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A Modified SIR Model for the COVID-19 Contagion in Italy

Giuseppe C. Calafiore, Carlo Novara and Corrado Possieri

Abstract— The purpose of this work is to give a contribution
to the understanding of the COVID-19 contagion in Italy. To this
end, we developed a modified Susceptible-Infected-Recovered
(SIR) model for the contagion, and we used official data of the
pandemic up to March 30th, 2020 for identifying the parameters
of this model. The non standard part of our approach resides in
the fact that we considered as model parameters also the initial
number of susceptible individuals, as well as the proportionality
factor relating the detected number of positives with the actual
(and unknown) number of infected individuals. Identifying the
contagion, recovery and death rates as well as the mentioned
parameters amounts to a non-convex identification problem that
we solved by means of a two-dimensional grid search in the
outer loop, with a standard weighted least-squares optimization
problem as the inner step.

I. INTRODUCTION

Mathematical models can offer a precious tool to public
health authorities for the control of epidemics, potentially
contributing to significant reductions in the number of in-
fected people and deaths. Indeed, mathematical models can
be used for obtaining short and long-term predictions, which
in turn may enable decision makers to optimize possible
control strategies, such as containment measures, lockdowns
and vaccination campaigns. Models can also be crucial in
a number of other tasks, such as estimation of transmission
parameters, understanding of contagion mechanisms, simu-
lation of different scenarios, and test of various hypotheses.

Several kinds of models have been proposed for describing
the time evolution of epidemics, among which we distinguish
two main groups: collective models and networked models.
Collective models are characterized by a small number of
parameters and describe the epidemic spread in a popula-
tion using a limited number of collective variables. They
include generalized growth models [1], logistic models [2],
Richards models [3], Generalized Richards models [1], sub-
epidemics wave models [4], Susceptible-Infected-Recovered
(SIR) models [2], [5], and Susceptible-Exposed-Infectious-
Removed (SEIR) models [1]. SIR, SEIR and other similar
models belong to the class of the so-called compartmental
models [1], [6]. Networked models typically treat a popula-
tion as a network of interacting individuals and the contagion
process is described at the level of each individual, see,
e.g., [7]–[13]. In this paper, we focus on compartmental
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models since, thanks to their relative simplicity, they can
be more suitable for non-expert operators and public health
authorities, and they can provide simple but reliable models,
even under scarce data.

Collective models are typically written in the form of
differential equations or discrete-time difference equations,
and are characterized by a set of parameters that are not
known a-priori and have to be identified from data. How-
ever, the identification of such parameters raises several
practical issues, as discussed next. An important variable
in many epidemic models is the number of individuals that
are infected at a given time. However, in a real epidemic
scenario, only the number of infected individuals that have
been detected as “positive” is available, while the actual
number of infected people remains unknown. Other issues
stem from the fact that identification of epidemic models
requires in many cases to deal with non-convex optimization
problems. Indeed, a key feature of an epidemic model is to
provide reliable results in long-term predictions, in order to
allow analysis/comparison of different scenarios and design
of suitable control strategies. Hence, identification has to be
performed with the objective of minimizing the model multi-
step prediction error. This typically requires solving a non-
convex optimization problem, even when the model is linear
in the parameters, with the ensuing relevant risk of being
trapped in poorly-performing local solutions. Furthermore,
the initial values of some model variables have often to be
identified, in addition to the model parameters, and this also
requires solution of a non-convex problem.

