformation controls appear at the bottom of the screen, as 
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shown in Figure 2 (b). Since the real objects are supposed to lie upright on the ground, the 

rotation control is limited to the vertical axis (i.e., yaw angle), allowing the user to correct the 

rotation in case the estimation fails in giving accurate results. Since the reconstruction process 

preserves the relative dimensions of the actual object, the scaling control is uniform across all 

the three dimensions. Translation is constrained to be on the floor and within the room walls 

that ARCore detects, as the virtual objects should overlap the real objects. 

3.2 Data Exchange 

After acquiring one or more photos, the user can send them to the server for processing; each 

photo has an associated identifier (i.e., a unique integer number), thus allowing the client to 

map a given object reconstruction to the related photo. In order to reliably exchange data 

between the client and the server, a Transmission Control Protocol (TCP) connection is 

established between the hosts. 

Data is serialized using the JavaScript Object Notation (JSON) open standard file format 

before the transmission over the network, thus easing the communication between the C# 

application that runs on the smartphone (client) and the Python software running on the 

computer (server). 

3.3 The Server 

3.3.1 Server Configuration and Interprocess Communication 

The computer used as server is equipped with a Nvidia GeForce 1060 GPU with 6 GB of 

VRAM supporting CUDA in order to speed up the DL code that handles the semantic 

segmentation, the reconstruction and the rotation estimation steps of the pipeline. 

The reconstruction program and the program handling the data transfer between the server 

and the client are two separate processes and they are executed independently of each other. 

Communication and synchronization between the two processes are handled through file 

writing and reading. When the server data transfer process receives an image and its identifier 

from a client through the network, it saves it in a folder, which is periodically checked by the 

reconstruction process. When an unprocessed image is found, the server reconstructs the 

corresponding object mesh through the reconstruction process and it sends the result with its 

corresponding identifier back to the client. Processed images are deleted after having been 

processed in order to avoid to process them again. 

3.3.2 Reconstruction Pipeline 

The server executes the reconstruction pipeline which is illustrated in Figure 3. The first step 

segments the image in foreground (i.e., the region of the image containing all the pixels of the 

object) and background (i.e., all pixels not belonging to the object), inasmuch it is not 

guaranteed that the user can take pictures with a perfectly uniform background, which is 

necessary for BSP-Net to output a clean mesh. In fact, this neural network was trained by 

using a synthetic dataset containing renders of 3D shapes from ShapeNet, where each render 

included only the object on a uniformly colored background. 
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Figure 3. The reconstruction pipeline consists of three steps: (a) isolation of the object of interest in the 

image by removing the background, (b) construction of a watertight mesh and (c) estimation of the 

object rotation about the vertical axis. The three major steps are in turn divided into seven sub-steps 
 

In order to determine which pixels belong to the foreground object, Mseg (Lambert et al., 

2020) has been used. Mseg is a neural network model based on HRNet (Sun et al., 2019) 

designed for high resolution semantic segmentation of images; semantic segmentation is the 

task of assigning a class or category label (i.e., determining which class the object belongs to) 

to every pixel in the image. Given the original color picture, Mseg provides a new image with 

gray-coded segmentation regions, where each tone of gray represents a specific object class. 

In order to simplify the background removal process, assuming that the central image pixel 

includes the object of interest, a flood fill operation can be executed in order to convert the 

semantic segmentation image to a binary mask that can be later used to separate the 

foreground object from the background. The binary mask can present jagged edges, which 

may have a negative effect on the reconstruction by altering the silhouette of the object; in 

order to minimize the effect of jagged edges, the binary mask is blurred by using a Gaussian 

filter. At the current stage, if the photo contains multiple instances of the same object 

category, the segmentation works correctly only if the instances are clearly separated. In fact, 

the segmentation network employed can only separate object categories, but not object 

instances; when two or more objects of the same category overlap in the image, the 

segmentation network will return a single region embedding all instances, making it 

impossible to isolate any one of them by using just the segmentation mask. Before executing 

BSP-Net, the new image with the removed background is first converted to a grayscale image, 

then it is cropped, resized and padded in order to have a fixed-sized image with constant 

padding, which helps to have consistent results, as shown in Section 4. Adding the padding is 

necessary because it allows to match the format of the renders used during training. Figure 4 

shows how using the wrong image format and incorrectly segmenting the object affect the 

reconstruction. 
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Figure 4. Examples of failure cases: for the chair, a comparison between a squared image and  

a non-squared image is shown; feeding a non-squared image to BSP-Net will result in a stretched 3D 

model. On the right, the reconstruction of a table is shown in three different cases; in the first image the 

background was accurately removed through a manual process and padding was added to get the best 

result. In the second case, the automatic segmentation performed by Mseg fails, resulting in a broken 3D 

model. In the third case, the image is again accurately segmented, but no padding is added, resulting in a 

partially broken and incorrectly scaled 3D model 

 

The second step is the construction of a mesh given the grayscale picture of the object 

without the background. A grayscale image is required for BSP-Net because the neural 

network is designed to process grayscale images, although it could technically be modified to 

accept color images as input. Secondly, BSP-Net has been trained on 128×128px images, thus 

the grayscale image is also downscaled to the required pixel resolution. 

After converting the input to the appropriate format, BSP-Net is executed and the 

constructed mesh is saved on the disk as a Wavefront OBJ file. 

