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Abstract 

 

(Bio)pharmaceutical products freeze-dried in vials must meet stringent quality specifications: among 

these, the residual moisture (RM) is crucial. The most common techniques adopted for measuring the 

RM are destructive, e.g. Karl Fisher titration, thus few samples from each batch are tested. Being a 

high intra-batch variability an intrinsic feature of batch freeze-drying, a high number of samples needs 

to be tested to get a representative measurement. Near-Infrared (NIR) spectroscopy was extensively 

applied in the past as a non-invasive method to quantify the RM. In this paper, an accurate Partial 

Least Square (PLS) model was developed and calibrated with a single product, focusing on a small 

but significative wavelength range of NIR spectra (model SR), characteristic of the water and not of 

the product. The salient feature of this approach is that the model SR appears to provide fairly accurate 

estimates with the same product but at a higher concentration, with other excipients and in presence 

of an amino acid at high concentration, without requiring any additional calibration with KF analysis, 

as in previous techniques; the irrelevance of the vial shape was also shown. This approach was 

compared to a simpler one, based on a single-variable linear regression, and to more complex one, 

using a wider wavelength range or calibrating the PLS model with several products. Model SR 

definitely ended up as the most accurate, and it appeared to have a great potential as a robust model, 

suitable also for products that were not involved in the calibration step. 
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DP  Drug Product 
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MVA  Multivariate Analysis 

NIR  Near-Infrared 
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PLS  Partial Least Square 

RM  Residual Moisture 

RMSEC Root Mean Square Error of Calibration 

RMSECV Root Mean Square Error of Cross Validation 

RMSEP Root Mean Square Error of Prediction 

SNV  Standard Normal Variate 

SOP  Standard Operating Procedure 
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B  regression matrix of PLS 
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J  number of wavelengths 

M  number of samples 

Q2  model predictivity parameter 

R2  fraction of the total sum of squares explained 

W*  matrix of transformed weights (J x A) 

X  spectral data matrix (M x J) 

Y  matrix of quality attributes (M x I) 
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1. Introduction 

 

In the last decade the biotech market strongly grew up and, despite the challenges the biotech products 

pose, like high development and quality control costs, they are expected to get 50% of shares in 

pharma companies by 20241. Frequently biopharmaceutical drugs are prepared in liquid form and 

they need to be stabilized, which is done by converting them into solid products. This is done by 

means of low-temperature drying processes, that fit the needs of these products, typically very 

sensitive to heat stress2,3. Freeze-drying turns out as a fundamental downstream process in the 

manufacturing of (bio)pharmaceuticals: in fact, in 2016 about 50% of the biopharmaceuticals in the 

Food and Drug Administration and European Medicines Agency lists were processed by freeze-

drying4. 

Since the pharmaceutical industry is highly controlled by regulatory agencies, final products must 

meet rigorous specifications5,6, in particular with respect to the Critical Quality Attributes (CQAs). 

Above all, the residual moisture (RM) is a major CQA for freeze-dried products7, since it strongly 

affects the stability of the active component and the collapse of the dried product during storage8-11. 

At the end of the process, a typical freeze-dried product has a low RM, even lower than 1%10,12, but 

a wide distribution of RM values can be found in the vials of the same batch13. In fact, pressure 

gradients between shelves14, non-uniformity of temperature of shelf surface15, and different heat 

fluxes to the vials according to their position in the dryer16,17 are responsible of non-uniform pressure 

and temperature conditions in the drying chamber, particularly in large scale equipment14. As a 

consequence, taking also into account non-uniform nucleation temperature18, sublimation rate and 

product temperature are different from sample to sample19 and, thus, the RM. Karl Fischer (KF) 

titration is the most common method employed in the pharmaceutical industry to measure the RM20-

22, despite the downsides it presents: it is a destructive and time-consuming technique, since handling 

of the samples is required for sample pre-treatment. Thus, only few samples from each batch are 

tested. 

In this framework, Near-Infrared Spectroscopy (NIR spectroscopy or NIRS) was used as a method to 

measure the RM in freeze-dried samples in place of KF titrations: samples handling and pre-treatment 

are not required, and the product can be analyzed through the sealed vial. Therefore, NIRS showed 

up as a safe, fast, and non-destructive method23-25. 

NIRS is a spectroscopic technique developed in the range 14300-4000 cm-1 (700-2500 nm) of the 

electromagnetic spectrum, i.e. in the near-infrared region: samples are irradiated by a NIR beam and 

a fraction of NIR energy is absorbed by the sample26-29. Atomic groups like O-H, N-H, C-H, S-H 

have a dipole moment30, thus molecule like water, sugar and proteins are strong NIR absorber. These 
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are the most common components in a freeze-dried drug product (DP), and for this reason NIRS is 

regarded as a suitable technique to be applied in the pharmaceutical field. In particular, water gives 

high signals around 6900 cm-1 and 5150 cm-1 31, which justify the choice of NIRS as the technique 

alternative to KF for the determination of the RM12,24,32-39. 

When NIR is used for RM measurement a calibration step is required by processing  the NIRS spectra 

with the values obtained using a reference analytical technique (in this case KF titrations), and 

identifying a regression model. Following, the model is validated with samples of the same product 

not employed for the calibration. An attempt to minimize the experimental activity required for model 

development was based on the use of samples with different products in the calibration step: 

Grohganz et al. developed a model in presence of different mixtures of mannitol - sucrose and applied 

it to samples containing proteins and other excipients32, and Mainali et al. developed a model with 

three DPs and validated it with another DP40.  By following this approach, in case the model has been 

properly formulated, it can be used for a wider set of products. Another step in the direction of the 

minimization of the experimental activities for adjusting a NIRS model to a new product was done 

by Clavaud et al.41 and by Grohganz et al. (2010)42. The former included in the calibration a large 

range of product formulations and process parameters, according to a statistical design of 

experiments. The latter validated a model varying the composition, excipients, and solid fraction. 

However, these approaches still required a consistent experimental activity.  

Within this framework, here an algorithm was developed to minimize the experimental effort required 

to calibrate the NIR-based tool for RM measurement, aiming to get an algorithm that could be applied 

also when the product processed is different from the one used in the calibration step (thus shortening 

the calibration step). In particular, the cases of a different concentration of the excipient and of the 

presence of another component in the mixture (an amino-acid, in this case), were considered. The 

algorithm was built by means of a Partial Least Square (PLS) regression, which is by far the most 

common multivariate method employed when NIRS data have to be handled11,12,23,27,43. Great 

attention was paid to the selection of the parameters used for training the algorithm, rather than to the 

number of the products used in the calibration set. The idea behind is to focus the regression on a 

region of the NIR spectra that could be specific for the water signals in several products, thus not 

taking into account the parts of the spectra more related to the product being analyzed. Using a small 

region of the spectra allows to develop a model with a low number of variables, which is of outmost 

importance to adapt the model to different products. 