In this paper, we propose a variant of the SIR model,
developed in order to describe the actual number of infected
individuals. As discussed above, this quantity is important
from the epidemiological standpoint. The second contribu-
tion consists in a model identification and prediction frame-
work that allowed us to overcome the mentioned problems
in the modeling of the infection evolution of the present
COVID-19 pandemics. The model identification approach is
based on a simple yet practically effective scheme: a model
structure is assumed, characterized by a set of parameters
to be identified. A grid is defined for those few (two, in
the actual model considered here) parameters on which the
model has a nonlinear dependence (with some abuse of
terminology, these are called the nonlinear parameters). For
each point of this grid, the other parameters are identified via
convex optimization. Finally, the optimal parameter estimate
is chosen as one minimizing a suitable objective function
over the grid. This approach is particularly suitable for
epidemic collective models, which typically feature a low
number of nonlinear parameters. Clearly, when the number
of such parameters is large, the approach becomes compu-
tationally unfeasible.



In general, this approach is expected to provide reliable
parameter estimates. However, the resulting model may be
not extremely precise in long-term predictions, since convex
optimization allows minimization of the one-step prediction
error, but not minimization of multi-step prediction errors.
To overcome this issue, we employed a novel long-term
prediction algorithm, based on a weighted average of the
multi-step predictions performed by starting the simulation
at all the available initial conditions. The weighted average
allows a reduction of noise and error effects, possibly yield-
ing improvements in the long-term prediction accuracy.

A real-data case study is presented, concerned with the
current COVID-19 epidemic in Italy.

II. SIRD MODEL FOR COVID-19 CONTAGION

We consider a geographical region, assumed as isolated
from other regions, and within such region we define:
• S(t): the number of individuals susceptible of contract-

ing the infection at time t;
• I(t): the number of infected individuals that are active

at time t;
• R(t): the cumulative number of individuals that recov-

ered from the disease up to time t;
• D(t): the cumulative number of individuals that de-

ceased due to the disease, up to time t.
We thus seek to describe approximately the dynamics of
the early stages of the COVID-19 spread via the following
discrete-time version of the Kermack-McKendrick equations
(resulting from the mean-field approximation of the spread-
ing process and hence generating the worst-case approxima-
tion), as given in [5], so to account for the number of deaths:

S(t+ 1) = S(t)− β S(t) I(t)

S(t) + I(t)
, (1a)

I(t+ 1) = I(t) + β
S(t) I(t)

S(t) + I(t)
− γ I(t)− ν I(t), (1b)

R(t+ 1) = R(t) + γ I(t), (1c)
D(t+ 1) = D(t) + ν I(t), (1d)

with initial conditions S(t0) = S0 > 0, I(t0) = I0 > 0,
R(t0) = R0 ≥ 0 and D(t0) = D0 ≥ 0, where β ∈ R>0 is
the infection rate, γ ∈ R>0 is the recovery rate, and ν ∈ R>0

is the mortality rate. Time t = 0, 1, . . . is here expressed in
days. Note that it is possible to define upper bounds on the
parameters β, γ, and ν̃ so to avoid instabilities in the model.
However, these bounds are not considered here so to reduce
the computational burden of the proposed identification algo-
rithm. Equations (1) are an extended version of the classical
Susceptible-Infected-Recovered (SIR) model. The underly-
ing hypotheses in this model are that the recovered subjects
are no longer susceptible of infection (a hypothesis which
is apparently not yet proved, or disproved, for COVID-19),
and that the number of deaths due to other reasons (different
from the disease under consideration) are neglected by the
model. Since the proposed model is intended to represent the
spread of COVID-19 at its early stages, its parameters are
assumed to be constant over the observation window and,
differently from [14], [15], partial immunity of recovered

individuals is not accounted for. Further, in order to simplify
the identification process, the model has been kept as simple
as possible without introducing further compartments such
as exposed, diagnosed, healed, and threatened as in other
models proposed in the literature; see, e.g., [16].

Model (1) assumes that the value I(t) is the actual number
of infected individuals. Nonetheless, in practice, observations
of the process only permit to detect a portion Ĩ(t) of infected
individuals, since some of them may be asymptomatic [17].
We assume that such a number is an (unknown) fraction of
the actual number I(t), that is

I(t) = αĨ(t), for some α ≥ 1. (2)

Although, in general, the parameter α depends on the number
of tests carried out to identify infected individuals, in the
considered model it is assumed constant since it is intended
to model just the early stages of the contagion.