The constructed mesh is watertight, that is, it consists of one closed surface without holes; 

this is particularly useful to have for 3D games because the use of backface culling  

(i.e., skipping triangles pointing in the same direction as the camera while rendering a given 

frame) would result in parts of the mesh incorrectly disappearing when rendered from specific 

points of view. BSP-Net has been designed to exploit the binary space partitioning idea: a 3D 

shape is constructed as a union of convex parts, which are in turn obtained by combining 

multiple planes. Since BSP-Net constructs the 3D shape as a union of convex parts, it can 

produce concave shapes. However, the output tends to be very messy with a lot of 

intersections among the convex parts. In order to get a topologically cleaner mesh, a 

remeshing algorithm provided by Blender4 is employed (Figure 5 shows a comparison 

between the output of BSP-Net and the remeshed object). The remeshing algorithm, 

 
4 https://www.blender.org 
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implemented as part of OpenVDB5, is based on voxels and level sets; it first converts the mesh 

to voxels with a given voxel size, then it extracts a given isosurface mesh from the grid. 

The final step of the reconstruction pipeline is the estimation of the object rotation about 

the vertical axis, since it is assumed that the objects lie upright on a horizontal plane (usually 

the floor). The Pose From Shape (Xiao et al., 2019) neural network is employed in order to 

estimate the object rotation. As its name suggests, Pose From Shape is capable of estimating 

the pose of a real object given several views of it, or even of a simplified 3D model 

approximating the real object. The proposed solution exploits the reconstructed mesh in order 

to produce, through rendering, twelve views of the object with a yaw in the range [0, 360°] 

with a delta angle of 60° and a roll in the range [0, 30°] with a delta angle of 30°.  

 

Figure 5. Comparison between the polygonal mesh model produced by BSP-Net and the remeshed 

model. Blender is used in command-line mode in order to remesh the output of BSP-Net. The typical 

mesh constructed by BSP-Net has an irregular topology (a); the new mesh has a cleaner topology after 

remeshing (b) 

The rendered model is the remeshed object and Blender is used in command-line mode to 

automatically render the required views (Figure 4 (c) illustrates the described process from 

rendering to object pose estimation). 

 

 

 

 

 

 
5 https://www.openvdb.org 
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4. EXPERIMENTS 

Table 1. Reconstruction accuracy of BSP-Net (synthetic data) and the proposed pipeline (real photos) for 

three different object classes. The evaluation metric is the chamfer distance (lower is better) 

Class BSP-Net 
(synthetic data) 

Ours 
(real photos) 

Chair 0.067 0.073 
Table 0.129 0.174 
Sofa 0.090 0.071 

Mean 0.092 0.093 
 

The proposed reconstruction pipeline has been tested by using samples from the Pix3D dataset 

(Sun et al., 2018), which contains images of real objects and associated ground-truth (GT) 3D 

models and poses. Pix3D is one of the few datasets for 3D tasks that do not use synthetic 

images; moreover, contrary to other datasets, Pix3D provides precise alignment between 2D 

and 3D shapes. Three object categories have been tested on which both BSP-Net and Mseg 

had been trained: chairs, sofas and tables. 

In order to quantitatively evaluate the reconstruction accuracy, the chamfer distance (CD) 

(Chen et al., 2020) metric has been used for each pair of reconstructed model and GT CAD 

model; this metric is commonly used to compare the reconstruction accuracy when working 

with three-dimensional data. The CD is defined for point clouds as the summation of 

minimum distances between all points of the point clouds. 

1)  

The meshes obtained by using the described reconstruction pipeline have been initially 

converted to a voxel grid with resolution 323, then the voxels have been converted to a point 

cloud by taking the center point of each voxel. The same procedure has been used to convert 

the GT meshes provided by Pix3D to point clouds. Before computing the CD, the point clouds 

have been translated in order to have the bounding box centered in the world origin, then they 

have been scaled in order to have the same size along the longest dimension. 

Table 1 shows the average CD for the original BSP-Net when operating on synthetic 

images and the proposed pipeline operating on real photos. The results show that the proposed 

pipeline produces reasonably accurate reconstructions starting from a single real photo, 

despite the fact that BSP-Net had been trained only on synthetic images and Mseg does not 

produce an accurate segmentation (Figure 6 shows some reconstructed objects from real 

photos). 
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Figure 6. Some reconstructed models obtained by applying the proposed pipeline on Pix3D image 

samples 

The pipeline has been designed to be as modular as possible, allowing to easily swap 

existing modules. As an example, the semantic segmentation module can be replaced with an 

improved version or with an alternative solution. The modular architecture of the 

reconstruction pipeline allows, for example, to use an occupancy network in place of  

BSP-Net, as long as it accepts an image as input and it outputs a 3D object representation that 

can be converted to a mesh. Experiments in this regard were conducted in order to find a 

suitable reconstruction method, which ended with the choice of BSP-Net as it performed 

better (Chen et al., 2020) that the tested occupancy network proposed by Mescheder  

et al. (2019) for the categories of interest, such as chairs, sofas and tables. 

5. CONCLUSION 

A new reconstruction solution is presented in this paper; AR and VR applications can take 

advantage of it especially when extended environments can be shared by multiple users. The 

proposed solution exploits three different DL methods to reconstruct a 3D model of a real 

object framed in a single RGB image captured by a smartphone and remotely processed using 

a computer. 

One limitation of the proposed system is that it requires a smartphone, even if the user is 

using a VR or AR head-mounted display device that is equipped with a camera and that, 

therefore, could be used in place of the smartphone for image acquisition and object pose 
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adjustment. Objects belonging to the same class cannot be managed if they overlap when 

framed as the segmentation stage is unable to distinguish among multiple instances of the 

same object class. Also background parts might be included as object and this can limit the 

reconstruction accuracy. 

Some possible future works will consider the possibility to run all the reconstruction 

process on the only client device used to capture the object images (e.g. a Microsoft HoloLens 

2) and enhancing BSP-Net in order to take into account the object color and retraining it with 

real or photorealistic images. 
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