The first aim of this study was showing the better performance of a PLS model developed on a small 

wavelength range. The second was challenging its robustness, i.e. its suitability and adaptability to a 

product not involved for developing purposes. In fact, a model that could be used in case other 
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products and systems are considered without further calibration would be a significant advancement, 

shortening drastically the calibration step.  The benefits of a PLS model obtained from a small part 

of the spectra are stressed by a comparison against a simpler method, based on a single-variable linear 

regression, and a more complex one, using a wider wavelength range or calibrating the PLS model 

with several products.  

 

 

2. Materials and Methods 

 

2.1 Multivariate analysis 

NIR spectra can gather lot of information about the product, both chemical and physical. Each 

spectrum is made by hundreds of signals, i.e. one value of absorbance for each wavelength scanned. 

For developing a NIRS-based application typically hundreds of spectra are collected. As a 

consequence, a huge amount of data has to be handled, and not all of these data are equally 

significative for the application considered30. This is the reason why Multivariate Analysis (MVA) is 

required to extract relevant information43. 

Principal Component Analysis (PCA) and Partial Least Square (PLS) are much common among the 

MVA techniques and are both based on latent variables (or principal component, PCs). PCA is a 

linear algebra tool, able to reduce a complex dataset into a simpler structure44. PLS is a linear 

regression method, able to model the relationship between the (spectral) dataset X and one or more 

of its attributes (Y)45. 

At this point, the substantial difference between a classical linear regression and a PLS regression has 

to be briefly pointed out. The classical linear regression may appear easier to compute, as it makes 

use of a single variable, i.e. of the value of absorbance at a specific wavelength. However, choosing 

properly a single wavelength from an entire spectrum to describe a property is not trivial, as relevant 

information can be gathered in several signals, and a slightly shift of the peaks may occurs, e.g. water 

signals may be significative all around 5150 cm-1. Moreover, at low water concentration, signals of 

any interferents may overlap the signal of the water bands. On the contrary, the regression carried out 

by PLS is still linear, but it allows to account for a higher numbers of wavelengths, thus taking into 

account any interferences with water signals. 

In this study, PCA  was used to perform the removal of outliers from spectral datasets (as explained 

in section 2.3.1), while all the modeling was carried out using PLS. In the followings, a short 

introduction to the theoretical principles of PLS is presented. Dedicated works can provide a detailed 

and inclusive description of the techniques mentioned above45-48. 
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2.1.1 Partial Least Squared regression 

PLS carries out a decomposition of the data matrix X and of the matrix of attributes Y in a new 

reference system, i.e. the space described by A latent variables (where A is the number of PCs adopted 

by the decomposition). The dimensions of X (M x J) correspond to the number of spectra (M) and to 

the number of wavelength (J) scanned for each spectrum. Y contains the values of a number equal to 

I of attributes, in this case the values of RM, for each one of the M observations corresponding to the 

data matrix X.   

Both X and Y are decomposed in the respective loading and score matrices. The number of loadings49, 

i.e. of the PCs, is a crucial choice: a higher number of PCs can explain more variance in X, but if too 

many PCs are employed, the data matrix X may be overfitted. The scores represent the spectra in the 

new reference system, and can be predicted as a linear combination of the data with some coefficients 

(or weights), collected in the J x A matrix of weights W*45. The calibration step of a PLS model is 

finalized when the regression matrix B (M x I) is obtained, by means of the linear combination 

between W* and the loading matrix of Y. Given a new dataset (Xpred), its quality attributes (Ypred) can 

be predicted through the B matrix. If the quality attributes corresponding to the observations of Xpred 

are known, e.g. because they were measured by analytical methods, they can be compared with the 

predicted ones, thus evaluating the performances of the regression. 

 

2.1.2 Evaluation of the performances 

In order to assess the calibration and prediction performances of the PLS model, the root mean square 

error of calibration and of prediction (respectively, RMSEC and RMSEP) were adopted. These 

parameters describe the degree of agreement between the measured value of a quality attribute (yi) 

and the corresponding value calculated by the model (ypred,i)
50. In this case, yi is the value of RM of 

the i-th sample measured by KF titration, and ypred,i is the RM value calculated by the model for the 

same i-th sample. RMSEC and RMSEP were calculated with the following equations: 

RMSEC =  [
∑ (y𝑖

c − y𝑝𝑟𝑒𝑑,𝑖
c )

2𝑀c

𝑖=1

𝑀c − 𝐴 − 1
]

0.5

 (1) 

RMSEP =  [
∑ (y𝑖

v − y𝑝𝑟𝑒𝑑,𝑖
v )

2𝑀v

𝑖=1

𝑀v
]

0.5

 (2) 

where  𝐲𝒊
𝐜 and 𝐲𝒑𝒓𝒆𝒅,𝒊

𝐜  are referred to the i-th sample of the calibration set, 𝐲𝒊
𝐯 and 𝐲𝒑𝒓𝒆𝒅,𝒊

𝐯  to the i-th 

sample of the validation set, 𝑀c and 𝑀v to the number of samples making up respectively the 

calibration and the validation sets51. 
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Another method implemented to validate a PLS regression was cross-validation (CV), aimed at 

performing an internal validation of the model being developed. CV was carried out with a ν-fold 

approach. This means that the dataset was split in ν groups of approximately the same size, by 

selecting the observations randomly from the main dataset. Following, the regression is trained on all 

the groups, except one, that is left out and used for the validation of the regression just calculated. 

This procedure is repeated until all the subgroups have been left out once. The entire cycle of CV can 

be performed several times in order to use a different random split of the dataset in the ν groups50,52. 

The CV cycle comes out in two parameters: R2, which gives a measurement of the goodness of the 

fit of the calibration set, and the root mean square error of cross validation (RMSECV), used to 

estimate the predictive ability of the model. RMSECV can be estimated through equation (1), being 

𝐲𝒊
𝐯 and 𝐲𝒑𝒓𝒆𝒅,𝒊

𝐯  referred to the i-th sample of the group left out50, while R2 is calculated with the 

following equation51: 

R2 = 1 −
∑ (y𝑖

c − y𝑝𝑟𝑒𝑑,𝑖
c )

2𝑀c

𝑖=1

∑ (y𝑖
c − y𝑚

c )2𝑀c

𝑖=1

 (3) 

where 𝐲𝒊
𝐜 and 𝐲𝒑𝒓𝒆𝒅,𝒊

𝐜  are referred to the i-th sample of the calibration groups and 𝐲𝒎
𝐜  is their mean 

value. 

To evaluate the performances in the external validations, the Q2 parameter was calculated similarly 

to R2, by implementing equation (3) with the values of RM measured and calculated for all the 

samples of the dataset involved in the external validation. Thus, Q2 represents the goodness of the 

fitting in prediction. 

The parameters presented above were employed to compare the models, as indicative of the goodness 

of the fit in calibration and of the predictive ability. An accurate model is expected to turn out values 

of R2 and Q2 close to 1 and low RMSEC, RMSEP, and RMSECV values: in literature values in the 

order of 0.10 - 0.20 were presented as representative of good performances13,32,34. 