By plugging (2) into (1), we obtain the following model

S̃(t+ 1) = S̃(t)− β S̃(t) Ĩ(t)

S̃(t) + Ĩ(t)
, (3a)

Ĩ(t+ 1) = Ĩ(t) + β
S̃(t) Ĩ(t)

S̃(t) + Ĩ(t)
− γ Ĩ(t)− ν Ĩ(t), (3b)

R̃(t+ 1) = R̃(t) + γ Ĩ(t), (3c)

D(t+ 1) = D(t) + αν Ĩ(t), (3d)

where S̃(t) := 1
α S(t) denotes the weighted susceptible in-

dividuals at time t, and R̃(t) := 1
α R(t) denotes the detected

recovered individuals at time t. It is worth pointing out that,
in principle, three different parameters α1, α2, and α3 should
be used to represent the fraction of susceptible, infected, and
recovered individuals that are actually diagnosed. Herein it
is assumed that α1 = α2 = α3 = α so to reduce the
computational burden. In the following, equations (3) will
be referred to as the SIRD model.

As in its continuous-time counterpart [18], the dynamics
of systems (1) and (3) are highly dependent on the initial
conditions S(t0) = α S̃(t0) and I(t0) := α Ĩ(t0), which
determine both the amplitude and the time location of the
peak in the number of infected individuals. Unfortunately,
the datum S(t0) is not available to the modeler (notice that
taking S(t0) equal to the total population of the region of
interest may be a gross over-estimation of the initial number
of susceptible individuals, since part of the population may
be inherently immune or non affected by the contagion), thus
rendering the problem of making predictions via (1) and (3)
rather challenging. The main objective of this paper is then
to estimate the parameters S(t0), α, β, γ, and ν of the model
from available data, so to accurately predict the behavior of
the COVID-19 spread in Italy.

III. MODEL IDENTIFICATION

In this section, we detail the procedure that has been used
to identify the parameters S(t0), α, β, γ, and ν of the SIRD
model in (3). The data that have been used to carry out the
identification are the official data from Italian Dipartimento
della Protezione Civile, available at



https://github.com/pcm-dpc/COVID-19,

and are constituted by the numbers Ĩ(t), R̃(t), and D(t),
where the discrete time represent the number of days from
the start of the epidemy, over a time window starting from
February 24th, 2020 and ending March 30th, 2020.

In order to correctly represent the number of susceptible
individuals, we introduced an additional parameter ω ∈ [0, 1]
such that S(t0) = ω P , where P is the total population in
the region under examination, so to account for containment
measurements keeping a portion of the population outside of
the susceptible compartment, and we defined

S̃(t) =
ω

α
P − Ĩ(t)− R̃(t)−D(t). (4)

Hence, for fixed values of ω and α, the model (3) can be
expressed in regression form

∆(t) :=

 Ĩ(t+ 1)− Ĩ(t)

R̃(t+ 1)− R̃(t)
D(t+ 1)−D(t)

 = Φω,α(t)

 β
γ
ν̃

 ,
where ν̃ := αν and

Φω,α(t) :=

 S̃(t)Ĩ(t)

S̃(t)+Ĩ(t)
−Ĩ(t) − 1

α Ĩ(t)

0 Ĩ(t) 0

0 0 Ĩ(t)

 .
By stacking the weighted vectors ∆(t) and the matrices
Φω,α(t) over the available time window we obtain the
matrices

∆ =


ρT−t0∆(t0)

ρT−t0−1∆(t0 + 1)
...

∆(T)

 , (5a)

Φω,α =


ρT−t0Φω,α(t0)

ρT−t0−1Φω,α(t0 + 1)
...

Φω,α(T)

 , (5b)

where ρ ∈ (0, 1) is an exponential decay weighting param-
eter, used to give more relevance to most recent data, and
T is the length of the time window. Then, the parameters
β, γ, and ν̃ can be estimated by solving the least square
optimization problem

MSE(α, ω) := min
β,γ,ν̃

∥∥∥∥∥∥∆− Φω,α

 β
γ
ν̃

∥∥∥∥∥∥
2

2

(6)

for given α and ω. The optimal solution to this problem is β
γ
ν̃

 = Φ
†
ω,α ∆, (7)

where Φ
†
ω,α denotes the Moore-Penrose pseudo-inverse of

matrix Φω,α. It is worth pointing out that while the opti-
mization problem (6) is convex and hence readily solvable

by convex optimization methods [19], the problem

min
α,ω,β,γ,ν̃

∥∥∥∥∥∥∆− Φω,α

 β
γ
ν̃

∥∥∥∥∥∥
2

2

(8)

need not be convex. As an example, Figure 1 depicts the
value MSE(α, ω) for α ∈ [1, 100], ω ∈ [0, 1] and ρ = 0.9
considering all the Italian territory as a single region. As

Fig. 1. Value of MSE(α, ω) considering Italy as a single region.

shown in this figure, the function MSE(α, ω) is not convex,
thus making the problem of computing the solution to (8)
rather challenging. Nonetheless, the parameters α, β, γ, ν̃,
and ω can be determined by using the following Algorithm 1,
which computes the model parameters that better fit the
data by gridding the variables α, ω, using (7) to determine
MSE(α, ω), and solving minα,ω MSE(α, ω).

Algorithm 1 Tuning of the model parameters

Input: data Ĩ(t), R̃(t), and D(t), upper bound α of α,
weighting parameter ρ, and total population P

Output: parameters of the model (3)
1: grid uniformly the planar region [0, 1]× [1, α]
2: e← +∞
3: for each value (ω, α) in the grid do
4: define S̃ as in (4)
5: compute the matrices ∆ and Φω,α as in (5)
6: determine the parameters β, γ, and ν̃ as in (7)
7: if ‖∆− Φω,α[ β γ ν̃ ]>‖22 < e then
8: e← ‖∆− Φω,α[ β γ ν̃ ]>‖22
9: ω? ← ω and α? ← α

10: β? ← β, γ? ← γ, and ν̃? ← ν̃
11: return ω?, α?, β?, γ?, and ν̃?

Note that since for each α and ω the problem on the right-
hand side of (6) is convex, Algorithm 1 actually determines
the solution to the problem given in (8) provided that a
sufficiently tight gridding is carried out at Step 1.

Table I1 reports the values of the parameters obtained
using Algorithm 1 considering either each region disjointedly
or all the Italian cases of COVID-19 with α = 100 and ρ =
0.9. These parameters have been selected via trial and error.

1The data reported in this table may be affected by estimation artifacts in
those regions wherein the spread of COVID-19 has been very limited such
as Valle d’Aosta, Molise, and Basilicata.

https://github.com/pcm-dpc/COVID-19


Once the parameters α, β, γ, and ν̃ have been determined,
the basic reproduction number can be determined as

R0 =
β

γ + αν̃
.

IV. MODEL PREDICTIONS

Once the model (3) and the initial population of sus-
ceptible individuals S(t0) have been identified, they can
be used to estimate future values of detected infected Ĩ(t),
detected recovered R̃(t), and deceased individuals D(t). To
this purpose, we consider Algorithm 2. This algorithm

Algorithm 2 Prediction of the number of Ĩ , R̃, and D
individuals
Input: data Ĩ(t), R̃(t), and D(t), for t = t0, . . . ,T, param-

eters α, β, γ, ν̃, and ω, and total population P
Output: prediction of future values of Ĩ , R̃, and D

1: for each t s.t. Ĩ(t), R̃(t), and D(t) are available do
2: initialize the estimates