Finally, the comparison between the measured and the calculated quality attributes can be pictured in 

a correlation plot, where the Ypred is drawn over the measured values Y. The bisect line of the 

correlation plot represent the ideal identity between the predicted and the measured values of the 

quality attribute. An accurate PLS regression is expected to turn out in a correlation plot where the 

distribution of the observations is well aligned along the bisect line, with the observations laying near 

it. 

 

2.2 Experimental procedures 

 

2.2.1 Case Study 
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Some freeze-drying cycles were carried out to get the samples used for model development. In the 

first part of the study, a sucrose 6%w aqueous solution, freeze-dried into 2R glass vial (Nuova Ompi, 

Piombino Dese, Italy) with a filling volume of 1 mL, was considered for samples preparation: sucrose 

was supplied by Merck Life Science (Darmstadt, Germany) and ultra-pure water was obtained by a 

Millipore water system (IQ 7000, Merck Millipore, Burlington, USA). The choice of this product was 

aimed at mimicking the placebo solution of a commercial freeze-dried product by Merck Serono SpA. 

Vials were placed according to a honeycomb layout surrounded by metal frames, in direct contact 

with the freeze-drier shelves, and processed in a lab-scale freeze-drier (Lyostar3, SP Scientific, 

Warminster, USA) in the laboratories of the Guidonia Montecelio (Italy) site of Merck Serono SpA. 

Two freeze-drying cycle were carried out with the same process conditions: 

- freezing at -45°C for 6 h, with an annealing step at -15°C for 2 h; 

- primary drying at -25°C and 5 Pa for 30 h; 

- secondary dying at 35°C and 5 Pa for 10 h; 

- all the cooling / heating rate were set at +/- 2°C/min, except for the heating rate in the transition 

from the primary to the secondary drying, set at +1°C/min. 

About 200 vials were processed in each test, and all samples were crimped at the end of the cycle to 

prevent any humidification from the environment. From each batch 65 samples were taken randomly, 

hence the sample set used as case study (labelled as S6 in the followings) was made of 130 vials. 

For calibrating the model, samples in a wider range of moisture were needed. Therefore, 115 vials 

were humidified on purpose after the freeze-drying step, in order to get a RM in the range 1% - 5% 

(15 vials were left unaltered, thus their water content was representative of the RM obtained at the 

end of the freeze-drying process). For the humidification, a procedure already implemented for the 

manual humidification of freeze-dried samples53 was followed: 

- the amount of water required to get a target value of RM was calculated, given the weight of 

the cake and assuming an initial RM of 0.5%; 

- each vial was unsealed, the stopper placed on a flat surface, and the amount of water calculated 

dropped on the internal face of the stopper; 

- vials were closed upside-down on the stopper, i.e. with the bottom pointing upside, thus, 

avoiding the direct contact of the drop with the cake, which would cause a partial collapse of 

the cake; 

- vials were left in the upside position for more than 24 h, to allow the diffusion of water.  

After the humidification, vials were sealed and stored at room temperature. 

In order to test the robustness of the model further sample sets, having specific different features, 

were necessary. The validations carried out with these samples are called “external validation”, 
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meaning that they were performed using datasets from products different from those used for the 

calibration. Analogously, the respective datasets are called “external datasets”. The followings 

samples were thus produced: 

(a) 10 samples of sucrose 6%w in 6R vial, the same product of S6, but in a different vial format 

(sample set VF); 

(b) 25 samples of sucrose 9%w (sample set S9), thus having a solid fraction higher than S6; 

(c) 35 samples of trehalose 6%w (sample set T6), with the same solid fraction as S6, but a different 

amorphous excipient; 

(d) four different mixtures sucrose - arginine, containing different concentrations of arginine: 

- 10 samples of sucrose 3%w - arginine 3%w, (50% of arginine, sample set SA50); 

- 10 samples of sucrose 6%w - arginine 2% w, (25% of arginine, sample set SA25); 

- 20 samples of sucrose 6%w - arginine 1%w, (14.3% of arginine, sample set SA14); 

- 10 samples of sucrose 6%w - arginine 0.5%w, (7.7% of arginine, sample set SA07). 

Samples of group (a) were intended to evaluate if the vial format, i.e. the shape of the container, could 

affect the characteristics of the spectra collected. Since the NIR beam is affected by phenomena of 

diffraction and light scattering, the aim was investigating if the spectra (of the same product) collected 

through different vial formats were significantly different. Samples of groups (b) and (c) were used 

to evaluate the applicability of the PLS regression to a different product, i.e. if the model could be 

applied for samples with a different solid fraction or made of a different (but still amorphous) 

excipient. Finally, the goal of samples of group (d), generically referred all together as sample set SA, 

was testing the effect of an additional amino acid and evaluating up to what extent the amino acid 

could interfere according to its concentration. 

All the above listed sample sets were produced in 2R vial with 1 mL filling volume, except for the 

sample set VF. Since samples of VF were produced in 6R vials (Nuova Ompi, Piombino Dese, Italy), 

the filling volume was 2 mL, in order to get the same height of liquid in the vial and keep the same 

freeze-drying process conditions (in terms of temperature, pressure, and duration) as applied to the 

freeze-drying process of S6. For the preparation of these solutions, ultra-pure water by a Millipore 

water system (IQ 7000, Merck Millipore, Burlington, USA) was used, sucrose and L-Arginine 

Monohydrochloride were supplied by Merck Life Science (Darmstadt, Germany), and trehalose 

dihydrate by Sigma-Aldrich (Saint Louis, USA). 

A freeze-drying cycle was run to produce the sample sets VF, S9, TS, and SA with the same process 

conditions listed above.  

All the samples were crimped at the end of the cycle and stored at room temperature. In order to 

validate the model in all the range of RM used for the calibration, also the samples of these sets were 
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humidified, applying the procedure described above. Then, five samples from each one of the sample 

sets VF, S9 and T6 and two from each sample sets SA were left unaltered, while the others were 

humidified in the same range of RM (1% - 5%) adopted for the humidification of S6. 

 

2.2.2 Spectra acquisition 

The samples listed above were all analyzed through a Fourier Transform NIR spectrometer (Antaris 

MX FT-NIR, Thermo Fischer Scientific, Waltham, USA), equipped with an InGaAs detector and a 

halogen NIR source. Spectra were recorded in the full wavelength range 10000 - 4000 cm-1, in diffuse 

reflectance mode, with 32 scans for spectrum, and a gain of 1. In order to reduce the noise and get a 

well-defined path, for each sample the spectrum was obtained as the average between 96 scans, and 

the whole acquisition took about 1 min for each sample. 

All the samples were numbered and scanned through the side wall of the vial, with the NIR beam 

pointing on the side of the freeze-dried cake (vertical layout), except for the samples of S6 that were 

scanned not only in vertical layout, but also in horizontal layout, i.e. through the bottom of the vial, 

with the NIR beam pointing on the bottom of the cake (Fig. A1 in Appendix A). Therefore, from the 

sample set S6 two spectral datasets were obtained: dataset S6 made of the spectra collected in vertical 

layout (used as the case study), and the dataset S6-H, made of the spectra collected in horizontal 

layout (used as an external dataset). The aim of dataset S6-H was investigating in what extent the 

information collected by the NIR beam through the side of the vial differed from the information 

collected through the bottom. 

 

2.2.3 Karl Fischer titration 

After the collection of the spectra, KF titrations were performed for all the samples. A coulometric 

titrator was employed (CX30 Mettler Toledo, Columbus, USA), and, to perform the analysis, the 

instructions of the Standard Operating Procedure (SOP) of the company were followed. According 

to the SOP, the equipment was verified before every campaign of titrations by the titration of a 

standard solution (Honeywell HYDRANAL Water Standard 1.0, Fischer Scientific, Milano, Italy). 

For each sample, two titrations were performed, and the value of RM calculated as their average, in 

order to reduce the uncertainty related to the analytical method. 

The samples not humidified had a RM in the range 0.21%-0.80%, while the humidification procedure 

turned out samples with a water content up to 5.46%. 

 

2.3 Data processing 

In this study, two algorithms were used, based on PLS analysis, one for developing the model, the 
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second to assess the robustness of the model previously developed, by means of an external 

validation. 

(A) For model development, the dataset is divided into the calibration and validation sets, a 

regression is performed using the calibration set, to get the regression matrix B, and the 

RMSEC is calculated. Following, the B matrix is applied to the validation set, performing an 

“internal validation” of the model, and the RMSEP is estimated. As a further internal 

validation of the model, CV is carried out and the RMSECV and R2 are calculated. 

(B) The external validations are done on the entire external dataset, i.e. on a dataset made of 

samples of a product different from the samples used for calibrating the model. The regression 

matrix calculated previously  is used, and the performance is assessed by calculating the 

RMSEP and the Q2. 

As a graphical outcome, correlation plots of the RM measured vs the RM calculated were drawn. 

As a general specification, all the PCA and PLS decompositions presented in the followings were 

carried out with two PCs, since at least more than 98% of the (co)variance among the data of each 

dataset was always described by this way. In particular, concerning the PLS regressions, usually the 

1st PC was found able to describe the majority of the covariance (slightly less than 80%), and 

approximately a further 20% was up to the 2nd PC. As a confirmation of this, decompositions 

performed with a higher number of PCs did not result in lower values of RMSEC and RMSECV and, 

thus, did not lead to significantly improved performances. Another reason explaining why PLS 

decompositions were preferentially performed with two PCs was avoiding the overfitting of the 

calibration set, as a higher number of PCs would restrict the model validity to that specific product, 

thus reducing the prediction ability of the model when applied to samples of different products. 

The procedure for selecting the range of wavelengths used for model development consisted in 

performing a preliminary PLS decomposition (with two PCs) on the entire wavelengths range. 

Following, the loadings of this decomposition were analyzed to identify the most significant 

variables, characterized by higher peaks in the trend of the loadings. Finally, a PLS regression (again 

with two PCs) was performed on the selected wavelength range, in order to get the regression matrix. 

For processing NIR spectra and modeling, scripts were written using MATLAB (R2019b), based on 

the algorithms of Shlens (2020)44 and Wold (1992)54. 

 

2.3.1 Pretreatment of spectra 

Pretreatments are mathematical corrections of the spectra required to reduce some interfering 

phenomena affecting the NIR beam, e.g. baseline shift, light scattering, and random noise43.  

Pre-processing of the spectra was carried out by using a standard normal variate (SNV) approach, 
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consisting in subtracting the mean value of the spectrum from all its points, and dividing for its 

standard deviation. SNV is useful to reduce the variability between samples due to light scattering, 

to adjust the base-line shift, and to focus the study of the spectrum on points with higher variability 

from the mean value55. Since for this application the SNV method was found to turn out data suitable 

enough for high accuracy models, other common pretreatment techniques, e.g. scatter corrections, 

derivates and smoothing55, were not applied. 

Before modeling, the wavelength range was reduced to 10000 - 4200 cm-1, since the signals collected 

at higher frequencies appeared too noisy and potentially misleading. Beside this, the spectra obtained 

in some cases appeared very different from the expected ones, mainly due to issues in the signal 

acquisition or to a non-perfect contact between the NIR probe and the vial wall. All these spectra may 

be considered as “outliers”, and have to be removed from the following analysis. This may be done 

manually, looking at all the spectra obtained and deleting the “anomalous” ones, but, with the goal to 

speed up this step, PCA was used to remove them (considered as outliers). After this, the removed 

spectra were checked to be effectively those where the trend could not be related to an unexpected 

water content. As an example, Fig. A2 in Appendix A shows the spectra of S6 after pretreatments 

and removal of outliers. The number of spectra making up each dataset after the removal of outliers 

is summarized in Table 1. All the models developed in the following were based on spectral data pre-

processed in the same way.  

 

2.3.2 Model developing 

Dataset S6 was used for developing three models: 

- Model SR, based on a PLS regression on a small wavelength range; 

- Model LR, based on a linear regression considering a single wavelength; 

- Model WR, based on a PLS regression on a large wavelength range. 

Model SR is the goal of this study and models LR and WR were considered for comparison purposes, 

to point out the major robustness of model SR. 

The performance parameters (RMSEC, RMSEP, RMSECV, R2) were calculated for each model, and 

compared to assess the effect of the different number of variables, i.e. of wavelengths, considered. 

Dataset S6 was split in two sets, in order to perform the calibration with a set and the internal 

validation with the other. The calibration set was made by 60 spectra (about 50% of S6), randomly 

selected from S6, and the validation set by the remaining 61 spectra. Since the samples of S6 had a 

RM content in the range 0.53% - 4.92%, this was the range of applicability of the developed models. 

In order to develop the models, the preliminary PLS was carried out in the range 10000 - 4250 cm-1, 

and the significance of the wavelengths evaluated from the loading plot. 
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For building model LR the most significant signal had to be selected. A peak in the loading of the 2nd 

PC was found 5150 cm-1 (see Fig. A3(a) in Appendix A), corresponding to the signal of water31,56, 

thus it was taken as the variable for calculating the linear regression. The values of absorbance at 

5150 cm-1 were thus collected for each spectrum of the calibration set, and a linear regression was 

calculated by fitting these values of absorbance over the corresponding value of RM measured by KF 

titrations (see Fig. A4, upper graph, in Appendix A). The linear regression was performed by the 

MATLAB function polyfit, which applies the least squares method to calculate the coefficients of a 

polynomial that is the best fit for the data given57. In this case, a polynomial of first degree, i.e. a 

straight line fit, was computed as regression line. Once obtained the coefficients of the linear 

regression, they were applied to the values of absorbance at 5150 cm-1 of the validation spectra, in 

order to predict the RM and perform the internal validation of model LR. In order to compare the 

performance of the linear regression with the PLS regressions, also model LR underwent to CV to 

calculate RMSECV and R2, and equations (1) and (2) were applied to calculate the RMSEC and 

RMSEP. 