Ŝ(t)← ω

α
P − Ĩ(t)− R̃(t)−D(t),

Î(t)← Ĩ(t), R̂(t)← R̃(t), D̂(t)← D(t)

3: use (3) to predict future values of Ŝ(τ), Î(τ), R̂(τ),
and D̂(τ) for all τ ≥ t in the prediction horizon

4: if t = t0 then
5: for all τ ≥ t in the prediction horizon, let

Š(τ)← Ŝ(τ), Ǐ(τ)← Î(τ),

Ř(τ)← R̂(τ), Ď(τ)← D̂(τ)

6: else
7: for all τ ≥ t in the prediction horizon, let

Š(τ)← 1
2 (Š(τ) + Ŝ(τ)), Ǐ(τ)← 1

2 (Ǐ(τ) + Î(τ)),

Ř(τ)← 1
2 (Ř(τ) + R̂(τ)),Ď(τ)← 1

2 (Ď(τ) + D̂(τ))

8: return Ǐ(t), Ř(t), and Ď(t)

constructs predictions Ǐ(t), Ř(t), and Ď(t) of the future
values of Ĩ(t), R̃(t), and D(t), respectively, by using the
model (3) and the available data. The datum Ĩ(t), R̃(t), and
D(t) is used to compute forward predictions Ŝ(τ), Î(τ),
R̂(τ), and D̂(t) of the state variables of system (3), for all
τ ≥ t in the prediction horizon. These forward predictions
are then used to update the estimates of the future values of
the state variables. In particular, letting Ŝt(τ), Ît(τ), R̂t(τ),
and D̂t(τ) be the predictions at time τ obtained by projecting
forward the datum Ĩ(t), R̃(t), and D(t) available at time t,
and letting t0 + T be the time at which the last datum Ĩ(t),
R̃(t), and D(t) is available, the prediction at time T > T
returned by Algorithm 2 is given by the weighted average

Š(T ) =
1

2T−t0
Ŝt0(T ) +

1

2T−t0
Ŝt0+1(T )

+
1

2T−t0−1
Ŝt0+2(T ) + · · ·+ 1

2
ŜT(T ),

whereas the prediction at time T ≤ T is given by

Š(T ) =
1

2T−t0
Ŝt0(T ) +

1

2T−t0
Ŝt0+1(T )

+
1

2T−t0−1
Ŝt0+2(T ) + · · ·+ 1

2
ŜT (T ).

Figure 2 depicts the forward predictions Ŝt (fading red
lines) and their weighted average Š(t) (solid black line)
obtained using Algorithm 2, with the parameters given in
Table I, and the one-step prediction obtained by projecting
of just one step ahead the datum available at time t by using
the identified model (3).

Fig. 2. Prediction of future values of infected, recovered, and deceased
individuals in Italy using data up to March 30th, 2020.

Algorithm 2, has also been used for estimating the spread
of COVID-19 in the most affected regions of Italy. Figure 5
depicts the results of such predictions.

V. DISCUSSION

This work has been done in the urgency of the ongoing
COVID-19 contagion, with the purpose of providing a simple
yet effective explanatory model for prediction of the future
evolution of the contagion, and verification of the effec-
tiveness of the containment and lockdown measures. One
significant feature of the proposed model is the identification,
simultaneously with model parameters, of the α factor that
relates the number of detected positives with the unknown
number of actual infected individuals in the population. For
the aggregated data of Italy, such factor has been estimated
to a value of about 63. This in turns affects the real mortality
rate of the infection which, if computed on the basis of the
detected positives would amount to the quite high value of
ν̃ = 1.18%, whereas if referred to the number of actual
infected individuals would decrease to ν = ν̃/α = 0.019%.
This seemingly high proportionality factor α = 63 appears to
be actually in line with today’s (March 30, 2020) estimates
provided by Imperial College COVID-19 Response Team in
[20], who foresee a total infected figure of about 5.9 million
(with an uncertainty range of [1.9 – 15.2] million). Indeed,
today’s (March 30, 2020) cumulative number of detected
positive individuals in Italy is 101739 which, multiplied by
α = 63, yields a figure of about 6.4 million infected, that is
well within the range estimated in [20]. It is to be observed
that the present identification results are quite sensitive to the
input data and that, due to time constraints, we could not
run a suitable Monte-Carlo analysis for inferring intervals