To build model WR, the wavelength range 7100 - 4250 cm-1 was selected, since here the loadings of 

the preliminary PLS decomposition showed high signals (see Fig. A3(a) in Appendix A). A PLS 

regression was performed on the selected range with the calibration set. The internal validation of 

model WR was then performed, obtaining the predicted values of RM. The RMSEP and RMSEC 

were calculated, as well as the RMSECV and R2 after CV. 

However, the wavelength range adopted for model, though made of significant signals, still contained 

a lot of information in addition to the signal specific for water (at 5150 cm-1). Hence, attention was 

paid in selecting a smaller range of signals, wide enough to collect what was relevant for the water 

quantification but, at the same time, to leave out the signals not so specific for water, which may mix 

up the calibration. Therefore, to develop model SR the wavelength range was further reduced to 5290 

- 4785 cm-1, where just the highest loadings peaks were found. This range was supposed to be most 

significant for representing the water content. It has to be underlined that this range is just around the 

main signal of water at 5150 cm-1. Similarly to the procedure described for the model WR, model SR 

was built performing another PLS regression on the reduced wavelength range with the calibration 

set, obtaining the B regression matrix, and the internal validation performed using the validation set 

through the application of B. RMSEC and RMSEP were calculated, as well as RMSECV and R2. 

 

2.3.3 External validations 

Challenging the robustness of model SR was the second goal of this paper. The performances of the 

external validations were assessed by means of RMSEP and Q2, since calibrations and CV were not 
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needed (thus RMSEC, RMSECV, and R2 were not calculated). 

For some datasets, as it will be shown in the followings, an “ad-hoc” PLS regression, i.e. a PLS 

regression calibrated specifically for a product and validated with samples containing the same 

product, was also developed: this was supposed to give the best performances, accordingly to the 

goodness of the experimental data and their aims were: 

- comparing the performances of the model SR with the best achievable performance; 

- discriminating if any poor performances were due to the little applicability of model SR (low 

performances of the external validation, but high for the ad-hoc model) or to the poor accuracy 

of the experimental data (low performances of both the external validation and the ad-hoc 

model). 

The ad-hoc models were developed similarly to what presented for model SR and WR. The 

processing applied to each external dataset is listed in the followings. 

Dataset S6-H: 

- external validation of model SR: 111 spectra with a RM content in the range 0.53% - 4.92% 

(the lower number of spectra with respect to dataset S6 is due to a higher number of outliers 

removed from the S6-H dataset); 

- ad-hoc PLS regression (model H): 55 spectra for calibration, 56 spectra for the internal 

validation. Since the product was the same as dataset S6, the same wavelength range used for 

model SR (5290 - 4785 cm-1) was adopted for developing model H. 

Dataset VF: 

- external validation of model SR: 10 spectra with a RM content in the range 0.21% - 5.46%; 

- because of the lower number of samples, an ad-hoc PLS regression was not performed. 

Dataset S9: 

- external validation of model WR and of model SR: 24 spectra with a RM content in the range 

0.40% - 3.87%; 

- ad-hoc PLS regression (model SF, which stands for solid fraction): 12 spectra for calibrating, 

12 spectra for the internal validation. Being the samples made of sucrose as dataset S6 (with 

just a different solid fraction), the same range used for model SR (5290 - 4785 cm-1) was 

adopted. 

Dataset T6: 

- external validation of model WR and of model SR: 30 spectra with a RM content in the range 

0.51% - 5.40%; 

- ad-hoc PLS regression (model T): 15 spectra for calibrating, 15 spectra for the internal 

validation. For the selection of the wavelength range, a preliminary PLS decomposition was 
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performed in the range 10000 - 4250 cm-1. The loadings (Fig. A3(b) in Appendix A) were 

found similar to the loadings of S6, and a similar range was selected (5300 - 4740 cm-1). For 

model development, another PLS regression was performed in this range with two PCs. 

Dataset SA: 

- external validation of model SR: 50 samples, with RM in the range 0.53% - 4.31%; 

- since the external validation of model SR turned out a considerably high error associated to 

the samples with higher arginine concentration, the external validation of model WR was not 

carried out. Consequently, only the datasets SA07 and SA14 (20 spectra with RM in the range 

0.53% - 3.84%) were taken for an external validation of model SR and of model WR, to 

calculate some performances comparable with the other validations; 

- an ad-hoc PLS regression (model A), with just the datasets SA07 and SA14: 10 spectra for 

calibrating, 10 spectra for the internal validation. A preliminary PLS regression was 

performed on the range 10000 - 4250 cm-1 to get the loading plot (Fig. A3(c) in Appendix A). 

In this case, quite significative differences were found from the loadings of S6, though the 

range, with the highest values of loadings where in the same wavelength range observed for 

dataset S6. Thus, a similar range was selected (5295 - 4745 cm-1) to perform the PLS 

regression with two PCs for model development. 

 

2.3.4 Global model 

An ad-hoc PLS regression (model G) was performed considering all the products previously listed 

joined in a single dataset (GL). In case a certain product was represented by a considerably higher 

number of samples than the other products, it might affect the PLS regression, i.e. forcing the 

regression to give more weight to that specific product. Therefore, only a fraction (about 30%) of 

samples of S6 (36 spectra) was considered, selected randomly, since dataset S6 was much larger than 

the others involved in model G. In this way all the products were represented by a comparable number 

of spectra. Dataset GL, thus, resulted in 110 spectra, with a RM in the range 0.40% - 5.40%, and it 

was split between the calibration and validation sets (respectively 55 and 55 spectra). The ad-hoc 

regression was performed in the wavelength range 5300 - 4740 cm-1, made by the union of the ranges 

adopted for the single ad-hoc PLS regressions (with the exception of the range used for model WR), 

since this range was likely to include the wavelengths already found significative for the description 

of the single products. The model G underwent to internal validation and to CV.  

Since model G was calibrated with different products, it was assumed to provide the best 

performances in prediction, at least in the case different products were represented by the same model. 

Therefore, the external validations of model SR were compared with the performances of model G, 
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for evaluating its robustness.  

Additionally, a linear regression (model G-LR) was developed as described for model LR, at 5150 

cm-1, and underwent to internal validation and CV (the curve of calibration of model G-LR is shown 

in Figure A4 in Appendix A). The aim was investigating to what extent a univariate linear regression 

could be suitable for the simultaneous modeling of different products, with respect to the multivariate 

PLS method. For the same purpose, an external validation of model LR was carried out with dataset 

GL, thus testing the robustness of a linear regression method. 

All the performance parameters estimated for the calculations described above are listed in Table 2 

and discussed in the following section. 

 

3. Results and discussion 

 

3.1 Model development 

Models LR, SR, and WR are compared in the followings to establish which is the most suitable 

method for predicting the RM content. 

Model WR turned out to have the poorest performances (RMSEC and RMSEP equal to 0.314 and 

0.300), especially in comparison with model SR. In fact, model SR was extremely accurate, both in 

calibration and in the prediction (RMSEC and RMSECV equal to 0.118 and 0.122 respectively, R2 

equal to 0.988). Taking in mind that the experimental error expected from a KF analysis may be up 

to 0.3%32,58,59, model SR could be considered very accurate. Surprisingly, model LR had better 

performance than model WR, with RMSEC and RMSEP equal to 0.179 and 0.161 respectively, 

though not as accurate as the SR. 

These findings are confirmed by the correlation plots in Fig. 1. The correlation plot of model WR 

(Fig. 1(c) and (d)) turned out a much wider distribution of the observations around the bisect line, 

representative of poor accuracy of the model. A similar, though less evident, situation can be seen in 

Fig. 1(a) and (b), regarding model LR. Conversely, the same observations in the correlation plot of 

model SR (Fig. 1(e) and (f)) appeared much better aligned along the bisect line, as expected for a 

model of high accuracy. 

Another evidence of the benefits coming from the selection of a smaller wavelength range is displayed 

in the score plots of Fig. 2, where the scores are grouped by their RM content, as measured by KF 

titrations. The scores obtained from the PLS decomposition over the smaller range appear well 

aligned and ordered bottom-up according to the increasing value of the RM. The same observations 

processed by model WR resulted in a less precise distribution, with scores overlapping. 

Therefore, the comparison of these three models pointed out that a PLS regression on a small, but 
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significative, wavelength range was a well suitable technique to predict the RM content from NIR 

spectra. 

 

3.2 Effect of the vial 

Model SR was applied to dataset S6-H. The external validation of model SR with S6-H spectra 

yielded in very good performance parameters (RMSEP and Q2 equal to 0.144 and 0.986). The 

performance parameters of the external validation of SR are comparable to those obtained from the 

ad-hoc model H, that turned out to be equally accurate. Therefore, model SR could be equally applied 

to spectra collected with vertical and horizontal layout, and a specific model for modeling spectra 

collected in horizontal layout was not needed. Fig. 3(b) shows the correlation plot obtained from the 

application of model SR to the S6-H dataset, and Fig. 3(c) and (d) the outcome of the ad-hoc model 

H. It can be seen that the observations are distributed similarly along the bisect line, in all the 

correlation plots, which is indicative of similar performances. Additionally, in Fig. 3(a) a score plot 

of the observations of S6 and S6-H is displayed. It points out that the observations of S6-H were 

comparable to those of S6, since no clusters could be found. This is another evidence that the two 

datasets could be processed properly by the same model. 

The fact that the spectra collected in vertical layout and in horizontal layout were similar was an 

important outcome, meaning that the spectra collected from two different spots of the cake are 

basically equivalent. Therefore, the fraction of cake irradiated by the NIR beam could be assumed 

representative of the larger cake volume, at least in the case study here investigated. 

Model SR was also applied to dataset VF, in order to further investigate to what extent the vial shape, 

i.e. the vial format, could affect the applicability of the model. The validation of model SR with the 

samples of dataset VF is showed in Fig. A5. Though this validation yielded in slightly less accurate 

performances (RMSEP equal to 0.139), the fitting of the prediction was still very accurate (Q2 equal 

to 0.985). Therefore, the suitability of model SR for samples produced in a different vial format could 

be assessed. This outcome confirmed what expected from literature, since the aim of the pretreatment 

technique, among the others, is to solve the diffraction and light scattering effects, which can also be 

due to the different vial shape. 

 

3.3 Robustness of the model 

 

3.3.1 Different solid fraction 

Here the effect of a different solid fraction was evaluated by means of dataset S9. 

The external validation of model WR with dataset S9 was less accurate, especially at lower RM, 
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where the distribution of the observations in the correlation plots was found significantly spread (Fig. 

4(a)). On the other hand, the external validation of SR (Fig. 4(b)) and the ad-hoc model SF (Fig. 4(c) 

and (d)) appeared comparable, though the former slightly less accurate because of a bit cluttered 

displacement of the observations at lower RM content. The performance parameters in Table 2 

confirm these findings: the RMSEP of the external validation performed with model WR (equal to 

0.338) was considerably higher than that obtained with model SR (equal to 0.138), and also Q2 was 

barely equal to t 0.853. However, the ad-hoc model SF turned out to be extremely accurate in 

calibration (RMSEC and R2 equal to 0.093 and 0.993) and in prediction (RMSEP equal to 0.078). 

The comparison between the performance of the external validation of model SR and of model SF 

was useful to assess the goodness of the experimental data: since the ad-hoc model SF was very 

accurate, the lower performances of model SR were up to the algorithms itself, i.e. not to any faults 

of the experimental data. Nevertheless, it has to be said that the performance of model SR applied to 

S9 was not poor, but just less accurate when compared to the much accurate performances of model 

SF. Therefore, this external validation suggested that model SR could be applied to samples with 

higher solid fraction, obtaining a prediction of the RM content sufficiently accurate, although higher 

accuracy may be obtained from an ad-hoc model. 

 

3.3.2 Different excipient 

Firstly, the failure of the external validation of model WR applied to dataset T6 appeared clear. In 

Fig. 5(a) the correlation plots show a muddled distribution, especially at lower RM. The poor 

performance parameters confirm these findings (RMSEP equal to 0.410).  Due to the limited number 

of samples available, a more extended calibration might be advisable. Looking at the loading plot in 

Fig. A3(b), differences could be found in the peak of the 1st PC around 6350 cm-1, and in the regions 

7000-5500 cm-1 and 4850-4250 cm-1 of the 2nd PC. This is fundamental to be noticed, since it could 

be useful to explain the poorer performances coming out from the external validation of model WR 

and, lately, to validate the thesis that, for predicting the RM content, using a smaller range may lead 

to a more robust PLS regression. In fact, the range used for calibrating model WR comprehended the 

wavelength ranges where differences in the loading trends of S6 and T6 were found, thus its lower 

robustness appeared reasonable. 

The performances of the external validation of model SR and of the ad-hoc model T were basically 

comparable (RMSEP equal to 0.147 and 0.148 respectively). This means that whatever the goodness 

of the experimental data was, model SR could be applied to samples of trehalose giving performances 

equivalent to those of an ad-hoc model. To confirm this, in the correlation plots of model SR (Fig. 

5(b)) and of the ad-hoc model T (Fig. 5(c) and (d)), the observations appeared well aligned along the 
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bisect line.  