TABLE I
MODEL PARAMETERS IN ITALY AND IN ITS REGIONS

Region α β γ ν̃ ω

Abruzzo 81.9764 0.254559 0.0102637 0.0112523 0.1874
Basilicata 91.741 0.250907 0.00302937 0.00467164 0.0923
Calabria 83.423 0.201084 0.00547199 0.00792437 0.0832
Campania 54.7853 0.142671 0.00531024 0.00900027 0.157
Emilia Romagna 60.3835 0.19317 0.0117399 0.0120007 0.222727
Friuli-Venezia Giulia 62.7827 0.239275 0.0255812 0.00826425 0.0863636
Lazio 84.3756 0.22341 0.0137916 0.00655099 0.0545455
Liguria 26.7945 0.238016 0.0199404 0.0161546 0.0636364
Lombardia 17.9974 0.189301 0.0307642 0.0208288 0.0863636
Marche 25.9947 0.196325 0.000527925 0.0112068 0.0681818
Molise 79.5772 0.197276 0.0167297 0.006787 0.352
Piemonte 33.1924 0.231923 0.00606022 0.0104308 0.0772727
Puglia 85.9751 0.211897 0.0029805 0.00664412 0.152
Sardegna 24.518 0.213762 0.0100864 0.00538705 0.250
Sicilia 43.672 0.195245 0.0112913 0.00831225 0.0512
Toscana 41.1898 0.186643 0.00380713 0.00641778 0.0681818
Trentino-Alto Adige/Südtirol 17.1976 0.213756 0.0170006 0.0104204 0.0590909
Umbria 72.3795 0.347926 0.0311456 0.00387433 0.0863636
Valle d’Aosta 10.7997 0.29359 0.00565177 0.0112402 0.0532
Veneto 22.7958 0.19047 0.00938741 0.00509062 0.05

Italy 63.135 0.21542 0.017129 0.011832 0.12384

of reliability for the model parameters and predictions. Due
to the large uncertainty in the data collection procedures,
however, we can expect the same type of high variability
reported in [20], that is, for instance, ±78% uncertainty on
the real number of total infected individuals. These aspects,
together with the fact that there may be some individuals that
deceased due to COVID-19 that have not been tested, lead
to a high sensitivity of the parameter α. Further studies are
then in order to determine the actual identifiability of such
a parameter considering datasets on larger time windows.

Finally, notice that the data we used for tuning the
model run up to March 30th, 2020. As it can be seen in
Figure 3 most recent data show a substantial decrease of
the number of infected individuals, which is imputable to
the coming into effect, after a delay of about two weeks, of
the lockdown measures imposed by the government. Clearly,
the underlying process is non-stationary, and the predictions
of the model tuned using data up to March 30th, 2020 will
(hopefully) be pessimistic, as the lockdown will drastically
change the underlying mechanics of the contagion.
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Fig. 3. Daily variation of the number of detected positives.

During the final submission of this work, the prevision
made via the proposed mechanism has been compared with

the real data of the COVID-19 epidemics; see Figure 4. As
shown by such a figure, the proposed model predicted a
larger number of deceased individuals due to the fact that
it did not account for social measurement that take place
after March 30th, 2020, that is the last day used to train the
model. The difference between the predicted and the actual
curve allows to evaluate the effectiveness of the lockdown
policy in reducing the number of individuals that deceased
due to the epidemics.

Fig. 4. Prediction of values of infected, recovered, and deceased individuals
in Italy using data up to March 30th, 2020 compared with real data.
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