 

3.3.3 Addition of an amino acid 

 

The score plot in Fig. 6(a) was obtained by the PLS regression carried out for model SR with dataset 

SA. Here the division in clusters of the samples is highlighted, according to the different concentration 

of the amino acid. In the score plot also the scores of dataset S6 are displayed, and the higher the 

arginine concentration, the farther the scores of SA lay from the clusters of S6. Only the samples of 

SA07 and SA14 are partially overlapped to the S6 cluster. Therefore, it could be deduced that only 

samples with lower amino acid concentration could be described (at least partially) by model SR. The 

outcome of the external validation of model SR to dataset SA is showed in Fig. 6(b). The samples of 

SA07 and SA14 are nearer to the bisect line, though a constant gap could be seen at any RM content, 

while the observations of SA25 and SA50 are progressively farther and more spread. The constant 

gap characterizing SA07 and SA14 could be considered a systematic error, as an evidence of some 

lacks in the structure of model SR, that actually was not calibrated with any proteinaceous component. 

Therefore, it appeared that the addition of an amino acid in any of the concentrations here tested 

represented the introduction of a major variability. 

Consequently, to evaluate the robustness of model SR, only SA07 and SA14 were taken for the 

external validations. The application of model WR to SA07 and A14 ended up certainly in a lower 

quality prediction, with RMSEPM and Q2 equal to 1.441 and 0.825. It is worth to underline that, 

from the loading plot of Fig. A3(c), differences from the loadings of S6 could be found: both the 

loadings of the 1st and 2nd PCs had different trends in the range 7000 - 5300 cm-1, and a significant 

peak could be found in the trend of the loading of the 2nd PC at about 4490 cm-1. These major 

differences are in a range involved in model WR, thus this is likely the reason why a model built on 

a large range has little robustness, at least in the case of RM prediction. 

The application of model SR to datasets SA07 and SA14 yielded in better performances, though not 

very accurate (RMSEP equal to 0.321). Obviously, better performances were obtained from the ad-

hoc model A, with RMSEP and RMSECV equal to 0.125 and 0.132. Also, the gap between the 

distribution of the observations and the bisect line in the correlation plot did no longer occur (Fig. 

6(c) and (d)). This confirmed that the lower accuracy of the SR validation was not related to the 

goodness of the experimental data, but it was up to the intrinsic robustness of model SR. However, 

few samples were available to calibrate model A, thus an even more accurate modeling could be 

carried out involving more samples. 

Some considerations about the range selected for model A are worth to be pointed out. Though the 
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range selected for model A (5295 - 4745 cm-1) was not so different from the range used by model SR 

(5290 - 4785 cm-1), the loading plot showed some differences in the loadings that turned out to be 

quite significative: the trends of the loadings of the 1st PC and the shapes of the peak around 5150 

cm-1 described by the 2nd PC were a little different. Therefore, the lack in the intrinsic robustness of 

model SR should not be related to the selection of the wavelength range. Instead, the robustness of 

model SR was affected by the too large variability introduced by arginine, being the lowest 

concentration tested in this study still too strong impacting.  

 

3.4 Comparison with a global model 

Model G was calibrated with several products and its performance was used as a comparison with the 

outcome of the external validations carried out with model SR. 

Firstly, some considerations on model G are needed to evaluate its performance. The model was 

found very accurate in calibration, with RMSEC and R2 approaching those estimated for the 

calibration of model SR (equal to 0.121 and 0.981). The performance in prediction (RMSEP and 

RMSECV equal to 0.139 and 0.168) were slightly lower than what found for model SR. However, 

this was expected, since model G had to describe various characteristics of different products at the 

same time. For this reason, model G could still be considered accurate. In fact, a rather well aligned 

distribution of observations in the correlation plots of Fig. 7 (a) and (b) could also be seen. 

By comparing the RMSEP values of model G and of the external validations of model SR, it turned 

out that the performance of model SR applied to dataset S9 was basically the same as model G. A 

similar conclusion could be drawn regarding the external validation of model SR with dataset T6, 

since the RMSEP of the external validation was just 5.8% higher than the RMSEP of model G. Higher 

differences were noticed relative to the external validation of model SR with datasets SA07 and SA14, 

being its RMSEP more than twice the RMSEP of model G. Consequently, performing a calibration 

with multiple products seemed beneficial just in case a major variability among products has to be 

accounted, e.g. the introduction of a proteinaceous component in a considerably high concentration. 

For minor differences, as the case of datasets S9 and T6, a multi-products model was not really 

necessary, and a robust model like model SR could provide much similar performances. 

The model SR was applied to the global dataset and the prediction yielded in a RMSEP and Q2 equal 

to 0.193 and 0.970. This was not the best performance assessed for model SR, though it could be 

considered accurate enough considering that a large variety of product not involved in the SR 

calibration was accounted for. Also, as expected, the accuracy of this prediction was in-between of 

the (better) performances found for S6, S9, and T6 and the (wore) performances regarding datasets 

SA07 and SA14. Conversely, the external validation of model WR turned out in a much higher 
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RMSEP, equal to0.641. Lately, this is the evidence of the little robustness and, thus, applicability of 

a PLS regression developed on a larger wavelength range.  

Since model LR developed for dataset S6 resulted in surprisingly good accuracy, further 

investigations on the robustness of a linear regression method were advisable. For this reason, model 

LR was applied to dataset GL as an external validation with multiple products, and it yielded in a 

high RMSEP (equal to 0.599) and low Q2. This outcome pointed out the very little robustness of a 

linear regression method, not even comparable to the robustness proved fora PLS method like model 

SR.. 

Additionally, model G-LR was compared with the ad-hoc model G. Beginning with the curve of 

calibration in Fig. A4, a poorer accuracy could be seen: the variability of the values of RM measures, 

though placed over the values of absorbance accordingly to a linear trend, was too high for a good 

fitting. Hence, also in this case, the performances of the linear regression method resulted much less 

accurate, with higher error both in calibration and in validation. In fact, model G-LR had an RMSEC 

more than twice the RMSEC of model G, and much higher RMSEP and RMSECV (equal to 0.349 

and 0.312). The minor accuracy of model G-LR could also be guessed by the correlation plots of Fig. 

7 (c) and (d), where more spread distributions of observations are displayed, especially at lower RM 

values.  

 

4. Conclusions 

 

In this paper NIRS was applied to develop a model suitable for the prediction of the RM content of 

freeze-dried products, focusing particularly on its robustness and suitability for different products not 

involved in the calibration procedure. A key point was proving the major robustness of a PLS model 

developed considering a small part of the spectra: when a larger wavelength range is used for 

calibrating a model, more characteristics specific of the product used for the calibration are taken into 

account. Hence, when it comes to apply the model to different products, too many not essential signals 

might be misleading for the prediction.  

Developing a robust PLS model by selecting variables accurately, rather than making use of huge 

datasets for its the calibration, was a relevant advancement. Indeed, a single product (sucrose 6%w) 

was employed for the calibration of this PLS regression (model SR) and it was developed with just 

two PCs, over a small wavelength range. A similar PLS regression was developed on a wider range 

(model WR), but model SR turned out to be extremely accurate for sucrose 6%w, much more than 

model WR. 

Model SR was adopted with datasets of spectra collected from vials placed in different layout, and to 
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samples produced in different vial format: the accuracy of the outcome suggested that the vial shape 

did not affect significatively the collection of the spectra. 

Then, model SR was applied to samples containing a higher solid fraction of sucrose and samples 

made of a different excipient, still yielding pretty much accurate performance, much more accurate 

than the performance of model WR when applied to the same datasets. Hence, model SR had the 

great advantage to be applicable to different products without further calculation and relevant loss of 

accuracy. Lower accuracy resulted from the application of model SR to samples made by a mixture 

sucrose - arginine, since the concentrations of arginine used in this study represented a source of 

major variability. A global model, calibrated with multiple products, gave basically the same results 

as model SR, except for the samples containing arginine, which appeared better described. These 

findings proved the suitability of model SR for samples different from those used for its calibration, 

unless too significant variations are introduced: in this case an ad-hoc multi-products calibration could 

be beneficial.  

Besides, the PLS regression was compared to a linear regression method developed considering a 

single wavelength. If the linear regression appeared quite accurate when applied to the same single 

product used for its calibration, a failure of its performance was evident when its robustness was 

tested with different products. Similarly, a linear regression method was showed to be unable to model 

multiple different products at the same time. Therefore, the PLS method appeared clearly more 

suitable. 

Finally, it has to be remarked that the accuracy of this method is strongly dependent on the accuracy 

of the KF titration used for model calibration: the proposed approach aims avoiding the repetition of 

the calibration step when the vial is changed, when the solid fraction is changed, and when the active 

pharmaceutical ingredient, an amino acid in the considered case study, is added, thus allowing 

carrying out the calibration step with just the excipient. 
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Product / dataset S6 S6-H VF S9 T6 SA GL 

sucrose 6%w 121 - - - - - 36 

sucrose 6% w (horizontal layout) - 111 - - - - - 

sucrose 6% w (vial 6r) - - 10 - - - - 

sucrose 9% w - - - 24 - - 24 

trehalose 6% w - - - - 30 - 30 

sucrose – arginine (50% w) - - - - - 10 - 

sucrose – arginine (25% w) - - - - - 20 - 

sucrose – arginine (14% w) - - - - - 10 10 

sucrose – arginine (7% w) - - - - - 10 10 

Total samples 121 111 10 24 30 50 110 

 

 

Table 2. Performance parameters of the models developed and of the external validations carried 

out in this study. The type of algorithm used, the wavelength range (cm-1), and the dataset involved 
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Dataset Type Model Range RMSEC RMSEP RMSECV R2 Q2 

S6 

(A) LR 5150 0.179 0.143 0.161 0.979 - 

(A) WR 7100-4250 0.314 0.300 0.286 0.934 - 

(A) SR 5290-4785 0.118 0.123 0.122 0.988 - 

S6-H 
(B) SR 5290-4785 - 0.144 - - 0.986 

(A) H 5290-4785 0.116 0.143 0.131 0.987 - 

VF (B) SR 5290-4785 - 0.139 0.155 - 0.985 

S9 

(B) WR 7100-4250 - 0.338 - - 0.853 

(A) SR 5290-4785 - 0.138 - - 0.986 

(B) SF 5290-4785 0.093 0.078 0.092 0.993 - 

T6 

(B) WR 7100-4250 - 0.410 - - 0.963 

(A) SR 5290-4785 - 0.147 - - 0.984 

(B) T 5300-4740 0.158 0.148 0.15 0.989 - 

SA07 

 SA14 

(B) WR 7100-4250 - 1.441 - - 0.825 

(A) SR 5290-4785 - 0.321 - - 0.974 

(B) A 5295-4745 0.054 0.125 0.132 0.989 - 

GL 

(A) G 5300-4740 0.121 0.139 0.168 0.981 - 

(B) SR 5290-4785 - 0.193 - - 0.970 

(B) WR 7100-4250 - 0.641 - - 0.855 

(B) LR 5150 - 0.599 0.314 - 0.927 

(A) G-LR 5150 0.261 0.349 0.312 0.935 - 
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Figure 1. Correlation plots between the RM (%) measured vs RM (%) calculated, obtained from the 

calibration (left column) and validation (right column) sets of S6 processed by: (a) and (b) model 

LR, (c) and (d) model WR, (e) and (f) model SR. 
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Figure 2. Score plot of dataset S6 obtained by PLS decomposition in the range 7100 - 4250 cm-1 of 

model WR (left) and in the range 5290 - 4785 cm-1 of model SR (right). The scores are displayed in 

the plane described by the 1st and 2nd PC and are ordered according to the RM content measured by 

KF analysis: RM lower than 2.0% (white circles), RM between 2.0% and 3.0% (gray triangles), and 

RM higher than 3.0% (black squares). 
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Figure 3. Analysis of dataset S6-H: (a) score plot with the scores of datasets S6 (white circles) and 

S6-H (gray circles) obtained by PLS decomposition in the range of model SR; (b) external 

validation of model SR; (c) and (d) calibration and validation correlation plots of the ad-hoc model 

H. Scores are displayed in the plane described by the 1st and 2nd PCs. 
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Figure 4. Analysis of dataset S9: (a) external validation of model WR; (b) external validation of 

model SR; (c) and (d) calibration and validation correlation plots of the ad-hoc model SF.  
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Figure 5. Analysis of dataset T6: (a) external validation of model WR; (b) external validation of 

model SR; (c) and (d) calibration and validation correlation plots of the ad-hoc model T.  

 

 

  



37 
 

Figure 6. Analysis of sample set SA: (a) score plot obtained by the PLS decomposition in the range 

of model SR of the datasets S6 (white circles), SA07 (gray circles), SA14 (gray triangles), SA25 

(gray squares), and SA50 (gray diamonds); (b) external validation of model SR with the datasets 

SA07, SA14 (white circles and triangles), SA25, and SA50 (gray squares and diamonds); (c) and 

(d) calibration and validation correlation plots of the ad-hoc model A. The scores are presented in 

the plane described by the 1st and 2nd PC. 
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Figure 7. Analysis of dataset GL: (a) and (b) calibration and validation of the ad-hoc model G; (c) 

and (d) calibration and validation of the ad-hoc model G-LR. All the correlation plots are given as 

RM (%) calculated vs RM (%) measured. 
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Figure A1. Acquisition of spectra: the NIR probe points the side wall or the bottom of a sealed vial, 

denoted, respectively, as vertical layout (above) and horizontal layout (below). 
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Figure A2. Spectral dataset S6 after pre-processing over the wavelength range 10000 - 4150 cm-1. 
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Figure A3. Loading plots of the PLS decomposition in the wavelength range 10000 - 4250 cm-1, of 

the datasets (a) S6, (b) T6, (c) SA7 and SA14. In blue the loading of the 1st PC, in orange the 

loading of the 2nd PC.  
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Figure A4. Curve of calibration of model LR (above) and of model G-LR (below), given as RM 

measured (%) vs absorbance. Negative values of absorbance are due to the SNV applied to spectra 

as pre-treatment. The solid black line represents the fitting curve. 
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Figure A5. External validation of model SR with the samples of dataset VF. 

 

 


